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Direct numerical simulations are performed to investigate the wake transitions of the
flow normal to a circular rotating disk. The diameter-thickness aspect ratio of the disk
is χ = 50. The Reynolds number of the free stream is defined as Res = U∞D/ν, with
incoming flow velocity U∞, disk diameter D, and kinematic viscosity of the fluid ν. The
rotational motion of the disk is described by the Reynolds number of rotation Rer = ΩRes,
with non-dimensional rotation rate Ω = 1

2ωD/U∞, where ω is the angular rotation
speed of the disk. Extensive numerical simulations are performed in the parameter space
50 � Res � 250 and 0 � Rer � 250, in which six flow regimes are identified as follows:
the axisymmetric state, the low-speed steady rotation (LSR) state, the high-speed steady
rotation (HSR) state, the low-speed unsteady rotation (LUR) state, the rotational vortex
shedding state, and the chaotic state. Although plane symmetry exists in the wake when
the disk is stationary, a small rotation will immediately destroy its symmetry. However, the
vortex shedding frequencies and wake patterns of the stationary disk are inherited by the
unsteady rotating cases at low Rer. A flow rotation rate jump is observed at Res ≈ 125. The
LUR state is intermediate between the LSR and HSR states. Due to the rotational motion,
the wake of the disk enters the steady rotation state earlier at large Rer, and is delayed into
the vortex shedding state in the whole range of Rer. In the steady rotation states (LSR and
HSR), the steady flow rotation rate is linearly correlated with the disk rotation rate. It is
found that the rotation of the disk can restrain the vortex shedding. The chaotic state can
be regularized by the medium rotation speed of the disk.
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D. Ouyang and others

1. Introduction

Symmetry breaking exists widely in the fluid world. One typical symmetry is the axial
symmetry, which is normally associated with axisymmetric bodies such as circular disks
or spheres. Complicated axial symmetry breaking phenomena occur in the wake behind
the fixed circular disk (see e.g. Marshall & Stanton 1931; Michael 1966; Kuo & Baldwin
1967; Rimon 1969; Roos & Willmarth 1971; Roberts 1973; Rivet et al. 1988; Berger,
Scholz & Schumm 1990; Natarajan & Acrivos 1993; Fernandes et al. 2007; Fabre, Auguste
& Magnaudet 2008; Shenoy & Kleinstreuer 2008, 2010; Meliga, Chomaz & Sipp 2009;
Auguste, Fabre & Magnaudet 2010; Chrust, Bouchet & Dušek 2010; Yang et al. 2014,
2015) and sphere (see e.g. Barkla & Auchterlonie 1971; Sakamoto & Haniu 1990; Johnson
& Patel 1999; Fabre et al. 2008; Chrust, Goujon-Durand & Wesfreid 2013). It is known
that these wake transition processes involve several stages that have general similarities,
but with some differences between the disk and sphere wakes.

The transition scenarios of the circular disk are determined by both the disk aspect
ratio and the free stream Reynolds number. Here, the aspect ratio of the circular disk
is defined as χ = D/td, where D is the disk diameter and td is the disk thickness. The
free stream Reynolds number is defined as Res = U∞D/ν, where U∞ is the free stream
velocity, and ν is the kinematic viscosity of the fluid. In what follows, the aspect ratio
χ = ∞ is considered a ‘flat disk’ or an infinitely thin disk. For a very low Reynolds
number, the steady and axisymmetric flow is described by Shenoy & Kleinstreuer (2008)
and is called the ‘trivial’ state by Auguste et al. (2010). The first bifurcation occurs at
the critical Reynolds number Rec1

s , namely, Rec1
s = 135 in Shenoy & Kleinstreuer (2008)

(χ = 10), Rec1
s = 129.6 in Chrust et al. (2010) (χ = 10), Rec1

s = 159.4 in Auguste et al.
(2010) (χ = 3), and Rec1

s = 115–117 according to Natarajan & Acrivos (1993), Fabre
et al. (2008), Meliga et al. (2009) and Chrust et al. (2010) (χ = ∞). Moreover, the
threshold is related to the aspect ratio, and the formula given by Fernandes et al. (2007) is
Rec1

s ≈ 116.5(1 + χ−1). Subsequently, the wake is featured by a steady non-axisymmetric
but reflectional symmetric state, which gives rise to a steady lift force in the symmetric
plane and a pair of steady streamwise vortices. This state is named after both the ‘steady
state’ (Fabre et al. 2008; Meliga et al. 2009) and the ‘steady asymmetric state’ (Shenoy
& Kleinstreuer 2008). The characteristics of these two stages are similar to the case
of a sphere except that the value of Rec1

s is found to be 212 for a sphere (Johnson &
Patel 1999).

The second Hopf bifurcation is observed for the critical Reynolds number Rec2
s =

136.3–138.7 by Chrust et al. (2010) (χ = 10) and Rec2
s ≈ 155 by Shenoy & Kleinstreuer

(2008) (χ = 10). For a flat disk with χ = ∞, it is widely accepted that the range of
Rec2

s is between 121 and 125.6, as reported by Natarajan & Acrivos (1993), Fabre et al.
(2008), Meliga et al. (2009) and Chrust et al. (2010). Fernandes et al. (2007) summarize
the relation between Rec2

s and χ as Rec2
s ≈ 125.6(1 + χ−1). The disk experiences the

oscillating lift force about a mean value; meanwhile, the oscillation is perpendicular to the
symmetry plane determined by the first bifurcation. This state is denoted as ‘reflectional
symmetry breaking’ (RSB) by Fabre et al. (2008), ‘three-dimensional periodic flow with
regular rotation of the separation region’ by Shenoy & Kleinstreuer (2008), ‘mixed mode
with phase π’ (MMπ) by Meliga et al. (2009), or the ‘yin-yang’ mode by Auguste et al.
(2010). Specifically, for the thick disk with χ = 3 studied by Auguste et al. (2010), the
flow undergoes ‘zig-zig’, ‘knit-knot’ and ‘yin-yang’ modes successively after the Hopf
bifurcation. Here, the ‘knit-knot’ mode refers to the reflectional symmetric state with a lift
force oscillating around a non-zero mean value. Although this mode is different from that
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Wake transitions behind a streamwise rotating disk

of the disk above, the feature is identical to a ‘reflectional symmetry preserving’ mode
(Fabre et al. 2008) in a sphere wake.

