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This paper investigates the influence of three-dimensional effects on the transfer
function of a rectangular-section body in turbulent flow. The dimensionless factor ψ ,
as derived by Li et al. (J. Fluid Mech., vol. 847, 2018, pp. 768–785), is adapted to
evaluate this influence. The calculation of ψ requires the spanwise influence term.
For this purpose, an adapted form of the lift coherence function is derived, enabling
the use of the measured lift coherence for the estimation of the spanwise influence
term. Three rectangular models with different cross-sections (chord-to-depth ratios of
3, 5 and 10) are chosen for testing, and a NACA 0015 airfoil model is tested for
comparison. Using the measured spanwise influence terms, the dimensionless factors
of these models are then numerically calculated under different ratios of the turbulent
integral scale to the chord γ and aspect ratios θ . It is shown that the dimensionless
factors of the rectangular models increase as γ and θ increase, which are similar to
the dimensionless factor of the airfoil model. If γ and θ have suitable values, the strip
theory could be applicable to the rectangular-section body. It is also found that the
dimensionless factors of all the rectangular models are larger than the dimensionless
factor of the airfoil model under the same parameters. The smaller the chord-to-depth
ratio is, the larger the dimensionless factor is. Using the strip theory to calculate the
lift response of the rectangular-section body may provide more accurate estimation.
Additionally, the one-wavenumber transfer functions of these models are determined
under the consideration of the three-dimensional effects. The results show that the
experimental transfer functions of the rectangular models cannot be captured by the
Sears function. They are larger than the Sears function at lower frequencies, while
falling at a faster rate as the frequency increases. For bluff bodies with separated flow,
the modified transfer function presented here appears to be an appropriate approach.

Key words: aerodynamics, flow–structure interactions, turbulent flows

1. Introduction
The aerodynamic behaviour of a structure in unsteady flow has received considerable

attention over several decades, and one of the important issues is the estimation of
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the aerodynamic loading induced by turbulent flow. Liepmann (1952) first calculated
the lift response of an ideal flat plate in turbulent flow under two assumptions. One
was that the turbulent flow was fully correlated in the spanwise direction. The other
was that each chordwise strip was two-dimensional and the transfer function was
only a function of the chordwise wavenumber. The second assumption is generally
called the strip theory. In reality, since the turbulent flow is three-dimensional, a
consideration of the spatial variation of the turbulent flow would be closer to the
physical nature of the problem. Hakkinen & Richardson (1957) corrected the spanwise
variation of the turbulent flow, then calculated the lift on an airfoil in turbulent flow
based on the strip theory. However, they found that the measured lift was still
inconsistent with the theoretical estimation. The underlying cause for this discrepancy
is the influence of three-dimensional effects on the transfer function. According
to the three-dimensional theory, the kinematical boundary condition contains the
chordwise and spanwise wavenumbers due to the chordwise and spanwise variations
of the turbulent flow, leading to the transfer function being a function of chordwise
and spanwise wavenumbers. Graham (1970, 1971) proposed a numerical method to
calculate the exact value of the two-wavenumber transfer function of an ideal flat
plate. Later, closed-form approximations for the two-wavenumber transfer function
were derived by Mugridge (1971) and Blake (1986).

Though the three-dimensional theory can provide an accurate estimation of the
lift force (Jackson, Graham & Maull 1973; McKeough 1976; Li, Li & Liao 2015),
the much simpler strip theory is still of interest in practical applications because its
use can simplify the related calculations. From an experimental point of view, the
one-wavenumber transfer function is also much easier to determine. The accuracy of
the strip theory is closely related to the degree of the influence of three-dimensional
effects on the transfer function. In many previous experiments concerning airfoils and
other streamlined structures (Jackson et al. 1973; Larose & Mann 1998; Larose 1999;
Ma 2007), it was found that the influence of three-dimensional effects decreases
as the ratio of the turbulence integral scale to the chord increases. However, it is
usually difficult to achieve a large enough turbulence integral scale to chord ratio
to render the influence of the three-dimensional effects negligible, which limits the
application of the strip theory. Following the line of thought presented by Massaro
& Graham (2015), Li et al. (2018) recently experimentally investigated the lift of a
finite specified spanwise length of a two-dimensional airfoil in grid turbulence. The
work confirmed that the influence of three-dimensional effects on the transfer function
of an airfoil in turbulent flow depends not only on the ratio of the turbulence integral
scale to the chord but also on the aspect ratio. This expands the conditions for the
strip theory to apply.

