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We consider the structure of the intestinal epithelial tissue and of cell–cell junctions as the

biological model inspiring a new class of P systems. First we define the concept of cell

polarity, a formal property derived from epithelial cells, which present morphologically and

functionally distinct regions of the plasma membrane. Then we show two preliminary results

for this new model of computation: on the theoretical side, we show that P systems with cell

polarity are computationally (Turing) complete; on the modelling side, we show that the

transepithelial movement of glucose from the intestinal lumen into the blood can be

described by such a formal system. Finally, we define tissue P systems with cell polarity,

where each cell has fixed connections to the neighbouring cells and to the environment,

according to both the cell polarity and specific cell–cell junctions.

1. Introduction

The living cell can be seen as a sophisticated information processing device, and in recent

years a number of computation models inspired by the structure and function of living

cells have been proposed. Among them, we will consider membrane systems, also known

as P systems, which were introduced in Păun (2000). The basic model consists of a

hierarchical structure composed of several membranes, which are embedded into a main

membrane called the skin. Membranes divide the Euclidean space into regions, which

contain some objects (represented by symbols over an alphabet) and evolution rules. Using

these rules, the objects may evolve and/or move from one region to a neighbouring one.
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The rules are applied in a non-deterministic and maximally parallel way: all the objects

that may evolve are forced to evolve. A computation starts from an initial configuration of

the system and halts when no evolution rule can be applied. The result of a computation

is the multiset of objects contained within an output membrane or sent outside the skin,

to the outer environment. In the rest of this paper we assume a familiarity with the

basic notions and terminology underlying P systems. For a systematic introduction to P

systems, see Păun (2002), and for the latest information, see the P Systems Web Page:

http://ppage.psystems.eu.

In this paper we define new classes of P systems by taking inspiration from the structure

of epithelial cells and the intestinal epithelial tissue. In particular, we introduce the novel

concept of cell polarity, which is a structural property that many living cells present and

consists of a peculiar intracellular organisation with morphologically and functionally

distinct regions of the plasma membrane. We stress the fact that we do not use the

term ‘polarity’ here to mean the presence of electrical charges on the membrane, that is,

the ‘membrane polarisation’ as usually found in the P systems literature, but, rather, the

orientation that each cell presents with respect to the surrounding cells and the external

environment. We then extend the structure of a single-cell polarised P system to introduce

tissue P systems with cell polarity, where each cell has fixed connections – by means of

specific cell–cell junctions – to the neighbouring cells in the tissue and to the surrounding

environment, according to its polarity. In our models, we will consider specific types of

communication and evolution rules, which are needed to import (respectively, export)

objects from (respectively, to) the external environment, to move objects within a single

cell, and to exchange objects between adjacent cells. For this reason, we briefly recall

some notions and computational aspects of symport/antiport rules in P systems, as well

as tissue P systems, which will also be considered in the rest of our work.

With regard to the communication of objects, the biochemical idea of transporting ‘pairs

of molecules’ was first considered in Păun (2002) by introducing the notion of P systems

with symport/antiport rules. In such systems, multisets of objects – here denoted by x, y

(which can be of any size, but not empty) – are moved across the membranes by means

of rules of the form (x, in) and (x, out) (symport rules, where multiset x is moved across

the membrane in one direction, either inward or outward, respectively), and (x, out; y, in)

(antiport rules, where multiset x is moved outward, and multiset y is simultaneously

moved inward). Computing by communication turns out to be computationally complete:

Păun et al. (2002) showed that we can generate all Turing computable sets of numbers

using just symport and antiport rules. However, in order to reach Turing completeness,

some ‘infinity’ must be present, and in P systems with symport/antiport this is provided

in the form of an infinite supply of objects taken from an external environment (in

our definition of (tissue) P systems with cell polarity, we will also need to consider

the occurrence of infinite copies of symbols in the surroundings of the cells). Several

subsequent papers have been devoted to improving this result with respect to both

the number of membranes and the size of the symport/antiport rules: see Rogozhin

et al. (2006) for a survey.

In an attempt to go from cell-like to tissue-like architectures, Martı́n-Vide et al. (2002)

defined tissue P systems, where cells are placed in the nodes of a (directed) graph, and
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objects are communicated along the edges of the graph. This model has been further

elaborated, for example in Freund et al. (2005) and Păun et al. (2002), with recent results

covering both theoretical properties (Alhazov et al. 2006) and applications (Oswald 2007).

The few variants of tissue P systems considered in the literature essentially differ in

the mechanisms used to communicate objects between cells. For instance, particular

sets of communication rules can be assigned to the edges of the graph that defines

the structure of the tissue in order to model the existence of communication channels

between the cells (Păun et al. 2002; Freund et al. 2005). There are also evolution–

communication tissue P systems (adopting the terminology introduced in Cavaliere (2003)),

where the objects produced by particular transformations occurring within the cells are

non-deterministically propagated from one place to another (Martı́n-Vide et al. 2003;

Bernardini and Gheorghe 2005).

