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Abstract
Duration analyses in political science often model nonproportional hazards through interactions with

analysis time. To facilitate their interpretation, methodologists have proposed methods to visualize time-

varying coefficients or hazard ratios. While these techniques are a useful, initial postestimation step, I argue

that theyare insufficient to identify theoverall impactof a time-varyingeffectandmay lead to faulty inference

when a coefficient changes its sign. I show how even significant changes of a coefficient’s sign do not imply

that the overall effect is reversed over time. In order to enable a correct interpretation of time-varying effects

in this context, researchers should visualize their results with survivor functions. I outline how survivor

functions are calculated for models with time-varying effects and demonstrate the need for such a nuanced

interpretation using the prominent finding of a time-varying effect of mediation on interstate conflict. The

reanalysis of the data using the proposed visualization methods indicates that the conclusions of earlier

mediation research are misleading. The example highlights how survivor functions are an essential tool to

clarify the ambiguity inherent in time-varying coefficients in event history models.

Keywords: duration models, Cox model, proportional hazards, time-varying effects, survivor function,

mediation

1 Introduction
Duration analyses in political science frequently examine data over long periods of time. Yet,

as time passes, the effects of variables often change. In the widely used Cox Proportional

Hazardsmodel, this phenomenonwill cause thewell-known violation of the proportional hazards

assumption (Cox 1972; Box-Steffensmeier and Zorn 2001). Directly modeling the time-varying

effect through interactions with some function of analysis time can solve this problem. It

also enables to investigate the effect, if the time-varying effect is of substantial theoretical

interest (Box-Steffensmeier, Reiter, and Zorn 2003). While this modeling approach is easy to

implement, the substantive interpretation is not straightforward. Hence, political scientists

have developed techniques to ensure that time-varying hazard ratios are visualized correctly

(Licht 2011; Gandrud 2015). However, I demonstrate in this paper that these existing techniques

only describe a variable’s instantaneous and multiplicative effect. Time-varying hazard ratios

provide no indication about the absolute change in risk and can be very ambiguous when the

overall, cumulative effect is of interest. In these circumstances, a clear interpretation requires

additional calculations. This is especially true if the time-varying effect implies that the coefficient

significantly reverses its sign. I showhow researchers can eliminate this ambiguity and graphically
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analyze their results using survivor functions to support valid conclusions on how strongly an

effect changes over time. To demonstrate how appropriate visualizations using survivor functions

may clarify and even change substantive conclusions, I reevaluate the time-varying effect of

third-party mediation in interstate conflict (Beardsley 2008, 2011).

Throughout the paper, I mainly focus on the Cox Proportional Hazards model, which is often

the first choice for applied duration modeling in political science (Cox 1972; Box-Steffensmeier

and Jones 2004). Nevertheless, the general implications for time-varying effects are also valid for

parametric models which assume proportional hazards. The Cox model’s popularity in political

science stems from the fact that it does not require an a priori assumption about the distribution

of the baseline hazard. However, the unknown baseline may make a substantive interpretation

of time-varying effects very complex. While hazard ratios provide an intuitive interpretation for a

basic model with constant effects, time-varying effects can be highly misleading (cf. Royston and

Parmar 2011). Although political science has proposed good solutions to visualize how the hazard

ratio varies with time (Licht 2011; Gandrud 2015), I demonstrate that time-varying hazard ratios or

relative hazards are quite ambiguous and leave room for very different substantive interpretations

about a variable’s overall effect. In fact, a significant change in a coefficient’s sign can imply three

different substantive conclusions: First, a variable could decrease/increase the duration or the

probability of an event, but after some time, the variable begins to have the opposite effect.

Second, a variable might decrease/increase the duration or the probability of an event, but this

effect disappears at some point. Third, a variablemight permanently decrease/increase the dura-

tion or the probability of an event, but the effect simply becomes somewhat smaller over time.

The central problem why time-varying hazard ratios or relative hazards are not sufficient to

tell these effects apart arises from two issues: First, hazard ratios quantify merely a multiplicative

change relative to some hazard rate. Second, even if the hazard rate is known, it is difficult

to interpret because it is a conditional quantity which describes an instantaneous rate of

failure, given that an event has not yet occurred (Box-Steffensmeier and Jones 2004, 14). If the

proportional hazard assumption applies and a covariate affects the hazard by a constant factor,

i.e., by thehazard ratio, theconditionality and the instantaneousnaturearenot that relevant, since

the covariate simply changes the overall level of the hazard rate by the same factor at any given

point in time. In contrast, with time-varying effects the substantive meaning of a time-varying

hazard ratio depends both on the time-varying hazard ratio itself as well as the effect of other,

potentially time-varying covariates and the baseline hazard (cf. Putter et al. 2005). This is the

case because a time-varying effect with a change in sign implies that a variable causes first an

increased or decreased instantaneous probability of failure, while later on, the opposite effect

occurs. Depending on howmuch risk is accumulated or avoided at early stages of the study period

compared to the opposite effect at later stages, the total effect of a variable can change, disappear

or becomemerely somewhat smaller.

In this paper, I show how survival functions are able to provide the information to tell these

effects apart and provide a very intuitive method to interpret the overall influence of a time-

varying effect. Since survival functions provide the model’s unconditional predicted probability

of survival over time for specific covariate values, they are an easy and unambiguous method to

communicate the overall impact of a time-varying effect even to audiences with limited statistical

training (Putter et al. 2005). In thisway, they can safeguard against inferentialmistakes among the

broader readership of social science research.While it is tedious to calculate survival functions for

models with time-varying coefficients manually, applied researchers no longer face this obstacle,

since these calculations have now been automated both in R and SAS (Thomas and Reyes 2014)

as well as Stata (Ruhe 2016).

In the followingsections, I discuss thecomplex interpretationof time-varyingeffects induration

analyses. Based on this discussion, I describe how researchers can use survival functions to
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effectively visualize the implication of time-varying effects. I apply this approach to an example

of immense policy relevance, the time-varying effect of third-party mediation (cf. Beardsley

2008, 2011). In the application, I demonstrate how an appropriate visualization of time-varying

effects can substantively clarify and even change the policy implication. The replication highlights

that, contrary to earlier interpretations, the time-varying effect of mediation does not suggest

a problematic long-term effect on postconflict stability. Quite the contrary, mediation appears

to correlate with a substantively higher chance of several years of peace. Despite a time-varying

effect, which significantly reverses its sign, there is no indication that mediation creates adverse

long-term effects. Beyond the substantive relevance for international relations research, the

application demonstrates how survivor functions enable researchers to visualize and interpret

time-varying effects in duration models intuitively, regardless of their substantive research

interest.