In this study, we extend the previous work for application to a bluff body
of rectangular cross-section because many structures encountered in nature and
engineering situations are bluff bodies. As a typical bluff body, the rectangular-section
body is one of the simplest shapes, yet has all the salient aerodynamic features of
bluff bodies. A key quantity that needs to be known in this work is the spanwise
influence term. However, unlike that of the airfoil, the spanwise influence term of
the rectangular-section body cannot be obtained by theoretical derivation since the
flow over the rectangular cross-section is partially separated, which inhibits the use
of the theoretical model introduced by the previous work. In contrast to the previous
work, an adapted form of the lift coherence function is derived in the present work
and an empirical model for the spanwise influence term is given, enabling the use
of the measured lift coherence for the estimation of the spanwise influence term.
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With the measured spanwise influence term, the influence of three-dimensional effects
on the transfer function and the applicability of the strip theory in the lift estimation
of rectangular-section bodies can be analysed. In addition, the Sears function which
is derived from the thin airfoil theory (Sears 1938) is a common one-wavenumber
transfer function used in the engineering community. However, for bluff bodies, such
as the rectangular-section body studied in this work, the Sears function may not
be applicable due to the separated flow nature of the bluff body. In this case, the
measurement of the one-wavenumber transfer function becomes necessary. Here, we
introduce an approach to determining the one-wavenumber transfer function of a body
in turbulent flow including the consideration of three-dimensional effects. Based on
this approach, the one-wavenumber transfer functions of rectangular-section bodies
are determined, which may provide a useful reference for bluff bodies with separated
flow.

2. Theoretical description
In § 2.1, the unsteady lift response of a rectangular-section body to the turbulent

flow is described. In § 2.2, the influence of three-dimensional effects on the lift is
reflected by the three-dimensional (3-D) effects factor, and a dimensionless factor
is introduced to evaluate the influence of three-dimensional effects on the transfer
function. In § 2.3, an adapted form of the lift coherence function is derived with the
aim of using the measured lift coherence to estimate the spanwise influence term.
Note that the rectangular-section body studied here is a rectangular planform element
of effectively infinite span with a constant rectangular cross-section, so the tip effect
is not considered.

2.1. Unsteady lift response of a rectangular-section body in turbulent flow
The turbulent flow is three-dimensional. The phase of the fluctuating velocity varies
not only in the chordwise direction but also in the spanwise direction. The Fourier
component of the fluctuating velocity of the turbulent flow can therefore be expressed
as an oblique harmonic gust convected with the velocity U, which has the form w=
w0e−i(ωt−k1x−k2y), where w0 is the gust amplitude, ω is the circular frequency, k1 and
k2 are chordwise and spanwise wavenumbers, respectively. Let L be the lift per unit
span of a section of spanwise length b, e.g. the finite span section shown in figure 1(a).
According to the three-dimensional theory, the lift L acting on such a section (centred
on y) of an infinite rectangular-section body subjected to an oblique harmonic gust can
be expressed as

L =
1
b

∫ y+b/2

y−b/2
Ĉsw0e−i(ωt−k2y)︸ ︷︷ ︸

quasi-steady

χ(k̃1, k̃2) dy

= Ĉssin c(k2b/2)w0e−iωtχ(k̃1, k̃2), (2.1)

where Ĉs is the static force term. For rectangular-section bodies, the static force
term is equal to ρUc(C′L + CD)/2, where ρ is the fluid density, c is the chord
length, C′L is the slope of the lift coefficient curve and CD is the drag coefficient.
Also, sin c(k2b/2) is the sinc function, χ(k̃1, k̃2) is the two-wavenumber transfer
function, k̃1 (=k1c/2) and k̃2 (=k2c/2) are the dimensionless chordwise and spanwise
wavenumbers, respectively. The lift induced by turbulent flow may be composed of
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FIGURE 1. (Colour online) Sketch of an infinite rectangular-section body in turbulent flow,
in which the Fourier component of the fluctuating velocity is represented by an oblique
harmonic gust: (a) a finite span section with a spanwise length, (b) two strips separated
in the spanwise direction.

the lift forces generated by a sum of such harmonic gust components (Ribner 1956;
Etkin 1959). The two-dimensional spectrum of L is therefore written as

SL(k1, k2)= Ĉ2
s sin c2(k2b/2)Sw(k1, k2)|χ(k̃1, k̃2)|

2, (2.2)

where Sw(k1, k2) is the two-dimensional vertical turbulence spectrum and | · |2 is
the symbol for the squared modulus. Note that in cases where it does not result
in confusion, the squared modulus of the transfer function is also referred to as
the transfer function for the sake of brevity. The two-wavenumber transfer function
can be expressed as the product of the one-wavenumber transfer function and the
spanwise influence term (Mugridge 1971; Blake 1986), which is

|χ(k̃1, k̃2)|
2
= |χ(k̃1)|

2η(k̃1, k̃2), (2.3)

where χ(k̃1) is the one-wavenumber transfer function and η(k̃1, k̃2) is the spanwise
influence term. By integrating out the spanwise wavenumber, the one-dimensional lift
spectrum can then be written as

SL(k1)= Ĉ2
s |χ(k̃1)|

2
∫
+∞

−∞

sin c2(k2b/2)Sw(k1, k2)η(k̃1, k̃2) dk2. (2.4)

2.2. Influence of three-dimensional effects on lift force and transfer function
In order to bring in the one-dimensional vertical turbulence spectrum Sw(k1), the
following 3-D effects factor is defined:

F3D(k1)=

∫
+∞

−∞

sin c2(k2b/2)Sw(k1, k2)η(k̃1, k̃2) dk2∫
+∞

−∞

Sw(k1, k2) dk2

. (2.5)

