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The discrete non-linear Schrödinger equation is one of the most important inherently

discrete models, having a crucial role in the modelling of a great variety of phenomena,

ranging from solid-state and condensed-matter physics to biology. In this paper, a class

of discrete non-linear Schrödinger equations are considered. Using critical point theory

in combination with periodic approximations, we establish some new sufficient conditions

on the existence results for solitons of the equation. The classical Ambrosetti–Rabinowitz

superlinear condition is improved.
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1 Introduction

Below N, Z and R denote the sets of all natural numbers, integers and real numbers

respectively. l2 denotes the space of all real functions whose second powers are summable

on Z. Also, * denotes the transpose of a vector.

In this paper, we consider the following discrete non-linear Schrödinger (DNLS)

equation:

iψ̇n = −Δψn + εnψn − fn (ψn) , n ∈ Z, (1.1)

where Δψn = ψn+1 + ψn−1 − 2ψn is discrete Laplacian operator, εn is real valued for each

n ∈ Z, εn+T = εn, fn ∈ C(R,R), fn+T (·) = fn(·). Here, T is a positive integer. We assume

that fn(0) = 0 and the non-linearity fn(u) is gauge invariant, that is,

fn
(
eiθu
)

= eiθfn(u), θ ∈ R. (1.2)

Since solitons are spatially localized time-periodic solutions and decay to zero at infinity.

Thus, ψn has the form

ψn = une
−iωt,
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and

lim
|n|→∞

ψn = 0,

where ψn is real valued for each n ∈ Z and ω ∈ R is the temporal frequency. Then, (1.1)

becomes

−Δun + εnun − ωun = fn (un) , n ∈ Z, (1.3)

and

lim
|n|→∞

un = 0 (1.4)

holds.

The DNLS equation is a non-linear lattice system that appears in many areas of physics

such as non-linear optics [7], biomolecular chains [17] and Bose–Einstein condensates [18].

Fundamental states supported by the DNLS equations are discrete solitons. For example,

experimental observations of two-dimensional discrete solitons have been reported in [8].

In the past decade, the existence of solitons of the DNLS equations has drawn a great

deal of interest [15, 16, 21–24, 31–35]. The existence for the periodic DNLS equations

with superlinear non-linearity [21–24] and with saturable non-linearity [34, 35] has been

studied. And the existence results of solitons of the DNLS equations without periodicity

assumptions were established in [15, 16, 31, 32]. As for the existence of the homoclinic

orbits of non-linear Schrödinger equations, we refer to [5, 26–29].

Actually, we consider a more general equation:

Lun − ωun = fn (un) , n ∈ Z, (1.5)

with the same boundary condition (1.4). Here, L is the Jacobi operator (see [30]) given by

Lun = anun+1 + an−1un−1 + bnun,

where an and bn are real valued for each n ∈ Z, an+T = an, bn+T = bn. When an ≡ −1

and bn ≡ 2 + εn, we obtain (1.3). As usual, we say that a solution u = {un} of (1.5) is

homoclinic (to 0) if (1.4) holds. Naturally, if we look for solitons of (1.1), we just need to

get the homoclinic solutions of (1.5).

Let Fn(u) =
∫ u

0 fn(t)dt, t ∈ R and

λ = min
n∈Z

(
bn − |an−1| − |an|

)
> ω, λ̄ = max

n∈Z

(
bn + |an−1| + |an|

)
.

Our main results are the following theorems.

Theorem 1.1 Suppose that the following hypotheses are satisfied:

(L) bn − |an−1| − |an| > 0, for all n ∈ Z;

(F1) there exist positive constants � and a < λ−ω
2

such that

|Fn(u)| � au2 for all n ∈ Z and |u| � �;

(F2) there exist constants ρ, c > λ̄−ω
2

and b such that

Fn(u) � cu2 + b for all n ∈ Z and |u| � ρ;

(F3) fn(u)u− 2Fn(u) > 0, for all n ∈ Z and u ∈ R \ {0};
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(F4) fn(u)u− 2Fn(u) → +∞ as |u| → +∞.

Then, (1.5) has a non-trivial homoclinic solution.