2 Nonproportional Hazards in Political Science and Their Interpretation

2.1 The need to clarify the relevant quantity of interest
Time-varying effects are found in all subfields of political science (cf. Licht 2011; Box-Steffensmeier,

Reiter, and Zorn 2003; Chiozza and Goemans 2004; Allen 2005; Golub 2007; Murillo and Martínez-

Gallardo 2007; Beardsley 2008, 2011; Zhelyazkova and Torenvlied 2009; Hale 2015; Grewal and

Voeten 2015). While existing methods to interpret time-varying effects enable to describe a

variable’s instantaneous effect (cf. Golub and Steunenberg 2007; Licht 2011), they do not allow

clear statements about the change in effect magnitude and the overall effect of a variable over

time. I show that this is unfortunate, since a time-varying effect can significantly change its sign,

but still produce a positive or negative overall effect. Due to this fact, researchers need to clarify,

whether their research question requires a focus on the instantaneous or the overall, i.e., the

cumulative effect of a variable. In order to provide social scientists with a tool to describe the

cumulative effect of such variables, I introduce survival functions for time-varying effects.

Social science research of duration processes can have very different aims and the relevant

quantity of interest depends on the research question. For example, a theory might predict how

variables affect thedurationT of someprocess. Alternatively, it could formulatehypotheses about

changes in the probability that the process continues or that it ends. In survival analysis, the

probability that a process continues until some time t is described by the survival function S (t ) =

P r (T > t ).1 Since most models estimate how a variable affects the hazard rate, a theory can also

describe howa variable affects the immediate risk at a specific point in time (cf. Box-Steffensmeier

and Jones 2004).

A very general theory might simply predict that a variable increases or decreases the duration,

the probability of an event or the hazard rate. If the effect is constant over time, the quantity of

interest used to test the hypothesis does not matter much. If a variable with a constant effect

increases the hazard rate, the hazard rate will be higher at any time. This also corresponds to an

overall higher probability of failure, a lower probability of survival as well as a shorter average

duration. However, if a researcher subsequently detects nonproportional hazards, which imply

a time-varying effect, the quantity of interest matters. In this context, it becomes essential to

determinewhether the researcher is interested in the overall effectwhich the variable creates over

time, i.e., the cumulative effect, or whether the interest lies with the instantaneous effect.

Cumulative effects will be of particular interest for variables, which remain constant over a

longerperiodor even theentireduration. Variables suchaswhether a conflict ended ina stalemate

do not change once the conflict ended, although their influence on the outcome might evolve

with time (cf. Box-Steffensmeier, Reiter, and Zorn 2003). Similarly, regime type will often be

1 The survival function also allows to predict median duration (survival time) or the average survival time up to a certain

time (cf. Cleves et al. 2010; Royston and Parmar 2011).
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constant throughout the duration or, given that there is a change at some point, it will persist

for a longer time after the change occurred (cf. Chiozza and Goemans 2004). For more quickly or

frequently changing time-varyingcovariates, both instantaneousandcumulativeeffectsmaybeof

interest to researchers. However, regardless of their research interest, researchers should always

consider theassumptionsassociatedwith time-varying covariates indurationanalyses, regardless

of whether these variables display time-varying effects (see Box-Steffensmeier and Jones 2004,

95ff.).

The difference between cumulative and instantaneous effects becomes clear with the example

of education. Letusassume that a researcherpostulates that job training increases income.During

the research process, it becomes clear that going to school decreases the immediate earnings

while increasing future wages. In this context, the researchermight now study how the additional

training affects a person’s earnings at different times in their life. Alternatively, the researcher

could analyze if the training increases lifetime earnings. Let us assume that the hypothetical job

training reduces earnings to almost zero for 3 years, while increasing wages by 10 percent after

about 5 years. While this information answers how the training affects wages at specific points in

time, it does not provide enough information to answer the question whether the training pays

off over an entire career. This question depends on the monthly wage that was lost and how high

the total amount of a 10 percent increase in wages actually is. It further depends on how long

participantswill continue towork after completing the training. Based on the percentage changes

over time alone, it is impossible to say whether the training pays off, whether the losses and gains

even out or whether a low salary level and a short remaining time to work are unable to make up

for the income lost during the training period.

Similar to the education example, a variable in a duration model may, e.g., decrease the

immediate risk of failure early on, but increase the instantaneous risk at a later time. As in the

lifetime incomeexample, the theoretical predictioncouldbe that thevariable is associatedwithan

overall lower probability of an event. I show below that the hypothesis could still be true, despite

a time-varying effect, which changes its sign. Hence, to interpret the substantive implication of

time-varying effects, researchers need to clarify whether they are interested in the instantaneous

or the cumulative effect. Since existing methodologies to interpret time-varying effects describe

only the instantaneous, multiplicative effect of the variable, I introduce survival functions for

time-varying coefficients which enable to visualize the cumulative effect as well as its absolute

magnitude.

2.2 Expanding the interpretation of time-varying effects
The most commonly used duration models in political science assume proportional hazards

which imply that variables have a constant effect over time (Box-Steffensmeier and Jones 2004).

Since a violation of this assumption can undermine the validity of the model, political scientists

have developed helpful strategies to detect and adequately model nonproportional hazards

(Box-Steffensmeier and Zorn 2001; Keele 2010; Park and Hendry 2015). Since even adequately

modeled nonproportional hazards are not as easy to interpret as proportional hazards, a second

strand of research has developed tools to calculate meaningful quantities of interest (Golub

and Steunenberg 2007; Licht 2011; Gandrud 2015). In this paper, I add to the latter part of the

literature and discuss how existing interpretation techniques, such as time-varying hazard ratios

or relative hazards can be very ambiguous and, in the worst case, may result in misleading

inference about the substantive effects. I introduce survival functions for time-varying effects as a

suitable technique in how researchers can reduce this ambiguity and visualize the implications of

their results more clearly.

Before nonproportional hazards can be interpreted, however, they need to be identified

and adequately modeled. Thereby, it is important to keep in mind that not all violations of
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Figure 1. Potential patterns of time-varying hazard ratios or relative hazards.

the proportional hazards assumption indicate time-varying effects; these can also arise from

an incorrectly specified functional form (Keele 2010). If nonproportional hazards are present

even with a correct functional form, interactions with time are an easy approach to model a

time-varying effect on the hazard of observing an event (Box-Steffensmeier and Zorn 2001). In the

widely used Cox model, this leads to the following model: Let h0(t ) be an unspecified baseline

hazard function of observing the event of interest, which can take on any form. If we model a

time-varying effect through an interaction with time, the hazard function for an observation i is

then asserted to be

h(t �xi ) = h0(t )e
x1i β1+x2i (β2+β3f (t )), (1)

whereby the effect of x1 is assumed to be constant while the effect of x2 is allowed to vary with

some function of analysis time (cf. Box-Steffensmeier and Zorn 2001).2 If the model is a discrete

duration model, e.g., a Logit or Probit model with time dependence (cf. Beck, Katz, and Tucker

1998; Box-Steffensmeier and Jones 2004), nonproportional hazards can be modeled through a

similar interaction with time (Carter and Signorino 2010a).

