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We derive a dispersion relation for the damping of acoustic waves in equi-molar
deuterium–tritium (DT) gas due to radiation coupling and electron thermal conduction
and discuss its significance for inertial confinement fusion (ICF) targets with high-Z
shells surrounding a central DT fuel region. As the shell implodes around DT fuel
in such a target, shocks and waves are transmitted through the DT gas. If the shell
is perturbed due to drive non-uniformity or manufacturing imperfection, these shocks
and waves may be perturbed as well, and can potentially re-perturb the shell. This can
complicate calculation of shell stability and implosion asymmetry and in general make
the target less robust against implosion non-uniformity. Damping of perturbations in
DT gas can alleviate these complications. Also, damping of low-order modes, which is
primarily due to radiation coupling, can drive the DT gas to an isobaric and isothermal
‘equilibrium’ configuration during ignition. We find that for the range of common
ignition temperatures in targets with high-Z shells, 2.5 . Tig . 3.5 keV, damping of
low-order modes is significant for areal densities (ρr) in the broad range of 0.6.ρr.
1.8 g cm−2. This suggests it is advantageous to design these targets to achieve areal
densities at ignition within this range. Furthermore, we derive a simple constraint
between areal density and temperature, ρr= 0.34To where To is in keV, such that DT
gas undergoing equilibrium ignition is optimally robust against non-uniformity.
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1. Introduction

Operation of inertial fusion targets generally involve the implosion of a shell around
deuterium–tritium (DT) gas. The imploding shell, usually composed of compressed
cold DT or a high-Z material, compresses and heats the DT gas inside it to fusion
ignition conditions (Atzeni & Meyer-Ter-Vehn 2004). Much work has concerned
stability of the imploding shell (Haan 1991; Lindl 1995; Amendt et al. 2002, 2003).
Drive non-uniformity and surface finish can both seed hydrodynamic instability
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growth in the shell material. This can either disrupt the shell during implosion or
generate shell–fuel mix. In the case of a high-Z shell, a perturbed shell can also
result in higher radiation losses from the DT gas due to the larger exposed shell
surface area. All these effects can inhibit fusion ignition.

In this paper, we investigate the stability of the igniting DT gas itself in targets with
a high-Z shell surrounding a DT fuel region, also referred to here as ‘high-Z shell
targets’. During implosion, the shell will launch shocks and/or acoustic waves into
the DT gas, which will bounce on the origin and return to the shell. In many high-Z
shell targets, the first shock sent into the DT is very strong and sets the adiabat of the
DT gas, while the first rebound shock is relatively weak with a pressure jump of a
factor of two to four. Subsequent waves sent through the DT gas are typically acoustic
in nature and the gas is quasi-adiabatically compressed. If these waves are perturbed
due to perturbations on the shell when they are launched, they can potentially re-
imprint the shell. Furthermore, perturbations in the DT gas may affect the total fusion
reactivity in the gas. These effects are typically not considered in one-dimensional
(1-D) codes, and can be hard to fully compute in 2-D or 3-D codes due to the large
material convergences of most conventional inertial confinement fusion (ICF) target
designs.

Fortunately, perturbations in the DT gas are damped both by electron thermal
conduction and radiation coupling when a high-Z shell is present. The damping
lengths and rates depend on the density and temperature of the DT gas and
perturbation wavelength. If the damping rates in a given target are large enough,
non-spherical perturbations transmitted through the DT gas can be ignored when
calculating shell instability. In general, strong damping in the DT gas implies that a
given target is more robust to implosion asymmetry, and drives the gas to an isobaric
and isothermal equilibrium ignition (Lackner et al. 1993) configuration.

To model this damping, we derive a dispersion relation for the combined process
of electron thermal conduction and radiation coupling in DT gas for high-Z shell
targets by implementing a perturbation analysis about a uniform background. We
find radiation coupling is effective at damping low-order perturbations near ignition
conditions in typical targets with high-Z shells undergoing equilibrium ignition
that achieve areal densities (ρr) in the range 0.6 . ρr . 1.8 g cm−2 at ignition.
We find electron thermal conduction is very effective at damping short-wavelength
perturbations. We also derive a simple constraint between temperature and areal
density of DT gas that maximizes radiation damping of perturbations for the longest
wavelengths that can affect implosion stability, which maximizes the robustness of
the ignition process against non-uniformity. We find that for an ignition temperature
of 3 keV, it is optimum for the areal density to be 1.0 g cm−2.