The power of communication has also been studied in tissue P systems. In particular,

purely communicative tissue P systems with symport/antiport were investigated in

Păun (2002) by showing completeness results for systems using rules with different sizes

and different structures for the underlying graph. More recently, Alhazov et al. (2005)

proved that tissue P systems with symport/antiport rules of a minimal size (that is, rules

of the form (a, in), (a, out) or (a, out; b, in), with a, b objects from a given alphabet) are

computationally complete, and that two cells suffice. Verlan et al. (2006) considered tissue

P systems with conditional uniport, meaning that every application of a communication

rule moves one object in a certain direction by, possibly, using another one as an

activator, which is left unchanged in the place where it is. Verlan et al. (2006) showed

that this purely communicative model of computation is also computationally complete

as it is able to simulate deterministic register machines using 24 cells. This result can

be compared in an interesting way with Bernardini and Gheorghe (2005), where an

evolution–communication model was considered. This means that, besides conditional

uniport, multiset rewriting rules can be used to modify the objects placed inside the

cells. The result given in Bernardini and Gheorghe (2005) shows that this model of

computation achieves computational completeness through the use of only two cells and

non-cooperative multiset rewriting rules.

The structure of the tissue P systems we are proposing here differs from all other

membrane tissue structures, since in this case the cells can be linked together by means

of specific connections, or communication channels, that are characterised by dynamical

states – which can change from open to closed and vice versa. In this way, any pair of

connected cells within the tissue can either exchange objects, or, otherwise, has to wait for

a communication channel to (possibly) open. This is achieved by considering appropriate

‘control multisets’ for each connection between adjacent cells.

The paper is structured as follows. We begin in the next section by providing an

overview of biological tissues (in particular, epithelia), presenting the concept of cell

polarity, and giving a description of intercellular junctions. Taking inspiration from the

biology of epithelial cells, in Section 3 we define P systems with cell polarity. Then, we

report two preliminary results for single-cell P systems with cell polarity: we prove that

they are computationally (Turing) complete, since they are able to simulate (albeit in a

non-deterministic way) Random Access Machines (Section 4); and we show that they
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can be properly used to model a cellular process, viz. the transcellular glucose transport

in intestinal cells (Section 5). In Section 6 we define tissue P systems with cell polarity

by extending the definition of single-cell polarised P systems to include (dynamically

changing) communication channels between adjacent cells. Finally, in Section 7 we provide

some concluding remarks and suggest some directions for future research.

2. Epithelial tissues and cell polarity

In any organism, specific and differentiated types of cells are assembled together to form

structural complexes, called tissues, which differ in both morphology and functionality. In

vertebrates, the main types are the epithelial, connective, muscular, lymphoid and nervous

tissues. Among these, the first two represent the extreme examples of tissue organisation.

Connective tissue is characterised by a plentiful extracellular matrix (a complex network

of macromolecules having a supporting function for cells and other tissues), within which

cells are sparsely distributed. By contrast, in epithelial tissue the extracellular matrix is

sparse, and cells are tightly bound to each other by cell–cell adhesions, forming sheets

called epithelia.

Epithelia can be made up of one or more layers of cells, whose major functions are:

to form the lining of internal cavities (for example, lungs, intestine, stomach) and of the

free surfaces (skin) of the organism; to protect against mechanical, chemical and physical

damages; to receive stimuli; and so on. Epithelial cells have differentiated functions,

corresponding to their position in the organism. For instance, the absorption of the

products of digestion (such as glucose and amino acids) is mediated by the epithelial cells

that line the intestinal lumen, while the acidification of the stomach lumen is carried out

by the parietal cells in the gastric lining.

Within each layer of an epithelial tissue, the epithelial cells are connected to one another

by means of specialised regions of the plasma membrane, called cell junctions. There are

several types of junctions, whose major functions are: to form barriers (to prevent the

passage of water and solutes across the opposite sides of the tissue); to supply strength

and rigidity to the tissue; to anchor the epithelium to the underlying connective tissue;

and so on.

In order to accomplish all of these functions, epithelial cells have a peculiar character-

istic, viz. a morpho-functional orientation, called polarity, which allows one to distinguish

between the two opposite sides of the cell from both the structural and molecular points

of view. The region of the cell facing the lumen is called the apical face, while the opposite

region is called the basal face (Fig. 1); the other sides of the cell, which are connected to

the neighbouring cells, are called the lateral faces. For each of these regions, the plasma

membrane presents several corresponding functional specialisations, which are described

in the following paragraphs. Moreover, the polarity can also be reflected within the cell in

the placement of organelles (the nucleus, Golgi apparatus, and so on) towards the apical

or basal face.

The specialisations of the apical face consist of extraflexions or invaginations of the

plasma membrane, such as microvilli, cilia or flagella, which can enhance the functionality

of the cell. For instance, in the (single-layered) epithelium of the small intestine, each cell
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Fig. 1. Polarity and specialisations of the apical and basolateral faces of an epithelial cell: (a) tight

junction, (b) adherens junction, (c) desmosome, (d) gap junction.

has thousands of membrane projections (called microvilli, see Figure 1), which increase

the surface area of the plasma membrane – and the number of transport proteins it can

contain – thus raising the absorptive capacity of the whole epithelium.

The specialisations of the basolateral face of epithelial cells consist of junctional

systems, which are used: to connect neighbouring cells to one another; to coordinate

their functioning; to anchor the tissue to the underlying extracellular matrix (also called

the basal lamina); and to control the movement of ions and small molecules between

adjacent cells. Cell–cell junctions can be classified as adherent or communicating junctions

(see Figure 1). Adherent junctions form a mechanical connection between adjacent cells,

and can be further divided into occluding and anchoring junctions, while communicating

junctions allow the passage of small molecules between connected cells. We will now give

a brief description of the principal types of cell junction.