The next bifurcation has been found at Rec3
s ≈ 140–143 by Fabre et al. (2008), Meliga

et al. (2009) and Chrust et al. (2010), successively, for an infinitely thin disk. This state
can be distinguished from the RSB mode on account of the recovery of the reflectional
symmetry plane. As a consequence, the state is called ‘unsteady with planar symmetry and
zero lift force’ (Shenoy & Kleinstreuer 2008), ‘standing wave’ (SW) (Fabre et al. 2008;
Meliga et al. 2009) and ‘zig-zag’ mode (Auguste et al. 2010). As the Reynolds number
increases further, the flow develops from a quasi-periodic state to a chaotic state. In the
quasi-periodic state, a secondary frequency close to one-third of the primary frequency of
the previous regimes appears (Auguste et al. 2010), and the modulation is also evidenced
in the sphere wake (Bouchet, Mebarek & Dušek 2006). In addition, Chrust et al. (2010)
summarized a systematic Res–χ parametric map for oblate spheroids and disks with
χ � 1.

It is noted that the breaking of axisymmetric flow is influenced not only by Res but also
by the rotational motion of the body. It is worth noting that in most cases, the effect of
rotational motion on symmetry breaking is even more evident. For example, the trajectory
of the rotating ball is curved. The flow around a rotating body depends significantly on
the direction of rotation, which may be either parallel or perpendicular to the free stream
direction, namely, streamwise rotation and transverse rotation, respectively. In this paper,
we focus on streamwise rotation, on which numerous studies have been conducted in recent
years for the sphere (see e.g. Kim & Choi 2002; Pier 2013; Poon et al. 2010; Neeraj &
Tiwari 2018; Skarysz et al. 2018; Lorite-Díez & Jiménez-González 2020).

The rotational motion of the body is represented using a non-dimensional rotation rate
Ω , where Ω is the maximum azimuthal velocity on the rotating sphere normalized by
the free stream velocity. As the Reynolds number is low enough, the flow is in a steady
and axisymmetric state. This state has been called ‘steady axisymmetric’ flow (Kim &
Choi 2002) and ‘the axisymmetric steady base flow (either stable or unstable)’ regime
(Pier 2013). A reasonable consensus has been reached that the unsteady wake is the
periodic regime with no temporal variation in either the shape of the vortical structure
or the spin around the axis. This mode is observed as ‘frozen’ by Kim & Choi (2002) and
Neeraj & Tiwari (2018), ‘the low-frequency periodic helical’ regime by Pier (2013), and
the ‘low-helical’ regime by Skarysz et al. (2018). With a higher value of the streamwise
Reynolds number Res, the frozen rotation of the vortical structure in combination with
variations in its shape indicates the quasi-periodic vortex shedding regime (Pier 2013)
and the unsteady asymmetry regime (Kim & Choi 2002). The transition between the
quasi-periodic and chaotic regimes is similar to frozen rotation, but it rotates at a higher
frequency, which is referred to as ‘frozen’ by Kim & Choi (2002) at Re = 300 and ‘the
high-frequency periodic helical’ regime by Pier (2013). As a consequence, Lorite-Díez
& Jiménez-González (2020) concluded a summary (Ω, Res) map about the flow regimes
for a streamwise rotating sphere. Moreover, the modification of the axis of rotation and
non-dimensional rotation rate have a significant effect on the state of the wake structures,
as Poon et al. (2010) demonstrated.

Earlier studies of the flow around a streamwise rotating sphere successfully confirmed
these complicated transition scenarios. However, similar studies have not been reported
for circular disks. It is notable that the main difference between the disk and sphere is
that the disk is a sharp-edged body, while the sphere is more streamlined. Based on the
conclusion of the wake transition of a fixed disk and sphere, the transition process of the
circular disk is more complicated, and the critical Reynolds number is lower than that of
the sphere. It is expected that there are some new and interesting phenomena in the wake
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Figure 1. Sketch of the uniform flow past a streamwise rotating circular disk. The origin of the coordinate
system is in the geometric centre of the disk as defined. The x axis is the free flow direction, which corresponds
to the direction of rotation of the disk.

of a rotating disk, and several questions arise. (i) What is the wake behind the streamwise
rotating circular disk? (ii) How many flow states exist, and what is the threshold between
them? (iii) How does the streamwise rotation affect the wake and threshold of the circular
disk? (iv) What is the similarity or difference between a streamwise rotating disk and a
streamwise rotating sphere? To answer these questions, we consider a simple condition
that the uniform flow is normal to a streamwise rotating disk, as shown in figure 1.

Following the non-dimensional rotation rate Ω defined for the rotating sphere (Kim
& Choi 2002), a new Reynolds number describing the rotational motion is defined as
Rer = ΩRes, where the non-dimensional rotation rate of the disk, Ω = 1

2ωD/U∞, is
based on the angular rotation speed of the disk, ω. Chrust et al. (2010) demonstrated that
the flat cylinder (χ � 4) and the infinitely thin disk have similar transition processes. In
that way, a circular disk with aspect ratio 50 can be considered a sufficiently thin disk.
In addition, the ranges of the two key dimensionless parameters considered in this paper
are 50 � Res � 250 and 0 � Rer � 250, respectively. On the one hand, in the scope of
Res, the circular disk without rotation can completely experience all states from stable
to chaotic. On the other hand, the results of preliminary calculations show several major
bifurcations of flow around the circular disk when Rer = 250. Within this Res–Rer region,
direct numerical simulations are used in this study to obtain all the information of the flow
field.

The remainder of this paper is structured as follows. The numerical methods and studies
of mesh convergence and code validation are presented in § 2. The results and discussions
are offered in § 3. Finally, the concluding remarks are outlined in § 4.

2. Numerical simulations

2.1. Mathematical formulations and numerical methods
We consider a rotating circular disk subjected to a Newtonian incompressible fluid.
The flow is governed by the Navier–Stokes equations, which are solved here in the
Cartesian coordinate system (x, y, z). These coordinates can be denoted uniformly as
xi, where i = 1, 2, 3, and ui is the velocity component of the corresponding direction.
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The Navier–Stokes equations are expressed as

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρ

∂p
∂xi

+ ν
∂2ui

∂xj ∂xj
, (2.2)

where j = 1, 2, 3, and p and ρ are the pressure and density of the fluid, respectively.
For clarity, the velocity components u1, u2 and u3 are also denoted by ux, uy and uz,
respectively.