If the turbulence is homogeneous and isotropic, the turbulence spectrum can be
described by the von Kármán spectral model (see appendix A). F3D can then be
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given in terms of dimensionless parameters: the ration of the vertical turbulence
integral scale to the chord γ = Lx

w/c and the ratio of the spanwise length to the chord
(the aspect ratio) θ = b/c,

F3D(k̃1, γ , θ) =

∫
+∞

−∞

sin c2(k̃2θ)ξw(k̃1, k̃2, γ )η(k̃1, k̃2) dk̃2∫
+∞

−∞

ξw(k̃1, k̃2, γ ) dk̃2

, (2.6a)

ξ(k̃1, k̃2, γ ) =
k̃2

1 + k̃2
2

[1+ 28.688γ 2(k̃2
1 + k̃2

2)]
7/3
. (2.6b)

The one-dimensional lift spectrum then becomes

SL(k1)= Ĉ2
s Sw(k1)|χ(k̃1)|

2F3D(k̃1, γ , θ). (2.7)

From (2.7), the normalized one-dimensional lift spectrum SL/(Ĉ2
s Sw) is the combination

of the unsteady effects (reflected by the one-wavenumber transfer function) and the
three-dimensional effects (reflected by the 3-D effects factor). This normalized one-
dimensional lift spectrum can be directly obtained with the measured one-dimensional
lift spectrum and the measured one-dimensional turbulence spectrum in practical
measurements.

The 3-D effects factor includes the spanwise influence term due to the influence
of three-dimensional effects on the transfer function. Following the work of Li et al.
(2018), the dimensionless factor ψ , which is the ratio of the one-dimensional lift
spectrum calculated from the three-dimensional theory and that calculated from the
strip theory, can be used to evaluate the degree of this influence. According to the
strip theory, the one-dimensional lift spectrum is

SL(k1)= Ĉ2
s Sw(k1)|χ(k̃1)|

2F3DST(k̃1, γ , θ), (2.8)

where F3DST(k̃1, γ , θ) is the 3-D effects factor derived from the strip theory, in which
the spanwise influence term is not included (or say, the spanwise influence term is
equal to 1). It can be expressed as

F3DST(k̃1, γ , θ)=

∫
+∞

−∞

sin c2(k̃2θ)ξw(k̃1, k̃2) dk̃2∫
+∞

−∞

ξw(k̃1, k̃2) dk̃2

. (2.9)

The dimensionless factor ψ is then expressed as

ψ(k̃1, γ , θ)=
F3D(k̃1, γ , θ)

F3DST(k̃1, γ , θ)
=

∫
+∞

−∞

sin c2(k̃2θ)ξw(k̃1, k̃2)η(k̃1, k̃2) dk̃2∫
+∞

−∞

sin c2(k̃2θ)ξw(k̃1, k̃2) dk̃2

. (2.10)

It can be seen that when the dimensionless factor is close to 1, F3D can be
approximated by F3DST , which means that the influence of three-dimensional effects
on the transfer function becomes negligible and the strip theory is applicable.
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Actually, nothing has been gained so far because both the one-wavenumber transfer
function and the spanwise influence term are unknown for the rectangular-section
body. However, the lift coherence function is the ratio of the lift cross-spectrum
to the lift auto-spectrum and consequently does not include the one-wavenumber
transfer function. The possibility of using the measured lift coherence to determine
the spanwise influence term becomes apparent.

2.3. Coherence function of lift force
The lift coherence is generally measured on two separate strips in the spanwise
direction, e.g. strip 1 and strip 2 shown in figure 1(b). In this case, the lift of an
infinitesimal span length b→ 0, and therefore the sinc function sin c(k2b/2)→ 1. The
lift coherence function is defined as

CohL(k1, 1y)=
SL(k1, 1y)

SL(k1)
, (2.11)

where 1y is the separation between two strips and SL(k1,1y) is the lift cross-spectrum,
which can be expressed as the inverse Fourier transform of SL(k1, k2) as follows:

SL(k1, 1y)=
∫
+∞

−∞

SL(k1, k2) exp(ik21y) dk2. (2.12)

The lift coherence function is then written as

CohL(k1, 1y)=

∫
+∞

−∞

Sw(k1, k2)η(k̃1, k̃2) exp(ik21y) dk2∫
+∞

−∞

Sw(k1, k2)η(k̃1, k̃2) dk2

. (2.13)

The spanwise influence term of the rectangular-section body cannot be theoretically
derived since the flow over the rectangular cross-section is partially separated.
However, a previous study (Li & Li 2017) indicated that an empirical solution
may still be applicable in this case. For this, an empirical model of the spanwise
influence term is given as follows:

η(k̃1, k̃2) =
f (k̃1)

f (k̃1)+ k̃2
2

, (2.14a)

f (k̃1) = a+ β k̃α1 , (2.14b)

where α, β and a are empirical parameters. In (2.13), a relation between the lift
coherence and the spanwise influence term is established which enables the use of the
measured lift coherence for the estimation of the empirical parameters in the spanwise
influence term. Despite the empirical nature of this solution, it is believed that the
fundamental properties of the results would not be lost. For comparison, the coherence
function of the vertical fluctuating velocity is also given according to the preceding
concepts as

