The Cognitive Difficulties Scale (CDS): Psychometric Characteristics in a Clinical Referral Sample

Carlton S. Gass* (1), Brooke Patten, Ailyn Penate and Alice Rhodes Memory Disorders Clinic, Tallahassee Memorial Healthcare, Tallahassee, FL, USA

(Received May 6, 2020; Final revision July 15, 2020; Accepted August 18, 2020; First Published Online October 21, 2020)

Abstract

Objective: To evaluate the psychometric characteristics of the Cognitive Difficulties Scale (CDS), a 39-item Likert-type self-report instrument that requires a fifth grade reading level. The CDS is a popular instrument that has been shown to predict cognitive decline in older persons. Method: Participants were 512 consecutive outpatient referrals (71% women, mean age 60.6, and education 14.6 years) for a neuropsychological examination in a memory disorders clinic as part of a broader neurodiagnostic workup for cognitive decline. A principal components analysis was followed by a varimax rotation (Kaiser). Factor scores were investigated in relation to multiple internal and external criteria including demographics, Cronbach's alpha, Digit Span, and Wechsler Memory Scale-IV Logical Memory (LM) and Visual Reproduction (VR), and Minnesota Multiphasic Personality Inventory (MMPI)-2 measures of depression, anxiety, somatic preoccupations, and thought disturbance. Results: Six dimensions of cognitive complaint emerged accounting for 64% of the variance: attention/concentration, praxis, prospective memory, speech problems, memory for people's names, and temporal orientation. The factors showed good internal consistency (alphas > .850). Correlations with Digit Span, LM, and VR were all nonsignificant. CDS scores were associated with MMPI-2 measures of anxiety, depression, somatic preoccupation, and thought disturbance. Percentiles and T-scores were derived for raw scores on the CDS and its six component subscales. Conclusion: The CDS is a multidimensional measure of subjective cognitive complaints that provides clinicians with a psychometrically sound basis for deriving a profile with six subscale scores. The test has clinical utility and is a potentially useful tool in research involving age-related cognitive changes and meta-cognition.

Keywords: Meta-cognition, Dementia, Elderly/aging, Everyday function, Learning and memory, Mood (anxiety, depression)

INTRODUCTION

Within the field of neuropsychology, there is a growing recognition of the importance of subjective cognitive complaints and an emergence of several related avenues of clinical research. Self-reported cognitive difficulties are an important assessment focus for multiple reasons. They often represent a compromise in persons' quality of life and can signify changes that are a source of disruption in interpersonal relationships, general level of activity and participation in daily life activities, and occupational functioning (van Rijsbergen, Mark, Kop, de Kort, & Sitskoorn, 2019). Social ties and connections can suffer the ill effects of diminished communication that can result from impaired attention, concentration, and failed retention of new information. Complaints of problems such as distractibility and forgetfulness in the workplace are often associated with a reduction in occupational responsibilities, decline in work

status, job loss, or forced retirement. Individuals' cognitive complaints reflect recognized limitations that might also have special relevance in rehabilitation settings where, for example, an accurate awareness of deficits provides an impetus for commitment to therapeutic work (Spreij, Sluiter, Gosselt, Visser-Meily, & Nijboer, 2019). The absence of self-reported cognitive difficulties in persons who are cognitively impaired often reflects anosognosia, which has major implications for safety, treatment, and caregiver burden (Spitznagel & Tremont, 2005). Cognitive complaints are frequently associated with emotional distress and may be symptomatic of disorders of mood and thinking. Numerous studies support the conclusion that cognitive complaints are more strongly related to emotional distress, especially depression, than to objective neuropsychological test performance (Bowler et al., 2017; Burmester, Leathern & Merrick, 2016; Crumley, Stetler, & Horhota, 2014; Derouesné et al., 1993; Hill, Aschwanden, Payne, & Allemand, 2020). Complaints are also associated with a variety of problems in everyday living (Chaytor, Temkin, Machamer, & Dikmen, 2007; Spreij et al., 2019).

^{*}Correspondence and reprint requests to: Carlton S. Gass, 2214 Genevieve CT, Tallahassee, FL 32312, USA. E-mail: Carlton.Gass@TMH.org

A growing body of research is focused on self-reported cognitive decline as a possible precursor to mild cognitive impairment (MCI) and the subsequent development of Alzheimer's disease (Bessi et al., 2018; Dufouil, Fuhrer, & Alpérovitch, 2005; Lin, Shan, Jiang, Sheng, & Ma, 2019; Mark & Sitskoorn, 2013; Mazzeo et al., 2020). Despite existing evidence to the contrary (e.g., Edmonds, Delano-Wood, Galasko, Salmon, & Bondi, 2014; Jessen et al., 2020; Slot et al., 2018), subjective cognitive decline (SCD) in cognitively normal non-depressed persons is suspected by some investigators to precede non-normative cognitive loss and eventual progression to dementia (Rabin et al., 2015). These individuals report having cognitive decline yet perform within normal limits on standardized cognitive tests (Mitchell, Beaumont, Ferguson, Yadegarfar, & Stubbs, 2014; Muñoz et al., 2020; Rabin, Smart, & Amariglio, 2017). Although the relevant research findings are mixed, in some studies, the complaints appear to precede measurable decline as long as 15 years before manifesting cognitive impairment (Reisberg & Gauthier, 2008). In addition, some studies have linked subjective memory decline with biomarkers and radiologic correlates of Alzheimer's disease such as increased amyloid burden (Amariglio et al., 2012; Kim et al., 2019), white matter signal abnormalities, cerebral hypometabolism, and gray matter volume loss (Cedres et al., 2019).

Despite the inconsistent findings and lack of a consensus, the proliferation of research involving self-perceived cognitive problems points to an increasing need for clarifying the psychometric characteristics of self-report inventories that systematically address these issues. One such measure, the Cognitive Difficulties Scale (CDS; McNair & Kahn, 1983), is a 39-item 5-point Likert-type scale on which examinees rate their perceived frequency (ranging from "Never" to "Very Often") of commonplace difficulties with memory and other cognitive functions within the past month. The CDS is a brief, easy-to-understand instrument that assesses cognitive difficulties that occur in a context of daily life activities. Originally designed to assess the cognitive impact of medications, the CDS has been widely used within the field of neuropsychology to assess cognitive complaints. Complaints on the CDS were predictive of cognitive decline in older persons after a 4- to 5-year follow-up (Dardenne et al., 2017; Dufouil, Fuhrer, & Alpérovitch, 2005).

Derouesné et al. (1993) used the CDS to investigate perceived cognitive difficulties in 1648 normal volunteers, aged 48–75 years, who were devoid of severe medical or psychiatric disorder. Other CDS studies have focused on specific diagnostic groups, including patients with cardiovascular disease (Haley et al., 2009, 2011), traumatic brain injury (Gass & Apple, 1997), post-traumatic headache (Branca, Giordani, Lutz, & Saper, 1996), epilepsy (Galioto, Blum, & Tremont, 2015), chronic obstructive pulmonary disease (Brunette et al., 2018), dementia (Okonkwo, Spitznagel, & Tremont, 2010; Spitznagel & Tremont, 2005), MCI (Buelow, Tremont, Frakey, Grace, & Ott, 2014; Coley et al., 2008), and exposure to manganese (Bowler et al., 2017). The present study examined psychometric properties of the CDS as applied to neuropsychological referrals to a memory disorders clinic. In specific, we evaluated its factorial structure, internal consistency (reliability), item endorsement frequencies, relation to demographic variables, correlation with performance on widely used memory tests, and association with measures of depression and anxiety.

METHOD

Participants

This study was conducted in conformity with the ethical principles for medical research involving human subjects outlined in Declaration of Helsinki and in compliance with the Institutional Review Board of this healthcare institution. Participants were 512 consecutive referrals for neuropsychological testing at an outpatient memory disorders clinic in northern Florida. The clinic is housed within a neurology clinic in a large metropolitan healthcare center. These community dwellers were referred by Neurology (81%), Primary Care (14%), and Mental Health (3%). The participants were 62% women and 38% men with a mean age of 62.6 (± 14.3) years. Ethnically, 85% were White non-Hispanic, 12% Black non-Hispanic, and 2% White Hispanic. Level of education was $14.7 (\pm 2.8)$ years. Educationally, 47% were college graduates (16+ years), 44% had at least a high school diploma (12-15 years), and 9% had less than 12 years of formal education. Their average estimated intelligence level based on the Test of Premorbid Function (TOPF, Wechsler, 2009) was within the average range (MN = 101.3 ± 12.0). Most participants were fully independent and 47% were employed in full-time positions. The percentage retired was 25.3%, unemployed 22.3%, and disabled 4.2% of the participants.