These equations were discretized using the finite volume method based on the open
source computational fluid dynamics code OpenFOAM, which is an object-oriented code
that enables the operation and manipulation of tensor data to solve continuum mechanics
problems in Weller et al. (1998). The pimpleFoam solver is employed in the discrete
governing equations, which is a transient solver for studying the incompressible turbulence
of Newtonian fluids on a moving grid using the PIMPLE algorithm. The discretization of
each term was undertaken by integrating the term over a control volume using Gauss’s
theorem, followed by linearization of volume and surface integrals using suitable schemes.
The spatial schemes of interpolation, gradient, Laplacian and divergence were all linear
and of second order. An additional correction was performed for the Laplacian term
by interpolating cell centre gradients. The second-order Crank–Nicolson scheme was
introduced for the time integration. Further detailed information about these schemes was
presented previously (OpenFOAM 2021).

A spherical computational domain is adopted here, as shown in figure 2. The origin of
the three-dimensional Cartesian coordinate system is located at the centre of the circular
disk, which is also the centre of the computational domain. The positive direction of the
x axis is the free stream direction, which is also the rotation direction of the disk. The
force acting on a disk can be decomposed into three components, Fx, Fy and Fz, along
the coordinate system directions, which can be calculated by integrating the pressure and
viscous shear stress on the disk surface. Then the force coefficients in each direction are
non-dimensionalized as follows:

(Cx, Cy, Cz) = (Fx, Fy, Fz)

1
8ρU2∞πD2

. (2.3)

Since the x direction is the streamwise direction, Cx represents the drag coefficient, and
Cy and Cz represent the components of the lift coefficient Cl in the y and z directions,
respectively. The magnitude of the total lift coefficient is calculated as

Cl =
√

C2
y + C2

z . (2.4)

The pressure coefficient is calculated using the reference pressure p∞ at the centre of
the inlet boundary:

Cp = p − p∞
1
2ρU2∞

. (2.5)

The vorticity components in the x and z directions can be expressed as

ωx = ∂uz

∂y
− ∂uy

∂z
, (2.6)
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(a) (b)

Inlet

y

z

z

y xx

Outlet

Figure 2. Schematic representation of the computational grid. (a) Overall view of the spherical
computational domain and boundaries. (b) View of the grids near the disk surface.

ωz = ∂uy

∂x
− ∂ux

∂y
. (2.7)

The three-dimensional vortical structures are identified by the Q-criterion proposed by
Hunt, Wray & Moin (1988), using the strain tensor S and the rotation tensor Ω:

Q = −1
2 (‖S‖2 − ‖Ω‖2). (2.8)

As shown in figure 2(a), at the inlet boundary, a uniform flow U∞ is prescribed for
velocity, and the pressure condition is set as a zero normal gradient. At the outlet boundary,
the velocity is given as a zero normal gradient condition, and the pressure is set to zero. At
the disk surfaces, the pressure is set as a zero normal gradient, and the velocity is set as the
moving wall condition, where the flux is corrected in motion to ensure that the flux of the
moving wall is zero. A hexahedral mesh was used for the whole computing domain, and
the mesh was successfully applied and verified by Tian et al. (2017) and Gao et al. (2018).
The grid near the disk surface is of finer resolution to resolve the steep gradient there; see
figure 2(b).

To realize rotational motion of the disk around the x axis, the moving wall condition is
used in the disk surfaces, where the rotating velocity on the disk surfaces is achieved
by rotating the mesh points. Based on the initial permanent static mesh, as shown in
figure 2(a), the mesh rotates as a whole rigid body, in which the mesh points are updated
at each time step by moving the points of the mesh in the corresponding yz plane. Let
X (i, t) represent the spatial coordinates of point i at time t. Since the x axis is the rotation
axis, the x value of each coordinate point remains unchanged, while the y and z values
rotate and transform with time. The rotation matrix R can be used to complete the rotation
transformation on the spatial coordinates, and the matrix is as follows:

R =
⎡
⎣

1 0 0
0 cos(ωt) − sin(ωt)
0 sin(ωt) cos(ωt)

⎤
⎦ , (2.9)

where ω is the angular rotation speed of the disk. Then X (i, t) can be found by the
following formula:

X (i, t) = R X (i, 0). (2.10)
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Wake transitions behind a streamwise rotating disk

Case Elements n1/D Rd �t U∞/D

A 208 320 0.0036 30D 0.0020
B 783 480 0.0030 30D 0.0015
C 1 049 600 0.0027 30D 0.0010
D 1 347 552 0.0025 30D 0.0005
E 942 080 0.0027 20D 0.0010

Table 1. Set of five cases with different spatial and temporal resolutions, where n1/D defines the dimensionless
size of the smallest cells near the disk surface, �tU∞/D defines the dimensionless time step, and Rd is the
radius of the spherical computational domain.

(50, 200) (150, 100) (200, 50) (250, 250)

Case 〈Cx〉 〈Cl〉 〈Cx〉 〈Cl〉 〈Cx〉 〈Cl〉 〈Cx〉 〈Cl〉
A 2.111 0.000 1.262 0.043 1.172 0.029 1.226 0.039
B 2.063 0.002 1.225 0.023 1.236 0.025 1.211 0.019
C 2.091 0.000 1.224 0.023 1.240 0.025 1.225 0.017
D 2.111 0.000 1.226 0.023 1.232 0.025 1.210 0.015
E 2.092 0.000 1.225 0.023 1.240 0.025 1.225 0.019

Table 2. Statistical results of force coefficients Cx and Cl obtained from cases of four flow configurations
(Res, Rer). The notation 〈·〉 denotes the mean value.

2.2. Convergence studies
The effect of spatial and temporal resolutions on numerical simulations was evaluated
by convergence analysis, and the appropriate mesh size was selected accordingly. In this
sense, five numerical simulation settings with different combinations of grid elements,
time steps and computational domain sizes were selected, namely, cases A, B, C, D
and E, as shown in table 1. For each case, four groups of different flow configurations
were calculated, and the mean values of the force coefficients Cx and Cl are exhibited
in table 2. The flow configurations include the boundary values of the considered
space (Res, Rer) = (50, 200), (200, 50), (250, 250), and the middle of the map,
(150, 100).