Cohw(k1, 1y)=

∫
+∞

−∞

Sw(k1, k2) exp(ik21y) dk2∫
+∞

−∞

Sw(k1, k2) dk2

. (2.15)

Comparing (2.13) and (2.15), it can be seen that the lift coherence is naturally
not equal to the coherence of the fluctuating velocity due to the influence of
three-dimensional effects on the transfer function.
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Turbulent flow

Tested model

c
y

x
x

z

d

End plate
Passive

grid

Îx

Î
y

(a) (b)

FIGURE 2. (Colour online) (a) Side view of the wind tunnel, the passive grid and the
model. (b) Top view of the model.

3. Experimental set-up
The experiments are conducted in a closed-loop wind tunnel (XNJD-1) at Southwest

Jiaotong University. The test section of the tunnel is 2.4 m wide and 2.0 m high. An
overview of the experimental set-up is shown in figure 2(a). A square passive grid
with a mesh size of 0.36 m and a bar width of 0.09 m is installed at the entrance
of the test section to generate the turbulent flow. To ensure that the turbulent flow
has enough time to develop to an approximately homogeneous and isotropic state,
the distance from the measuring position to the grid is 1x= 4.6 m. The mean flow
velocity is set to U = 11.5 m s−1. To avoid the disturbance from the model, the
characteristics of the flow field at the position of the leading edge of the model are
measured in the empty wind tunnel, prior to the pressure measurement. Measurements
are taken using the TFI Cobra Probe, which is a multi-hole pressure probe able to
resolve three components of the flow velocity, with a frequency response of 0 Hz
up to more than 2 kHz. The sampling frequency of the flow velocity measurement
is 256 Hz, and the sampling time is 60 s. The dynamic frequency response of the
Cobra Probe is stable during the measurement, ensuring the dynamic validity of the
flow velocity data.

Three rectangular-cross-section models are tested and an airfoil model with a NACA
0015 profile is tested for comparison. The chord length of the airfoil model is c =
0.4 m. The depths of all rectangular-cross-section models are d = 0.06 m, while the
chord lengths are c=0.18 m, 0.3 m and 0.6 m, respectively. The corresponding chord-
to-depth ratios of these rectangular models are equal to 3, 5, 10, respectively. The
models are made of ABS plastics, and several transverse glass fibre ribs are added
to enhance their rigidity. During testing, the models are mounted horizontally (zero
angle of attack) on the steel frame support. To simulate the infinite span conditions
and prevent the air stream from flowing around the tips, end plates are installed at
the sides of the model.

Surface pressures are measured using a Scanivalve ZOC33 miniature pressure
scanner. Multiple pressure scanners are connected to the same Scanivalve DSM3400
digital service module, achieving synchronous acquisition of the pressures on
different strips. The pressure scanners can sample pressure signals from 64 channels
simultaneously, with an uncertainty of ±0.08% full scale. The pressure scanners are
capable of reaching high dynamic response (in excess of 1 kHz). However, since
the pressure signals are transmitted through the tubing connecting the taps to the
pressure scanners, the dynamic response of the pressure measurement system also
depends on the pneumatic frequency response of the tubing system. It is known that
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FIGURE 3. (Colour online) (a) Spanwise distributions of longitudinal and vertical normali-
zed r.m.s. fluctuating velocities. (b) Comparisons between measured one-dimensional
spectra of longitudinal and vertical fluctuating velocities and the von Kármán spectral
models.

by the time the pressure signal reaches the scanner, it may potentially be skewed
due to the resonance and damping effects developed in the tubing. Depending on
the sampling frequency of the pressure, limiting the tubing length is a simple and
effective approach to reducing the resonance and the damping effects to a point
where they do not need to be considered (Ma 2007). In the current experiment,
pressure scanners are placed directly inside the model to keep the tubing to less
than 0.2 m. The sampling frequency of the pressure is 256 Hz and the duration of
the measurement is 60 s. Within the length of 0.2 m, the resonance and damping
effects in the tubing are small to negligible for the sampling frequency of 256 Hz,
ensuring a good dynamic frequency response of the pressure measurement system
during the measurement. The strips are located in the middle portion of the model.
The separation between two strips is 1y= 0.07 m, as shown in figure 2(b). The lift
of each strip and the lift coherence between two strips are then obtained using the
measured pressures (see appendix B).