Nearly all referrals were of a diagnostic nature, initiated to assist in evaluating for possible cerebral dysfunction. The referrals were prompted by the person's expressed problems with memory, concentration, and/or word finding. In a minority of cases, the referral was made due to informant complaints of cognitive or speech problems such as by a spouse or other family member. Only 14% of the sample had a diagnostic history involving brain disorder or brain insult. These cases consisted of traumatic brain injury (7%), cerebrovascular accident (5.8%), and seizure disorder (1.2%). Emotional disorders were formally diagnosed in 53.5% of the sample. These included depression (17%), generalized anxiety (11.5%), both depression and anxiety (17.2%), bipolar disorder (3.6%), and post-traumatic stress disorder (4.2%). Mental health diagnoses were most commonly made by a board-certified staff psychiatrist.

Instruments

The CDS (McNair & Kahn, 1983), previously described, is relatively simple to read, with a Flesch–Kincaid reading level

of 5.4. Psychometric support for the CDS derives from analyses of its test-retest reliability (.77, McNair & Kahn, 1983), factorial stability, and convergent validity with measures of depression and cognitive test performance (Bowler et al., 2017; Derouesné et al., 1993; Gass & Apple, 1997). The CDS was reported to be predictive of cognitive decline (Dardenne et al., 2017). A slightly revised version of the CDS was used in the present study. Item 1 ("I forget frequently used phone numbers.") was eliminated due to frequent examinee reminders of the item's obsolescence and the widespread popularity of speed dialing. A replacement for item 1 was based on a commonly heard complaint: "I forget where I parked my car." Finally, item 40 was added to the CDS based on a common clinical concern typically expressed as an interview question by staff neurologists: "I forget that the oven or stove is turned on."

The relation of cognitive complaints to actual memory test performance was investigated using the Logical Memory (LM) and Visual Reproduction (VR) subtests of the Wechsler Memory Score IV (Wechsler, 2008), the Digit Span subtest of the Wechsler Adult Intelligence Scale – Fourth edition (WAIS-IV; Wechsler, 2008), and the TOPF (Wechsler, 2009). The latter test was used to provide an estimate of participants' longstanding level of intellectual functioning.

To measure psychological variables, we used scales 1 (Hs, hypochondriasis), 2 (D, depression), 7 (Pt, psychasthenia), and 8 (Sc, schizophrenia) of the Minnesota Multiphasic Personality Inventory-2 (MMPI-2; Butcher, Dahlstrom, Graham, Tellegen, & Kaemmer, 1989). These scales, which assess health preoccupations, symptoms of depression, anxiety, and unusual ideation, have an extensive research base and are widely used within the field of neuropsychology (Gass, 2018; LaDuke, Barr, Brodale, & Rabin, 2018).

Procedure

Participants were initially interviewed and then administered the CDS prior to a comprehensive battery of neuropsychological tests that included the LM and VR subtests, Digit Span, and the TOPF. As part of the assessment, participants read aloud the CDS instructions. In almost all cases, they were able to read and complete the CDS without special assistance from the examiner. In a small number of cases, patients were excluded from participation because they were unable to read the CDS or follow the instructions.

Statistical Analyses

In order to examine the underlying dimensions measured by the CDS, responses to the 40 CDS items were subjected to a principal components analysis (PCA) followed by a varimax rotation of all factors that satisfied Kaiser's criterion (eigenvalue > 1). Factors were composed of items that satisfied the criterion of having factor loadings of at least .40 with no equivalent or higher loadings on other factors (Nunnally, 1978). Factor labels were devised based on the semantic theme reflected in the factorial item content, with greater semantic weight given proportionately based on the size of the item loadings. Factor scores were derived by adding unweighted raw scores across the items that constituted the respective factor. The reliability of the CDS factors as dimensional measures was examined using Cronbach's alpha to measure each subscales' internal consistency.

Pearson correlations were used to assess the relationship of CDS scores to scores on WAIS-IV Digit Span, Wechsler Memory Scale-IV LM, and VR. The WAIS-IV scale score of Digit Span was used. Linear regression as described in the Halstead-Russell Neuropsychological Evaluation System-Revised (HRNES-R) manual (Russell & Starkey, 2001) published by Western Psychological Services and in Russell (1987) was used to assist in the derivation of HRNES scale scores for LM and VR. For the purpose of statistical analysis and data reduction, age-adjusted raw scores were added together on LM-1 and LM-2, and on VR-1 and VR-2. The summary raw scores for LM and VR were then converted into modified z scores with a mean of 100 and a standard deviation of 10. The HRNES-R scale scores are classified as follows: normal (above 96–112), borderline (90–95), mild (80-89), moderate (70-79), and severe (below 70). Participants' mean scores (with standard deviation and range) on these tests are shown in Table 1.

In addition to evaluating the CDS correlations with the memory tests, correlations were computed to evaluate the relationship between CDS scores and MMPI-2 measures of somatic preoccupation (*Hs*), depression (*D*), anxiety (*Pt*), and disturbed thinking (*Sc*). To minimize the likelihood of a Type 1 error based on chance findings in conducting multiple analyses, the Holm–Bonferroni sequential correction method was applied (Holm, 1979).

RESULTS

The CDS protocols of 512 participants were subjected to a PCA followed by varimax rotation. The PCA produced six components accounting for 64% of the total variance. An exploratory factor analysis was conducted using varimax rotation. The results are shown in Table 2 with assigned loadings in boldface.

The resulting six-factor solution is similar to the results of previous CDS studies using various samples (Branca et al., 1996; Gass & Apple, 1997). Intercorrelations of the six factors are shown in Table 3. Table 4 displays the item composition of the six factors (CDS subscales), with their item loadings, mean scores, standard deviations, and internal consistency coefficients (Cronbach's alpha).

Total CDS Score

Thirty-two participants (6.3%) chose to skip one or more of the 40 items on the CDS. Examinees reported that these items were not addressed because they referred to issues such as sewing or cooking that were not applicable to them. As a

 Table 1. Scoring characteristics (means, standard deviations, and ranges) of the sample

Table 2. Factor loadings for exploratory factor analysis with varimax

 rotation of Cognitive Difficulties Scale items

Measure	Mean	SD	Range
Cognitive Difficulties Scale	59.4	27.9	0–160
Digit Span Scale Score	9.1	2.7	1–19
WMS-IV Logical Memory I	94.0	11.5	62-112
WMS-IV Logical Memory II	87.0	17.6	55-112
WMS-IV Visual Reproduction I	97.0	8.2	55-112
WMS-IV Visual Reproduction II	91.8	17.6	55-112
Scale 1 (Hs)	66.5	13.2	37-105
Scale 2 (D)	66.8	13.6	34-110
Scale 7 (Pt)	62.1	12.7	30-105
Scale 8 (Sc)	63.3	12.6	30-106

Note. Hs = hypochondriasis; D = depression; Pt = psychasthenia; Sc = schizophrenia.

result, total scores on the CDS were obtained for only 480 participants. The 40-item revised CDS was statistically examined and found to have six underlying dimensions (Table 4). The CDS has excellent reliability, with an internal consistency of .97 (Cronbach's alpha). Table 5 displays the 10 most common and least common difficulties reported by this sample. The most common complaint involved needing a list to avoid forgetting when running errands (40% "very often" and 28% "often"). The second most common complaint was immediately forgetting the names of people upon introduction (28% "very often" and 29% "often"). The least common difficulties involved forgetting to use buttons or zippers, and trouble with placing keys in locks, with 90% and 80%, respectively, reporting a frequency of "rarely" or "not at all."

In describing the role of demographic variables, gender, age, and education were examined in relation to scores on seven measures, including the total CDS and the six factorial dimensions or subscales (Table 6). The Holm–Bonferroni sequential method was used to reduce the risk of a Type 1 error in making multiple (seven) comparisons involving each demographic variable. In performing seven analyses, the sequential alpha level cutoffs are .007, .008, and .01. CDS scores were significantly related to age, r(480) = -.31, p < .001, with younger participants expressing greater difficulties than older subjects. Education was related to CDS total scores, r(477) = -.187, p < .001. Gender approached significance, p = .016.