Tight junctions are occluding junctions that are located just below the apical surface

and seal the plasma membranes of neighbouring cells, thus creating an impermeable

barrier against the diffusion of water-soluble substances between the opposite faces

of the epithelium. For instance, tight junctions prevent digestion products contained

within the intestinal lumen passing through the interstices between epithelial cells and

directly entering the bloodstream. Tight junctions completely encircle each epithelial

cell, and constitute a sort of ‘belt’ around it and thus create a very close connection

between the cell and all its neighbours. Moreover, these barriers prevent the migration of

membrane proteins and lipids between the apical and basolateral faces of the epithelial

cell: the restriction of specific proteins to well-defined regions of the plasma membrane

determines a non-homogeneous distribution of these molecules and is essential for the

proper functioning of the cell.

Adherent anchoring junctions are found immediately below tight junctions. They serve

to attach each cell mechanically to its neighbours (at their lateral faces), and also to the

basal lamina (at the basal face). Anchoring junctions occur in different forms: adherens

junctions and desmosomes are, respectively, belt-like and button-like structures of contact

between cells that confer mechanical strength to the tissue.
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Finally, gap junctions are communicating channels, which are found below adherent

junctions and allow the movement of small molecules directly between the cytosolic spaces

of neighbouring cells. In this way, the cells connected by gap junctions can share their

metabolites, and can thus be coordinated by this chemical and electrical coupling (for

example, for the synchronised contractions of heart muscle cells or for gene regulation,

in differentiation and embryogenesis, and so on). Gap junctions are not always open, but

flip between the open and closed states in response to specific changes occurring within

the cell. Moreover, they are not permanent structures, but can be synthesised by the cell

whenever there is a need for functional communication between neighbouring cells.

3. P systems with cell polarity

In this section we provide a formalisation of a single-cell P system with polarity. In Section

6 we will extend this definition to consider tissue systems made up of polarised cells.

In the following, we assume that each polarised cell (either as a separate computing

unit, or as part of a tissue) reflects the biological orientation of epithelial cells, as described

in Section 2, in two main ways: on the one hand, the polarised cell looks ‘externally’

onto two distinct and non-contiguous regions of the environment, called the apical and

basal environments; on the other hand, the ‘internal’ structure of the cell is built in such

a way that only specified elements (which we will generically call nodes) can have a

direct interaction with either the apical or basal environments, but not with both at

the same time. We will also consider another type of internal element, whose role is

to create communication between the apical and basal elements. The rationale behind

this is that the apical and basal elements can be seen as those portions of the plasma

membrane, or other intracellular structures, that keep an epithelial cell in contact with the

extracellular (luminal and basal) regions, while the internal elements informally represent

the cytoplasmic structures that constitute the intermediate (intracellular) space between

the two opposite poles of the cell. Accordingly, we will not consider the possibility of any

direct ‘communication’ between the nodes residing at the apical and basal sides of the

cell.

Formally, a P system with cell polarity is a structure of the form

Π = (Σ, A, B, C, EA, EB, conn)

where

— Σ is a finite alphabet of objects.

— A = {A1, A2, . . . , Ak1
}, for some k1 ∈ �, is the set of apical nodes. Each apical node is

defined as

Ai = (ωAi
, RAi

), 1 � i � k1,

where ωAi
is the initial multiset over Σ contained inside node Ai, and RAi

is the set of

rules of node Ai.

— B = {B1, B2, . . . , Bk2
}, for some k2 ∈ �, is the set of basal nodes. Each basal node is

defined as

Bi = (ωBi
, RBi

), 1 � i � k2,

https://doi.org/10.1017/S0960129509990156 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990156


(Tissue) P systems with cell polarity 1147

where ωBi
is the initial multiset over Σ contained inside node Bi, and RBi

is the set of

rules of node Bi.

— C = {C1, C2, . . . , Ck3
}, for some k3 ∈ �, is the set of the internal nodes. Each internal

node is defined as

Ci = (ωCi
, RCi

), 1 � i � k3,

where ωCi
is the initial multiset over Σ contained inside node Ci, and RCi

is the set of

rules of node Ci.

— EA, called the apical environment, is a region containing an (up to) infinite number of

objects from Σ. The apical environment can only be accessed through the nodes in the

set A.

— EB , called the basal environment, is a region containing an (up to) infinite number of

objects from Σ. The basal environment can only be accessed through the nodes in the

set B.

— conn ⊆ C × (A ∪ B ∪ C) is the set of all existing connections between any internal node

of the cell and any other node of the cell, either apical, basal or internal.

The rules in RAi
(respectively, RBi

) can be of the following four types:

1 Symport rule: (u, out) or (u, in), for some (non-empty) multiset u over Σ. When a rule of

the form (u, out) is applied, the multiset of objects u is sent to the apical (respectively,

basal) environment. On the other hand, when a rule of the form (u, in) is applied,

the multiset of objects u is taken from the apical (respectively, basal) environment. If

|u| = 1, then the rule is said to be a uniport rule.

2 Antiport rule: (u, out; v, in), for some u, v multisets over Σ. When a rule of this type is

applied, the multiset of objects u is sent from the node to the apical (respectively, basal)

environment while, at the same time, the multiset of objects v is taken from the apical

(respectively, basal) environment and placed into the node.

3 Communication rule: (u, go), for some u multiset over Σ. When a rule of this type is

applied, the multiset of objects u is sent from the node to an internal node in the

set C , chosen non-deterministically from amongst all internal nodes connected to Ai

(respectively, Bi) according to the connections defined in the set conn.

4 Evolution rule: (a → b), for some a, b ∈ Σ. When a rule of this type is applied, the single

object a is transformed into the (not necessarily distinct) single object b, which remains

within the node. Evolution rules are non-cooperative and conservative, meaning that

the number of objects in the system cannot be increased or decreased by means of such

rules; objects can only be modified by them.

