
J. Fluid Mech. (2011), vol. 667, pp. 463–473. c© Cambridge University Press 2011

doi:10.1017/S0022112010005628

463

Infrared Reynolds number dependency of the
two-dimensional inverse energy cascade
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High-resolution simulations of forced two-dimensional turbulence reveal that the
inverse cascade range is sensitive to an infrared Reynolds number, Reα = kf /kα ,
where kf is the forcing wavenumber and kα is a frictional wavenumber based on
linear friction. In the limit of high Reα , the classic k−5/3 scaling is lost and we obtain
steeper energy spectra. The sensitivity is traced to the formation of vortices in the
inverse energy cascade range. Thus, it is hypothesized that the dual limit Reα → ∞
and Reν = kd/kf → ∞, where kd is the small-scale dissipation wavenumber, will lead
to a steeper energy spectrum than k−5/3 in the inverse energy cascade range. It is also
found that the inverse energy cascade is maintained by non-local triad interactions.
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1. Introduction
Kraichnan (1967) and Leith (1968) predicted the presence of two inertial ranges

in two-dimensional turbulence, as a consequence of the twin invariants energy and
enstrophy in the inviscid limit. The predicted spectra of the inertial ranges follow from
scaling arguments, which give an energy spectrum ∝ k−5/3 in the energy inertial range
at large scales, and a k−3 energy spectrum in the forward enstrophy cascade at smaller
scales. Both of these predictions have been supported to various degrees by direct
numerical simulations over the years. For the enstrophy cascade, the Navier–Stokes
equation provides a sink of enstrophy by molecular viscosity at the smallest scales,
and thus there is no need to provide any artificial removal mechanism. However, in
order to extend the enstrophy inertial range, hyperviscosity is often introduced to
replace the Navier–Stokes viscosity, with no significant effects on the energy spectrum
(e.g. McWilliams 1984). For the inverse energy cascade, on the other hand, there is no
natural sink of energy, and, to prevent an energy condensate to form at the largest
scales, a large-scale friction is often introduced to mimic the large-scale drag present
to some degree in both experiments and in quasi-two-dimensional flows, when rigid
boundaries are present (e.g. Paret & Tabeling 1998 and Bruneau & Kellay 2005).
Smith & Yakhot (1994) showed that if both the inverse energy cascade and the direct
enstrophy cascade are well resolved, the energy spectrum in the energy inertial range
steepens from k−5/3 to ∼k−2. This has been confirmed by high-resolution numerical
simulations by Scott (2007), who also provided quantitative estimates when this
transition occurs, by comparing the forcing wavenumber kf with the largest resolved
wavenumber km. He found that when km/kf � 16, the k−5/3 range steepens to k−2. On
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the other hand, Boffetta (2007) showed that there is a very small cross-correlation
between the energy and enstrophy fluxes in physical space which indicated that it
is possible to generate a single cascade in numerical simulations (also supported by
Tran & Bowman 2004). With even higher numerical resolution, Boffetta obtained a
clean k−5/3 range when km/kf ≈ 55. Also the experiments by Bruneau & Kellay (2005)
gave support for the classic double cascade scenario. These differing results are a
bit disturbing in the sense that whereas it would seem possible to generate a single
energy cascade, the observed steepening in the presence of a well-resolved enstrophy
cascade range clearly leads to a contradiction. Smith & Yakhot (1994) explained the
steepening of the spectrum in terms of ‘ultraviolet’ vortices, formed at scales k � kf .
Coherent vortices are hence a possible candidate. However, the development of a
k−3 spectrum in the enstrophy inertial range would indicate the absence of strong
vortices and influence from the large-scale drag (see Nam et al. 2000). Thus, it seems
arguable that the large-scale drag might play an important role in the shape of the
spectrum in the inverse cascade range, as also indicated by Sukoriansky, Galperin &
Chekhlov (1999). This has been supported by several studies such as Borue (1994),
who found strong vortices distributed over all scales in presence of a hypofrictional
drag and later by Danilov & Gurarie (2001a, b). However, the application of a
hypofrictional drag has been shown to be problematic as it introduces bottleneck
effects, as demonstrated by Bos & Bertoglio (2009). It is the aim of this paper to
investigate the role of particularly the large-scale linear friction, but, to a lesser degree,
the small-scale viscosity as well, in the resulting shape of the energy spectrum in the
inverse cascade range. This will be accomplished by the highest resolution simulations
of the inverse energy cascade range reported so far.