The two racial/ethnic groups comprising the 97% of the study sample were White and Black non-Hispanics. We investigated the possibility of differences between these two groups in cognitive complaints on the CDS. Due to significant intergroup age and educational differences, we matched participants on these two demographic variables, with 62 subjects in each group (see Table 7). The multivariate analysis of mean scores across the seven CDS scores revealed a statistically significant overall effect for race, Wilks' lambda = .853, F(6,109) = 3.14, p = .007. Although no differences were found for the CDS total score and five of the subscales, one univariate comparison showed a significant difference: Black non-Hispanics had fewer complaints

Item	1	2	3	4	5	6
31	750	246	156	263	-053	097
3	736	255	271	091	068	025
10	709	138	323	247	168	025
19	679	175	193	328	175	135
16	668	224	157	190	217	-003
11	668	370	031	342	065	069
25	646	111	337	358	109	124
32	587	144	223	277	202	282
4	580	054	237	-012	257	281
26	552	161	254	302	094	407
2	542	122	499	107	089	116
20	503	361	257	146	187	227
24	460	380	100	093	301	274
36	455	329	369	249	156	303
30	220	780	003	050	020	028
28	136	712	141	066	115	147
39	163	712	061	188	096	135
7	166	638	312	118	189	145
22	030	585	343	034	288	072
34	228	574	371	347	-080	102
27	325	439	353	256	134	145
1	196	094	659	153	078	093
33	149	271	608	219	264	149
6	529	115	572	120	146	066
8	544	121	553	-040	184	117
5	444	131	542	147	085	204
35	277	361	541	086	161	192
23	222	498	533	035	124	122
29	381	457	521	006	086	138
40	107	429	472	272	140	073
12	395	305	036	616	228	152
14	444	099	260	579	283	095
17	376	342	106	551	152	090
37	379	045	345	547	034	321
15	306	185	303	485	454	161
9	224	132	159	164	772	127
13	119	303	234	251	693	-072
18	532	099	109	-049	570	324
21	250	351	159	099	008	726
38	157	206	306	265	210	713

Note. Decimal point omitted. Factor loadings > .40 are in boldface.

than White non-Hispanics regarding time orientation, F(1,122) = 4.65, p = .033.

The average CDS item response rating of perceived level of difficulty was 1.5 ± 0.6 , where 1 = "Rarely" and 2 = "Sometimes." The modal response was "Sometimes," occurring on 40% of the items. The frequency of high scorers with an average CDS response in the range of "Very Often" (>3.5) was 0.4%, and "Often" (>2.5) 7.5%. CDS scores were not related to cognitive performance on Digit Span, LM, or VR (Table 8). However, as shown in Table 9, they were significantly related to level of psychological problems on the MMPI-2 (*rs* between .30 and .55, *ps* < .001).

Table 3. Factor	score	intercorrel	ations
-----------------	-------	-------------	--------

	Factor					
Factor	Ι	II	III	IV	V	VI
Attention and concentration	_					
Praxis	$.627^{*}$	_				
Prospective memory	.760	.648	_			
Speech	.801	.575	.672	_		
People's names	.621	.462	.579	.603	_	
Temporal orientation	.592	.503	.580	.532	.468	
Cognitive Difficulties Scale total	.947	.763	.879	.858	.710	.681

Note. Factor I = attention and concentration; Factor II = fine motor skill; Factor III = prospective memory; Factor IV = speech; Factor V = people's names; Factor VI = temporal orientation.

*All ps < .001.

Factor 1: Attention and Concentration

As Table 3 shows, Factor 1 consisted of 14 items that address attention and concentration, accounting for 19.7% of the total variance. The strongest predictor of scores on this measure was the item, "I find it difficult to keep my mind on what I'm reading." Women reported more difficulties than men on attention and concentration (Factor 1), r(499) = .145, p < .001. Age was significantly related, r(499) = -.353, p < .001, with younger participants expressing greater difficulties. Education was inversely related to scores on this factor, r(499) = -.182, p < .001. On attention and concentration, the average item response rating of perceived level of difficulty was 1.9 ± 0.4 , where 1 = "Rarely" and 2 = "Sometimes." The modal response was "Sometimes," occurring on 71% of the items. The frequency of high scores with an average Factor 1 response in the range of "Very Often" was 3.2% and "Often" or more in 21.8%. Factor 1 appears to have measurement potential with a high level of internal consistency (Cronbach's alpha = .94). Scores on attention and concentration were unrelated to test performance on Digit Span, LM, and VR. However, they were significantly related to MMPI-2 measures of depression and anxiety (rs between .45 and .53, ps < .001).

Factor 2: Praxis

This consisted of seven items that primarily address *praxis*, accounting for 12.9% of the total variance. The strongest predictor of scores on this measure was the item, "I have trouble sewing or mending," with other items involving the manipulation of buttons, zippers, use of needle and thread, and the manual use of tools. Gender and age had no significant relationship to scores on this factor. Education approached statistical significance (p = .011). On *praxis*, the average item response rating of perceived level of difficulty was $0.7 \pm .1$, where 0 = "Not at all" and 1 = "Rarely." The modal response was "Not at all," occurring on 71% of the items. The frequency of scores with an average Factor 2 response in the range of "Very Often" was 0.4% and "Often" or more in 1.8%. Factor 2 is a potentially reliable measure with a satisfactory level of internal consistency (Cronbach's alpha = .85). Complaints regarding *praxis* were less common compared to those involving other dimensions measured by the CDS. Scores on *praxis* were unrelated to test performance on Digit Span, LM, and VR. However, they were significantly related to measures of depression and anxiety (*rs* between .38 and .45, ps < .001).

Factor 3: Prospective Memory

This was composed of nine items that address prospective memory, accounting for 12% of the total variance. The strongest predictor of scores on this measure was the newly added item, "I forget where I parked my car." Gender and education were not related to scores on this factor (rs = .10 and -.12, respectively). However, age was negatively associated with memory complaints (r = -.35, p < .001), with younger participants having more complaints. On prospective memory, the average item response rating of perceived level of difficulty was 1.2 ± 0.4 , where 1 = "Rarely." The modal response was "Not at all," occurring on 56% of the items. The frequency of high scores with an average Factor 3 response in the range of "Very Often" was 0.8% and "Often" or more in 5.1%. Factor 3 has good reliability, with a satisfactory level of internal consistency (Cronbach's alpha = .88). Scores on *prospective memory* were unrelated to test performance on Digit Span, LM, and VR. However, they were significantly related to measures of depression and anxiety (rs between .42 and .51, ps < .001).

Factor 4: Speech

Speech consisted of five items that address a variety of problems related to *speech*, accounting for 7.4% of the total variance. Items on this factor refer to improper speech content, grammatical errors, dysfluency, dysnomia and word finding difficulty, and difficulties with speech comprehension. The strongest predictor of scores on this measure was the item, "I don't quite say what I mean." Gender was not a significant factor in reported speech difficulties. Age was related to the severity of reported speech difficulties, r(503) = -.28, p < .001, with the younger participants expressing more complaints. Education was also related to scores on this factor (r = -.19). On *speech*, the average item

Table 4. Items and loading on the si	x factors of the Cognitive Difficulties Scale
--------------------------------------	---