As shown in table 1, the number of grid elements of the first four cases (A, B, C and D)
increases successively, and correspondingly, their non-dimensional time steps �t U∞/D
and smallest cell sizes n1 decrease. As seen from the mean value of the force coefficients
in table 2, the corresponding statistical results of the force coefficients Cx and Cl of each
case have good consistency. For the cases at large Reynolds numbers, the flow becomes
turbulent and a small variation around ±1 % exists in the mean drag coefficient between
different cases. Therefore, it is concluded that the number of grid elements and the time
step used in case C have acceptable accuracy. In addition, the influence of the size of
the computational domain Rd on the numerical simulation can be acquired by comparing
cases C and E. The mesh structure and topology of case E are exactly the same as those of
grid C, but the radius of the spherical computational domain Rd is reduced from 30D to
20D. The numerical results are in good agreement with those of case C, indicating that the
spherical computational domain with radius 20D is large enough that the influence of the
external boundary can be neglected. As shown in figure 3, for all four flow configurations,
the distribution of 〈Cp〉 along the centreline y = z = 0 of the streamwise rotating disk
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Case B
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Case E

0.4

0
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〈Cp〉

〈Cp〉

–0.8
–4 0 4 8
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–0.2

–0.4

–4 0 4 8

Figure 3. Comparison of the distribution of the mean pressure coefficients 〈Cp〉 along the centre axis of the
disk (y = z = 0) for five different meshes under four flow configurations at (Res, Rer) values (a) (50, 200),
(b) (150, 150), (c) (200, 50), and (d) (250, 250).

shows good consistency between the five different meshes. Thus for all the numerical
simulations reported in the next section, the configurations of case C – i.e. 1 049 600
grid elements, non-dimensional time step 0.001 and computational domain Rd = 30D –
are used.

2.3. Code validation
To verify the validity of the numerical approach, numerical simulations of uniform flow
normal to a fixed circular disk are carried out. For the disk χ = 50, the flow state
generally transitions from steady to complete chaotic states, including five bifurcations
in the process. All flow patterns with specific characteristics are captured and compared
with those given in the reference, as discussed in § 3. For the cases Res � 100, the flow is
steady, and a constant drag coefficient is obtained and agrees well with the direct numerical
simulations results of Shenoy & Kleinstreuer (2008) and Tian et al. (2017), as well as the
experimental results of Roos & Willmarth (1971), as shown in figure 4. In addition, the
critical Reynolds number and Strouhal number during the flow bifurcations also agree well
with the previous results in the literature, as shown in table 3. Therefore, it is concluded
that the numerical method presented in this paper can well simulate the flow around a disk
and provide reliable results. Moreover, the present numerical approach has been used by
Tian et al. (2017), Gao et al. (2018) and Zhao et al. (2021) to calculate the flow around a
disk with success.
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6

Shenoy & Kleinstreuer (2008)

Roos & Willmarth (1971)

Tian et al. (2017)

Case C

5

4

3

Cx

2

1
0 20 40 60

Res

80 100

Figure 4. Comparison of axial drag coefficients Cx of a fixed disk normal to the uniform flow in a stable and
axisymmetric state.

χ Rec1
s Rec2

s Rec3
s Rec4

s St2 St3

∞ Fabre et al. (2008) ≈115 ≈121 ≈140 — 0.119 —
∞ Meliga et al. (2009) 116.9 125.3 143.7 — 0.121 —
∞ Chrust et al. (2010) 116.92 (124, 125.2) [142, 143] [165, 170] 0.120 0.118
50 Gao et al. (2018) 120.5 [128.5, 130] [140, 141.5] [185, 190] 0.121 0.114
50 Present [120, 125] [130, 135] [140, 145] [200, 210] 0.122 0.122
10 Chrust et al. (2010) 129.6 (136.3, 138.7) 154.4 188.8 0.115 0.114
10 Shenoy & Kleinstreuer (2008) 135 155 172 280 0.113 —

Table 3. Comparison of critical Reynolds number of the flow and Strouhal number for the bifurcation
of the fixed disk wake in various literatures. The Strouhal number St = fD/U∞ is used to represent the
non-dimensional form of vortex shedding frequency f , and Reci

s and Sti (i = 1, 2, 3, 4) correspond to the critical
Reynolds numbers and Strouhal number of the ith bifurcation.

3. Results and discussion

In this study, we consider the flow normal to a streamwise rotating circular disk in the
parameter space 50 � Res � 250 and 0 � Rer � 250. As shown in figures 5 and 6, 189
pairs of flow configurations are simulated and plotted in Res–Rer space and Res–Ω space.

It is not surprising that six different flow regimes behind a fixed disk (Rer = 0), as
reported by Gao et al. (2018), are again reproduced here, namely, the axisymmetric
state (AS), plane symmetric state (SS), periodic with reflectional symmetric state (RSB),
periodic with recovered reflectional symmetry state (SW), quasi-periodic state (QP), and
chaotic state (CS). However, for the rotating conditions (Rer > 0), a small rotation (i.e. the
cases at low Rer) will break the plane symmetry. For any given Rer, as Res increases, the
flow transitions from steady to unsteady and eventually to chaotic. The most typical feature
of the flow around a rotating disk is that the wake may rotate along the axis of the disk.
According to the large number of simulations, an evident jump is observed in the flow
rotation ratio at Res ≈ 125 (the detailed discussions are given in § 3.7). Before going into
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Figure 5. Full classification of flow states behind the streamwise rotating circular disk in the survey region
Res versus Rer. Solid lines represent the critical boundaries between different flow states. The non-dimensional
rotation rate of the disk Ω is represented using dashed lines. AS: axisymmetric state; CS: chaotic state;
HSR: high-speed steady rotation; LUR: low-speed unsteady rotation; LSR: low-speed steady rotation;
QP: quasi-periodic state; RSB: reflectional symmetric state; RVS: rotational vortex shedding; SS: symmetric
state; SW: standing wave.
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Figure 6. Flow distribution in the Res–Ω space.
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detail, the flow state with regular rotation is first divided into low-speed and high-speed
subdomains. It is noted that the flow with regular rotation is regarded as the characteristic
of steady rotation states, while the flow with oscillatory rotation is defined as an unsteady
rotation state.