Remark 1.1 Since fn+T (u) = fn(u), from (F1), it is easy to see that

(f) |fn(u)| � 2a|u|, for all n ∈ Z and |u| � �.

Remark 1.2 By (F2), it is easy to see that there exists a constant ζ > 0 such that

(F ′
2) Fn(u) � cu2 + b− ζ, ∀(n, u) ∈ Z × R.

As a matter of fact, let ζ = max
{∣∣Fn(u) − cu2 − b

∣∣ : n ∈ Z, |u| � ρ
}
, we can easily get

the desired result.

Remark 1.3 A crucial role that the classical Ambrosetti–Rabinowitz condition plays is to

ensure the boundedness of Palais–Smale sequences. This is very crucial in applying the

critical-point theory. In many studies (see e.g. [23,24]), the following classical Ambrosetti–

Rabinowitz condition is assumed.

(AR) there exists a constant β > 2 such that

0 < βFn(u) � ufn(u) for all n ∈ Z and u ∈ R \ {0}.
It is easily checked that (AR) satisfies (F2) − (F4). Thus, (F2) − (F4) improve (AR).

Example 1.1 Let

fn(u) =
γu3

1 + u2
,

and

Fn(u) =
1

2
γ
[
u2 − ln

(
1 + u2

)]
,

where γ > λ̄. If (L) is satisfied, then it is easy to verify all the assumptions of Theorem

1.1 are satisfied. Consequently, a non-trivial homoclinic solution is obtained.

Theorem 1.2 Suppose that (L), (F1) − (F4) and the following hypothesis are satisfied:

(F5) a−n = an, b−n = bn, f−n(·) = fn(·).
Then, (1.5) has a non-trivial even homoclinic solution.

The main idea in this paper is an application of Mountain Pass Lemma combined

with an approximation technique. This idea has been employed in [20]. We mention that

critical-point theory is a powerful tool to deal with the homoclinic solutions of differential

equations [9–14] and is used to study homoclinic solutions of discrete systems in recent

years [1–4,6,19,20,33,34]. We should emphasize that the results are obtained without the

classical Ambrosetti–Rabinowitz condition [23, 24].
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2 Preliminaries

In this section, we shall present some definitions and lemmas that will be used in the

proof of our results.

Let S be the set of sequences u = (. . . , u−n, . . . , u−1, u0, u1, . . . , un, . . .) = {un}+∞
n=−∞, that is

S = {{un}|un ∈ R, n ∈ Z}.

For any u, v ∈ S , a, b ∈ R, au+ bv is defined by

au+ bv = {aun + bvn}+∞
n=−∞.

Then, S is a vector space.

For any fixed positive integers m and T , Em is defined as a subspace of S by

Em = {u ∈ S |un+2mT = un, n ∈ Z}.

Clearly, Em is isomorphic to R2mT . Em can be equipped with the inner product

〈u, v〉 =

mT−1∑
j=−mT

ujvj , u, v ∈ Em, (2.1)

by which the norm ‖ · ‖ can be induced by

‖u‖ =

⎛
⎝ mT−1∑
j=−mT

u2
j

⎞
⎠

1
2

, u ∈ Em, (2.2)

respectively. We also define a norm ‖ · ‖∞ in Em by

‖u‖∞ = max
j∈Z

|uj | , u ∈ Em.

Consider the functional J on Em defined by

J(u) =
1

2

mT−1∑
n=−mT

Lun · un − ω

2

mT−1∑
n=−mT

u2
n −

mT−1∑
n=−mT

Fn (un) . (2.3)

Then,

〈J ′(u), v〉 =

mT−1∑
n=−mT

[Lun · vn − ωunvn − fn (un) vn] , u, v ∈ Em. (2.4)

Since {an} and {bn} are T -periodic, it is easy to see that the critical points of J in Em are

exactly 2mT -periodic solutions of equation (1.5).

Let E be a real Banach space, J ∈ C1(E,R), i.e., J is a continuously Fréchet-differentiable

functional defined on E. J is said to satisfy the Palais–Smale condition (P.S. condition for

short) if any sequence {un} ⊂ E for which {J (un)} is bounded and J ′ (un) → 0 (n → ∞)

possesses a convergent subsequence in E.
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Let Bρ denote the open ball in E about 0 of radius ρ and let ∂Bρ denote its

boundary.