Loading	Item	
Factor 1: Att	ention and concentration (14 it	ems; Eigenvalue = 7.89, variance = 19.7%, MN = 26.1 SD = 11.9; Cronbach's alpha = .940)
.75	31.	I find it hard to keep my mind on what I'm reading
.73	3.	When interrupted while reading, I have trouble finding my place again
.71	10.	I find it hard to keep my mind on a task or job
.68	19.	I lose my train of thought as I listen to somebody else
.67	16.	I find it hard to understand what I read
.67	11.	I have trouble describing a program I just watched on television
.65	25.	I cannot keep my mind on one thing
.59	32.	I forget right away what people say to me
.58	4.	I need a written list when I do errands to avoid forgetting things
.55	26.	I need to have instructions repeated several times
.54	2.	I put down things (glasses, keys, wallet, purse, papers) and have trouble finding them
.50	20.	I forget steps in recipes that I know well and have to look them up
.46	24.	I make mistakes in writing, typing, or operating a calculator
.46	36.	I have to do things very slowly to be sure I'm doing them right
Factor 2: Pro	txis (7 items; Eigenvalue = 5.15	5, variance = 12.9% , $MN = 4.7$ SD = 4.4 ; Cronbach's alpha = .853)
.78	30.	I have trouble sewing or mending
.71	28.	I have trouble manipulating buttons, fasteners, scissors, or bottle caps
.71	39.	I have trouble using tools (hammers, pliers, etc.) for minor household repairs
.64	7.	I have trouble putting keys into a lock
.59	22.	I forget to button or zip my clothing
.57	34.	I have trouble deciding if I've received the correct change
.44	27.	I leave out ingredients when I cook
Factor 3: Pro	ospective memory (9 items; Eige	envalue = 4.81, variance = 12.0%, MN = 10.5 SD = 6.6; Cronbach's alpha = .879)
.66	1.	I forget where I parked my car
.61	33.	When walking or riding, I forget how I've gotten from one place to another
.57	6.	I forget to return phone calls
.55	8.	I forget errands I planned to do on my way home
.54	5.	I forget appointments, dates, or classes
.54	35.	I forget to pay bills, record checks, or mail letters
.53	23.	I forget to lock the door
.52	29.	I misplace my clothing
.47	40.	I forget that the stove or oven is turned on
Factor 4: Spe	eech (5 items; Eigenvalue $= 3.06$	0, variance = 7.4% , $MN = 8.7$ SD = 4.6 ; Cronbach's alpha = .858)
.62	12.	I don't quite say what I mean
.58	14.	I have trouble getting out information that's at the tip of my tongue
.55	17.	I miss the point of what other people are saying
.55	37.	My mind goes blank at times
.49	15.	I have trouble thinking of the people's names of objects
Factor 5: Pee	ople's names (3 items; Eigenval	lue = 2.58, $variance = 5.8%$, $MN = 5.8$; $SD = 2.7$; $Cronbach's alpha = .718$)
.77	9.	I have trouble recalling the names of people I know
.69	13.	I fail to recognize people I know
.57	18.	I forget the names of people soon after being introduced
Factor 6: Ter	nporal orientation (2 items; Eig	genvalue = 2.21, variance = 5.5%, $MN = 3.5$; $SD = 2.1$; Cronbach's alpha = .797)
.73	21.	I forget what day of the week it is
.71	38.	I torget the date of the month

Note. CDS total (40 items; MN = 59.4 SD = 27.9; 40 items; Cronbach's alpha = .968).

response rating of perceived level of difficulty was 1.7 ± 0.3 , where 1 = "Rarely" and 2 = "Sometimes." This difficulty was reported to be "Often" or more in 19.1% of the sample and "Very Often" in 3.6% of the sample. The modal response was "Sometimes," occurring on 80% of the items. Factor 4 demonstrated acceptable reliability, with a moderately high level of internal consistency (Cronbach's alpha = .86). Scores on *speech* were unrelated to test performance on

Digit Span, LM, and VR. However, they were significantly related to MMPI-2 measures of depression and anxiety (rs between .42 and .46, ps < .001).

Factor 5: People's Names

Factor 5 was composed of three items, and these refer to recall of *people's names*, accounting for 6.5% of the total variance.

Item	Frequency % "Often" or "Most Often"
Most frequent complaints	
I need a written list when I do errands to avoid forgetting things	68.7
I forget the names of people soon after being introduced	57.8
I put down things (glasses, keys, wallet, papers) and have trouble finding them	39.1
I have trouble recalling the names of people I know	37.6
I lose my train of thought as I listen to somebody else	36.5
I have trouble getting out information that's at the tip of my tongue	33.9
I forget the date of the month	30.1
I cannot keep my mind on one thing	30.0
I find it hard to keep my mind on a task or job	27.7
My mind goes blank at times	27.7
Item	Frequency % "Not at all"
Rarest complaints	
I have trouble putting keys into a lock	61.7
I forget to button or zip my clothing	61.3
I have trouble deciding whether I've received the correct change	61.5
I have trouble using tools (hammers, pliers, etc.) for minor household repairs	61.0
I have trouble sewing or mending	59.0
I have trouble manipulating buttons, fasteners, scissors, or bottle caps	57.6
I misplace my clothing	52.3
When walking or riding, I forget how I've gotten from one place to another	49.4
I forget that the stove or oven is turned on	48.6
I leave out ingredients when I cook	43.6

The strongest predictor of scores on this measure was the item, "I have trouble recalling the names of people I know." This variable was not related to age, education, or gender. On people's names, the average item response rating of perceived level of difficulty was 1.9 ± 0.9 , where 1 = "rarely" and 2 = "Sometimes." This difficulty was reported to be "Often" or more in 28.2% of the sample and "Very Often" in 4.7% of the sample. People's names demonstrated a relatively low and marginally acceptable level of internal consistency (Cronbach's alpha = .72). This factor includes an item, "I fail to recognize people I know," which taps an infrequent experience, though another factor item, "I forget the names of people soon after being introduced," was reported to be a very common occurrence. Scores on this factor were unrelated to test performance on Digit Span, LM, and VR. However, they were significantly related to MMPI-2 measures of depression and anxiety (rs between .30 and .32, ps < .001).

Factor 6: Temporal Orientation

Factor 6 consisted of two items that accounted for 5.5% of the total variance. These items address *temporal orientation*, specifically day of the week and date of the month. The strongest predictor of scores on this measure was the item,

"I forget what day of the week it is." Education was statistically significant in predicting the severity of reported temporal orientation difficulties, r(508) = -.198, p < .001, with the less educated participants expressing more complaints. Gender and age were not related to this CDS dimension. On temporal orientation, the average item response rating of perceived level of difficulty was 1.7 ± 0.9 , where 1 = "Rarely" and 2 = "Sometimes." This difficulty was reported to be "Often" or more in 28.6% of the sample and "Very Often" in 9.2% of the sample. This factor demonstrated acceptable reliability, with a moderate level of internal consistency (Cronbach's alpha = .80). Scores on temporal orientation were unrelated to test performance on Digit Span, LM, and VR. However, they were significantly related to MMPI-2 measures of depression and anxiety (rs between .35 and .40, *ps* < .001).

Individuals showed significant diversity in reporting the degree of their cognitive difficulties and in their pattern across domains. Many individuals reported having very few problems, and many largely restricted their complaints to a single domain. To assist the clinician in evaluating individuals' CDS scores *relative to other clinical referrals*, we include a frequency table with raw, *T*-score, and percentile conversions (Table 10). Table 10 values are not normative scores

Table 6. Pearson correlations between cognitive complaint (CDS) measures and demographic variables (N = 480)

	Demographic			
Complaint measure	Gender	Age	Education	
CDS total score	.110	310**	187**	
Attention and concentration	.145*	353**	182**	
Praxis	.001	074	113	
Prospective memory	.103	352**	117*	
Speech	.166**	280**	194**	
People's names	029	084	090	
Temporal orientation	.073	097	198**	

Note. CDS = Cognitive Difficulties Scale. **<math>p < .001 and *p < .01, significant using Holm–Bonferroni sequential alpha.

Table 7. Interracial differences in self-reported cognitive difficulties

 using 124 participants matched on age and education

		White	Black	F	р
Women	п	41	44		
Men	n	21	18		
Age	MN	57.7	57.7	0.00	.994
	SD	12.8	12.7		
Ed	MN	15.3	15.6	0.51	.476
	SD	2.4	2.7		
CDS total	MN	66.6	60.1	1.47	.227
	SD	33.4	23.2		
Attention and	MN	29.6	26.9	1.59	.209
concentration	SD	13.5	9.7		
Praxis	MN	5.9	4.2	3.70	.057
	SD	6.2	3.4		
Prospective memory	MN	11.1	12.2	.619	.433
	SD	7.8	5.9		
Speech	MN	9.5	8.5	1.24	.268
-	SD	5.3	3.8		
People's names	MN	6.2	5.4	2.69	.104
	SD	2.8	2.7		
Temporal orientation	MN	3.9	3.0	4.65	.033
	SD	2.3	2.0		

Wilks' lambda = .853, F(6,109) = 3.14, p = .007.

based on "healthy normals," nor are they necessarily representative of patient populations that significantly differ on demographic variables. However, they do provide a basis for making comparisons with other individuals who were referred to an outpatient clinic for memory assessment.