Since we assume that internal nodes cannot communicate directly with the external

(apical or basal) environments, the rules appearing in the sets RCi
can only be of types 3

and 4. In particular, if a communication rule (u, go) is applied within an internal node

Ci, then the multiset u is sent from Ci to another node (internal, apical or basal), chosen

non-deterministically from amongst all nodes connected to Ci by means of a connection

in the set conn.

Note that, following the standard notation used for writing biochemical reactions, we

choose to denote the multisets appearing in any (symport, antiport, or communication)
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Fig. 2. Structure of a P system with cell polarity.

rule as u = α1a1, α2a2, . . . , αnan, where a1, a2, . . . , an are distinct symbols from Σ, and

α1, . . . , αn ∈ � are their respective multiplicities in u.

Figure 2 shows the structure of a polarised cell with apical, basal and internal nodes,

their interconnections, and the apical and basal environments. We tacitly assume that

all nodes are contained within a unique membrane, which is not explicitly included in

the formal definition of Π, since it is uniquely determined and has no explicit role in

computations. By convention, we say that the orientation of a polarised cell Π is directed

from the apical to the basal environment, and this is reflected in the internal structure of

the cell as the (ordered) series of the apical, internal and basal nodes. According to this

interpretation, we denote the orientation of Π as or(Π) = (EA � EB).

The apical and basal environments, which surround the opposite faces of the cell, are in

general assumed to contain an infinite number of objects over the same alphabet. When

investigating the computational power of P systems with cell polarity, anyway, we will

assume that the basal environment is initially empty. In fact, we can imagine that, again re-

flecting the chosen orientation of the cell, the apical environment corresponds to the ‘input

region’, while the basal environment corresponds to the ‘output region’ (where we look for

objects at the end of the computation); hence, we need to avoid the situation in which any

objects appear in EB at the beginning of the computation, which might falsify its result.

In a P system with cell polarity, the communication of objects occurs as follows. Objects

can be exchanged between the environments and the cell only by means of the apical and

basal nodes, respectively. In particular, environmental objects can only enter an apical

(basal) node when a symport or antiport rule is applied within that node. On the other

hand, communication rules in the apical (basal) nodes can only be used to exchange

objects between an apical (basal) node and an internal node, whenever the two of them

are linked through a connection belonging to the set conn.

Communication rules also differ from symport rules as they imply a non-deterministic

choice of the target node to which the objects will be sent. In other words, when a

communication rule is applied within an apical (or basal) node, the objects specified by
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the rule can be sent to any other internal node that shares a connection with the apical

(or basal) node where the rule is applied. If a communication rule is applied within an

internal node, the objects can be sent to any apical, basal or internal node that shares a

connection with the internal node where the rule is applied. In particular, if an internal

node is connected to itself, that is, if there exists a connection (Ci, Ci) ∈ conn, for some

i = 1, . . . , k3, then the objects specified by the communication rule can (according to a

non-deterministic choice) remain within the same node.

As we will see in Section 6, the same type of communication rules used for a P system

with cell polarity can also be used to communicate objects between two adjacent cells in

a tissue connected by means of ‘gap junction’ connections.

A configuration Ct of a P system with cell polarity Π at step t, t � 0, is defined as

Ct = {ωA1
, . . . , ωAk1

, ωB1
, . . . , ωBk2

, ωC1
, . . . , ωCk3

},

where ωAp
, ωBq

, ωCr
, 1 � p � k1, 1 � q � k2, 1 � r � k3, are the multisets over Σ contained

at step t in the corresponding apical, basal or internal node of Π, respectively.

A computation of a P system with cell polarity is a sequence of configurations (C0,C1,

C2, . . . ) starting from the initial configuration of Π. A transition Ct → Ct+1 between

two consecutive configurations, at time steps t, t + 1, t � 0, is determined as follows.

All apical, internal and basal nodes are processed in parallel. Within each node, all

applicable communication and evolution rules are applied in a maximally parallel and

non-deterministic way, while every applicable symport and antiport rule can be applied

only once during each computation step (in this case, if the same multiset can be assigned

to competing rules, then one of them is chosen non-deterministically). The rationale

behind this sequential application of symport and antiport rules is that they mimic the

presence of specific transport proteins occurring on the apical and basal faces of the

cell: each protein carrying out a symport or antiport action can only move a limited

and precise number of molecules at a time, therefore we do not consider the possibility

of applying each symport or antiport rule an unlimited number of times in each step

of the computation. Note that in this way we also avoid the possibility of generating

illegal configurations, where infinite copies of objects (imported from the apical and basal

environments through the maximally parallel application of symport and antiport rules)

would occur within the cell nodes. On the other hand, communication rules between

internal and apical (basal) nodes – and, similarly, evolution rules – can be applied in

parallel, since they do not formally represent any specific molecular structures within the

cell, but just mimic the free diffusion processes of molecules within the cytoplasm.

The computation halts when no further rule can be applied within any node of the

system. In this case, the output of the system is given by the multiset of symbols from (a

specified subset of) Σ found in the basal environment in the halting configuration.

4. Computational power of P systems with cell polarity

In this section we show that (single-cell) P systems with cell polarity are Turing complete.

In particular, we show how to simulate Random Access Machines (RAMs) (Shepherdson

and Sturgis 1963), which are a well-known Turing powerful formalism.
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4.1. Random Access Machines

RAMs are a computational model based on finite programs acting on a finite set of

registers. More precisely, a RAM R is composed of the registers r1, . . . , rn, which can

hold arbitrary large natural numbers, together with a sequence of indexed instructions

(1 : I1), . . . , (m : Im). Minsky (1967) showed that the following two instructions are sufficient

to compute any partially recursive function:

— (i : Inc(rj)): add 1 to the contents of register rj and go to the next instruction;

— (i : DecJump(rj , s)): if the contents of the register rj is not zero, then decrease it by 1

and go to the next instruction, otherwise jump to the instruction s.