Hence, time-varying effects are easily introduced in a model. Unfortunately, however, the

substantive meaning of a time-varying effect is not straightforward. First, the interaction effect

needs to be interpreted correctly (cf. Brambor, Clark, and Golder 2005). Golub and Steunenberg

(2007) aswell as Licht (2011) show for thewidelyusedCoxmodel how thecombinedcoefficient can

be used to calculate time-varying hazard ratios as well as relative hazards. If visualized correctly,

these techniques indicate how a variable’s effect on the hazard rate changes with time. It also

highlights when these effects are significant.

If we assume the commonly estimated logarithmic effect (β2 + β3 × ln(t )), several patterns can
occur. Figure 1 displays how these patterns might look like if the corresponding hazard ratios or

relative hazards are visualized using the method proposed by Licht (2011): First, the effect may

decrease in size (and possibly become insignificant at some point), as depicted in (a). Second, the

effectmight decrease in size andeventually significantly reverse its sign (see (b)). Finally, as shown

in (c), the effect size could actually increase and possibly become only significant after a certain

time.3

Although this type of visualization is sufficient to highlight the pattern with which the

instantaneous effect changes, I show in this paper that it does not provide a clear indication

2 There are different choices for the functional form of the effect’s change over time. In many political science applications

the natural logarithm of time ln(t ) is used (cf. Box-Steffensmeier and Zorn 2001), but many others are plausible and
potentially more appropriate. Therefore, the functional form needs to be chosen carefully (Park and Hendry 2015).

3 Obviously, all scenarios could also bedepicted for (initially) negative effects, that iswith reversed sign.With nonmonotonic

transformations, further effect patterns are possible.
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about the overall effect over time as well as its changing magnitude. This is due to the fact that

the instantaneous effect of a variable might be outweighed by the different earlier effect which a

variable created. For example, the risk, whichwas avoided early on,might outweigh the increased

risk at later points in time.

I discuss how visualizing the results with survivor functions can give a good intuition of the

effect magnitude in the data and generate predictions for substantively interesting scenarios.

In panels (a) and (c) survival functions provide an intuitive interpretation of the overall effect,

in addition to relative hazards. For example, a survival function can show, whether an effect of

type (a) still causes a higher/lower probability of survival, even after the variable has lost its

immediate influence. In scenario (b), however, i.e., when the estimated effect reverses its sign,

survival functions are a crucial step for anunambiguous interpretation. Thenecessity for a survival

function in scenario (b) arises from the fact that a significant change in a coefficient’s sign can

support three different substantive conclusions about the overall effect: First, the variable might

decrease/increase the duration or the probability of an event, but after some time the variable

begins to have the opposite effect. Second, the variable could decrease/increase the duration or

the probability of an event, but this effect disappears at some point; third, the variable might

permanently decrease/increase the duration or the probability of an event, but the magnitude

of the effect becomes somewhat smaller over time.

Hence, scenario (b) entails a lot of ambiguity. It implies that a simple hypothesis like “higher

values of X increase the duration of Y” can still be valid, even if the estimated time-varying effect

significantly reverses its sign. This ambiguity ensues because both relative hazards and hazard

ratios describe a multiplicative change of an unspecified baseline as well as the fact that this

baseline is an instantaneous rate of failure, given that the event has not yet occurred. I discuss the

importance of both of these factors in detail in the next two sections and describe how survival

functions incorporate them. Since the approaches outlined by Golub and Steunenberg (2007) as

well as Licht (2011) focus on the multiplicative, instantaneous effect, they only allow to describe

a time-varying effect as e.g., type (b), but they do not allow to describe the substantive overall

impact of such a time-varying effect. The visualization using survival functions proposed in this

paper overcomes these limitations.

Discrete duration models (also used as binary time-series-cross-section models) are another

form of duration model frequently used in political science (cf. Beck, Katz, and Tucker 1998; Box-

Steffensmeier and Jones 2004). Carter and Signorino (2010a) show that nonproportional hazards

can be easily modeled and visualized in these models, since the baseline hazard is estimated

using a flexible function of time. Hence, themagnitude at a given point in time can be calculated.

In fact, if events occur repeatedly, Williams (2016) shows that changes in the probability of an

event can also affect the long-term effect of additional future events at a certain point in time.

If a variables effect changes over time, these nonproportional hazards also need to bemodeled to

accurately estimate possible long-term effects (Williams 2016). Hence, discrete duration models

are therefore more easily able to estimate the magnitude of the change in the hazard rate, or

more precisely the hazard probability at a given point in time. However, this quantity of interest

remains uninformative about the total effect over time, since it is also an instantaneous failure

rate, given that the event has not yet occurred. This leaves the same ambiguity regarding the

overall implication of time-varying effects of type (b). Again, survival functions are a suitable tool

to dissipate this ambiguity.

I use the example of a time-dependent effect of mediation in international crises to highlight

the two central aspects which cause this ambiguity (cf. Putter et al. 2005):4

4 These are particularly relevant for the Cox Proportional Hazards model as well as parametric models, which make the

proportional hazard assumption, e.g., the Weibull model or discrete duration models.
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1. The context determines themagnitude of a time-varying effect. This context consists of the

effect of other covariates, regardless of whether they are constant or time-varying, as well

as thebaseline hazard.Without knowledgeof the (potentially time-varying) baseline,which

an effect changes multiplicatively, it is not possible to describe the substantive implication

of a time-varying effect.

2. Even if the values of other covariates and the baseline hazard are taken into account, an

analysis of a hazard rate requires care. The hazard rate describes the instantaneous risk of

failure at a point in time, given that the event has not yet occurred. This implies that the

substantive importance of long-term effects depends on earlier short-term effects.

Below, I discuss these points and highlight how survival functions can help to overcome these

problems and enable researchers to intuitively visualize time-varying effects.

3 The Importance of the Baseline
As described above, the substantive interpretation of a time-varying effect can heavily depend

on the context. Time-varying hazard ratios describe how, at a specific time, some baseline value

is increased or decreased multiplicatively by a variable. This means that the magnitude of the

change is determined by this baseline. In turn, the baseline depends on the values and effects

of other variables in the model as well as the baseline hazard rate. Thereby, the baseline hazard

rate captures every remaining process that the model does not explain systematically based on

independent variables.

Thus, thebaselinehazarddescribeshowtheaverage risk,which isnot explainedsystematically,

evolves over time. Since the baseline hazardmay therefore simply be “a statement about omitted

variables” and consequently change with the model, the question whether the baseline hazard

should be interpreted has caused some controversy (cf. Beck 2010, 294). Nevertheless, others

have argued that until a better model can be constructed, the baseline hazard is a substantive

part of the model, which contains important information about the underlying data (cf. Carter

and Signorino 2010b, 296f.). Although I generally agree with the perspective by Beck (2010), the

absolute magnitude as well as the cumulative effect of a variable in a given dataset are only

identifiable if we use the information about the underlying data provided by the baseline hazard.