2. Derivation of dispersion relation

The hydrodynamic equations governing DT gas are

∂ρ

∂t
+∇ · (uρ)= 0 (2.1)

ρ

(
∂u
∂t
+ u · ∇u

)
=−f∇P (2.2)

∂ρε

∂t
+∇ · (uρε)=−P∇ · u+∇ · κe∇T − PB, (2.3)
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where ε is the energy per unit mass of the DT gas (keV g−1), PB is the bremsstrahlung
power rate per unit volume (keV cm−3 s−1) and κe is the electron thermal conduction
coefficient (1/(s cm)). The density ρ is in (g cm−3) and velocity u in (cm s−1). We
assume that the DT gas is equi-molar, and that the electron and ion temperatures
are uniform and equal to T (keV). We allow for the radiation temperature Tp, which
is determined by the high-Z shell acting as a hohlraum, to be different from T . We
assume that the radiation energy density and pressure are negligible at and before
ignition, therefore the pressure P is equal to the sum of the ion and electron pressures,
P= 2nT where n is the ion number density. The factor f appearing in the momentum
equation is present for unit conversion: as we have defined it P has units of
(keV cm−3) and f = 1.6022× 10−9 converts those units to (dynes cm−2

= ergs cm−3)
as needed in the momentum equation. We also ignore viscosity.

The bremsstrahlung power term is written as

PB = neνB

√
mec2T

2
IB(Tp, T) (2.4)

νB =
4

π3/2
αZcσTne (2.5)

IB(Tp, T)= IB(γ )=

∫
∞

0
dεe−ε/2Ko(ε/2)

eε/γ − eε

eε/γ − 1
(2.6)

γ = Tp/T, (2.7)

where IB(γ ) is a dimensionless integral, Ko the Bessel function of the second kind
order zero, Tp is the temperature characterizing the blackbody radiation field inside
the DT gas (this temperature is set by the high-Z shell), νB is a bremsstrahlung rate,
σT the Thomson cross-section, α the fine structure constant and ne = n the electron
density. The bremsstrahlung power term assumes the DT gas is optically thin (there
is no radiation conduction term here, only coupling to a hohlraum blackbody radiation
field), which is generally the case in high-Z shell ICF targets at ignition conditions.
The electron thermal conduction coefficient is

κe = 1.185

√
2
π

c
r2

e Z lnΛei

(
T

mec2

)5/2

, (2.8)

where re is the classical electron radius and lnΛei is the Coulomb logarithm.
In linearizing the hydrodynamic equations, we take as the zero-order solution a

uniform medium at temperature To = Tp, density ρo (number density no), specific
energy εo and zero mean velocity uo = 0. This assumption of a uniform medium is
valid for high-Z shell targets igniting in equilibrium ignition near stagnation, where
the mean velocity of the gas is zero. We also assume planar symmetry in calculating
the dispersion relation. The first-order energy, momentum and continuity equations are

ρo
∂ε1

∂t
+ Po

∂u1

∂x
= κeo

∂2T1

∂x2
−
∂PB

∂T
T1 (2.9)

ρo
∂u1

∂t
=−f

∂P1

∂x
(2.10)

∂ρ1

∂t
=−ρo

∂u1

∂x
, (2.11)

https://doi.org/10.1017/S002237781900076X Published online by Cambridge University Press

https://doi.org/10.1017/S002237781900076X


4 C. D. Galloway, R. O. Hunter Jr, A. V. Valys and G. H. McCall

where we note that IB(γ = 1)= 0 and

∂PB

∂T
= 2.83noνB

√
mec2

2To
≡ noν̄B (2.12)

κeo = 1.185

√
2
π

c
r2

e Z lnΛei

(
To

mec2

)5/2

. (2.13)

We eliminate ε1 and T1 in favour of P1 using the ideal gas equation of state
P= RρT = 2nT , R= 2NA/2.5 where NA is Avogadro’s number,

T1 =

(
P1 − Po

ρ1

ρo

)
1

Rρo
(2.14)

ε1 =
3
2

P1 − Po(ρ1/ρo)

ρo
(2.15)

resulting in the first-order energy equation

no
∂

∂t
(3P1 − 5Poρ1/ρo)=

(
κeo

∂2

∂x2
− noν̄B

)(
P1 − Po

ρ1

ρo

)
. (2.16)

Assuming Fourier mode form of the first-order variables, e.g. ρ1 = ρ̄ei(ωt−kx), results
in the matrix equation iω −ikρo 0