4. Results and discussion
4.1. Characteristics of turbulent flow

Grid turbulence is considered to be the closest practical approximation to homogeneous
and isotropic turbulence. For homogeneous turbulence, the root mean square (r.m.s)
of the fluctuating velocity should be identical everywhere in the same plane parallel
to the grid. As shown in figure 3(a), the normalized r.m.s fluctuating velocities
at different spanwise positions are very close. The homogeneity of the generated
turbulence can be confirmed. The longitudinal and vertical normalized r.m.s fluctuating
velocities are σu/U = 0.095 and σw/U = 0.083, respectively. The ratio σu/σw = 1.14.
The turbulence integral scale, which reflects the mean size of the energy-containing
eddies, can be determined by a comparison between the measured one-dimensional
turbulence spectrum and the von Kármán spectral model (see appendix A). The
measured one-dimensional spectra of the longitudinal and vertical fluctuating velocities
are shown in figure 3(b). It can be seen that the measured turbulence spectra
match well with the von Kármán spectral models, as observed in previous grid
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FIGURE 4. (Colour online) Spanwise correlation coefficients of longitudinal and vertical
fluctuating velocities, 1y is the spanwise separation.

turbulence experiments (Roberts & Surry 1973; Nagata et al. 2011; Li et al. 2015).
The longitudinal and vertical turbulence integral scales (in the chordwise direction)
determined from the one-dimensional turbulence spectra are Lx

u = 0.133 m and
Lx

w = 0.062 m, respectively. The ratio Lx
u/L

x
w = 2.15. To further assess the isotropy

of the turbulence, the spanwise correlation coefficients of fluctuating velocities are
measured, as shown in figure 4. The vertical turbulence integral scale in the spanwise
direction can then be determined from the definition: Ly

w = 0.06 m and the ratio
Lx

u/L
y
w = 2.21. Though it seems that the strictly isotropic condition is difficult to

achieve, these results roughly satisfy the isotropic relationships and the generated
turbulence can be regarded as approximately isotropic.

4.2. Lift coherence and spanwise influence term
The measured lift coherence and the measured coherence of the vertical fluctuating
velocity are shown in figure 5. The theoretical velocity coherence is calculated by
(2.15). Using (2.13) to fit the measured lift coherence, the empirical parameters of
the spanwise influence term are obtained, as listed in table 1. The theoretical lift
coherence of an ideal flat plate is also included for comparison. It is shown that
the measured velocity coherence matches well with the theoretical velocity coherence,
while the measured lift coherence is much stronger than the velocity coherence. This
phenomenon has been shown experimentally on many occasions (Etkin 1971; Jakobsen
1997; Kimura et al. 1997; Larose & Mann 1998; Ma 2007). Etkin (1971) considered
that the stronger correlation is an intrinsic property of the lift induced by the three-
dimensional turbulence due to the influence of three-dimensional effects on the transfer
function.

It can be observed that there are different degrees of deviation between the
measured lift coherence of the model and the theoretical lift coherence of the ideal
flat plate. Considering that the lift coherence reflects the structure of the flow around
the body, the distortion of the velocity fluctuation and the flow separation may be
the reasons for these deviations. Compared to the flow around an ideal flat plate,
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FIGURE 5. (Colour online) Coherence of lift forces and vertical fluctuating velocities.

Configuration Parameter
Cross-section Chord Depth a α β

Ideal flat plate 0.104 0.500 0.469
Model A NACA 0015 0.40 m 0.156 1.101 0.653
Model B Rectangular 0.60 m 0.06 m 0.306 1.795 1.400
Model C Rectangular 0.30 m 0.06 m 0.467 2.393 3.266
Model D Rectangular 0.18 m 0.06 m 0.653 2.632 5.250

TABLE 1. Parameters of spanwise influence term.

the mean velocity field of the flow around a real body is disturbed, which distorts the
velocity fluctuation (or eddies) of the turbulent flow. The distortion of the velocity
fluctuation reduces its spatial correlation (Santana et al. 2016) and consequently leads
to the decrease of the coherence of the induced lift (compared to the theoretical lift
coherence of the ideal flat plate). It should be noted that the deviation between the
theoretical lift coherence and the measurement is frequency-dependent. As mentioned
above, the turbulent flow is distorted by the disturbance of the mean velocity field;
however, the degree of the distortion is different for eddies with different scales. The
high-frequency velocity fluctuation (small-scale eddy) is more easily distorted by the
disturbance than the low-frequency velocity fluctuation (large-scale eddy). Hence, the
measured lift coherence agrees better with the theoretical value for lower frequencies,
while for higher frequencies the measured lift coherence deviates significantly from
the theoretical value due to the serious distortion of the velocity fluctuation. On the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

40
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.402


358 Y. Yang, M. Li and H. Liao

10-3
10-1

10-1

k1 c/2
100

100

10-2

10-1

Quasi-steady value

Sears function
Modified transfer function

Measured values
Prediction 1

100

Prediction 20

F3D

0.2
0.4
0.6
0.8S L

/(
C S

2 S w
)

FIGURE 6. Normalized one-dimensional lift spectrum and transfer function of model A.

other hand, the flow over the rectangular cross-section is partially separated. The
results indicate that the spatial correlation of the velocity fluctuation under separated
flow conditions may be weaker than that under attached flow conditions, further
reducing the lift coherence of the rectangular-section body compared to the lift
coherence of the airfoil. It can be seen that the decrease of the lift coherence
becomes more significant as the chord-to-depth ratio of the rectangular cross-section
becomes smaller, accompanied by more serious flow separation.