A second aspect reinforces this perspective: Evenwhen a duration process is perfectly understood

andmodeled, leaving only a flat baseline hazard, time-varying covariates or other covariates with

time-varying effects can lead to changes in risk over time. Hence, in this case, the baseline, not the

baseline hazard rate, increases or decreases over time and this changes the overallmagnitude of a

time-varying effect and potentially even its substantive meaning. Below, I therefore use the word

baseline to highlight that there are multiple possible causes for changes in this baseline.

Most parametric models assume a specific functional form for the baseline hazard. However,

the Cox Proportional Hazard model allows to estimate the effect of a variable on the hazard rate

of observing an event at time t without any specification of the functional form of the baseline

hazard rate. This flexibility of the semiparametric Cox model has led to the popularity of the Cox

model in political science (Box-Steffensmeier and Jones 2004).5 At the same time, however, not

knowing the baseline makes any substantive interpretation of a time-varying effect challenging,

especially if the coefficient reverses its sign.

To understand how the baseline is important to assess the substantive meaning of a time-

varying effect of type (b) in Figure 1 and highlight the limitation of hazard ratios or relative hazards

in this context, it is important to review the interpretation of the coefficient in a Coxmodel. Due to

themodel’s nonlinearity andsince thebaselinehazard rateh0(t ) is leftunspecified, the coefficients

5 Similarly, discrete duration models estimate the baseline hazard with flexible functions of time, such as splines or

polynomials (cf. Beck, Katz, and Tucker 1998; Carter and Signorino 2010a).
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themselves have little meaning. Given this limited information, hazard ratios, the exponentiated

coefficients, are the most intuitive interpretation of the estimated coefficients. They express the

multiplicative change in the hazard rate for a one-unit change in the predictor variable, ceteris

paribus (Box-Steffensmeier and Jones 2004). Hence, a one-unit change in x1 in Equation (1) would

change the unobserved hazard rate by the factor eβ1 at any given time. However, in contrast to

a constant effect, a time-varying hazard ratio is not nearly as intuitive. Aside from the care which

should be devoted to an interpretation of interaction effects (cf. Brambor, Clark, andGolder 2005),

the difficult interpretation of this relative risk measure arises from the unknown value and shape

of the baseline which determines how large the absolute change in risk is at various points in

time. Without knowledge of the baseline, the risk of observing the event at a certain point in time

remains unknown (cf. Putter et al. 2005). The effect of the predictor variables can therefore only

be interpreted as shifts in the unknown hazard rate.

Figure 2 visualizes this difficulty. For simplicity, we can think of this example as modeling the

risk of acquiring a disease. Assume a first scenario with a baseline which is initially very high, but

quickly falls to a very low level.6 If in this context a treatment x would initially lead to a substantive

decrease in the very high hazard, this would imply a drastic decrease in risk. Assume further that,

due to a time-varying effect, x more than doubles the hazard rate after several years (see panel

(b)). How substantive these short- and long-term effects are essentially depends on the baseline

which is altered by variable x . In scenario 1, a late increase in relative risk would be reasonably

small, since the overall hazard rate at that point is very low (see panel (c)). Consequently, with

this hypothetical hazard rate, the treatment x might still be a good option, despite the time-

varying effect. On the other hand, consider the second scenario with a very different, strongly

monotonically increasing baseline. Panel (c) shows that with a constantly increasing baseline, a

hypothetical time-varyingeffectof treatment x implies a substantially elevatedhazard rateat later

points in time. In the supplementary information, I providea further examplewhichhighlights that

even proportional changes in a flat hazard rate can affect the cumulative effect of a time-varying

hazard ratio.

The example highlights how context-dependent the actual magnitude of a time-varying

effect can be. In scenario 1, we would probably conclude that the overall treatment effect of

x is beneficial because it decreases the risk at a time when the risk is very high, while the

increased hazard rate of treated people that remain healthy is neglectable. In contrast, scenario

2 is substantively more ambiguous. If the model contains more than one time-varying effect,

this problem becomes even more pronounced. Depending on the value of these variables, the

hazard rate may be increasing or decreasing. Consequently, the same time-varying hazard ratio

might imply different substantive effects, given alternative values of the other variables with

time-varying effects (cf. Putter et al. 2005).

Hence, hazard ratios are not a sufficient way to describe the substantive meaning of a time-

varying effect on failure risk. Without knowledge of the baseline, themagnitude of a time-varying

effect remains unclear. Nevertheless, this is not to say that researchers should not graph time-

varying hazards ratios. Such a graphical analysis is very important to describe whether and how

an effect changes with time and whether any changes are statistically significant (Licht 2011).

However, these plots are not a good indicator of the magnitude of an effect. For this, we need

to know the baseline. Even further steps are needed to enable a good interpretation of the overall

effect of a variable.

6 Again, as described above, the decline in the hazard rate does not have to be due to a declining baseline hazard rate.

This scenario could also arise from a flat baseline hazard (or any other shape) and a time-varying effect of an additional

independent variable, which multiplicatively changes the baseline hazard and leads to the overall pattern of a declining

hazard rate. It can also be due to time-varying covariates with proportional hazards.
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Figure 2. Same hazard ratio, different conclusion: The magnitude and substantive importance of an effect

varies with the overall shape of the baseline. Results for two scenarios with the same time-varying effect of

variable x, but different Weibull distributed baseline hazards.

4 Beyond the Hazard Rate
While plotting the hazard rate gives an intuition into how relevant changes in an effect may

be, this option is not available in the Cox model, since it provides no direct estimate of this

function. However, even with parametric models, Scenario 2 shows that plotting the scenario-

specific hazard is also quite unintuitive and gives little insights about the cumulative effect. This

becomes especially apparent if we consider the substantive meaning of the hazard rate. One can

think of the hazard as the instantaneous rate of failure, conditional on the fact that an event has

not occurred up to this point in time. It can be described formally as follows (cf. Box-Steffensmeier

and Jones 2004, 14):

h(t �xi ) = lim
Δt→0

P (t ≤ T ≤ t + Δt � T ≥ t , xi )

Δt
. (2)
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The instantaneous nature and the conditionality, however, are a crucial complication when

interpreting the cumulative impact of a time-varyingeffect. Tohighlightwhyhazard rates areoften

not sufficient, we can assume that Figure 2 reports the finding of a randomized clinical trial. The

purpose of the study is to evaluate the effect of the treatment. For the instantaneous effect, we

are simply interested in the risk of acquiring the illness at a specific point in time, given that a

patient has remained healthy and given the treatment choice. In this case, the hazard rate would

be sufficient. Nevertheless, it is important to remember what is being compared at a late point in

the study period. Despite randomization, the groups might no longer be identical toward the end

of the study. Assume that there are anequal proportionof patientswith goodandwithpoor health

in both the treatment and in the control group. At the start, the groups are identical, except for the

treatment. Assume further that the treatment reduces the risk of sickness initially, but the effect

disappears quickly. In the treatment group, the patients will be stabilized as long as the treatment

has an effect. Once the treatment loses its effect, these weak patients will most likely start to

become sick. In the control group, the weak patients catch the disease very quickly because they

are not protected by the treatment. Hence, they are no longer in the sample. If we now compare

the treatment and control group at this late point in time, we compare a treatment group inwhich

many weak cases remain against a control group, which consists mostly of patients with good

health. If the treatment now loses its effect and the weak cases start to get sick, we will naturally

see a higher rate of infection in the treated group than in the control group. This is becausewe are

comparing a treated group, which still contains strong and weak patients against a control group,

which, at this point in time, consists only of strong patients.