2. Numerical method
The numerical experiments are based on simulations of the two-dimensional

Navier–Stokes equation in a 2π-periodic domain with the addition of a random
forcing f and a large-scale drag. Thus,

∂ω

∂t
+ (u · ∇)ω = (−1)n+1ν∇2nω + f − αω, (2.1)

where ν represents Navier–Stokes viscosity (n= 1) or hyperviscosity (n> 1) and α is
the linear drag coefficient. The α-parameter has been determined from the relation

α ∼
(

2π

kα

)−2/3
(

η

k2
f

)1/3

, (2.2)

where kα represents a hypothetical wavenumber where frictional effects become
significant, kf is the forcing wavenumber and η is the enstrophy injection rate, which
is set to 1 in our simulations. The corresponding energy injection rate is thus η/k2

f .
The numerical integration forward in time is performed with a fourth-order Runge–
Kutta method, with the time step restricted by a Courant–Friedrichs–Lewy (CFL)
condition and dealiasing following an 8/9 method.

We perform a set of simulations with different resolutions (N =8192 and
N = 16 384), with Navier–Stokes viscosity and hyperviscosity and various frictional
coefficients. They are presented in table 1, where kf refers to the peak forcing
wavenumber in a narrow wavenumber shell. The ratio km/kf is the highest resolved
wavenumber over the forcing wavenumber, kd/kf is the ratio between the dissipation
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Run Res. kf km/kf kd/kf kf /kα n ν α tmax β γ C εα
ω/η εω/η εLk2

f /η Fω

A 8192 200 25 6.4 289 1 6 × 10−7 6 × 10−3 15.3 −1.7 −4.2 5.0 0.07 0.93 0.85 4.3
B 8192 200 25 6.4 307 4 10−25 6 × 10−3 9.3 −2.0 −3.7 – 0.10 0.90 0.96 7.6
C 8192 300 17 4.3 757 1 6 × 10−7 3 × 10−3 11.9 −1.7 −4.5 4.1 0.03 0.97 0.78 3.8
D 8192 1000 5 1.3 1044 4 10−25 2 × 10−3 23.2 −1.7 −7.0 5.6 0.01 0.99 0.46 4.8
E 16 384 1000 10 2.4 2600 4 9 × 10−28 10−3 6.1 −2.4 −4.5 – 0.02 0.98 0.84 22.4
F 16 384 1000 10 2.4 324 4 9 × 10−28 6 × 10−3 7.1 – −4.5 – 0.07 0.93 0.83 10.4
G 16 384 2000 5 1.3 3857 4 5 × 10−28 9 × 10−4 11.4 −2.0 −7.0 – 0.005 0.99 0.46 8.8

Table 1. Simulation parameters and statistics.
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wavenumber, kd = ν−1/2nη1/6n, and the forcing wavenumber, and kf /kα denotes the
ratio between the forcing wavenumber and a frictional wavenumber, which we
estimate as kα = 2πCα(α

3/εL)1/2, where εL is the energy dissipation rate at large scales
and Cα is a constant which is not known a priori and is set to unity here. This might
give rise to kα < 1 but enables direct comparison with other studies. The true frictional
scale can be determined a posteriori and, in general, Cα > 1 (see e.g. Danilov & Gurarie
2001a). The parameter tmax refers to the length of the simulation in non-dimensional
time units, normalized by E/ε = Ek2

f /η, where E is the total energy and ε is the
energy dissipation rate. Runs B, D, E, F and G were run with hyperviscosity (n= 4),
otherwise with Navier–Stokes viscosity. In table 1, a set of statistics is also presented.
The parameter β denotes the estimated slope kβ of the energy spectrum in the energy
inertial range and γ is the corresponding exponent in the direct enstrophy cascade
range. In case of a k−5/3 spectrum, C = 〈E(k)ε−2/3k5/3〉kp < k <kf

, where kp is the peak
energy wavenumber. The parameter εα

ω/η corresponds to the fraction of the injected
enstrophy rate that is dissipated by the large-scale drag, whereas εω/η corresponds to
that dissipated by the small-scale viscosity and εLk2

f /η is the energy dissipation rate at
large scales, normalized by the energy injection rate. The vorticity flatness Fω is also
given, which is the spatially and temporally (in the quasi-stationary state) averaged
flatness of vorticity: Fω = 〈ω4〉/〈ω2〉2.