Based on extensive simulations of the wake pattern of each case under the above
principles, six flow regimes are classified for the streamwise rotating disk: the
axisymmetric state (AS), low-speed steady rotation (LSR) state, high-speed steady rotation
(HSR) state, low-speed unsteady rotation (LUR) state, rotational vortex shedding (RVS)
state, and chaotic state (CS). It is worth noting that the threshold between different flow
states is not always clear-cut and could be determined by linear interpolation of the
amplitude change of the force coefficient, referring to the processing method used in Tian
et al. (2017). As shown in figure 5, the effect of disk rotation on the flow becomes more
significant as Rer increases. It is observed that as Rer increases, the threshold between
the AS and the LSR states is advanced. However, the threshold between the HSR and
RVS states is delayed, and the threshold of the chaotic state is first delayed and then
restored. According to the careful examinations by starting a simulation using different
initial conditions, the bistability is not observed near the boundary of LSR, HSR and LUR
states.

In this section, the force coefficients and flow visualizations for the typical cases of each
regime are selected to investigate the entire wake transition process for the rotating disk.

3.1. Regime I: axisymmetric state (AS)
As shown in figure 7(a), when the fixed circular disk is perpendicular to the incoming
flow, the wake is stable and axisymmetric, accompanied by the toroidal vortex behind the
circular disk (similar to figure 3 of Shenoy & Kleinstreuer 2008). This stable axisymmetric
state also appears in the earlier studies (see Auguste et al. 2010). Compared with
figure 7(b), the vorticity of the toroidal vortex increases significantly in the streamwise
direction and perpendicular to the streamwise direction after the rotational motion is
introduced. Figure 8 shows that the vortical structures of the streamwise rotating circular
disk in a well-developed flow are axisymmetric, and the strength of the vortical structures
increases as Rer increases.

In conclusion, the rotational motion increases the axial vorticity and induces an increase
in the cross-stream vorticity component (ωz). Furthermore, the separation of the vortex
behind the disk is enhanced as Rer increases, which causes the wake symmetry to break
earlier and transition to a steady rotation state. With the increase in Rer, the perturbation
of the rotation gradually increases, leading to an advance of the threshold between AS and
LSR.

3.2. Regime II: low-speed steady rotation (LSR) state
After the primary regular bifurcation, the wake of the fixed circular disk normal to the
free flow presents a steady and plane symmetric state instead of an axisymmetric state,
accompanied by a reflectional and toroidal vortex (see figure 9a). From the instantaneous
vortical structures in figure 9(b) for Res = 125 and Rer = 50, and figure 9(c) for Res = 100
and Rer = 250, the vortex thread deviating from the central axis shows that when the
streamwise rotation is applied, the plane of symmetry disappears. This structure is derived
from the stable non-axisymmetric vortex in figure 9(a). The shape of the vortical structure
is invariant over time but with stable rotation. With the increase in Rer, the strength of
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Figure 7. Contours of azimuthal vorticity ωz in the z/D = 0 plane for (a) the stationary disk at Res = 50, and
(b) the rotating disk at (Res, Rer) = (50, 250).

(a) (b) z

xy

Figure 8. Isosurfaces of Q = 0.01 for the streamwise rotating circular disk at Res = 100 with different
Reynolds numbers of rotation: (a) Rer = 50, (b) Rer = 100.

(a) z

xy

(b)

(c)

Figure 9. Vortical structures identified by the isosurface of Q = 0.01 for (a) the stationary disk at Res = 125,
and the rotating disk at (b) (Res, Rer) = (125, 50) and (c) (Res, Rer) = (100, 250).

the vortex thread increases, and a significant curl occurs; moreover, there is still no vortex
shedding.

Figure 10 shows the force coefficient results of an example case at Res = 100 and Rer =
250 in the LSR state. According to the time traces of the force coefficient in figure 10(a),
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Figure 10. The force coefficients in the LSR state at Res = 100 and Rer = 250. (a) Time traces of the force
coefficient Cx compared with Cl, Cy and Cz. (b) The Cy–Cz diagram, illustrating steady rotation of the flow.
The arrow indicates the rotation direction of the lift. (c) Fast Fourier transform (FFT) of the force coefficient
Cy. The dominant frequency corresponds to the non-dimensional flow rotation rate Φ. (d) Time trace of the lift
angle θ , demonstrating that the rotation rate of the flow is constant.
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the drag of the streamwise rotating disk Cx is constant, which is similar to the phenomenon
for the stationary disk. However, the components of the lift coefficients Cy and Cz are
periodic, different from the constant value without rotation. Therefore, it confirms the
previous statement that once the disk starts rotating around its central axis, the perfect
plane symmetry is lost, and the flow behind the circular disk starts to rotate. During the
rotation, the total lift coefficient Cl calculated from the lift coefficient components Cy and
Cz remains constant. Subsequently, the Cy–Cz diagram characterized by a closed perfect
circle can be observed in figure 10(b), which has also been reported in Kim & Choi (2002)
and Pier (2013) for a rotating sphere. The radius of the circle corresponds to the magnitude
of the total lift coefficient Cl. To further study the rotation of flow, the azimuthal angle of
lift force is calculated as θ = arctan(Cz/Cy). Here, we define the non-dimensional flow
rotation rate as Φ = φD/(2πU∞), where the rotation speed φ corresponds to the slope of
θ as depicted in figure 10(d). As shown in figure 10(c), after fast Fourier transform of the
force coefficient, lift coefficient component Cy has a unique dominant frequency, relating
to the flow rotating rate (Φ) behind the disk.

According to the analysis of the force coefficients, the drag force and total lift force of the
streamwise rotating circular disk are constant, which means that the shape and strength of
the wake vortex remain invariant with continuous uniform rotation. This phenomenon was
first proposed as the ‘frozen’ state of the rotating sphere by Kim & Choi (2002). Moreover,
it has been confirmed repeatedly in the ‘low-frequency periodic helical’ regime by Pier
(2013) and the ‘low-helical’ regime by Skarysz et al. (2018) of the streamwise rotating
sphere. The evolution of the axial vorticity on the x/D = 1 plane during a vortex rotation
cycle can better demonstrate this phenomenon. In figure 11, only rotation can be observed
in the vortical structures, while there is no change in shape or strength. Obviously, this
stable vortical structure rotation phenomenon is caused by the rotation of the circular disk.