If our main research interest is to evaluate the cumulative effect, calculating the magnitude

of a time-varying hazard ratio by multiplying it with the baseline is not sufficient.7 It is only an

intermediate step, since it provides the risk of illness at a given point in time, given that a patient is

still healthy. For the cumulative effect, wewould like to know the probability with which a patient

remains healthy up to a certain point, depending on the treatment choice. A time-varying hazard

rate in itself does not provide clear evidence whether this hypothesis is true or false. In fact, it

is possible that a higher proportion of patients with treatment x will remain healthy, even long

after the hazard rates crossed. In this case, a simple hypothesis that x increases or decreases

the duration to an event is still valid, despite a time-varying hazard ratio. On the other hand,

the time-varying hazard ratio can also imply that a variable’s effect is reversed after some time.

Whether this is the case depends on howmuch instantaneous risk was avoided compared to the

control group and how strongly the relative risk changes later on.

Fortunately, survival analysis provides a tool to examine how many units have not yet

experienced an event at a given point in time: Survivor functions. These functions estimate the

proportion of cases which have not (yet) failed at a certain point in time (Box-Steffensmeier and

Jones 2004).8 Duration models, such as the Cox model can be used to estimate these quantities

of interest, but the calculations are not straightforward in the presence of time-varying effects (cf.

Putter et al. 2005). I discuss this in detail below. However, in the motivating example described

in Figure 2, the respective survivor functions are easily calculated analytically. Figure 3 plots the

results for both scenarios from Figure 2. In the first scenario, the time-varying effect leads to a

substantively higher probability of survival, which eventually converges to the same level toward

the end of the analysis time. However, in the second scenario, the time-varying effect leads to

a higher probability of survival during the first half of the analysis time, and a lower probability

of survival thereafter. If a physician faces the first scenario, the results clearly indicate that the

treatment has a beneficial effect for some time, before this effect eventually disappears. The

7 Moreover, this step is not available in the Cox model.

8 Cumulative hazard functions are an alternative statistic to describe time-varying effects, since they plot the total risk of

failure which has been accumulated up to a certain point.
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Figure 3. Survival estimates for scenarios presented in Figure 2.

second scenario is substantively more ambiguous, since the physician actually faces a trade-off

between increasing short-term survival at the risk of long-term survival with treatment allocation.

The example highlights how different the cumulative implication of a time-varying effect can

be. Depending on the baseline, crossing hazard rates could imply an impact, which is reversed

over time, convergence between groups or evenmerely a slight decrease of a persistent difference

between groups. Hence, to describe the overall effect, crossing hazard rates are a similarly

ambiguous outcome as time-varying hazard ratios. Survivor or cumulative hazard functions are

better suited to identify whether a time-varying effect reverses its impact over time.

5 Survival Functions for Time-varying Effects
How can a covariate-specific survival function be estimated in the commonly used Cox model?

If the proportional hazards assumption holds, the survivor function for different covariate values

can easily be calculated. Basedon ahazard rate similar to (1), butwithout a time-varying effect,we

can calculate the cumulative hazard function (Kalbfleisch and Prentice 2002; Cleves et al. 2010):

H (t �xi ) =

∫ t

0
h(u �xi ) du

=

∫ t

0
exi β h0(u) du

= exi β
∫ t

0
h0(u) du

= exi βH0(t ). (3)

Based on the cumulative hazard function with proportional hazards, we get the following

survival function:

S (t �xi ) = e−H (t �xi )

= e−e
xi β H0(t )

= (e−H0(t ))e
xi β

= S0(t )
exi β (4)
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(Kalbfleisch and Prentice 2002; Cleves et al. 2010). Consequently, given proportional hazards,

i.e., in the absence of time-varying effects, the survivor function for different scenarios can easily

be calculated using the baseline survivor function S0(t ) as well as the estimated coefficients.

Since all statistical packages allow predicting the baseline survivor function from estimated Cox

models, these calculations are easily implemented. Furthermore, all statistical packages provide

automated tools to calculate covariate-specific survivor functions.

If we no longer assume proportional hazards and model a time-varying effect through an

interaction with time, the calculation is not as simple. Due to the interaction with time, the linear

combination of predictors xβ now changes to xβ (t ), which is a function of time and remains in

the integral:

H (t �xi ) =

∫ t

0
exi β (u)h0(u) du (5)

(cf. Thomas and Reyes 2014). Moreover, since h0 is not directly estimated in the Cox model, the

calculation of the cumulative hazard rate and the survivor function are not directly available.

Nevertheless, the model does provide estimates of the baseline cumulative hazard function as

well as the baseline survivor function. These estimates are based on the information gained at

each failure timeand thusdonotgiveanestimateof a smooth function,which leads to the familiar,

jagged step functions. Each failure time thereby provides an estimate of the risk at that point in

time: the hazard component. Based on the hazard component and the estimated coefficients,

both the cumulative hazard as well as the survival functions can be calculated (see Kalbfleisch

and Prentice 2002, 114ff.).

Based on the grouped relative riskmodel described in Kalbfleisch and Prentice (2002, 47f.), the

hazard at failure time t j and given covariates with time-varying effects xβ (t )
9 can be estimated as

ΔH (t j �xi (t )) = 1 − (1 − ΔH0(t j ))
e
xi (t j )

β (t j )

, (6)

wherebyΔH0(t j ) is the discrete hazard component which is based on

H0(t j ) =
k∑
j=1

ΔH0(t j ) (7)

(Kalbfleisch and Prentice 2002, 114f.). Using this calculation, the survivor function can be

approximated by the exponentiated, negative sum of estimated hazards until failure time t j

S (t j �xi ) = e−
∑k

j=1 ΔH (t j �xi ) (8)

(Ruhe 2016).10

To demonstrate that this approximation of the survivor function yields good estimates of the

true survivor function even with a limited sample size, I conduct a Monte Carlo simulation.11

Thereby, I simulate data for differently shaped baseline hazard rates and various parameter

specifications. The simulated data generating process comes from a Weibull model with

increasing, decreasing as well as flat baseline hazards, i.e., with shape parameters p = 0.75,

p = 1 as well as p = 1.25. The model includes a time-varying effect of a binary predictor variable

x , whereby an observation has x = 1 when a random draw from a standard normal distribution

9 This framework also allows to incorporate time-varying covariates, in which case the covariate vector xi (t ) depends on
time. The supplementary material provides a hypothetical example.