3. Results
Scott (2007) argued that the forcing Reynolds number, Ref ∼ k2

m/k2
f , should

influence the steepness of the spectrum in the energy cascade range beyond a critical
value, which he estimated to

√
Ref ∼ 16. To test this prediction, we perform a set

of simulations forced at km/kf = [5, 17, 25] for N = 8192 and km/kf = [5, 10, 34] for
N = 16 384. We begin by presenting the results from the N =8192 simulations A,
C and D. Scott suggested that when km/kf � 16, intermittency measures become
significant and departures from a k−5/3 range would manifest. In our simulations, the
k−5/3 ranges are rather clean (see figure 1a). Differences are mainly manifested in the
constant C (see table 1) which is around 5.0 in run A, 4.1 in run C and 5.6 in run D,
which is a little bit lower than observed by Boffetta (2007). Vorticity flatness values
are low as Fω � 5, which is in agreement with, e.g., Maltrud & Vallis (1991) and
Paret & Tabeling (1998), signifying the absence of vortices. All three simulations have
an energy flux that varies slightly through the energy cascade range (see figure 1b),
as expected in the presence of a linear drag (see Danilov & Gurarie 2001b). We also
see that the fraction of energy injected and transferred to large scales differ between
the runs (table 1 and figure 1b), with approximately 85 % transferred to larger scales
in run A, 78 % in run C and 46 % in run D. Thus, only a fraction of the total energy
injection is transferred to large scales in run D, but we still obtain a k−5/3 range, as
also found by Tran & Bowman (2004). However, as can be seen in figure 1(c), none
of the simulations, A, B or C, show a constant enstrophy flux in the direct enstrophy
cascade range, and the spectral slopes are quite steep (see table 1). Thus, we perform
a simulation (B) similar to A, but with the use of hyperviscosity. A comparison
between runs A and B (figure 1a) reveals that the energy spectrum is steeper in B and
that there is an extensive range of constant enstrophy flux (figure 1c). We obtain an
energy spectrum E(k) ∼ k−2 ∀ k/kf ∈ (0.3, 0.9). This is in qualitative agreement with
the results by Smith & Yakhot (1994) and Scott (2007). The deviation from the k−5/3

spectrum develop as a result of stronger vortices, reflected by an increase in Fω from
4.3 in run A to 7.6 in run B. We also performed a simulation similar to C but with a
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Figure 1. (a) Compensated energy spectra from runs A (solid line), B (dashed line), C
(dashed–dotted line) and D (dotted line). (b) Energy flux normalized by energy injection rate.
(c) Enstrophy flux.

resolution N =16 384 and with hyperviscosity, which resulted in a steepening of the
energy spectrum to ∼ k−2.

To test whether the results show any dependence on the infrared Reynolds number
Reα = kf /kα and scale separation kd/kα , we perform higher resolution simulations.
Runs E and F are run with hyperviscosity but with different strength of the linear
drag. Beginning with run E, we obtain an energy spectrum which is substantially
steeper than k−5/3, with a spectral slope β ≈ − 2.4 over a substantial range of scales.
In figure 2(a), the compensated energy spectra (k5/3ε−2/3E(k)) are shown. The energy
flux is nearly constant in this range, with approximately 84 % of the injected energy
transferred to larger scales (figure 2b). There is also a short constant enstrophy flux
range in the forward enstrophy cascade range and the slope of the energy spectrum
in this range is about −4.5. To test whether a single (energy) cascade range would
yield a different result, we perform simulation G. The constant enstrophy flux range
is now eliminated (figure 2c) and the energy spectrum steepens to γ ∼ −7 at high
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Figure 2. (a) Compensated energy spectra (k5/3) from runs E (solid line), F (dashed line) and
G (dashed–dotted line). (b) Energy flux normalized by energy injection rate. (c) Enstrophy
flux.