The computation starts from the first instruction, with all registers set to zero, and

it continues by executing the instructions in sequence, unless a jump instruction is

encountered. The execution stops when an instruction, whose number is higher than

the length of the program, is reached. For the sake of brevity, we consider RAMs that

satisfy the following constraint: if the RAM has m instructions, then all the jumps to

addresses higher than m are jumps to the address m+ 1. This constraint is not restrictive,

because for any RAM not satisfying the constraint it is possible to construct an equivalent

RAM (that is, a RAM computing the same function) that satisfies it.

A state of a RAM is modelled by (i, c1, . . . , cn), where i is the program counter indicating

the next instruction to be executed, and c1, . . . , cn are the current contents of the registers

r1, . . . , rn, respectively. We use the notation (i, c1, . . . , cn) →R (i′, c′
1, . . . , c

′
n) to denote the fact

that the state of the RAM R changes from (i, c1, . . . , cn) to (i′, c′
1, . . . , c

′
n) as a consequence

of the execution of the ith instruction. A state (i, c1, . . . , cn) is final if the program counter

i is strictly greater than the number of instructions m. We say that a RAM R halts if its

computation reaches a final state. The output of a halting computation is the contents of

register r1 in the final state. Non-halting computations produce no output.

4.2. Simulating RAMs by means of P systems with cell polarity

We are now going to show how to simulate RAMs using P systems with cell polarity.

The basic idea is to represent the contents of the registers by means of sets of copies of

objects in the basal environment (which is initially empty, corresponding to the values of

all registers being equal to zero): to be precise, if register ri contains value ci, then ci copies

of object ri will be present in the basal environment. The instructions are represented as

follows. If the program counter contains the value i (that is, the instruction to be executed

is the ith one), then an object Instri will occur within the system. At the beginning of the

computation, we start with the object Instr1 inside an apical node.

The simulation of an instruction proceeds as follows. The symbol Instri is sent out

of the system and, at the same time, the symbols needed to simulate the corresponding

instruction, and to prepare the execution of the next instruction, are brought into the

system. In particular, if the ith instruction is an increment instruction, then a copy of

object rj is taken from the apical environment (together with an auxiliary object) and

sent to the basal environment. At the same time, the object Instri+1 used to start the

simulation of the next instruction enters into the system.
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If the ith instruction is an instruction of type (i : DecJump(rj , s)), then two different

behaviours are possible. If at least one copy of object rj is present in the basal environment,

then one of these copies is moved (through the system) from the basal to the apical

environment, thus decreasing by one the value of register rj , and the object Instri+1 is

brought into the system. If, on the other hand, no copies of object rj occur in the basal

environment, then a jump instruction is simulated by bringing into the system the object

Instrs.

The simulation we propose is non-deterministic. In particular, when a ‘wrong’ branch of

the simulation is executed, a particular object loop is introduced, which is then rewritten

forever to induce a non-halting computation.

If the computation eventually halts, the output of the RAM encoding is the number of

occurrences of object r1 in the basal environment, just as the output of the RAM is the

contents of register r1 in the final state of the computation.

Theorem 4.1. P systems with cell polarity are Turing complete.

Proof. We show how to simulate a RAM machine M with m instructions and n registers

by means of a (single-cell) P system with cell polarity.

Consider the system

Π = (Σ, A, B, C, EA, EB, conn)

where:

— Σ = {Instri | 1 � i � m + 1} ∪ {rj | 1 � j � n} ∪
{Deci+1,s, Dec

′
i+1,s, Dec

′′
i+1,s, Dj , D

′
j |

(i : DecJump(rj , s)) is a decrement instruction of M} ∪
{Inc, Inc′, loop};

— A = {A1 = ({Instr1}, RA1
)};

— B = {B1 = (�, RB1
)};

— C = {C1 = (�, RC1
)};

— EA is the apical environment, which initially contains an infinite number of each

symbol from Σ;

— EB is the basal environment, which is initially empty;

— conn = {(C1, A1), (C1, B1)}.
Various rules are defined in each node in order to simulate each instruction of the

RAM. Moreover, each node A1, B1, and C1 contains the evolution rule (loop → loop),

which is used to induce infinite computations, as explained above.

To simulate an instruction (i : Inc(rj)), 1 � i � m, 1 � j � n, we define the following

sets of rules:

— inside RA1
:

(Instri, out; Instri+1, Inc, rj , in)

(Inc, rj , go)

(Inc′ → loop)

— inside RB1
:

(Inc′, rj , out)
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— inside RC1
:

(Inc → Inc′)

(Inc′, rj , go)

Assume we have an object Instri in the unique apical node corresponding to an

instruction (i : Inc(rj)). The simulation then proceeds as follows.

Using an antiport rule, the object Instri is sent to the apical environment, while the

objects Inc and rj are brought into the node A1 together with the object Instri+1, which

can immediately start the simulation of the next instruction. Meanwhile, the objects Inc

and rj are sent together to node C1, using the rule (Inc, rj , go). Here, Inc is primed, and

the objects are then sent out together. If they come back to node A1, then Inc′ is changed

into the symbol loop, and the computation never halts, and no output is produced. If, on

the other hand, they are sent to node B1, they are moved to the basal environment by

means of the symport rule (Inc′, rj , out), thus correctly adding an object rj within it.