DISCUSSION

The major purpose of this study was to describe fundamental measurement characteristics of the CDS that would be informative for clinicians who use or consider using this instrument. The CDS requires limited reading skill (fifth grade level) and is relatively quick to administer. The item **Table 8.** Pearson correlations between cognitive complaint (CDS) measures and memory test scores (N = 167)

	Performance measure				
Complaint measure	Digit Span	Logical Memory	Visual Reproduction		
CDS total score	08	02	.06		
Attention and concentration	06	02	.07		
Praxis	11	07	05		
Prospective memory	04	.01	.09		
Speech	08	.06	.10		
People's names	01	.02	.17		
Temporal orientation	07	11	08		

Note. CDS = Cognitive Difficulties Scale. All ps nonsignificant.

Table 9. Pearson correlations between cognitive complaint (CDS) measures and MMPI-2 scores (N = 167)

	MMPI-2 scale								
Complaint measure	Hs	D	Pt	Sc					
CDS total score	.51	.53	.52	.55					
Attention and concentration	.45	.52	.53	.53					
Praxis	.45	.40	.38	.39					
Prospective memory	.46	.42	.46	.51					
Speech	.45	.46	.42	.42					
People's names	.30	.32	.30	.30					
Temporal orientation	.38	.36	.35	.40					

Note. CDS = Cognitive Difficulties Scale. All *ps* < .001.

content mostly reflects common life experiences and is face valid for assessing cognitive difficulties. The CDS is not a homogenous measure but rather a multidimensional scale that appears to tap six domains. In this memory disorders clinic referral sample, the scale's underlying factorial structure is consistent with that found in a referral sample of veterans with closed-head injury (Gass & Apple, 1997) and in healthy volunteers (Derouesné et al., 1993). The items of the CDS place varying emphasis across the content domains with the majority of items addressing attention and concentration (35% of items) and memory (prospective and peoples' names, 30% of items). This content emphasis is characteristic of other cognitive self-report inventories (Rabin et al., 2015). Less represented are praxis (18%), speech difficulties (13%), and temporal orientation (5%). Regarding the small number of items that can assess subjective complaints involving speech (three items) and/or temporal orientation (two items), further consideration might be given to possible revision and augmentation.

The CDS showed excellent internal consistency. Its underlying factors also exhibited adequate internal consistency, though the temporal stability (test–retest reliability), particularly of the shorter measures, was unexplored. Whether the content validity of the two- and three-item factors reflects

Table 10. Raw scores, *T*-scores, and percentiles for the Cognitive Difficulties Scale

Table	10.	(Continued)
Iunic	T 0.	(communea)

Attention and concentration

Percentile Raw

3 2

2

1

.5

.3

Raw T

5 32

4 31

3 31

2 30

1 29

0 28

										CDS total					
CDS total				ttent	ion and ntration		Pra	xis	Raw	Т	Percentil				
Raw	Т	Percentile	Raw	Т	Percentile	Raw	Т	Percentile	109	68	95 95				
160	86	100	56	75	100	28	104	100	108	67	95				
159	86	99	55	74	99	27	101	99	107	67	94				
158	85	99	54	73	99	26	99	99	100	67	94				
157	85	99	53	73	98	25	97	99	105	00 66	94				
156	85	99	52	72	98	24	94	99	104	60	95				
155	84	99	51	71	98	23	92	99	105	65	95				
154	84	99	50	70	97	22	90	99	102	65	92				
153	84	99	49	69	96	21	87	99	101	65	91				
152	83	99	48	68	95	20	85	99	00	6 <i>1</i>	90				
151	83	99	47	68	94	19	83	99	99	64 64	90				
150	83	99	46	67	93	18	81	99	90	64	80				
149	82	99	45	66	92	17	78	98	97	63	88				
148	82	99	44	65	91	16	76	98	90	63	88				
147	81	99	43	64	89	15	74	97	93	62	88				
146	81	99	42	63	88	14	71	97	93	62	87				
145	81	99	41	63	86	13	69	96	93	62	87				
144	80	99	40	62	85	12	67	95	01	61	86				
143	80	99	39	61	84	11	64	92	91	61	86				
142	80	99	38	60	83	10	62	90	90 80	61	85				
141	79	99	37	59	82	9	60	87	89	60	81				
140	79	99	36	58	80	8	58	83	00 87	60	04 84				
139	79	99	35	57	79	7	55	79	86	60	83				
138	78	99	34	57	77	6	53	72	80	50	85 87				
137	78	99	33	56	74	5	51	61	0J 84	50	02 81				
136	78	99	32	55	71	4	48	49	83	58	80				
135	77	99	31	54	68	3	46	34	83	58	80				
134	77	99	30	53	65	2	44	19	81	58	70				
133	76	99	29	52	63	1	41	4	80	57	70				
132	76	99	28	52	61	0	37	1	70	57	78				
131	76	99	27	51	58				78	57	70				
130	75	99	26	50	55				70	56	75				
129	75	99	25	49	51				76	56	74				
128	75	99	24	48	47				75	55	74				
127	74	99	23	47	43				74	55	72				
126	74	99	22	47	38				73	55	71				
125	74	99	21	46	36				72	55	70				
124	73	99	20	45	34				71	54	69				
123	73	99	19	44	31				70	54	67				
122	72	98	18	43	28				69	53	65				
121	72	98	17	42	24				68	53	64				
120	72	98	16	41	21				67	53	64				
119	71	98	15	41	19				66	52	62				
118	71	98	14	40	17				65	52	61				
117	71	97	13	39	14				64	52	59				
116	70	97	12	38	13				63	51	58				
115	70	97	11	37	11				62	51	57				
114	70	97	10	36	10				61	51	56				
113	69	97	9	36	8				60	50	54				
112	69	96	8	35	6				59	50	53				
111	69	96	7	34	4				58	50	52				
110	68	96	6	33	4					40	50				

(Continued)

(Continued)

Praxis T Pe

Percentile

Praxis T Percentile

Percentile

 Table 10. (Continued)

CDS total			Attention and concentration			Praxis			CDS total			Attention and concentration			Praxis			
Raw	Т	Percentile	Raw	Т	Percentile	Raw	Т	Percentile	Raw	Т	Percentile	Raw	Т	Percentile	Raw	Т	Percenti	
56	49	48							2	29	.3							
55	48	47							1	29	.2							
54	48	46							0	29	.1							
53	48	44							Prosr	ectiv	ve memory		Sn	eech	Pe	onle	's names	
52	47	43							Dow	T	Damaantila	Daw	$\frac{5p}{T}$	Damaantila	Dow	T T	Danaanti	
50	47	42							Kaw	1	Percentile	Kaw	1	Percentile	Kaw	1	Percenti	
10 10	47	41							36	89	100	22	79	100	12	73	100	
48	46	38							35	87	99	21	77	99	11	69	97	
47	46	37							34	86	99	20	75	99	10	65	94	
46	45	36							33	84 82	99	19	70	99	9	62 50	90	
45	45	34							32 21	83 91	99	18	10	98	8 7	50 54	83 74	
44	44	33							30	80	99	17	66	90	6	51	74 55	
43	44	31							29	78	99	15	64	95 91	5	47	47	
42	44	29							28	76	99	14	62	87	4	43	36	
41	43	27							27	75	99	13	59	82	3	40	18	
40 20	43	26							26	73	98	12	57	77	2	36	11	
39 20	43	24							25	72	97	11	55	71	1	32	5	
38 27	42	23							24	70	97	10	53	64	0	30	3	
36	42	22							23	69	95	9	51	54				
35	41	20							22	67	93	8	49	45				
34	41	19							21	66	92	7	46	38				
33	41	18							20	64	90	6	44	30				
32	40	17							19	03 61	88 85	3 1	42	23 10				
31	40	16							17	60	83	3	38	19				
30	39	15							16	58	80	2	36	10				
29	39	15							15	57	76	1	33	6				
28	39	14							14	55	72	0	31	3				
27	38	13							13	54	67							
20	38	12							12	52	62							
23	37	10							11	51	56							
23	37	10							10	49	48							
22	37	9							9	48	44							
21	36	8							8 7	40	40							
20	36	7							6	43	29							
19	36	6							5	42	22							
18	35	6							4	40	18							
17	35	5							3	39	13							
16	34	4							2	37	9							
15	34 24	3							1	33	6							
14	34	3							0	30	3							
12	33	2							Temr	oral	orientation							
11	33	2								0141			•					
10	32	2							Raw		I Per	centile	:					
9	32	2							8		72	100						
8	32	2							7		67	93						
7	31	1							6		62	86						
5	31	1							5		57	74						
2	20	.8							4		53	55						
	30								2		10	20						
+ 2	30 30 30	.5							3		48	39 25						
3	30 30 30	.5 .4							3 2 1		48 43 38	39 25 18						