wavenumber. As for run D, about 46 % of the injected energy is transferred to larger
scales (figure 2b) and there is a constant flux range. However, the energy spectrum is
steeper than k−5/3 with a clean k−2 spectrum over more than a decade. Thus, the effect
of reducing Reν is not enough to retain the Kolmogorov spectrum. By increasing the
linear drag coefficient six times in run F compared to run E, we see in figure 2(a)
that the energy spectrum shallows in the inverse cascade range. The energy flux is no
longer constant in F as the increased Ekman drag affects a broader range of scales,
whereas the enstrophy flux is practically undisturbed (figure 2c). The stronger friction
in F acts to reduce the strength of the vortices, as the vorticity flatness is reduced by
more than a factor of 2 (see table 1).
To gain insight into the physical differences between the simulations, snapshots

of the real vorticity fields from runs A and E are presented in figure 3(a). Run A
corresponded to a simulation with a k−5/3 spectrum and a relatively low-vorticity
flatness. The vorticity field (a, left) has been zoomed in by a factor of 64, revealing
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(a)

(b)

Figure 3. (a) Snapshots of vorticity from run A (left, zoomed in to 1:64 of the domain), run
E (right, zoomed in to 1:256 of the domain). (b) Filtered vorticity fields showing the vortex
subfield (left) and background field (right) of run E, respectively.

that vortices are smeared out. Thus, although vortices exist, they are not dominating
the picture. The highest vorticity flatness measure was found in run E and its vorticity
field is shown in figure 3 (a, right), which has been zoomed in by a factor of 256.
Isolated and relatively strong vortices are observed. To quantify the effect of these
vortices regarding the energy spectra and energy fluxes, the vorticity field has been
decomposed into a vortex and background subfield following Borue (1994). This is
essentially achieved by setting ω =0 for |ω| < 2ωr.m.s. for the vortex subfield and vice
versa for the background subfield. This procedure is implemented for runs B, E, F
and G, all of which showed energy spectra steeper than k−5/3 in the inverse cascade
range. The effect of doing this in physical space is demonstrated in figure 3(b),
where the left subfigure shows the vortex subfield whereas the right figure shows
the background subfield. Note that these two figures correspond to a fraction of
1/1024 of the whole domain. It can first be noted that the vortex subfields generally
contain beyond 50 % more energy and enstrophy than the background fields. The
resulting energy spectra for the vortex and background vorticity fields are presented
in figure 4(a) and (b), respectively. It becomes immediately clear that the vortex fields
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Figure 4. (a) Compensated energy spectra (k5/3) for the vortex part of runs B (solid line), E
(dashed line), F (dashed–dotted line) and G (dotted line). (b) Compensated energy spectra for
the background field.

show substantially steeper spectra, E(k) ∝ k−2 → k−3. The peak energy wavenumbers
are different between the simulations and are shifted towards the forcing scale with
increasing friction. The enstrophy spectra (not shown) reveal that the peak vorticity
is found at scales up to more than six times larger than the forcing scale. Thus, the
vortices constitute a substantial part of the inverse energy cascade range, particularly
in runs E and G. The background fields, on the other hand, show spectra that are
closer to k−5/3 over a substantial range of scales. Both the energy and the enstrophy
fluxes (not shown) signal qualitatively similar behaviour.

To explain the formation of vortices near the forcing scales, and the survival of
these into a substantial part of the inverse cascade range, the dissipation spectra are
investigated. It is found that 5–10 % of the vorticity is dissipated by the kinematic
viscosity at small wavenumber, k < kf , for runs A, C, D and G, whereas 3–5 % is
dissipated in a narrow wavenumber shell enclosing the forcing range. As for the
energy, about 50 % of the energy is dissipated at small wavenumber in runs A and
C whereas 5–10 % is dissipated in the vicinity of the forcing scales. For runs D and
G, approximately 15 % of the energy is dissipated at small wavenumber and 5–7 %
at the forcing scales. In runs B, E and F, there is nearly no loss of either vorticity nor
energy by the kinematic viscosity at small wavenumber, including the forcing scales.
The linear drag, on the other hand, has a more even dissipation distribution, since it
is less scale selective than the kinematic viscosity, but there is nearly no loss of energy
by the drag at the forcing scales and larger wavenumber in runs E, F and G.