10 See Putter et al. (2005) for a similar calculation using the Breslow estimator.

11 The replication material is available at https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/

4J48AX.
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returns a positive number. I show results for four different types of time-varying effects, based on

the following data generating processes:12

A negative hazard ratio, which turns positive

h(t �xi ) = pt p−1e ln(0.05)−0.8xi+0.3 ln(t )xi . (9)

A positive hazard ratio, which turns negative

h(t �xi ) = pt p−1e ln(0.05)+0.8xi−0.3 ln(t )xi . (10)

A positive hazard ratio, which increases in size

h(t �xi ) = pt p−1e ln(0.05)+0.8xi+0.3 ln(t )xi . (11)

A negative hazard ratio, which increases in size

h(t �xi ) = pt p−1e ln(0.05)−0.8xi−0.3 ln(t )xi . (12)

The corresponding, analytically derived survivor functions for eachdata generatingprocess are

documented in the supporting material.

For each data generating process, I generate 100 data sets with 500 failure times each. For each

data set I estimate the survivor function for x = 1 using Equation (8). To quantify the prediction

error of the approach, I calculate the difference between the estimated survivor function and

the true, analytically derived survivor function. Figure 4 plots the distribution of this prediction

error over time for each data generating process. The solid line gives the estimated average error

based on a local polynomial smoother. The dashed lines document the median as well as 5th

and 90th percentile for the prediction error in bins with width of one analysis time unit. Figure 4

indicates that themedian and the estimatedmean are virtually identical and always close to zero,

suggesting no systematic bias. At the same time, the variance of the prediction error is symmetric

and quite small, as about 90 percent of the estimates display an error of 5 percentage points or

less. The supporting material includes similar graphs for simulations with smaller sample sizes

(N = 200 andN = 50). The replicationmaterial also provides Stata code on how to implement the

calculations in Equation (8) using the user-written package described in Ruhe (2016). A tutorial for

R as well as SAS is provided by Thomas and Reyes (2014). In the next section, I demonstrate how

survivor functions substantively improve the interpretation of time-varying effects.

6 Empirical Example: The Time-varying Effect of Mediation
I highlight the intricate interpretation of time-varying effects with the important example of how

effectively international third-party mediation appeases armed conflict.13 Prominent research

suggests that mediators may only have a short-term effect (cf. Beardsley 2008, 2011; Quinn et al.

2013) and that third-party pressure is correlated with shorter peace (Werner and Yuen 2005).

Beardsley (2008) reconciles positive and negative conclusions about mediation effectiveness in

the literature based on his finding that the risk of renewed conflict is initially lower if a mediator

was involved. However, mediated cases are exposed to a higher risk of crisis recurrence after

several years. These results are interpreted as an indication that mediators might face a dilemma

of buying short-term peace at the expense of long-term stability (Beardsley 2008, 2011).

12 The data is generating using the approach provided by Crowther and Lambert (2012).

13 The replication material is available at https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/

4J48AX.
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Figure4.MonteCarloExperiments: Distributionof thepredictionerror for datageneratingprocesses (9)–(12).

Solid line gives estimated average based on local polynomial smoother. Dashed lines give 5th, 50th and 90th

percentile of the error calculated in bins (width=1 analysis time unit).

If this interpretation were true, diplomats trying to appease international conflicts would face

a difficult trade-off. It would beg the question of at what point and under which conditions

the short-term benefits of mediation are outweighed by its long-term problems. Furthermore, if

mediators were in fact buying short-term peace at the expense of long-term stability, would it be

recommendable to get involved in the first place? These are all questions about the cumulative

impact of mediation which cannot be answered with existing methods. In the following section,

I show that, at scrutiny, the implications are less dramatic than the original interpretation of

the time-varying effect might imply. Survivor functions are crucial to arrive at a less ambiguous

conclusion.
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Theempirical analysis of the “mediationdilemma” isbasedon survival analysesof theduration

of postconflict peace inwhich the effect ofmediation ismodeled through an interactionwith time.

The Cox model used by Beardsley (2008, 2011) therefore implies the following specification:

h(t �xi ) = h0(t )e
xi β+mediationi (δ1+δ2t ), (13)

whereby the effect of the binary predictor mediation is allowed to vary with a linear function of

time. The empirical analysis indeed finds a strongly significant coefficient for the interaction with

timeand indicates that thehazard rates ofmediated andunmediated cases cross after a fewyears.

This indicates an effect of type (b) in Figure 1. Beardsley (2008, 737) concludes from this finding

that “crisis dyads with mediation [...] are less likely to experience a recurrence of crisis within the

first few years after a crisis. Yetmediators tend to only produce a pause before the dyad eventually

becomes evenmore prone to recurrence than if it had not hadmediation”.14

While the conclusion is accurate about the instantaneous effect, Beardsley also draws

conclusions about the cumulative effect. Based on the crossing hazard rate and the sign change

in the hazard ratio, Beardsley states that despite positive short-term effects “[i]n the long

run, mediation can create artificial incentives that, as the mediator’s influence wanes and the

combatants’ demands change, leave the actors with an agreement less durable than one that

would have been achievedwithoutmediation” (Beardsley 2008, 723). Beardsley (2011) elaborates

on this potential dilemma in much greater detail.

This strong claim is unfortunate, since it suggests to scholars and practitioners that mediation

worsens the durability of peace in the long-term. Thus, itmakes a statement about the cumulative

effect of mediation over time, which cannot be drawn reliably from the hazard rates and hazard

ratios presented in the paper. Nevertheless, the interpretation of Beardsley’s results could still

be correct. Time-varying hazard ratios and crossing hazard rates are simply too ambiguous.

With only these tools available at the time of the study, a more informed conclusion was not

directly available. Under these circumstances, it was important that Beardsley highlighted this

possibility. Due to the immense policy relevance, however, it is of great importance to understand

the ambiguity inherent in the results and to reanalyze the question with appropriate methods.

As described before, the interpretation of the empirical hazard rate estimates is not sufficient

to make a claim on the cumulative effect. In fact, such an interpretation misses the fact that a

hazard rate represents the instantaneous probability of failure, conditional that an event has not

occurredup to this point in time (cf. Box-Steffensmeier and Jones 2004). It appears, that Beardsley

(2008, 737) alludes to this important fact in a small paragraph in his conclusion: “Moreover, the

results should not be interpreted as suggesting that mediated crises are unconditionally more

likely to recur. Recall that unmediated peace arrangements aremuchmore likely to fail in the first

few years after a crisis. The key point is that mediation does very well in sustaining short-term

peace at the expense of some potential for extremely durable peace. [Emphasis in the original]”

Unfortunately, however, this important detail is overlooked for the remaining parts of the paper

and most parts of the book. Immediately after the statement above, Beardsley (2008, 737) again

evokes that mediation creates a trade-off between short- and long-term effects.