To simulate an instruction (i : DecJump(rj , s)), we need to define the following sets of

rules:

— inside RA1
:

(Instri, out; Deci+1,s, Dj , in)

(Deci+1,s, Dj , go)

(D′
j → loop)

(Dec′′
i+1,s → loop)

(Dec′′
i+1,s, rj , out; Instri+1, in)

(Dec′′
i+1,s, D

′
j , out; Instrs, in)

— inside RB1
:

(D′
j , out; rj , in)

(Dec′′
i+1,s, rj , go)

(Dec′′
i+1,s, D

′
j , go)

(Dec′′
i+1,s → loop)

— inside RC1
:

(Deci+1,s → Dec′
i+1,s)

(Dj → D′
j)

(Dec′
i+1,s → Dec′′

i+1,s)

(D′
j , go)

(Dec′′
i+1,s, go)

(Dec′′
i+1,s, rj , go)

(Dec′′
i+1,s, D

′
j , go)

Assume we have an object Instri in the unique apical node corresponding to an

instruction (i : DecJump(rj , s)). The simulation then proceeds as follows.

Using an antiport rule, the object Instri is sent to the apical environment, while the

objects Deci+1,s and Dj are brought into the node A1. The objects are then sent together

to node C1, using the rule (Deci+1,s, Dj , go). Here they are both primed, and Dec′
i+1,s is

then changed to Dec′′
i+1,s, while D′

j is sent out of the node. If D′
j comes back to node A1,

the symbol loop is produced at the next step, and the computation never halts. Otherwise,

if it reaches node B1, the simulation proceeds in one of two possible ways. If at least
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one object rj is present in the basal environment, then the antiport rule (D′
j , out; rj , in)

can be applied, bringing an object rj into node B1. If no object rj is present in the

basal environment, then no rule can be applied at this moment. Hence, a decrement is

performed if and only if at least one object rj occurs in EB .

Meanwhile, object Dec′′
i+1,s is ejected from node C1. If it reaches node A1, then the only

possible rule that can be applied at the next step is (Dec′′
i+1,s → loop), which induces an

infinite loop. If, instead, Dec′′
i+1,s is sent to cell B1, then the computation can continue

in different ways. We could apply the rule (Dec′′
i+1,s → loop), thus inducing an infinite

loop, or one of the rules (Dec′′
i+1,s, rj , go), (Dec′′

i+1,s, D
′
j , go), depending on the other symbol

present in B1:

(i) If we have the symbol rj , we can apply the rule (Dec′′
i+1,s, rj , go), and both objects

Dec′′
i+1,s and rj are sent to C1. Here, we can apply (Dec′′

i+1,s, go), which sends Dec′′
i+1,s

alone to either A1 or B1. In both cases, an infinite loop is induced by the rule

(Dec′′
i+1,s → loop). The other applicable rule is (Dec′′

i+1,s, rj , go), which sends both

objects to either A1 or B1. In this case, we obtain exactly the same conditions as

we had two computation steps earlier, and the computation can proceed in the

same way. Thus, after some time spent moving between nodes B1 and C1, both

objects eventually reach node A1. Here, we can apply the rule (Dec′′
i+1,s → loop),

again producing no output, or the rule (Dec′′
i+1,s, rj , out; Instri+1, in), which correctly

concludes the decrement operation, and brings into node A1 the object corresponding

to the next instruction (the (i + 1)th one) to be simulated.

(ii) If B1 contains the symbol D′
j , we can apply the rule (Dec′′

i+1,s, D
′
j , go), whereby both

objects Dec′′
i+1,s and D′

j are sent to C1. Here we can apply the rule (Dec′′
i+1,s,

D′
j , go), which sends out both objects, to either A1 or B1. As previously explained,

after some cyclic movements between nodes B1 and C1, both objects can eventually

reach node A1. Here we can apply the rule (Dec′′
i+1,s → loop), again producing no

output, or the rule (Dec′′
i+1,s, D

′
j , out; Instrs, in), which correctly concludes the operation

by jumping to instruction s.

As in the previous case, in C1 we can also apply (Dec′′
i+1,s, go), which sends Dec′′

i+1,s,

alone, to A1 or B1; unlike the previous case, we can also apply the rule (D′
j , go), which

sends D′
j , alone, to A1 or B1. If both objects are sent separately to the same node, the

effect is the same as in the application of the rule (Dec′′
i+1,s, go). If they are sent to

different nodes, they generate the loop object, inducing a non-halting computation.

Finally, if the object Instrm+1 enters the system, no further rule can be applied, so the

computation stops and the output is the number of symbols r1 appearing in the basal

environment.

5. A formal description of the transcellular transport of glucose in intestinal cells

In this section we provide a formal description of the transcellular transport of glucose in

intestinal epithelial cells by exploiting the concept of orientation and the communication

rules of a P system with cell polarity. In particular, we describe this process by focusing

on the (symport, antiport, uniport) communication of the solutes (potassium and sodium
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Fig. 3. Glucose transport in intestinal epithelial cells.

ion and glucose) carried out by specific transmembrane transport proteins placed at

the apical and basal faces of the membrane (see Figure 3). This biological process can

occur efficiently in intestinal cells thanks to their polarised structure and to the adherent

junctions, which prevent the transported substances from diffusing back into the intestinal

lumen. For further details about this biological process, see Alberts et al. (2002), Lodish

et al. (2000) and Nelson and Cox (2004).