The steepening of the energy spectra in the inverse energy cascade range suggests
that the inverse energy cascade may not be maintained by local interactions in Fourier
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Figure 5. (a) Energy transfer from wavenumber k = 1000 to wavenumber p for run G.
(b) Energy flux for run E decomposed into local, non-local and total parts. The abscissa is
wavenumber k normalized by p (a) and kf (b), respectively.

space. To investigate this, the transfer function,

Tk pq = kj Im[ûj (q)ûi( p)ûi
∗
(k)], (3.1)

is studied. Here, q = k − p, and the hat represents the Fourier transform. After
integration over an azimuthal angle in k-space, Tk pq can be written as a function,
Tkpq , of the scalar wavenumbers k, p and q . In turn, Tkpq can be written as a function,
Tkp , of k and p, after integration over q . This allows for analysis of wavenumber
shell interactions (see, e.g., Maltrud and Vallis 1993, Danilov and Gurarie 2001a and
Verma et al. 2005). It is found that the triad interactions are highly non-local but that
the energy transfer is mostly local and forward between wavenumber shells, as can be
inferred from figure 5 and as also found in a number of studies (Maltrud and Vallis
1993; Danilov and Gurarie 2001a; Verma et al. 2005). Figure 5(a) shows the energy
transfer Tkp for run G at k = 1000, which is in the middle of the energy inertial
range. There is a small but consistent non-local transfer of energy from large
wavenumber to much smaller wavenumber. This suggests that the basic mechanism for
the inverse energy flux might be non-local in its character. By increasing α, the relative
importance of the non-local interactions has been found to be reduced (not shown),
as the large-scale friction damps the interactions involving large scales, that is, small
p and q . This is reflected by a suppression of Tkp at low wavenumber. To quantify

the local and non-local contribution to the energy flux Π(k) = −
∑k

0

∑
p

∑
q Tkpq ,

a locality threshold was defined such that (p ∧ q)/k ∈ [0.2, 5] corresponds to the
local contribution and the non-local contribution comes from (p ∨ q)/k < 0.2 and
(p ∨q)/k > 5. Figure 5(b) shows the result from run E, which shows a result similar to
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all the other simulations. The total energy flux in the energy inertial range is negative
and is completely maintained by the non-local contribution. The small contribution
from local interactions is in fact positive. Another finding is that there is a weak but
persistent coupling between the large scales and much smaller scales located in the
enstrophy cascade range, when this is present, manifested in an energy transfer from
the small scales to the large scales.

4. Discussion and conclusions
It is meaningful to ask whether it is actually possible to obtain the classic double

cascade scenario as theoretized by Kraichnan–Batchelor–Leith in the limit of two
high Reynolds numbers, Reα and Reν . On the basis of the numerical results, it
can be hypothesized that the classic energy inertial range hypothesis with k−5/3 is
a combined low Reα and low Reν effect. For low Reα and high Reν , we essentially
confirm the results by Scott (2007). When the enstrophy cascade is well resolved,
we obtain relatively steeper energy spectra in the energy cascade range, compared
to the simulations where the enstrophy cascades are absent or much reduced. The
suggested mechanism is a weak non-local coupling between the energy inertial range
and the enstrophy cascade range. In physical space, it might be connected to the
observations by Elhmaidi, von Hardenberg & Provenzale (2005). However, for large
Reα , this mechanism is of less importance, as demonstrated by run G. In this run,
γ = −7, indicating the absence of an enstrophy inertial range, but the energy spectrum
in the energy range is still steeper than −5/3. This may be explained by a significant
non-local transfer of energy, which bears the sole responsibility for the inverse energy
flux, which is consistent with the results of Maltrud & Vallis (1993). These results
indicate that the k−5/3 spectra may not be universal. A comparison with Boffetta
(2007) shows that Reα ∈ ∼ (200, 400) in his simulations, whereas Reν ∈ ∼ (4, 18).
Thus, Reα is always low and the Navier–Stokes viscosity is effective over relatively
broad scales.

To conclude, we have performed a number of simulations spanning a range of Reα

and Reν . Our results suggest that the inertial energy range spectrum is sensitive to
both Reα and Reν . In physical space, the sensitivity is traced to the formation of
vortices in the inverse energy cascade range. These can be distorted by either placing
the forcing in, or very near, the ultraviolet dissipation range, or by applying a strong
enough infrared linear friction. In spectral space, the departure from the classic scaling
of the energy spectrum is associated with a strong degree of non-locality in conjunction
with either Reα → ∞ or Reν → ∞. It is thus hypothesized that the simultaneous limit
of Reα → ∞ and Reν → ∞ will always lead to an energy spectrum steeper than k−5/3

in the energy inertial range, at least if no specially designed dissipation operator, such
as employed by Sukoriansky, Galperin & Chekhlov (1999), is utilized.
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(SNIC) with a generous grant by the Knut and Alice Wallenberg Foundation. E.
Lindborg and the anonymous reviewers are gratefully acknowledged for fruitful
discussions.
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