Lemma 2.1 (Mountain Pass Lemma [25]) . Let E be a real Banach space and J ∈ C1(E,R)

satisfy the P.S. condition. If J(0) = 0 and

(J1) there exist constants ρ, α > 0 such that J|∂Bρ � α, and

(J2) there exists e ∈ E \ Bρ such that J(e) � 0.

Then, J possesses a critical value c � α given by

c = inf
g∈Γ

max
s∈[0,1]

J(g(s)), (2.5)

where

Γ = {g ∈ C([0, 1], E)|g(0) = 0, g(1) = e}. (2.6)

Lemma 2.2 The following inequality is true:

λ‖u‖2 �
mT−1∑
n=−mT

Lun · un � λ̄‖u‖2. (2.7)

Proof Let
mT−1∑
n=−mT

Lun · un = 〈Pmu, u〉, (2.8)

where u = (u−mT , . . . , u−1, u0, u1, . . . , umT−1)
∗ ,

Pm =

⎛
⎜⎜⎜⎜⎝
b−mT a−mT 0 · · · 0 a−mT−1

a−mT b−mT+1 a−mT+1 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · bmT−2 amT−2

amT−1 0 0 · · · amT−2 bmT−1

⎞
⎟⎟⎟⎟⎠

2mT×2mT

.

By (L), Pm is positive definite. Suppose that the eigenvalues of Pm are λ−mT , λ−mT+1, . . . , λ−1,

λ0, λ1, . . . , λmT−2, λmT−1, then they are all greater than zero. So, by (2.2) and (2.8), we get

λ‖u‖2 �
mT−1∑
n=−mT

Lun · un � λ̄‖u‖2.

The proof of Lemma 2.2 is complete. �

3 Proofs of theorems

In this section, we shall prove our main results by using the critical-point method.

Lemma 3.1 Suppose that (L) and (F1) − (F4) are satisfied. Then, J satisfies the P.S.

condition.
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Proof Assume that
{
u(i)
}
i∈N

in Em is a sequence such that
{
J
(
u(i)
)}

i∈N
is bounded. Then,

there is a positive constant K such that −K � J
(
u(i)
)
. By (2.7) and (F ′

2), we have

−K � J
(
u(i)
)

�
λ̄− ω

2

∥∥u(i)
∥∥2 −

mT−1∑
n=−mT

[
c
(
u(i)
n

)2
+ b− ζ

]

�

(
λ̄− ω

2
− c

)∥∥u(i)
∥∥2

+ 2mT (ζ − b) .

Therefore, (
c− λ̄− ω

2

)∥∥u(i)
∥∥2

� 2mT (ζ − b) +K. (3.1)

Since c > λ̄−ω
2

, (3.1) implies that
{
u(i)
}
i∈N

is bounded in Em. Thus,
{
u(i)
}
i∈N

possesses a

convergence subsequence in Em. The desired result follows. �

Lemma 3.2 Suppose that (L) and (F1)−(F4) are satisfied. Then, for which u, (1.5) possesses

a 2mT -periodic solution u(m) ∈ Em.

Proof In our case, it is clear that J(0) = 0. By Lemma 3.1, J satisfies the P.S. condition.

By (F1), we have

J(u) �
λ

2

mT−1∑
n=−mT

u2
n − ω

2

mT−1∑
n=−mT

u2
n − a

mT−1∑
n=−mT

u2
n

=
λ− ω − 2a

2
‖u‖2.

Taking α = λ−ω−2a
2

�2 > 0, we obtain

J(u)|∂B� � α > 0,

which implies that J satisfies the condition (J1) of the Mountain Pass Lemma.

Next, we shall verify the condition (J2).

There exists a sufficiently large number ε > max{�, ρ} such that

(
c− λ̄− ω

2

)
ε2 � |b|. (3.2)

Let e ∈ Em and

en =

{
ε, if n = 0,

0, if n ∈ {j ∈ Z : −mT � j � mT − 1 and j� 0}.