https://doi.org/10.1017/S1355617720001058 Published online by Cambridge University Press

an adequate sampling of their respective domains is a question for further consideration. The predictive validity of the CDS has traditionally been assessed using standardized cognitive tests as criteria. To the extent that this criteria selection is appropriate, the overwhelming evidence to date casts doubt on the scale's validity, because, with few exceptions, the CDS and other subjective self-report measures are generally poor predictors of objective cognitive test performance (Bowler et al., 2017; Burdick, Endick, & Goldberg, 2005). However, one might question the appropriateness of judging the validity of a subjective cognitive difficulty rating based solely on its correlation with cognitive test results. As several investigators have emphasized, these tests might be inadequate as external criteria. In specific, standardized cognitive tests and the context in which they are administered are wellsuited for measuring cognitive capacity, but as reflections of daily cognitive efficiency they have limited ecological validity (Chaytor et al., 2007). Cognitive complaints arise from life experiences in a world that substantially differs from the artificial, structured, distraction-free, time-limited, and highly controlled testing environment. Neuropsychological tests measure what a person can do; self-report measures, in most cases, might be a better representation of what they actually do.

Self-report cognitive complaint measures are important for assessing people's insight and awareness of their deficits. Cognitively impaired individuals are commonly unaware of their deficits (anosognosia) or display indifference toward them (anosodiaphoria). Under-reporting of cognitive difficulties on the CDS or similar scales by persons with impaired attention and/or memory sometimes reflects failed memory or a loss of other cognitive abilities involved in self-insight (Edmonds, Delano-Wood, Galasko, Salmon, & Bondi, 2014). In these cases, the formal measurement of impaired insight is clinically important and has direct relevance for treatment and safety. Significant others who know and routinely observe the examinee's behavior might provide more accurate ratings of cognitive difficulties than the examinees themselves. Anosognosia can be assessed using the informant-patient discrepancy on the CDS (Derouesné et al., 1999; Spitznagel & Tremont, 2005). A collateral version of the CDS filled out by informants based on observations of the patient had higher correlations with objective cognitive measures than did the self-report versions (Buelow et al., 2014; Okonkwo et al., 2010). For this reason, Buelow et al. recommended obtaining caregiver reports with individuals who have mild or worse cognitive impairment.

CDS scores were partially influenced by demographic variables in this sample. Women reported more difficulties than men only on *Attention and Concentration*. This replicates an earlier finding by Bowler et al. (2017). Less educated participants reported greater problems with *Temporal Orientation*. Younger participants and less educated participants tended to report more difficulties on three measures: *total CDS*, *Attention and Concentration*, and *Speech*. This finding is related to the fact that both groups – the younger and less educated – also had higher levels of psychological disturbance

than their older and more educated counterparts, with correlations ranging from -.19 to -.33 across the four MMPI-2 variables (all ps < .001). Our results are similar to those of Bowler et al. (2017) and Derouesné et al. (1993), who reported higher CDS scores as a function of lower education and psychological disturbance. However, Derouesné et al. reported an increase in cognitive complaints with advancing age. In contrast, in the present setting, age was negatively related to cognitive complaints. We noted that psychological disturbance and associated complaints were more prominent in the younger participants. We have observed that younger referrals to this memory disorders clinic are more likely to be referred due to memory complaints seemingly arising out of psychological issues, whereas older patients were more commonly referred due to a suspicion of possible MCI or dementia even in an absence of self-reported memory difficulties.

In the present study, CDS scores correlated with MMPI-2 measures of psychological disturbance with coefficients ranging from .30 to .53, all ps < .001. As previously noted, the consensus among investigators is that self-reports of cognitive functioning are, at best, weak predictors of cognitive test results. Cognitive inefficiency in daily living is a wellknown characteristic of mood disorders (Porter, Robinson, Mahhi, & Gallagher, 2015), so it might not be surprising that scores on cognitive complaint inventories are significantly associated with levels of depression and/or anxiety (Bowler et al., 2017; Branca et al., 1996; Buelow et al., 2014; Burdick et al., 2005; Burmester, Leathern & Merrick, 2016; Chaytor et al., 2007; Crumley, Stetler, & Horhota, 2014; Derouesné et al., 1993; Edmonds et al., 2014; Gass & Apple, 1997; Hill et al., 2020; Okonkwo et al., 2010; Stillman, Madigan, Torres, Swan, & Alexander, 2020; Yates, Clare, Woods, & MRC CFAS, 2015).

The importance of a systematic approach to assessing selfreported cognitive difficulties can be seen in longitudinal studies designed to evaluate the relevance of subjective cognitive complaints for actual mental decline. Some investigators have maintained that subjective complaints predict cognitive decline at an earlier stage than objective tests that fail to detect the deficits (Dardenne et al., 2017; Dufouil, Fuhrer, & Alpérovitch, 2005; Rabin et al., 2015; Reisberg & Gauthier, 2008). However, it is questionable whether the objective tests cited in these studies are highly sensitive and sufficient to detect early cognitive changes (Thomas et al., 2020). The claim that cognitive complaints have such predictive validity has been seriously challenged by the findings of numerous research studies that suggest that a large majority of individuals with SCD in both memory clinic and community-based cohorts do not progress to any type of dementia but rather remain cognitively normal (e.g., Edmonds et al., 2014; Jessen et al., 2020; Slot et al., 2018). Nevertheless, some investigators are attempting to develop an office tool using selected cognitive complaints that might identify individuals who are at risk of progression to dementia (Buelow et al., 2014). If achievable, predictive success is most likely to emerge out of a multifactorial approach that also includes familial/genetic considerations, biomarkers, and other objective data. The value of cognitive complaints as predictors is probably closely intertwined with emotional status. For example, a substantial body of evidence suggests that Major Depressive Disorder is a risk factor for dementia and may predispose people to cognitive decline in both early and late onset variants (Brzezińska et al., 2020; Ezzati, Katz, Derby, Zimmerman, & Lipton, 2020). Diniz, Butters, Albert, Dew, and Reynolds (2013) conducted a systematic review and meta-analysis including longitudinal studies with 49,612 subjects. Their results supported the association between depressive disorders and dementia, finding evidence of a 2.53-fold increased risk for vascular dementia and 1.85-fold increased risk for Alzheimer's disease.

The present study has significant limitations that will hopefully be addressed in future investigations. Measurement characteristics of the CDS found herein might not generalize to other types of assessment settings or with different samples. The present sample consisted of individuals who were predominantly White, over 60% women, and relatively well-educated (MN = 14.7 years). The study's participants lack some of the important demographic characteristics that are present in many clinical settings. Therefore, the norms provided herein should be cautiously applied. Nearly, all cases were referred to evaluate for possible MCI or early dementia and did not include persons with moderate or more severe dementia. All participants were able to read the CDS and complete the Likert-type scale. Few had a known history of brain disorder. For these reasons, the present findings might not generalize to other neuropsychological samples.

Further investigation could significantly improve on the current study through follow-up research that examines the test-retest reliability of the CDS and its subscales across a broader sample with greater racial and ethnic diversity. An additional focus would be determining if subscales of the CDS provide predictive information about cognitive ability in healthy individuals and in persons with cognitive dysfunction. Research should also address the psychometric characteristics of a collateral version of the CDS. Informant reports that incorporate the CDS should prove helpful to clinicians in acquiring a more complete picture of patients' cognitive efficiency in performing routine daily tasks.

CONFLICT OF INTEREST

The authors have nothing to disclose.