0 iωρo −ikf
−a2

(
iω+ χk2

+
1
5 ν̄B
)

0 f
(
iω+ 5

3χk2
+

1
3 ν̄B
)
 ρ̄ū

P̄

= 0, (2.17)

where a=
√
(5/3)(Po f /ρo) (cm s−1) is the adiabatic sound speed (recall f is for unit

conversion from keV cm−3 to dynes cm−2) and χ = κeo/5n is an electron conduction
diffusivity. Setting the determinant to zero results in the following dispersion relation

3
5

a2 k2

ω2

(
αb + 5a2 k2

ω2
αe + 5i

)
−

(
αb + 5a2 k2

ω2
αe + 3i

)
= 0, (2.18)

where αe = ωχ/a2 and αb = ν̄B/ω are dimensionless rates for electron thermal
conduction and bremsstrahlung, respectively. Solving for k2 and taking the positive
root corresponding to damped acoustic waves (Mihalas & Weibel-Mihalas 1984) gives

k2
=
ω2

a2

25αe − 3(5i+ αb)+
√

9(5i+ αb)2 + 150(i+ αb)αe + 625α2
e

30αe
. (2.19)

3. Results
For dispersion relation (2.19), we assume the frequency ω is real and wavenumber

k = kr + iki has real and imaginary components. The wavelength λ of a perturbation
is related to the real wavenumber component, λ= 2π/kr. The distance over which a
perturbation damps by one e-folding, also known as the attenuation length, is given by
|1/ki|. A dimensionless measure of the attenuation length for a given perturbation is
given by the ratio of the attenuation length to wavelength of the perturbation, which is
defined as Λ=|1/(λki)|= |kr/(2πki)|. For a given temperature, Λ only depends on the
combination ρλ which has units of areal density, where ρ is the density of the DT gas.
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FIGURE 1. Shown is the dimensionless damping length Λ in DT gas as a function of ρλ
for a temperature of To= 3 keV, considering radiation coupling only (red curve), electron
thermal conduction only (black curve) and both combined (blue curve). The minimum at
higher ρλ is due to radiation damping, and the minimum at lower ρλ is due to electron
thermal conduction. For wavelengths near the minimum perturbations are strongly damped,
decaying by roughly one e-folding upon travelling the distance of one wavelength.

Shown in figure 1 is the dimensionless attenuation length Λ as a function of
ρλ for a temperature To = 3 keV in DT gas. The blue curve takes into account
both electron thermal conduction and radiation coupling. The minimum at higher
ρλ is due to radiation coupling, and the minimum at lower ρλ is due to electron
thermal conduction. The black and red curves take into account only electron thermal
conduction and only radiation coupling, respectively: for the black curve the limit
αb→ 0 is taken and for the red curve the limit αe→ 0 is taken. The minima of Λ
are of order unity, implying a perturbation damps significantly upon travelling one
wavelength. Shown in figure 2 is the corresponding dimensionless propagation speed
(ω/kr)/aadiabatic, where aadiabatic =

√
(5/3)(Pof /ρo) is the adiabatic propagation speed

for To = 3 keV.
For radiation alone (αe → 0), at very short wavelength (small ρλ) the radiation

coupling time is long compared to the oscillation period (αb is very small). Radiation
coupling has little effect and acoustic waves propagate adiabatically ((ω/kr)/aadiabatic=

1). At very long wavelength the radiation coupling time is short compared to the
oscillation period (αb is very large), and radiation coupling effectively makes the gas
isothermal, resulting in isothermal wave propagation ((ω/kr)/aadiabatic=

√
3/5). Only in

between these two limits is the imaginary component of the wavenumber ki significant
(small Λ), resulting in damping.

For electron thermal conduction alone (αb→ 0), at very short wavelength (small ρλ)
the wavenumber kr is large. Since electron thermal conduction flux is proportional
to k2

r , this results in strong smoothing of temperature fluctuations, effectively making
the gas isothermal. For long wavelengths, k2

r is small, and electron thermal conduction
has little effect, resulting in adiabatic wave propagation. Again, only between these
two limiting cases is the imaginary component of the wavenumber ki significant,
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FIGURE 2. Shown is the dimensionless wave propagation speed as a function of ρλ.
For very short wavelength, electron thermal conduction is dominant and makes the fluid
isothermal. For very long wavelengths, radiation coupling is dominant and also makes
the fluid isothermal. Thus for very long and short wavelengths, perturbations propagate
isothermally with negligible damping ((ω/kr)/aadiabatic ≈

√
3/5 and ki ≈ 0). In between

these two regimes are transition regions for both radiation and electron thermal conduction
where the imaginary component of the wavenumber ki is large, and strong damping occurs
(small Λ).

resulting in damping. Maximum wave damping (small Λ) in general occurs at
different ρλ for radiation and electron thermal conduction, as can be seen in figure 1,
and thus when both effects are considered simultaneously two separate minima are
observed.