To understand under which circumstances mediation would be associated with long-term

problems, we can use the analogy that mediation acts like a medical drug against renewed

conflict. The “treatment” mediation is intended to stabilize the “immune system” of the most

14 Beardsley (2008, 2011) also uses a discrete duration model with a probit link function and cubic polynomials. This

alternative form of a duration model yields very similar information as a Cox model by modeling the effect of variables

on the discrete hazard probability, not a continuous hazard rate (see Box-Steffensmeier and Jones 2004, 71f.). Since the

reanalysis of time-varying effects in the discrete models leads to the same substantive conclusions, I focus on Beardsley’s

Cox model below.

Constantin Ruhe � Political Analysis 104

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

01
7.

35
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2017.35


unstable conflict dyads. Over time, the concentration of the drug in the body decreases. For

example, the mediator might become less involved, stop monitoring or the agreement fostered

by the mediator is no longer adequate due to changing conflict parties. Hence, the effect of

mediation diminishes with time and, at some point, exerts no influence anymore. In the drug

example, the concentration of the drug in the body has been reduced to zero. If we want to know

whether mediation actually creates long-term problems which make mediated cases worse off,

themedical analogy helps to highlightwhat kindof patternweare looking for:We suspect that the

“treatment”mediation creates adverse effects or side effects, rather than just losing all influence.

Unfortunately, however, crossing hazard rates as shown in panel (c) of Figure 2 as well as Figure 3

in Beardsley (2008, 736) and Figure 5.1 in Beardsley (2011, 113) are no indication of adverse effects.

As discussed above, survivor functions are needed to investigate whether the overall long-

term effect of mediation is problematic. Hence, I use the data from Beardsley (2011) to replicate

the original result and calculate the survivor functions implied by the model. I begin with the

initial, bivariate comparison and plot the hazard rate of a renewed crisis for both mediated and

unmediated crisis dyads. This corresponds to the analysis reported in Figure 3 in Beardsley (2008,

736) and Figure 5.1 in Beardsley (2011, 113). To replicate the results with as little assumptions as

possible I rely on a fully nonparametric analysis. I estimate the smoothed hazard estimates aswell

as Kaplan–Meier survival functions for mediated and unmediated crisis outcomes using the data

from (Beardsley 2011). The results in Panel (a) of Figure 5 bear a striking resemblance with the

results reported in Beardsley (2008, 2011).15 Since the analysis time unit is a single day, the values

of the hazard rate denoted on the y-axis are much smaller. However, the overall pattern is very

similar to the original results. Panel (b) in Figure 5 plots the corresponding Kaplan–Meier survival

estimates. It becomes apparent that in a purely descriptive situation without control variables,

there is always a higher proportion of ‘surviving’ cases in the mediated than in the unmediated

dyads. This implies that mediated cases are more likely to remain at peace throughout the study

period. Toward the end, however, the difference becomes quite small and no longer statistically

significant.

Substantively, the descriptive evidence does not support a mediation dilemma. Rather,

for quite some time, mediated cases are somewhat more stable than unmediated cases.

Consequently, based on this evidence alone, mediators do not seem to face a trade-off between

achieving short-term success at the expense of long-term stability. However, it has to be kept

in mind that these results might suffer from considerable confounding. I therefore replicate

Beardsley’s core model documented in chapter 5, which is substantively identical to the central

model in Beardsley (2008). The Coxmodel estimates the effect of covariates on the duration until

a renewed crisis breaks out. The observations are censored after 10 years, or 3650 days. Since the

data consists of multiple failure time data, the model stratifies for the number of previous crises

15 In fact, panel (a) is the nonparametric and (daily) continuous-time equivalent of the dyad-year discrete duration model

without control variables used by Beardsley. The graph in Beardsley (2008, 736) as well as Beardsley (2011, 113) displays

the hazard probability h(t ) from the following discrete duration model

h(t � mediationi ) = P (T = t � T ≥ t ,mediationi )

= Φ(β0 + (β1 + β2t )mediationi + β3t + β4t
2 + β5t

3), (14)

wherebyΦ is the standard normal cumulative distribution function and the baseline hazard probability is modeled using

cubic polynomials of time (cf. Box-Steffensmeier and Jones 2004, 71ff.). This is the discrete time equivalent to the hazard

rate, i.e., the probability of failure at time t , given survival until time t .
Based on the predicted hazard probability h(t ) we can calculate the survival function for Beardsley’s discrete duration

model as

S (t � mediationi ) = P (T ≥ t � mediationi ) =
t∏

j=1

(1 − h(t j � mediationi )) (15)

(cf. Box-Steffensmeier and Jones 2004, 72).

I show in the supplementarymaterial that replicating Beardsley’s discretemodel with control variables and calculating

survival functions produces substantively identical results as Figure 5(b).
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Figure 5. Comparing the stability of mediated and unmediated agreements: Smoothed hazard and Kaplan–

Meier survival estimates using the data from Beardsley (2011, 208ff.).

which a dyad experienced. Themodel uses several predictor variables, all of which are interacted

with a linear function of time. These predictor variables capture the number of previous crises,

the violence level of the conflict, the natural log of the crisis duration, and dichotomous indicators

if both sides in the dyad are a democracy, whether the conflict ended in victory as well as whether

the states are territorially contiguous (Beardsley 2011, 208ff.). The complete regression model by

Beardsley (2011) interacts all predictor variables with a linear function of time.

Table 1 provides the estimates of the analysis. Model 1 is an exact replication of Beardsley’s

model (2011, app. c. 5). Most of the interactions are highly statistically significant. However, at

closer inspection, Model 1 still violates the proportional hazards assumption for virtually every

single variable according to a test using Schoenfeld residuals. Keele (2010) describes how an

incorrectly specifiedmodelmay lead to a significant test statistic.Moreover, including interactions

with time when the proportional hazards assumption is not violated may create such a violation

based on amisspecifiedmodel (Box-Steffensmeier and Jones 2004, 136, n. 8). Hence, I modify the

model. It appears that a model in which only themediation effect is allowed to vary with time fits

the data generating process best and already fulfills the proportional hazard assumption. Model 2

in Table 1 documents the coefficient estimates for this restricted model specification.

Regarding the effect of mediation, both models appear to estimate a substantively similar

pattern. Mediation originally decreases the hazard of a renewed crisis. Eventually, however, this

effect is reversed. As described above, this pattern in itself does not imply that mediation has

a counterproductive long-term effect. In order for this to be the case, the survival curves for

mediated and unmediated cases would need to cross after a certain time. The simple bivariate

comparison without control variables in Figure 5 suggests that this is not the case. However, the

effect of the control variables may alter this conclusion.