Then,

Fn (en) =

{
Fn(ε), if n = 0,

0, if n ∈ {j ∈ Z : −mT � j � mT − 1 and j� 0}.
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With (3.2), we have

J(e) =
1

2

mT−1∑
n=−mT

Len · en − ω

2

mT−1∑
n=−mT

e2n −
mT−1∑
n=−mT

Fn (en)

�
λ̄

2
‖e‖2 − ω

2
‖e‖2 − c‖e‖2 − b

= −
(
c− λ̄− ω

2

)
ε2 − b � 0.

All the assumptions of the Mountain Pass Lemma have been verified. Consequently by

Lemmas 2.1 and 3.1, J possesses a critical value cm given by (2.5) and (2.6) with E = Em
and Γ = Γm, where Γm = {gm ∈ C([0, 1], Em)|gm(0) = 0, gm(1) = e, e ∈ Em\Bε} . Let u(m)

denote the corresponding critical point of J in Em. Note that
∥∥u(m)

∥∥� 0 since cm > 0. �

Lemma 3.3 Suppose that (L) and (F1) − (F4) are satisfied. Then, there exist positive con-

stants � and η independent of m such that

� �
∥∥u(m)

∥∥
∞ � η. (3.3)

Proof The continuity of Fn(u) with respect to the variable u implies that there exists a

constant τ > 0 such that |Fn(u)| � τ for |u| � �. It is clear that

J
(
u(m)
)

� max
0�s�1

{
1

2

mT−1∑
n=−mT

∣∣L(se)n · (se)n − ω(se)2n
∣∣−

mT−1∑
n=−mT

Fn ((se)n)

}

�
λ̄+ ω

2
‖e‖2 + τ

=
(λ̄+ ω)ε2

2
+ τ.

Let ξ = (λ̄+ω)ε2

2
+ τ, we have that J

(
u(m)
)

� ξ, which is independent of m. From (2.5)

and (2.6), we have

J
(
u(m)
)

=
1

2

mT−1∑
n=−mT

fn
(
u(m)
n

)
u(m)
n −

mT−1∑
n=−mT

Fn
(
u(m)
n

)
� ξ.

By (F3) and (F4), there exists a constant η > 0 such that

1
2
fn(v)v − Fn(v) > ξ, for all |v| � η,

which implies that
∣∣u(m)
n

∣∣ � η for all n ∈ Z, that is,
∥∥u(m)

∥∥
∞ � η.

From the definition of J , we have

0 =
〈
J ′ (u(m)

)
, u(m)

〉
� (λ− ω)

mT−1∑
n=−mT

∣∣u(m)
n

∣∣2 −
mT−1∑
n=−mT

fn
(
u(m)
n

)
u(m)
n .
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Therefore, combined with (F2), we get

(λ− ω)
∥∥u(m)

∥∥2
�

mT−1∑
n=−mT

fn
(
u(m)
n

)
u(m)
n �

{
mT−1∑
n=−mT

[
fn
(
u(m)
n

)]2} 1
2 ∥∥u(m)

∥∥ .
That is,

(λ− ω)
∥∥u(m)

∥∥ �

{
mT−1∑
n=−mT

[
fn
(
u(m)
n

)]2} 1
2

.

Thus,

(λ− ω)2
∥∥u(m)

∥∥2
�

mT−1∑
n=−mT

[
fn
(
u(m)
n

)]2
. (3.4)

Combined with (F1), we get

(λ− ω)2
∥∥u(m)

∥∥2
�

mT−1∑
n=−mT

[
2a
∣∣u(m)
n

∣∣]2 = 4a2
∥∥u(m)

∥∥2
.

Thus, we have u(m) = 0. But this contradicts
∥∥u(m)

∥∥� 0, which shows that

∥∥u(m)
∥∥

∞ � �,

and the proof of Lemma 3.3 is finished. �

Proof of Theorem 1.1. Consider the sequence
{
u(m)
n

}
n∈Z

of 2mT -periodic solutions found

in Lemma 3.2. First, by (3.3), for any m ∈ N, there exists a constant nm ∈ Z independent

of m such that ∣∣u(m)
nm

∣∣ � �. (3.5)

Since an, bn are T -periodic in n,
{
u

(m)
n+jT

}
(∀j ∈ N) is also 2mT -periodic solution of

(1.3). Hence, making such shifts, we can assume that 0 � nm � T − 1 in (3.5). Moreover,

passing to a subsequence of ms, we can even assume that nm = n0 is independent of m.