Formally, we define the P system with cell polarity for transepithelial glucose transport

as Πgluc = (Σ, A, B, C, EA, EB, conn) where:

— Σ = {gluc,K+, Na+} is the alphabet denoting the solutes glucose, potassium and

sodium, respectively;

— A = {A1, . . . , Ak1
}, k1 ∈ �, is the set of apical nodes, where ωAi

= � and RAi
=

{(2Na+, gluc, in), (gluc, go), (Na+, go)}, for all 1 � i � k1;

— B = {B1, . . . , Bk2
}, k2 ∈ �, is the set of basal nodes, where ωBi

= � and RBi
=

{(3Na+, out; 2K+, in), (gluc, out)}, for all 1 � i � k2;

— C = {C1, . . . , Ck3
}, k3 ∈ �, is the set of internal nodes, where ωCi

= � and RCi
=

{(gluc, go), (Na+, go)}, for all 1 � i � k3;

— EA is the apical environment, initially containing an (up to) infinite number of objects

from Σ;

— EB is the basal environment, initially containing an (up to) infinite number of objects

from Σ;

— conn = C × (A ∪ B ∪ C).

The transepithelial transport of glucose from the intestinal lumen (apical face) into the

bloodstream (basal face) is a cellular phenomenon involving two main phases.

In the first phase, glucose is imported from the lumen into the cell by means of

transmembrane transport proteins placed (on the microvilli) at the apical face of the

intestinal cells. Since the inflow of glucose occurs against its concentration gradient (the

intracellular concentration of glucose being higher than its luminal concentration), its

energetically unfavorable inward passage is coupled to the energetically favorable inward
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passage of two sodium ions. This movement is described by means of the symport rule

(2Na+, gluc, in) in apical nodes. The number k1 of apical nodes can here be imagined

as the copy number of symporters (that is, transport proteins that allow the symport of

molecules) occurring at the apical membrane. Glucose and sodium ions can then diffuse

into the cytoplasm, where they can either take part in other cellular processes (for example,

the metabolism of glucose), or reach the basal side of the cell. This step is modelled by

means of communication rules of type (gluc, go), (Na+, go), which move the objects from

the apical to the internal nodes. The connections between apical (or basal) nodes and

internal nodes represent, in fact, all the possible ways of diffusing within the cellular

cytosol.

The glucose and sodium objects can then move from internal nodes to basal nodes by

the rules (gluc, go), (Na+, go). Note that since the application of communication rules is

assumed to be non-deterministic, these objects can even go back to apical nodes from

where, however, they can only return to internal nodes (by means of the similar rules

(gluc, go), (Na+, go) defined inside the apical nodes).

The second phase of the process consists of the outflow of glucose and sodium ions

from the cells into the extracellular ambient, which occurs at the basal face of intestinal

cells by means of different transport proteins. In order to maintain low (physiological)

concentrations within the cell, sodium has to be exported from the cell. The sodium outflow

is carried out by transport proteins called ATPases, or pumps, which exploit the energy

released by the hydrolysis of ATP molecules (see also Besozzi and Ciobanu (2005)). Here,

we will only look at the communication process and will not consider the role of ATP:

we will just describe the movement of ions using the antiport rule (3Na+, out; 2K+, in),

which denotes the fact that three sodium ions are moved to the basal environment while,

at the same time, two potassium ions are taken into the cell. On the other side, the

glucose outflow at the basal face of the cell occurs by means of uniporter proteins, which

catalyse the passage of glucose down its concentration gradient (the extracellular basal

concentration of glucose being lower than its intracellular concentration). This movement

is described through the uniport rule (gluc, out), which is defined in basal nodes. The

number k2 of basal nodes can be seen as the sum of the copy numbers of both ATPases

and uniporters occurring at the basal membrane.

A more detailed model of the transepithelial movement of glucose would require us

also to consider the extracellular and intracellular concentrations of glucose and ions,

as well as the fact that these solutes move according to (that is, against or down) their

concentration gradients. Since we have not defined the application of rules based on some

‘control condition’ for P systems with cell polarity, we cannot include these biological

aspects directly in the formal description presented in this section, but a further extension

of P systems with cell polarity could include this. See Besozzi and Rozenberg (2006) for

more detailed formalisations of the functioning of transmembrane transport proteins.

As described in Section 2, epithelial cells also have several basolateral junctions, which

are needed to keep adjacent cells in tight contact with each other, and to allow a

direct link (via gap junctions) between the cytoplasmic regions of the coupled cells. Many

biological phenomena occurring in tissues depend on the existence of these communication

junctions (Alberts et al. 2002; Lodish et al. 2000). For instance, the electrical coupling
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through gap junctions allows the contractive synchronisation of heart muscle cells; also,

some nerve cells are coupled electrically and can spread the action potential very rapidly

from cell to cell, thus avoiding the transmission delay at synapses. Gap junctions also

permit the exchange of small metabolites, ions or intracellular secondary messengers,

thus providing the coordination of linked cells (for example, during embryogenesis, or for

hormonal stimulation in the liver and pancreas). Intercellular processes like these cannot

be modelled by single-cell polarised P systems, but require the definition of tissue-like

systems, where the cells are linked together through appropriate communication channels.

We propose a formalisation of tissue systems like this in the following section.

6. Tissue P systems with cell polarity

In this section we introduce tissue P systems with cell polarity. Informally, this type of

system is composed of several polarised cells, which are all oriented in the same direction

(and look on common apical and basal environments) and are linked together by means of

particular connections, called gap junctions. Gap junctions are ‘communication channels’

between pairs of internal nodes, each belonging to two adjacent polarised cells. In

particular, note that we do not consider the existence of gap junctions between apical (or

basal) nodes and internal nodes. In this way, we reflect the biological presence of adherent

junctions between adjacent cells in the epithelial tissue, which ensures that the apical and

basal regions of the membranes are well separated.