Considering that the present flow state has a lower rotational flow speed compared with
the similar steady rotation state in the region of higher Res, this flow state is named the
low-speed steady rotation state.

3.3. Regime III: high-speed steady rotation (HSR) state
Figure 12 shows the flow characteristics of a representative case in the HSR state at Res =
175 and Rer = 250. From figures 12(a,b), periodic drag and lift coefficients and a circular
closed curve in the Cy–Cz diagram can be observed, with a steady rotation speed of the
wake. These characteristics of the force coefficients and wake are similar to those of the
LSR state and depend on a steady rotating flow arising from the rotating circular disk.
Meanwhile, as shown in figure 13, the evolution of the axial vorticity on the x/D = 1 plane
during a vortex rotation cycle is only in the direction, not in the shape, and reproduces the
characteristics of ‘frozen’.

Notably, there are some significant differences between the LSR and HSR states. The
main frequency of the force coefficient component Cy of the HSR state (in figure 12c) is
significantly larger than that of the LSR state (in figure 10c), which corresponds to the flow
of the HSR state maintaining rotating motion at a higher speed in figure 21. In addition,
the vortical structure observed in figure 12(d) is clearly different from the single vortex
thread of the LSR state in figure 9(c). The vortical structure is composed of two winding
spirals without vortex shedding, and the intensity of the outer spiral is higher than that of
the inner spiral.

Considering that the present flow state has a steady rotation at a higher speed without
vortex shedding behind the circular disk, this flow state is named the high-speed steady
rotation state.
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(b)

2.01.20.4–0.4–1.2–2.0

ωxD/U∞

yx

z(a)

(c) (d )

Figure 11. Evolution of the axial vorticity ωx on the x/D = 1 plane during a vortex cycle in the LSR regime
at (Res, Rer) = (100, 250), where the thick solid circle shows the position of the circular disk: (a) t = 0,
(b) t = T/4, (c) t = T/2, (d) t = 3T/4.

3.4. Regime IV: low-speed unsteady rotation (LUR) state
Figure 14 shows the flow characteristics of an example case in the LUR state, where
Res = 125 and Rer = 250. The perfect periodic feature is demonstrated in the time traces
of drag coefficient Cx and total lift coefficient Cl. Although the lift coefficient components
Cy and Cz also show quasi-periodic features in the time traces (see figure 14a), their
amplitudes vary slightly, different from that in the LSR or HSR states (see figures 10a
and 12a). In addition to the main frequency of Cy, the existence of a second frequency is
also identified via FFT in figure 14(e). The Cy–Cz diagram (see figure 14c) replaces the
closed circle with a slight spiral pattern, which means that the total lift varies with time
not only in direction but also in magnitude. Combined with figure 14(b), the relationship
between lift angle θ and time tU∞/D fluctuates, showing that the streamwise flow rotation
rate is unsteady. Although the vortex behind the circular disk rotates at a variable speed,
the vortical structure is still a twisted vortex thread (in figure 14d). Based on the flow
classification in figure 5, the LUR flow state is restricted within the range of the higher
rotation rate (Rer > 130) and at a moderate Res ≈ 125. Therefore, the unsteady rotation
of the flow should be the instability of the flow induced by the high speed rotation of the
disk.
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Figure 12. The flow characteristics in the HSR state at Res = 175 and Rer = 250. (a) Time traces of the force
coefficient Cx compared with Cl, Cy and Cz, illustrating the stability of the drag and total lift forces, and the
periodicity of the lift force component. (b) The Cy–Cz diagram. (c) Fast Fourier transform (FFT) of force
coefficient Cy. (d) Vortical structure of the streamwise rotating circular disk identified using the isosurface of
Q = 0.01.

Considering that the present flow state has unsteady rotation at a lower speed, this flow
state is named the low-speed unsteady rotation state.

3.5. Regime V: rotational vortex shedding (RVS) state
As mentioned above, the transition processes from the steady state to the chaotic state are
very complicated for the flow past a fixed disk (Rer = 0). Based on the calculations, three
different flow regimes exist, namely, the RSB, SW and QP regimes, as shown in figure 5.
As shown in figures 15(a,b), after the critical Reynolds number Rec2

s , the symmetrical
plane is lost, and the positive and negative vorticities are entangled corresponding to the
regular rotation of flow (cf. Fabre et al. 2008; Shenoy & Kleinstreuer 2008; Meliga et al.
2009; Auguste et al. 2010). This RSB state of the fixed circular disk wake is different
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Figure 13. Contours of the axial vorticity on the x/D = 1 plane during a vortex cycle in the HSR regime
at Res = 175 and Rer = 250, where the thick solid circle shows the position of the circular disk: (a) t = 0,
(b) t = T/4, (c) t = T/2, (d) t = 3T/4. The variation of direction can be observed.

from the reflectional symmetry preserving state of the stationary sphere wake. After the
critical Reynolds number Rec3

s , the symmetry plane of the wake is recovered, as depicted
in figures 15(d,e) and 16(a). This is called the recovered reflectional symmetry state.
Finally, as shown in figures 15(g,h), after the critical Reynolds number Rec4

s , the plane
symmetry is maintained, and a low-frequency modulation emerges (cf. Auguste et al. 2010;
Chrust et al. 2010). This is the so-called quasi-periodic state.