It can be seen from these results that the turbulence distortion and flow separation
have a significant influence on the lift coherence. Due to this influence, the lift
coherence of a real body is lower than the theoretical lift coherence of an ideal
flat plate, and the spanwise influence term of a real body is also different from the
theoretical spanwise influence term. Compared to a rectangular-section body with
larger chord-to-depth ratio, one with smaller chord-to-depth ratio experiences more
serious turbulence distortion and flow separation. Correspondingly, the deviation
between its lift coherence and the theoretical lift coherence is more obvious, and the
difference between its spanwise influence term and the theoretical value is also more
significant.

4.3. Roles of 3-D effects factor and transfer function in lift force
For a body in turbulent flow, factoring the lift only by the static force term would
fail as the frequency increases since the generation of the lift is simultaneously
affected by both the unsteady effects and the three-dimensional effects. As shown
in figures 6–9, the one-dimensional lift spectrum, which is normalized by the
one-dimensional turbulence spectrum and the static force term, decreases as the
frequency increases. In this case, the 3-D effects factor F3D, which is defined by
(2.6a,b), can be used to reflect the influence of three-dimensional effects on the lift.
Using the spanwise influence terms determined in § 4.2, the 3-D effects factors of
the airfoil and rectangular-section bodies are calculated, as shown in the insets. The
static force terms and ratios of turbulence integral scale to chord used in calculations
are listed in table 2 in appendix C. Note that the aspect ratios are all equal to zero
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FIGURE 7. Normalized one-dimensional lift spectrum and transfer function of model B.

in the current experiment. The results show that the 3-D effects factor is a function
with the value of less than 1, which is one of the reasons for the decreasing of the
normalized lift spectrum compared to the quasi-steady value. The 3-D effect factor is
relatively small at lower frequencies, but increases as the frequency increases. This
indicates that the three-dimensional effects mainly affect the lift at lower frequencies,
and the increase of the frequency tends to reduce this influence. In fact, we will show
in the next section that the influence of three-dimensional effects on the lift reaches a
peak at a certain frequency and then decreases as the frequency increases. Certainly,
the 3-D effects factors of these aerodynamic configurations are different due to their
different spanwise influence terms as well as the ratios turbulence integral scale to
chord.

The flow being unsteady is another reason for the decreasing of the normalized
lift spectrum compared to the quasi-steady value. These unsteady effects can be
reflected by the one-wavenumber transfer function, which would apply unchanged
to the spanwise correlated unsteady incident flow. After separating the influence of
three-dimensional effects on the lift with the 3-D effects factor, the one-wavenumber
transfer functions of these aerodynamic configurations can then be determined based
on experiment data. Due to the empirical nature of the determination, an empirical
model for the one-wavenumber transfer function is introduced (see appendix C). For
the NACA 0015 airfoil, the one-wavenumber transfer function agrees well with the
Sears function at lower frequencies, while falling at a faster rate as the frequency
increases, as shown in figure 6. According to previous theoretical studies (Goldstein
& Atassi 1976; Atassi 1984; Lysak, Capone & Jonson 2013), this may be caused by
the thickness effects. The Sears function is derived based on the flat plate assumption.
This may be a reasonable assumption at lower frequencies. However, at higher
frequencies, the turbulence is significantly distorted by the disturbance of the mean
velocity caused by the thickness. In this case, the flat plate assumption is invalid
and leads to the overestimation of the transfer function. Relatively little research
has investigated the one-wavenumber transfer function of the rectangular-section
body. From the results of figures 7–9, the one-wavenumber transfer functions of the
rectangular-section bodies are larger than the Sears function at lower frequencies,
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FIGURE 8. Normalized one-dimensional lift spectrum and transfer function of model C.
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FIGURE 9. Normalized one-dimensional lift spectrum and transfer function of model D.

while also falling more quickly than the Sears function as the frequency increases.
The high-frequency deviation may be attributed to the distortion of the turbulence,
similarly to the case involving a thick airfoil. However, the physics that causes the
low-frequency deviation is still not fully understood, to the extent that the role of the
flow separation in the generation mechanism of the lift is not clear.

From the current results, it can be seen that the low-frequency deviation becomes
more significant as the chord-to-depth ratio becomes smaller. This is accompanied by
more serious flow separation. It may be considered that the flow separation reduces
the influence of the unsteady effects on the lift at lower frequencies. The more
serious the flow separation, the lower the influence of the unsteady effects on the
low-frequency lift, and consequently the closer the one-wavenumber transfer function
of the rectangular-section body to the quasi-steady value. To better illustrate these
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differences, prediction 1 is calculated with the Sears function and the 3-D effects
factor, while prediction 2 is calculated with the modified transfer function and the
same 3-D effects factor. It can be seen that, although both predictions consider
the three-dimensional effects, prediction 1 cannot capture the experimental values
because the Sears function does not consider the effects of the flow separation and
the distortion. Prediction 2, wherein the transfer function accounts for the effects of
the flow separation and the distortion by modifying the Sears function, agrees well
with experimental values. Hence, for rectangular-section bodies, the use of the Sears
function would underestimate the lift at lower frequencies while overestimating the
lift at higher frequencies. The modified transfer function proposed here may be an
appropriate alternative in this case.