Next, we extract a subsequence, still denote by u(m), such that

u(m)
n → un, m → ∞, ∀n ∈ Z.

Inequality (3.5) implies that |un0
| � � and, hence, u = {un} is a non-zero sequence.

Moreover,

Lun − ωun − fn (un)

= lim
m→∞

[
Lu(m)

n − ωu(m)
n − fn

(
u(m)
n

)]
= 0.

So u = {un} is a solution of (1.5).

Finally, we show that u ∈ l2. For um ∈ Em, let

Pm =
{
n ∈ Z :

∣∣u(m)
n

∣∣ < �,−mT � n � mT − 1
}
,
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Qm =
{
n ∈ Z :

∣∣u(m)
n

∣∣ � �,−mT � n � mT − 1
}
.

Since fn(u) ∈ C(R,R), there exist constants ξ̄ > 0, ξ > 0 such that

max {|fn(u)| : � � |u| � η, n ∈ Z} � ξ̄,

min

{
1

2
fn(u)u− Fn(u) : � � |u| � η, n ∈ Z

}
� ξ.

For n ∈ Qm, ∣∣fn (u(m)
n

)∣∣ �
ξ̄

ξ

[
1

2
fn
(
u(m)
n

)
u(m)
n − Fn

(
u(m)
n

)]
. (3.6)

By (F1), (3.4) and (3.6), we have

(λ− ω)2
∥∥u(m)

∥∥2
�
∑
n∈Pm

[
fn
(
u(m)
n

)]2
+
∑
n∈Qm

[
fn
(
u(m)
n

)]2

�
∑
n∈Pm

[
2a
∣∣∣u(m)
n+1

∣∣∣]2 +
∑
n∈Qm

[
1

2
fn
(
u(m)
n

)
u(m)
n − Fn

(
u(m)
n

)]

� 4a2
∥∥u(m)

∥∥2
+
ξ̄ξ

ξ
.

Thus, ∥∥u(m)
∥∥2

�
ξ̄ξ

ξ
[
(λ− ω)2 − 4a2

] .
For any fixed D ∈ Z and m large enough, we have that

D∑
n=−D

∣∣u(m)
n

∣∣2 �
∥∥u(m)

∥∥2
�

ξ̄ξ

ξ
[
(λ− ω)2 − 4a2

] .
Since ξ̄, ξ, ξ, λ, a and ω are constants independent of m, passing to the limit, we have

that
D∑

n=−D
|un|2 �

ξ̄ξ

ξ
[
(λ− ω)2 − 4a2

] .
Due to the arbitrariness of D, u ∈ l2. Therefore, u satisfies un → 0 as |n| → ∞. �

Proof of Theorem 1.2. Consider the following boundary problem:⎧⎨
⎩
Lun − ωun − fn (un) = 0, −mT � Z � mT ,

a−mT = amT = 0, b−mT = bmT = 0,

a−n = an, b−n = bn, −mT � Z � mT .

Let S be the set of sequences u = (. . . , u−n, . . . , u−1, u0, u1, . . . , un, . . .) = {un}+∞
n=−∞, that is

S = {{un}|un ∈ R, n ∈ Z}.
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For any u, v ∈ S , a, b ∈ R, au+ bv is defined by

au+ bv = {aun + bvn}+∞
n=−∞.

Then, S is a vector space.

For any given positive integers m and T , Ẽm is defined as a subspace of S by

Ẽm = {u ∈ S |u−n = un, ∀n ∈ Z}.

Clearly, Ẽm is isomorphic to R2mT+1. Ẽm can be equipped with the inner product

〈u, v〉 =

mT∑
j=−mT

ujvj , ∀u, v ∈ Ẽm

by which the norm ‖ · ‖ can be induced by

‖u‖ =

⎛
⎝ mT∑
j=−mT

u2
j

⎞
⎠

1
2

, ∀u ∈ Ẽm.

It is obvious that Ẽm is Hilbert space with 2mT+1-periodicity and linearly homeomorphic

to R2mT+1.

Similarly to the proof of Theorem 1.1, we can also prove Theorem 1.2. For simplicity,

we omit its proof. �
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