When the disk rotation is introduced as a disturbance, the third and fourth bifurcations
for the stationary disk disappear immediately. It is reasonable that the plane symmetry
recovered in the latter two flow states (SW and QP states for Rer = 0) is lost due to the disk
rotation. Apart from the slow rotation of the mean vortex shedding plane, the amplitude of
the lift coefficient is actually not much affected by the disk rotation, as shown in the plots of
the Cl coefficient of the slightly rotating disk (RVS state for Rer = 10) in figures 15(c, f,i).
Therefore, it is concluded that the flow state generated by the rotating disk inherits the
regular rotation of the RSB state and the continuous symmetric vortex shedding of the SW
state. As confirmed in figure 16, the slight rotation of the disk destroys the plane symmetry
in the wake, but the hairpin vortex shedding is retained.
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Figure 14. The flow characteristics in the LUR state at Res = 125 and Rer = 250. (a) Time traces of the force
coefficient Cx compared with Cl, Cy and Cz, illustrating the periodicity and variable amplitude. (b) Time trace
of the lift direction θ , depicting the low unsteady speed of the flow. The slope of the linear fitting curve
corresponds to the mean rotation rate of the flow. (c) The Cy–Cz diagram, showing the slight magnitude
oscillations and rotations of the lift force. (d) Vortical structure of the streamwise rotating circular disk.
(e) Fast Fourier transform (FFT) of force coefficient Cy.

On the basis of the plane symmetrical hairpin vortex for the stationary condition in
figure 16(a), the vortical structures become asymmetrical, and spiral and hairpin vortices
coexist gradually with the increase in Rer, as shown in figure 16. Figure 17 shows the
flow and force coefficients of a representative case in the RVS state, where Res = 175
and Rer = 150. The periodicity of drag coefficient Cx and total lift coefficient Cl, and the
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Figure 15. Characteristics of the wake transition behind a stationary circular disk (Rer = 0) at (a,b) Res = 135,
(d,e) Res = 175, and (g,h) Res = 210, comparing with a slightly rotating disk (Rer = 10) at (c) Res = 135,
(f ) Res = 175, and (i) Res = 210. (a) Contours of axial vorticity ωx on the plane x/D = 0.5 with the level
±0.1U∞/D showing the break of plane symmetry. (b) The Cy–Cz diagram illustrating the periodicity and the
oscillation around a non-zero position. (d) Contours of axial vorticity on the plane of x/D = 0.5 with the same
level showing the recovery of plane symmetry (cf. Fabre et al. 2008; Shenoy & Kleinstreuer 2008; Meliga
et al. 2009). (e) The Cy–Cz diagram illustrating the periodicity and reflection symmetry. (g) Spectrum of force
coefficient Cy showing the low-frequency component. (h) The Cy–Cz diagram illustrating the periodicity and
reflection symmetry. (c, f,i) The Cy–Cz diagrams showing the rotational vortex shedding.

imperfect periodicity of lift coefficient components Cy and Cz, can be seen intuitively
from the time traces in figure 17(a). The vibration of Cy propagates in the form of
wave packets, which is also an expression of the disk rotation effect on the wake.
However, only the primary frequency of Cy can be observed in figure 17(c), and the other
frequency of vibration is too low to be detected. Then the Cy–Cz diagram in figure 17(b)
shows a regular spiral pattern. A similar phenomenon has been reported previously in both
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Figure 16. The three-dimensional vortical structures identified by the isosurfaces of Q = 0.01 at Res = 175
for (a) the stationary condition, and the rotating conditions at (b) Rer = 50 and (c) Rer = 150.
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Figure 17. The force coefficients in the RVS state at Res = 175 and Rer = 150. (a) Time traces of the force
coefficients Cx compared with Cl, Cy and Cz, illustrating the periodicity of drag and total lift forces. The
periodicity of the lift force component has a variable amplitude. (b) The Cy–Cz diagram demonstrating the
magnitude of the oscillations and rotations of the lift force. (c) Fast Fourier transform (FFT) of the force
coefficient Cy.
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Figure 18. Evolution of the axial vorticity ωx on the plane of x/D = 1 at Res = 200 and Rer = 125 in the RVS
regime: (a) t = 0, (b) t = T , (c) t = 2T , (d) t = 3T . The vortical structures differ in direction after one vortex
cycle, which is similar to the slow rotation phenomenon reported by Tian et al. (2017) for an oscillating disk.

the rotating sphere (Kim & Choi 2002; Pier 2013) and the oscillating circular disk (Tian
et al. 2017).

Figure 18 describes the evolution of the axial vorticity contour on the plane x/D = 1
for Res = 225 and Rer = 125 in the RVS state with time interval T (the primary vortex
shedding period). After one vortex shedding cycle, the vortical structures of the selected
plane cannot overlap perfectly with those in the LSR or HSR states, but rather slightly
rotate around the central axis of the circular disk. Moreover, it is observed that the plane
symmetry is lost already.

To further study the characteristics of slow rotation, the slow rotation frequency is
defined as 2πD/(TRVSU∞) and the function of the disk rotation rate Ω in the RVS state is
plotted, as shown in figure 19. It appears that the frequency of the slow rotation increases
linearly as a function of Ω with slope 0.045, at least for Ω < 0.8. However, there are two
branches in the figure for Ω > 0.8, implying that the frequency depends on both Ω and
Res. This is a very complicated phenomenon that deserves further study.

Considering that the present flow state has continuous rotational flow and vortex
shedding, this flow state is named the rotational vortex shedding state.
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Figure 19. The slow rotation frequency 2πD/(TRVSU∞) as a function of the disk rotation rate Ω in the RVS
state. The oblique line indicates the linear fitting line except for the bifurcation points.

3.6. Regime VI: chaotic state (CS)
At large Res values, the flow becomes chaotic. As shown in figure 5, the threshold between
the RVS and CS regimes is first delayed and then recovered as Rer increases from 0 to 250.
Here, to clearly explore the influence of rotating motion on this bifurcation, the cases
at Res = 225 but three different rotating Reynolds numbers (Rer = 0, 125 and 250) are
selected and presented in figure 20. The three-dimensional axial vortical structures are
depicted in figure 20(a,c,e), and the Cy–Cz diagrams are shown in figure 20(b,d, f ). When
the rotation speed of the disk increases, the rotation interference regularizes the flow to
a certain extent so that the lift force restores the regularity. However, as the Rer value
continues to increase, the flow loses its regularity and returns to chaos.