Figure 6 depicts for both the original as well as the revised, restricted model the estimated

survival function for mediated and unmediated cases if all remaining variables are held at their

mean value in the sample. Since different shapes of the baseline hazard rate may affect the

magnitude of mediation’s time-varying effect on crisis risk, the plot distinguishes between the

five strata in the model.16 The results clearly indicate that for the average case, mediation is in no

16 In amodel withmultiple time-varying effects it would be important to plot results for different,meaningful values of these

variables, to assess if the substantive conclusions differ across scenarios.
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Table 1. Mediation and crisis recurrence: Replication of the core model in (Beardsley 2011, 208ff., table 5.1,

model 1).

(1) (2)

Original Cox Restricted Cox

Mediation −0.913∗∗ −0.681∗∗
(0.264) (0.218)

Mediation × time 0.000539∗ 0.000368∗∗

(0.000212) (0.000138)

Previous crises 0.419∗∗ 0.0582

(0.127) (0.063)

Violence level 0.232 −0.178∗∗
(0.136) (0.0563)

Crisis duration 0.302∗∗ −0.0831∗
(0.0857) (0.0399)

Democratic dyad −0.605 −0.784∗
(0.626) (0.31)

Victory 0.607∗∗ −0.0212
(0.209) (0.123)

Contiguity 1.24∗∗ 0.559∗∗

(0.342) (0.148)

Previous crises × time −0.000328∗∗
(0.000105)

Violence level × time −0.000368∗∗
(0.000102)

Crisis duration × time −0.000337∗∗
(0.0000632)

Democratic dyad × time −0.0000461
(0.000406)

Victory × time −0.000543∗∗
(0.000152)

Contiguity × time −0.000589∗∗
(0.000197)

Cases 705 705

Failures 276 276

Note: cluster robust standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01.

way associated with long-term problems. On the contrary, mediated settlements are estimated

to remain substantively more stable than unmediated crisis outcomes, despite the fact that the

advantage of mediated crises eventually decreases. Figure 6 further shows that this result holds

across strata and regardless of whether the original or the restricted model is used. Due to the

uncertainty in the parameter estimates and the survival estimates, the difference in survival

probability becomes insignificant after five to eight years.17 This confirms the Kaplan–Meier

estimates in Figure 5.

17 See supplementary material.

Constantin Ruhe � Political Analysis 107

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

01
7.

35
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2017.35


Figure 6. Predicted effect of mediation on the duration of postcrisis peace. Results are reported for each

stratumbasedon the estimates fromallmodels in Table 1. All variables, exceptmediation, held at theirmean.

7 Discussion and Recommendations
The analysis of the time-varying mediation effect provides a more nuanced image of mediation

effectiveness than earlier studies. The replication confirms empirical evidence which shows that,

compared to unmediated crises, mediated cases aremore stable early on in a postconflict period,

but less stable at later points in time, given that they did not yet experience a renewed crisis

and compared to unmediated cases which also did not yet fail. However, the empirical evidence
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providesno indication that fewermediated cases are at peace after several years thanunmediated

cases. Hence, the results do not support the hypothesis of a mediation dilemma.

The results from the reanalysis of Beardsley (2011) suggest that mediation is associated

with substantively more stable conflict outcomes, although this difference becomes small

and statistically insignificant after several years. This implies that while both mediated and

unmediated dyadsmight eventually relapse into crisis,mediated cases do so later. In otherwords,

mediation is associatedwith peace for some time, but not indefinitely. How these results compare

across different mediators of alternative mediation strategies should be analyzed in further

analyses. This paper introduces the necessary methodology in the form of survival functions.

On a larger scale, the example and the discussion of time-varying effects clearly indicate

that neither hazard ratios nor hazard rates for specific scenarios provide the full picture of the

substantivemeaning of time-varying effects with a change in sign. Depending on the baseline, the

cumulative impact of such time-varying effects can be both a drastic reversal of an effect as well

as no substantive change at all. This shows that an interpretation based on time-varying hazard

ratios or hazard rates alone leave a lot of ambiguity regarding the overall effect, since it is not clear

if mediated cases are on average worse off in the long run. However, appropriate visualizations

using survivor functions are able to reduce this ambiguity and provide a clearer picture of how the

overall effect evolves over time.

This leads to the following recommendations for researchers dealing with time-varying effects

in duration analyses. These recommendations consist of four steps and extend earlier research on

the interpretation of nonproportional hazards:

1. In order to identify andmodel nonproportional hazards, the steps outlined by Keele (2010)

as well as Park and Hendry (2015) should be followed.

2. Time-varying effects can thereafter be analyzed using hazard ratios or relative hazards

as described by Licht (2011). This allows visualizing the pattern of the instantaneous,

multiplicative time-varying effect and helps to assess if the effect significantly changes its

sign (e.g., pattern b in Figure 1).

3. If the effect significantly changes its sign, it is recommendable to clarify the substantive

cumulative effects using survivor functions as outlined above. If the effect does not change

its sign, survivor functionsmay nevertheless provide an intuitive summary of the estimated

cumulative effects and the pattern in the data.

4. Researchers should be aware that a variable’s effect on the survival function could vary,

depending on the baseline hazards across different strata as well as due to the values of

other (time-varying) covariates in the model. Thus, survivor functions should be used to

intuitively communicate predictions for different, meaningful scenarios.18

8 Conclusion
This paper demonstrates that modeling violations of the proportional hazards assumption using

interactions with time makes a correct interpretation of covariate effects very complex. Neither

time-varying hazard ratios nor hazard rates for specific covariate values are sufficient to describe

the overall substantive effect and are very ambiguous if a time-varying effect changes its sign. The

presence ofmultiple time-varying effects further complicates the inference, since the shape of the

baseline varies with the values of the covariates. To describe a variables overall effect, researchers

should use survivor functions for meaningful covariate values in order to enable an intuitive and

unambiguous inference.

18 As described in Equation (6), time-varying covariates can be included if these changes are an important aspect of the

underlying process, e.g., when a change in a variable of interest occurs only after some time. However, researchers need to

consider the assumptions associated with time-varying covariates in a duration model (see Box-Steffensmeier and Jones

2004, 95ff.).
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Using these statistics, the reanalysis ofmediation effectiveness in interstate conflicts provides a

more optimistic conclusion than earlier research. The visualization with survivor functions shows

that the average mediator does not create short-term peace at the expense of long-term stability.

Hence, mediation does not entail a potential trade-off between short- and long-term stability.

Instead, the findings suggest a muchmore encouraging policy implication: Mediated agreements

appear tobeconsiderablymore stable thanunmediatedconflict outcomes, before theyeventually

converge to a similar stability level as in unmediated conflicts.

Supplementarymaterials
For supplementary materials accompanying this paper, please visit

https://doi.org/10.1017/pan.2017.35.
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