Shown in figure 3 is Λ as a function of ρλ for four different DT gas temperatures:
To= 1, 2, 3 and 5 keV. One can see that increasing the temperature shifts the minima
of the curve (locations of maximum damping) to larger ρλ. We can analytically derive
an expression for the minimum of Λ and associated ρλ value for radiation coupling.
Taking the limit αe→ 0 results in the dispersion relation

k2
=

5
3
ω2

a2

αb + 3i
αb + 5i

. (3.1)

The real and imaginary wavenumber components are readily found to be

kr =

√
5
6
ω

a

√√√√√ α2
b + 9

α2
b + 25

+
α2

b + 15
α2

b + 25
(3.2)

ki =−

√
5
6
ω

a

√√√√√ α2
b + 9

α2
b + 25

−
α2

b + 15
α2

b + 25
(3.3)

https://doi.org/10.1017/S002237781900076X Published online by Cambridge University Press

https://doi.org/10.1017/S002237781900076X


Radiation and electron thermal conduction 7

FIGURE 3. Shown is the dimensionless damping length Λ for three different temperatures
in DT gas. As the temperature is increased, the minima for both electron thermal
conduction and radiation coupling move to larger ρλ, with temperature having a larger
effect on the location of the minimum associated with electron thermal conduction. The
optimum areal density range for a typical high-Z shell target with ignition temperature
ranging from 2.5 to 3.5 keV is 0.6 to 1.8 g cm−2. In this range, all perturbation modes
in the DT gas, including long-wavelength low-order modes with λ≈ 2r will be strongly
stabilized. One can also define a path through T − ρr space during implosion and
ignition which optimizes overall robustness against non-uniformity, given by ρr= 0.34To,
by assuming the DT areal density ρr is matched to the location of the minima of Λ
associated with radiation coupling within a factor of two, ρr= ρλmin/2.

and the dimensionless attenuation coefficient is found to be

Λr =

√√√√√ α2
b + 9

α2
b + 25

+
α2

b + 15
α2

b + 25

2π

√√√√√ α2
b + 9

α2
b + 25

−
α2

b + 15
α2

b + 25

, (3.4)

where the subscript r indicates the result is assuming radiation coupling only. By
taking the derivative with respect to αb we find Λr is a minimum at αmin

b =
√

15 with
Λmin

r = 1.253 and kmin
r = 1.235

√
(5/6)(ω/a). Using λmin

= 2π/kmin
r and ω= ν̄B/

√
15 we

find

λmin
=

2π
√

15

1.235
√

5
6

a
ν̄B
= 0.68

To

ρ
, (3.5)

where we have plugged in expressions for a and ν̄B. Therefore, we find damping due
to radiation coupling is strongest when

ρλ= 0.68To. (3.6)
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4. Significance for ICF

Consider central DT gas undergoing equilibrium ignition in a high-Z shell inertial
fusion target. We expect the DT gas to be most stable when low-order perturbations
with wavelength equal to the diameter of the gas are as strongly damped as possible.
We express this constraint by setting λ=2r where r is the radius of the DT gas, which
can also be written as ρr= ρλ/2 where we have expressed the constraint in terms of
the areal density ρr of the DT. We then require ρλ to be near ρλmin. When this is
the case, low-order perturbations with wavelength of order the DT gas size, as well
as all perturbations with shorter wavelengths, will be damped significantly (almost an
e-folding) upon travelling across the DT gas.

The minimum of Λr is fairly broad, which means that for a broad range of ρλ near
ρλmin damping is significant. If we define Λr < 1.5 as ‘strong damping’ and assume
an ignition temperature of To = 3 keV, then damping is strong in the range 1.17 .
ρλ. 3.55 g cm−2, which taking λ= 2r corresponds to an areal density range 0.58 .
ρr. 1.78 g cm−2. It is desirable for a high-Z shell target with an ignition temperature
near 3 keV to ignite with an areal density in this range.