3.7. Discussion
To answer the question about how the disk rotation affects the wake flow rotation, the disk
rotation rate Ω and the flow rotation rate Φ are calculated for all the available points and
presented in figure 21. For the LSR state at Ω < 2, Φ increases linearly as a function of
Ω with initial slope 0.03 (Ω < 1.5). When Ω is beyond 2, Φ appears locked at a value
around 0.09, implying that the flow rotation rate is no longer dependent on the disk rotation
rate. For the HSR state, it is interesting to see that although the flow rotation rate in the
HSR state is significantly higher than that in the LSR state, the relationship between Φ

and Ω is approximately linear with initial slope 0.025 (Ω < 1.5), similar to that of the
LSR state. For the RVS state, the values of Φ are scattered in the range from 0.12 to 0.15
but show a strong inheritance with the corresponding vortex shedding frequencies of the
stationary disk. Moreover, it is found, surprisingly, that the primary and secondary flow
rotation frequencies of LUR states coincide favourably with the flow rotation rates of the
LSR and HSR states, respectively. Therefore, it is reasonable to conclude that the LUR
state is an intermediate flow state generated by the interaction of the LSR and HSR states.

Figure 22 shows the Cy–Cz phase space diagrams for the example cases in different
flow states, corresponding to the flow classification map in figure 5. It is observed that the
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Figure 20. The three-dimensional vortical structures (a,c,e) and Cy–Cz diagrams (b,d, f ) at Res = 225. (a,b)
Here, Rer = 0 in the chaotic state of the fixed disk. (c,d) Here, Rer = 125 in the RVS regime. (e, f ) Here,
Rer = 250 in the CS regime.

main flow rotation features are identified clearly in the Cy–Cz phase space diagrams. The
magnitude of lift force coefficient Cl is constant for both LSR and HSR states; however,
the rotation rates are significantly different, as indicated in figure 21. Now we use Ri to
represent the magnitude of Cl, and ωi for the flow rotation rate, where i = 1 and i = 2
refer to the states of LSR and HSR, respectively. Based on the assumption that the LUR
state is a linear superposition of the LSR and HSR states, the magnitude of lift coefficient
in LUR could be written as

Cl =
√

R2
1 + R2

2 + 2R1R2 cos(ωdt), (3.1)

where ωd is the difference frequency of the two component frequencies, i.e. ωd = ω2 −
ω1. This means that the frequency of the magnitude of lift coefficient Cl equals the
difference frequency of the two component frequencies. It is found that (3.1) also works for
other states, for example, R1 = R2 = 0 for the AS, R2 = 0 for the LSR state, and R1 = 0
for the HSR state.
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Figure 21. Diagram comparing the disk rotation rate Ω and the flow rotation rate Φ for all available points.
The periodic and quasi-periodic states for a streamwise rotating sphere are included. A similar increasing trend
between the results of the streamwise rotating disk and the sphere (Pier 2013) is observed. The initial slopes
for the disk in the LSR and HSR states (black) and the sphere in the periodic state (red) are represented in the
range Ω < 1.5. See figure 5 caption for definitions of abbreviations.
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Figure 22. The Cy–Cz diagrams of different flow regimes in the considered control parameter region. See
figure 5 caption for definitions of abbreviations.
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Figure 23. Distributions of the rotation rate ratio Φ/Ω of the circular disk at different Res and Rer. The
secondary frequencies of the LUR state are represented by the scatter points of the corresponding symbol.

Figure 23 shows the distributions of the rotation rate ratio Φ/Ω at various Res and
Rer. A clear frequency jump is observed at Res ≈ 125, which is near the critical boundary
between the LSR and HSR states. For Res < 125, the rotation rate ratio Φ/Ω appears to
be not sensitive to Rer; however, for Res > 125, the rotation rate ratio Φ/Ω increases as
Res increases, and decreases as Rer increases.

4. Concluding remarks

The wake transitions behind a streamwise rotating disk of diameter-thickness ratio
χ = 50 are investigated using direct numerical simulations. Two control parameters,
the Reynolds number of the free stream Res, and the Reynolds number of rotation
Rer = ΩRes, are considered simultaneously in a wide parameter space 50 � Res � 250
and 0 � Rer � 250. Based on the careful examinations and flow characteristics in the
considered Res–Rer space, six flow regimes – namely, the axisymmetric state (AS),
low-speed steady rotation (LSR) state, high-speed steady rotation (HSR) state, low-speed
unsteady rotation (LUR) state, rotational vortex shedding (RVS) state, and chaotic state
(CS) – are identified.

The effect of the Reynolds numbers Res and Rer on the flow transition is discussed.
When the rotation of the circular disk introduces a small disturbance to the fluid, the flow
loses plane symmetry and subsequently generates rotation. When Res is sufficiently small,
except for the rotational motion, the vortical structure retains the same characteristics of the
axisymmetric shape as that of the stationary disk. With an increase in Rer, the disk rotation
leads to the enhancement of vorticity and promotes the degree of separation, causing the
wake symmetry to break earlier and advancing the bifurcation between the AS and LSR
regimes. Based on the plane symmetric state of the stationary circular disk, the LSR state
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of the rotating circular disk is identified by the stable rotating flow at low speed, with no
change in the shape or strength of the vortical structures.

There is a significant jump in flow rotation rate ratio at Res ≈ 125. Under the condition
of disk rotation, the HSR state with stable rotating flow at high speed is generated, and
two winding spirals without vortex shedding are the main features of this state. When
Rer increases, the influence of disk rotation on the flow is enhanced, which restrains the
shedding of the vortex behind the circular disk and delays the occurrence of bifurcation.
Around the so-called frequency jump at Res ≈ 125, the higher disk rotation speed at
Rer > 130 generates flow instability, which results in a low-speed unsteady rotation flow
state. Based on the frequency analysis, it is demonstrated that the LUR state is an
intermediate flow state generated by the interaction of the LSR and HSR states. In the
LUR state, a twisted vortex thread is observed. With the continuous increase of Res, the
periodic with reflectional symmetric state, periodic with recovered reflectional symmetry
state, and quasi-periodic state of the stationary disk disappear and form the rotational
vortex shedding state. Due to the rotating disk, vortex shedding changes from symmetric
shedding to rotational symmetric shedding. However, the vortex shedding frequencies and
wake patterns of the stationary disk are inherited by the unsteady rotating cases in the RVS
state, especially at low Rer numbers. The larger Rer, the smaller the range of the RVS state.
That is, the rotation of the disk keeps the flow rotating steadily to a certain extent. Finally,
the chaotic state can be regularized by the streamwise rotational motion at medium disk
rotation rate.
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