ACKNOWLEDGEMENTS

The research described here was not funded or financially supported.

REFERENCES

Amariglio, R.E., Becker, J.A., Carmasin, J., Wadsworth, L.P., Lorius, N., Sullivan, C., ... Rentz, D.M. (2012). Subjective cognitive complaints and amyloid burden in cognitively normal older individuals. *Neuropsychologia*, *50*, 2880–2886. doi: 10. 1016/j.neuropsychologia.2012.08.011

- Bessi, V., Mazzeo, S., Padiglioni, S., Piccini, C., Nacmias, B., Sorbi, S., & Bracco, L. (2018). From subjective cognitive decline to Alzheimer's disease: The predictive role of neuropsychological assessment, personality traits, and cognitive reserve. A 7-year follow-up study. *Journal of Alzheimer's Disease*, 63, 1–13. doi: 10.3233/jad-171180
- Bowler, R.M., Adams, S.W., Schwarzer, R., Gocheva, V.V., Roels, H.A., Kim, Y., ... Lobdell, D.T. (2017). Validity of self-reported concentration and memory problems: Relationship with neuropsychological assessment and depression. *Journal of Clinical and Experimental Neuropsychology*, 39, 1026–1036. doi: 10.1080/13803395.2017.1301392
- Branca, B., Giordani, B., Lutz, T., & Saper, J.R. (1996). Self-report of cognition and objective test performance in post-traumatic headache. *Headache, The Journal of Head and Face Pain, 36*, 300–306. doi: 10.1046/j.1526-4610.1996.3605300.x
- Brunette, A.M., Holm, K.E., Wamboldt, F.S., Kozora, E., Moser, D.J., Make, B.J., ... Hoth, K.F. (2018). Subjective cognitive complaints and neuropsychological performance in former smokers with and without chronic obstructive pulmonary disease, *Journal of Clinical and Experimental Neuropsychology*, 40, 411–422. doi: 10.1080/13803395.2017.1356912
- Brzezińska, A., Bourke, J., Rivera-Hernández, R., Tsolaki, M., Woź niak, J., & Kaźmierski, J. (2020). Depression in dementia or dementia in depression? Systematic review of studies and hypotheses. *Current Alzheimer Research*, 17, 16–28. doi: 10.2174/ 1567205017666200217104114
- Buelow, M.T., Tremont, G., Frakey, L.L., Grace, J., & Ott, B.R. (2014). Utility of the cognitive difficulties scale and association with objective test performance. *American Journal of Alzheimer's Disease & Other Dementias*, 29, 755–761. doi: 10. 1177/1533317514539032
- Burdick, K., Endick, C., & Goldberg, J. (2005). Assessing cognitive deficits in bipolar disorder: Are self-reports valid? *Psychiatry Research*, 136. 43–50. doi: 10.1016/j.psychres.2004.12.009
- Burmester, B., Leathem, J., & Merrick, P. (2016). Subjective cognitive complaints and objective cognitive function in aging: A systematic review and meta-analysis of recent cross-sectional findings. *Neuropsychology Review*, 26, 376–393. doi: 10.1007/ s11065-016-9332-2
- Butcher, J.N., Dahlstrom, W.G., Graham, J.R., Tellegen, A., & Kaemmer, B. (1989). *The Minnesota Multiphasic Personality Inventory-2 (MMPI-2): Manual for administration and scoring*. Minneapolis, MN: University of Minnesota Press.
- Cedres, N., Machado, A., Molina, Y., Diaz-Galvan, P., Hernandez-Cabrera, J.A., Barroso, J., ... Ferreira, D. (2019). Subjective cognitive decline below and above the age of 60: A multivariate study on neuroimaging, cognitive, clinical, and demographic measures. *Journal of Alzheimer's Disease*, 68, 295–309. doi: 10.3233/JAD-180720
- Chaytor, N., Temkin, N., Machamer, J., & Dikmen, S. (2007). The ecological validity of neuropsychological assessment and the role of depressive symptoms in moderate to severe traumatic brain injury. *Journal of the International Neuropsychological Society*, *13*, 377–385. doi: 10.1017/ S1355617707070592
- Coley, N., Ousset, P.J., Andrieu, S., Mathiex-Forunet, H., Vellas, B.,
 & The GuidAge Study Group (2008). Memory complaints to the general practitioner: Data from the GuidAge study. *Journal of*

Nutritional Health and Aging, 12, S66–S72. doi: 10.1007/ BF02982590

- Crumley, J.J., Stetler, C.A., & Horhota, M. (2014). Examining the relationship between subjective and objective memory performance in older adults: A meta-analysis. *Psychology and Aging*, 29, 250–263. doi: 10.1037/a0035908
- Dardenne, S., Delrieu, J., Sourdet, S., Cantet, C., Andrieu, S., Mathiex-Fortunet, H., ... Vellas, B. (2017). Memory complaints and cognitive decline: Data from the GUIDAGE Study1. *Journal* of Alzheimer's Disease, 60, 1567–1578. doi: 10.3233/jad-170229
- Derouesné, C., Dealberto, M., Boyer, P., Lubin, S., Sauron, B., Piette, F., ... Alpérovitch, A. (1993). Empirical evaluation of the 'Cognitive Difficulties Scale' for assessment of memory complaints in general practice: A study of 1628 cognitively normal subjects aged 45–75 years. *International Journal of Geriatric Psychiatry*, 8, 599–607. doi: 10.1002/gps.930080712
- Derouesné, C., Thibault, S., Lagha-Pierlucci, S., Baudouin-Madec, V., Ancri, D., & Lacomblez, L. (1999). Decreased awareness of cognitive deficits in patients with mild dementia of the Alzheimer type. *International Journal of Geriatric Psychiatry*, 14, 1019–1030. doi: 10.1002/(sici)1099-1166(199912)14:12% 3C1019::aid-gps61%3E3.0.co;2-f
- Diniz, B.S., Butters, M.A., Albert, S.M., Dew, M.A., Reynolds III, C.F. (2013). Late-life depression and risk of vascular dementia and Alzheimer's disease: Systematic review and meta-analysis of community-based cohort studies. *British Journal of Psychiatry*, 202, 329–335. doi: 10.1192/bjp.bp.112.118307
- Dufouil, C., Fuhrer, R., & Alpérovitch, A. (2005). Subjective cognitive complaints and cognitive decline: Consequence or predictor? The epidemiology of vascular aging study. *Journal* of American Geriatrics Society, 53, 616–621. doi: 10.1111/j. 1532-5415.2005.53209.x
- Edmonds, E., Delano-Wood, L., Galasko, D., Salmon, D., & Bondi, M. (2014). Subjective cognitive complaints contribute to misdiagnosis of mild cognitive impairment. *Journal of the International Neuropsychological Society*, 20(8), 836–847. doi: 10.1017/S135561771400068X
- Ezzati A., Katz M.J., Derby C.A., Zimmerman M.E., & Lipton R.B. (2019). Depressive symptoms predict incident dementia in a community sample of older adults: Results from the Einstein aging study. *Journal of Geriatric Psychiatry and Neurology*, 32, 97–103. doi: 10.1016/j.jalz.2018.06.2559
- Galioto, R., Blum, A., & Tremont, G. (2015). Subjective cognitive complaints versus objective neuropsychological performance in older adults with epilepsy. *Epilepsy & Behavior*, 51, 48–52. doi: 10.1016/j.yebeh.2015.06.035
- Gass, C. (2018). Neuropsychological assessment. In J.N. Butcher & J.M. Hooley (Eds.), APA handbooks in psychology[®]. APA handbook of psychopathology: Psychopathology: Understanding, assessing, and treating adult mental disorders (pp. 201–220). American Psychological Association. doi: 10. 1037/0000064-009
- Gass, C.S., & Apple, C. (1997). Cognitive complaints in closed-head injury: Relationship to memory test performance and emotional disturbance. *Journal of Clinical and Experimental Neuropsychology*, 19, 290–299. doi: 10.1080/01688639708403858
- Haley, A., Eagan, D., Gonzales, M., Biney, F., & Cooper, R. (2011). Functional magnetic resonance imaging of working memory reveals frontal hypoactivation in middle-aged adults with cognitive complaints. *Journal of the International Neuropsychological Society*, 17, 915–924. doi: 10.1017/S1355617711000956