When ρλ = ρλmin, damping will be strongest. Utilizing (3.6) along with
ρr= ρλmin/2, we arrive at the very simple formula

ρr= 0.34To, (4.1)

which gives the optimum value of the areal density as a function of DT gas
temperature. This suggests that it is optimal to design a high-Z shell target such
that (4.1) holds during the implosion and ignition of the DT gas. Many high-Z shell
targets have ignition temperatures in the range of 2.5 to 3.5 keV due to radiation
trapping by the high-Z shell. If we take an ignition temperature of To = 3 keV, this
would result in an areal density at ignition of 1.0 g cm−2. Achieving this areal density
provides maximum robustness against implosion non-uniformity.

We also note that electron thermal conduction only contributes to stabilization
of very short-wavelength modes corresponding to ρλ � 0.6 g cm−2. One cannot
match the areal density achieved in a target to the minima corresponding to electron
thermal conduction (ρr of order 10−2 g cm−2), as the areal density would then be
too small to effectively stop alpha particles, inhibiting bootstrap heating (Atzeni &
Meyer-Ter-Vehn 2004).

Our results can also be visualized in terms of a dimensionless damping time
versus a dimensionless wavelength for specific example targets. Shown in figure 4
is the e-folding damping time of perturbations τ for two different high-Z shell
targets normalized to the characteristic implosion time scale τc = rs/vimp, where rs

is the compressed fuel radius at stagnation, vimp is the peak shell implosion velocity
and To = 3 keV. The x-axis is a dimensionless perturbation wavelength λ/rs. One
can see that for λ = 2rs, perturbations damp by approximately one e-folding in
one characteristic implosion time τc, with τ/τc smaller in target 1 than in target 2.
All shorter wavelengths are damped more quickly. For λ/rs & 0.4 radiation is the
dominant damping mechanism and electron thermal conduction has little effect. For
λ/rs . 0.4 electron thermal conduction begins to have an effect and further decreases
the damping time for shorter wavelength. Note that damping is stronger for the target
with ρr= 1 g cm−2 as compared to the target with ρr= 0.75 g cm−2.
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FIGURE 4. Shown is the dimensionless damping time τvimp/rs versus the dimensionless
perturbation wavelength λ/rs for two different example targets, where τ = kr/(kiω), vimp
is the shell peak implosion velocity, rs is the shell stagnation radius and τc = rs/vimp is a
characteristic shell stagnation time scale. For λ= 2rs, perturbations damp by approximately
one e-folding in time tc, with damping stronger for target 1, which achieves larger
areal density. The damping time τ decreases as perturbation wavelength decreases. For
λ/rs & 0.4 radiation coupling is the dominant damping mechanism and electron thermal
conduction has little effect. For λ/rs . 0.4 electron thermal conduction begins to have
an effect and further decreases the damping time for shorter wavelength. Note that both
targets are within the desired areal density range of 0.6 . ρr . 1.8 g cm−2.

5. Conclusion

We have shown both radiation coupling and electron thermal conduction damp
acoustic perturbations in igniting DT gas of typical high-Z shell ICF targets, and that
radiation coupling is responsible for damping of low-order (long-wavelength) modes.
Furthermore, we have shown that damping is significant for a broad range of areal
density at typical ignition temperatures for high-Z shell targets, and models of shell
stability that do not include feedback from shocks and waves launched through the
DT gas are more accurate in this range.

Of note is the lower bound of ∼0.6 g cm−2 for the desired areal density of DT gas
at ignition, and the optimum areal density for most high-Z shell targets of ∼1 g cm−2.
Most conventional high-Z shell targets are designed to achieve an areal density of only
∼0.3 g cm−2 in order to meet the alpha bootstrap heating requirement (Lindl 1995).
These results suggest it may be highly advantageous to go to larger areal densities
to improve target robustness to drive and implosion non-uniformity and to achieve
stronger and more uniform equilibrium ignition.

In our analysis, we linearized about a uniform background solution. Thus we
assumed that any acoustic waves of concern traversing the DT gas and their
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non-spherical perturbations are weak. Furthermore, we assumed that the background
solution consisted of a uniform DT plasma with zero velocity undergoing equilibrium
ignition. This assumption is only valid near stagnation when the DT is neither
compressing nor expanding. Future work will consider the effect of an adiabatic
compression/expansion background solution as well as the effect of radiation coupling
on strong shocks with perturbations.
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