4.4. Influence of turbulence integral scale to chord ratio and aspect ratio
In § 4.3, we have shown that the three-dimensional effects have a significant influence
on the lift induced by turbulent flow. This influence can be calculated by the 3-D
effects factor F3D derived from the three-dimensional theory. However, it requires the
spanwise influence term to be known. If the strip theory is applicable, the simpler
factor F3DST derived from the strip theory can be used to approximate F3D, avoiding
the measurement of the spanwise influence term. The key is to what extent the strip
theory is applicable. For this, F3D and F3DST are numerically calculated under different
turbulence integral scale to chord ratios γ and aspect ratios θ , as shown in figure 10.
The relative deviation between F3D and F3DST (the accuracy of the strip theory) is
quantitatively evaluated by the dimensionless factor ψ under the same parameters, as
shown in figure 11. Note that F3DST does not contain the spanwise influence term, and
is therefore independent of the aerodynamic configuration.

It is shown that the 3-D effects factors F3D of all configurations are much smaller
than F3DST when the values of γ and θ are small. The use of the strip theory
would thus lead to the significant overestimation of the lift in this case. As γ and θ
increase, F3D gradually approaches F3DST . When the values of γ and θ are large, the
deviation between F3D and F3DST becomes small. The same trend can be observed
in the results of the dimensionless factor. The dimensionless factor ψ is much less
than 1 when γ and θ have small values, and increases with the increase of γ and
θ . When γ and θ have large values, the dimensionless factor ψ is close to 1. The
deviation between F3D and F3DST (or say, the dimensionless factor ψ) also depends
on the frequency. The deviation at lower frequencies is significantly larger than the
deviation at higher frequencies, and therefore the dimensionless factor ψ is closer to
1 at higher frequencies. In addition, both F3D and F3DST reach a peak at a certain
frequency then decrease as the frequency increases. The occurrence of the peak may
be related to the shape of the turbulence spectrum. As is known, the turbulence
spectrum also has a peak at the energy-containing range. From the correlation point
of view, at the peak of the spectrum, the correlation of the turbulence is the strongest,
and the three-dimensional effect is the weakest. F3D and F3DST reflect the influence
of the 3-D effects on the lift, and therefore reach a peak at the frequency where
the three-dimensional effect is the weakest. When the values of γ and θ are small,
the peak position of F3D is not identical with the peak position of F3DST due to the
influence of three-dimensional effects on the transfer function. With the increase of
γ and θ , the influence of three-dimensional effects on the transfer function gradually
weakens, and the positions of these peaks tend to be identical. It can be concluded
from these results that for rectangular-section bodies, the accuracy of the strip theory
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FIGURE 10. (Colour online) 3-D effects factors F3D under different ratios of turbulence
integral scale to chord γ and aspect ratios θ .

depends on the ratio of the turbulence integral scale to the chord as well as the
aspect ratio, and is proportional to these two parameters. If these two parameters
have suitable values, the strip theory can be applicable to the rectangular-section
body, and F3DST can be used to estimate the lift response of the rectangular-section
body in turbulent flow.

The results also show that the dimensionless factors of the rectangular-section
bodies are larger than the dimensionless factor of the airfoil under the same
parameters. The dimensionless factor of the rectangular-section body with smaller
chord-to-depth ratio is larger than that of the rectangular-section body with larger
chord-to-depth ratio. As mentioned earlier, compared to the attached flow over the
airfoil, the flow over the rectangular-section body is partially separated, and the flow
separation experienced by the rectangular-section body with smaller chord-to-depth
ratio is more serious. These trends imply that the accuracy of the strip theory is
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FIGURE 11. (Colour online) Dimensionless factors ψ under different of ratios turbulence
integral scale to chord γ and aspect ratios θ .

improved under separated flow conditions. The flow separation is one of the salient
aerodynamic features of bluff bodies. Hence, compared to the airfoil, the lift response
of the bluff body calculated by the strip theory will have higher accuracy, and the
more serious the flow separation, the higher the accuracy.

5. Conclusions

This study examines the influence of three-dimensional effects on the transfer
function of a rectangular-section body in turbulent flow. A dimensionless factor which
contains the spanwise influence term is introduced to evaluate this influence. For bluff
bodies such as the rectangular-section body, the theoretical spanwise influence term
is not applicable. An adapted form of the lift coherence function is thus derived
and an empirical model for the spanwise influence term is given, enabling the use
of the measured lift coherence for the estimation of the spanwise influence term.
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The dimensionless factors of the rectangular-section bodies under different ratios of
turbulent integral scale to chord and aspect ratios are then numerically calculated with
the measured spanwise influence term. It is shown that the dimensionless factor of the
rectangular-section body depends on both of the above ratios, and increases as they
increase. This is in close agreement with findings regarding the airfoil in previous
work. If the ratio of turbulent integral scale to chord and the aspect ratio have suitable
values, the strip theory could also be applicable to the rectangular-section body. The
results also reveal that the accuracy of the strip theory is improved under separated
flow conditions. The more serious the flow separation, the higher the accuracy of the
strip theory. Compared to the airfoil, the lift response of the rectangular-section body
calculated by the strip theory may have higher accuracy. The flow separation is one
of the salient aerodynamic features of bluff bodies. The current conclusions may also
be applicable to other bluff bodies with separated flow, which would be helpful for
simpler estimations of the lift responses of actual bluff structures.