- Haley, A.P., Hoth, K.F., Gunstad, J., Paul, R.H., Jefferson, A.J., Tate, D.F., ... Cohen, R.A. (2009). Subjective cognitive complaints relate to white matter hyperdensities and future cognitive decline in patients with cardiovascular disease. *Journal of Geriatric Psychiatry*, 17, 976–985. doi: 10.1097/ jgp.0b013e3181b208ef
- Hill, P.L., Aschwanden, D., Payne, B.R., & Allemand, M. (2020). Daily cognitive complaints and engagement in older adulthood: Personality traits are more predictive than cognitive performance. *Psychology and Aging*, 10, 1037. doi: 10.1037/pag0000452
- Holm, S. (1979). A simple sequentially rejective multiple test procedure. *Scandinavian Journal of Statistics*, 6, 65–70.
- Jessen, F., Amariglio, R.E., Buckley, R.F., van der Flier, W.M., Han, Y., Milinuevo, J.L., ... Wagner, M. (2020). The characterization of subjective cognitive decline. *The Lancet Neurology*, 19, 271–278. doi: 10.1016/S1474-4422(19)30368-0
- Kim, J.W., Byun, M.S., Yi, D., Lee, J.H., Ko, K., Jung, G., & Lee, D.Y. (2019). Vascular risk modulates the relationship between cerebral amyloid deposition and subjective memory complaints. *Neuropsychiatric Disease Treatment*, 15, 637–645. doi: 10.2147/ ndt.s192231
- LaDuke, C., Barr, W., Brodale, D.L., & Rabin, L.A. (2018). Toward generally accepted forensic assessment practices among clinical neuropsychologists: a survey of professional practice and common test use. *The Clinical Neuropsychologist*, 32, 145–164. doi: 10.1080/13854046.2017.1346711
- Lin, Y., Shan, P., Jiang, W., Sheng, C., & Ma, L. (2019). Subjective cognitive decline: Preclinical manifestation of Alzheimer's disease. *Neurological Sciences*, 40, 41–49. doi: 10.1007/ s10072-018-3620-y
- Mark, R.E. & Sitskoorn, M.M. (2013). Are subjective cognitive complaints relevant in preclinical Alzheimer's disease? A review and guidelines for healthcare professionals. *Reviews in Clinical Gerontology*, 23, 61–74. doi: 10.1017/s0959259812000172
- Mazzeo, S., Padiglioni, S., Bagnoli, S., Carraro, M., Piaceri, I., Bracco, L., ... Bessi, V. (2020). Assessing the effectiveness of subjective cognitive decline plus criteria in predicting the progression to Alzheimer's disease: An 11-year follow-up study. *European Journal of Neurology*. doi: 10.1111/ene.14167
- McNair, D.M. & Kahn, R.J. (1983). Self-assessment of cognitive deficits. In T. Crook, S. Ferris, & R. Bartus (Eds.), Assessment in geriatric psychopharmacology (pp. 119–136). New Canaan, CT: Mark Powley.
- Mitchell, A.J., Beaumont, H., Ferguson, D., Yadegarfar, M., and Stubbs, B. (2014). Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: Meta-analysis. Acta Psychiatrica Scandinavica, 130, 439–451. doi: 10.1111/acps.12336
- Muñoz, N., Gomà-i-Freixanet, M., Valero, S., Rodríguez-Gómez, O., Sanabria, A., Pérez- Cordón, A., ... FACEHBI Study (2020). Personality factors and subjective cognitive decline: The FACEHBI Cohort. Behavioral Neurology. doi: 10.1155/ 2020/5232184
- Nunnally, J.C. (1978). *Psychometric theory*. New York: McGraw-Hill.
- Okonkwo, O.C., Spitznagel, M.B., & Tremont, G. (2010). Associations among measures of awareness of cognitive deficits in dementia. *Alzheimers Dementia*, 6, 312–318. doi: 10.1016/j. jalz.2009.06.005
- Porter, R.J., Robinson, L.J., Mahhi, G.S., & Gallagher, P. (2015). The neurocognitive profile of mood disorders – A review of

the evidence and methodological issues. *Bipolar Disorders: An International Journal of Psychiatry and Neurosciences*, 17, 21–40. doi: 10.1111/bdi.12342

- Rabin, L.A., Smart, C.M., & Amariglio, R.E. (2017). Subjective cognitive decline in preclinical Alzheimer's disease. *Annual Review of Clinical Psychology*, 13, 369–396. doi: 10.1146/ annurev-clinpsy-032816-045136
- Rabin, L.A., Smart, C.M., Crane, P., Amariglio, R.E., Berman, L.M., Boada, M., ... the Subjective Cognitive Decline Initiative (SCD-I) Working Group (2015). Subjective cognitive decline in older adults: An overview of self-report measures used across 19 international research studies. *Journal of Alzheimer's Disease*, 48, S63-S86. doi: 10.1016/j.jalz.2015.07.435
- Reisberg, B. & Gauthier, S. (2008). Current evidence for subjective cognitive impairment (SCI) as the pre-mild cognitive impairment (MCI) stage of subsequently manifest Alzheimer's disease. *International Psychogeriatrics*, 20, 1–16. doi: 10.1017/S1041610207006412
- Russell, E.W. (1987). A reference scale method for constructing neuropsychological test batteries. *Journal of Clinical and Experimental Neuropsychology*, 9, 376–392. doi: 10.1080/ 01688638708405058
- Russell, E.W. & Starkey, R.I. (2001). Halstead-Russell neuropsychological evaluation system – Revised [Manual and computer program]. Western Psychological Services.
- Silva, D., Guerreiro, M., Faria, C., Maroco, J., Schmand, B.A., & de Mendonca, A. (2014). Significance of memory complaints in the clinical setting. *Journal of Geriatric Psychiatry and Neurology*, 27, 259–265. doi: 10.1177/0891988714532018
- Slot, R.E., Sikkes, A.A., Berkhof, J., Brodaty, H., Buckley, R., Cavedo, E., ... van der Flier, W.M. (2018). Subjective cognitive decline and rates of incident Alzheimer's disease and non-Alzheimer's disease dementia. *Alzheimer's & Dementia: The*

Journal of the Alzheimer's Association, 15, 465–476. doi: 10. 1016/j.jatz.2018.10.003

- Spitznagel, M.B. & Tremont, G. (2005). Cognitive reserve and anosognosia in questionable and mild dementia. Archives of Clinical Neuropsychology, 20, 505–515. doi: 10.1016/j.acn.2004.11.003
- Spreij, L.A., Sluiter, D., Gosselt, I.K., Visser-Meily, J.M., & Nijboer, T.C. (2019): CoCo – Participation: The development and clinical use of a novelinventory measuring cognitive complaints in daily life. *Neuropsychological Rehabilitation*, 1–23. doi: 10.1080/09602011.2019.1691017
- Stillman, A.M., Madigan, N., Torres, K., Swan, N., & Alexander, M.P. (2020). Subjective cognitive complaints in concussion. *Journal of Neurotrauma*, 37, 305–311. doi: 10.1089/neu.2018. 5925
- Thomas, K.R., Bangen, K.J., Weigand, A.J., Edmonds, E.C., Wong, C.G., Cooper, S., ... Bondi, M.W. (2020). Objective subtle cognitive difficulties predict future amyloid accumulation and neurodegeneration. *Neurology*, 94, e397–e406. doi: 10.1212/ WNL.000000000008838
- van Rijsbergen, M., Mark, R.E., Kop, W.J., de Kort, P.L., Sitskoorn, M.M. (2019). Psychological factors and subjective cognitive complaints after stroke: Beyond depression and anxiety. *Neuropsychological Rehabilitation*, 29, 1671–1684. doi: 10. 1080/09602011.2018.1441720
- Yates, J.A., Clare, L., Woods, R.T., & MRC CFAS (2017) Subjective memory complaints, mood and MCI: A follow-up study. *Aging & Mental Health*, 21, 313–321. doi: 10.1080/ 13607863.2015.1081150
- Wechsler, D. (2008). Wechsler adult intelligence scale (4th ed.). Pearson. doi: 10.1037/t15175-000
- Wechsler, D. (2009). *Test of Premorbid Functioning (TOPF)*. Bloomington, MN: NCS Pearson, Inc.