In addition to the three-dimensional effects, the one-wavenumber transfer function
of the rectangular-section body is also investigated. For this, an approach to
determining the one-wavenumber transfer function of a body with consideration
of three-dimensional effects is introduced. In this approach, the influence of
three-dimensional effects on the lift is separated using the 3-D effects factor. The
one-wavenumber transfer function is then obtained using the normalized lift spectrum
and the 3-D effects factor. The results indicate that the one-wavenumber transfer
function of the rectangular-section body is larger than the Sears function at lower
frequencies, while falling at a faster rate as the frequency increases. This may be
caused by the flow separation and the turbulence distortion. In terms of the trends of
the results, the more serious the flow separation is, the closer the one-wavenumber
transfer function is to the quasi-steady value. This implies that the flow separation
reduces the influence of the unsteady effects on the lift. For bluff bodies, the
use of the Sears function would underestimate the lift at lower frequencies and
overestimate the lift at higher frequencies. The modified one-wavenumber transfer
function proposed here, which takes the effects of the flow separation and distortion
into account by modifying the Sears function, may be an appropriate alternative in
this case.
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Appendix A. Spectral model for homogeneous isotropic turbulence
For homogeneous and isotropic turbulence, the spectrum can be described by the

von Kármán model. The spectral models of the longitudinal fluctuating velocity are

Su(k1)=
0.637σ 2

u Lx
u

[1+ 1.793(Lx
u)

2k2
1]

5/6
, (A 1)

Su(k1, k2)=
0.38σ 2

u (L
x
w)

2

[1+ 1.793(Lx
u)

2(k2
1 + k2

2)]
4/3 . (A 2)

The spectral models of the vertical fluctuating velocity are

Sw(k1)=
0.637σ 2

wLx
w[1+ 19.125(Lx

w)
2k2

1][
1+ 7.172(Lx

w)
2k2

1

]11/6 , (A 3)
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Sw(k1, k2)=
14.553σ 2

w(L
x
w)

4(k2
1 + k2

2)

[1+ 7.172(Lx
w)

2(k2
1 + k2

2)]
7/3
. (A 4)

In the above equations, σu and σw are the r.m.s. longitudinal and vertical fluctuating
velocities, respectively. Lx

w and Lx
w are the longitudinal and vertical turbulence integral

scales, respectively.

Appendix B. Computation of lift force from pressure measurements
The lift on each strip can be obtained by integrating the measured pressure signals

on the strip using the following formula:

L=
∫

s
(p∞ − p) sin β ds≈

n∑
1

(p∞ − pi) sin βi1si, (B 1)

where p∞ is the reference pressure in the free stream, pi is the pressure signal
measured at the tap i on the model surface, 1si is the surface element length of
the ith pressure tap and βi is the angle between the normal direction of the surface
element and the chord line. The lift coherence between two strips can be then
calculated from the obtained lift on two strips using the following formula:

Coh=
|Syy′ |√

SySy′
, (B 2)

where Syy′ is the cross-spectrum between two strips, Sy is the auto-spectrum on the y
strip and Sy′ is the auto-spectrum on the y′ strip.

Appendix C. Modified form of one-wavenumber transfer function
According to (2.7), the one-wavenumber transfer function can be expressed as

|χ(k̃1)|
2
=

SL(k1)

Ĉ2
s Sw(k1)F3D(k̃1, γ , θ)

. (C 1)

The 3-D effects factor F3D(k̃1, γ , θ) can be calculated by the use of (2.6a) and (2.6b).
Using the measured one-dimensional lift spectrum and the measured one-dimensional
vertical turbulence spectrum, the experimental values of the one-wavenumber transfer
functions can then be determined. The parameters used in the calculation are listed in
table 2. Here, with modification of the Sears function, the following modified form of
the one-wavenumber transfer function is employed to fit the experimental data:

|χ(k̃1)|
2
=

1

1+ a1k̃a2
1

exp(−µk̃1), (C 2)

where a1, a2, µ are empirical parameters which are determined by fitting the
experimental values of the one-wavenumber transfer function, as listed in table 2.

Ĉs γ θ a1 a2 µ

Model A 16.905 0.155 0 6.283 1.000 0.120
Model B 28.316 0.103 0 5.051 1.226 0.130
Model C 11.622 0.207 0 4.172 2.102 0.500
Model D 6.7190 0.344 0 1.260 2.211 0.980

TABLE 2. Parameters of modified one-wavenumber transfer function.
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