Moreover, since cellular gap junctions between adjacent cells are not always open,

we consider that, during the computation, each gap connection can switch between two

states: open, meaning that objects can be exchanged among the adjacent cells through the

gap connection, or closed, when no object can be communicated through it. The state of a

gap junction is determined, step by step, by means of two ‘control’ multisets, one for each

node involved in the connection. The gap junction is open only if both control multisets

are not contained in the current multisets of the nodes, otherwise the connection remains

closed.

Hence, we build a system structure where each cell can be seen as a computing unit

per se – with its own apical, basal and internal nodes, connected in a specified way –

but also where different cells are coupled and can communicate by means of appropriate

intercellular links.

Formally, a tissue P system with cell polarity (TPCP) of degree k, k � 2, is a structure

Θ = (Π1,Π2, . . . ,Πk, GJ)

where:

— Πi is a polarised cell such that or(Πi) = (EA � EB), for all 1 � i � k;

— GJ = {〈gapi,j , M̂i,j〉 | 1 � i, j � k} is a set of gap junctions between two polarised cells

Πi,Πj , where:

– gapi,j ⊆ {{Ci,1, Ci,2, . . . , Ci,n} × {Cj,1, Cj,2, . . . , Cj,m} | Ci,h, 1 � h � n, Cj,l , 1 � l �
m, are internal nodes of Πi and Πj , respectively} is the set of gap connections

between Πi and Πj , 1 � i, j � k, i 
= j;
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Fig. 4. Gap junctions between two polarised cells in a tissue.

– M̂i,j = {(ω̂i,h, ω̂j,l) | ω̂i,h, ω̂j,l are multisets over Σ, for all 1 � h � n, 1 � l �
m, such that

(
Ci,h, Cj,l

)
∈ gapi,j}, is the set of control multisets of the gap con-

nections gapi,j , 1 � i, j � k, i 
= j.

As an example, Figure 4 shows the structure of a TPCP of degree 2, with a representation

of two gap connections, (Ci,h1
, Cj,l), (Ci,h2

, Cj,l), between the internal nodes Ci,h1
, Ci,h2

in cell

Πi, and the internal node Cj,l in cell Πj . Note also that both cells face the same apical

and basal environments, and have the same orientation.

The set of gap junctions defines how many communication channels (that is, gap

connections) there are between the internal nodes of two adjacent cells. These connections

are exactly the means by which adjacent cells in a tissue can exchange objects. Consider,

for instance, an internal node Ci,h in cell Πi, which contains a communication rule of the

type (u, go): the application of such a rule will determine the non-deterministic choice of

the target node – chosen from amongst all the nodes connected to Ci,h – to which the

multiset u will be sent. These nodes can be apical, basal or internal nodes in the cell

Πi (connected to Ci,h by means of connections in the set conn), or the internal nodes of

another cell Πj (connected to Ci,h by means of gap connections in the set gapi,j).

The multiset u can be sent non-deterministically from Ci,h to other nodes in Πi without

any restriction, as defined in Section 3 for a single-cell P system with polarity. On the

other hand, u can be communicated to an internal node of a different cell only if the

gap connection between these two nodes is in an appropriate ‘state’. The state of the gap

connection is determined throughout the computation, step by step, by looking at both

the current multisets and the control multisets of the connected nodes. To be precise, we

define the state function of the gap connections, St : gapi,j → {open, closed}, at time step

t, t � 0, as follows. For each (Ci,h, Cj,l) ∈ gapi,j , 1 � i, j � k, i 
= j, we have:

St(Ci,h, Cj,l) =

{
open if ω̂i,h � ωi,h and ω̂j,l � ωj,l

closed otherwise
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where ω̂i,h, ω̂j,l are the control multisets over Σ of the gap connection (Ci,h, Cj,l), and

ωi,h, ωj,l are the multisets over Σ occurring at time t in the internal nodes Ci,h and Cj,l ,

respectively.

In other words, at any step of the computation, a gap connection can be in either the

open or closed state. The gap connection is open only if the control multisets of both

connected internal nodes are not contained within the multisets currently occurring within

these nodes. On the other hand, if at least one control multiset appears inside one node,

then the gap connection is closed (in both communication directions). Note that if an

internal node, say Cj,l in cell Πj in Figure 4, is connected to two or more internal nodes

of another cell, say Ci,h1
, Ci,h2

in cell Πi in Figure 4, then the gap connection (Ci,h1
, Cj,l)

may be open even if the other connection (Ci,h2
, Cj,l) is closed (this happens when Ci,h2

contains its control multiset within its current multiset). Obviously, both connections are

closed if Cj,l contains its control multiset. The state of each gap connection can change

from step t to step t+ 1 because of the application of communication and evolution rules

that involve the multisets contained in the internal nodes.

A configuration Ct of a TPCP at step t, t � 0, is determined by the multisets occurring

at time t within each (apical, basal and internal) node of every polarised cell. Formally,

we have Ct = (C1(t),C2(t), . . . ,Ck(t)), where Ci(t) = {ωA1
, . . . , ωAk1

, ωB1
, . . . , ωBk2

, ωC1
, . . . ,

ωCk3
} is the configuration of the cell Πi at step t, and ωAp

, ωBq
, ωCr

, 1 � p � k1, 1 � q �
k2, 1 � r � k3, are the multisets occurring at step t in the corresponding apical, basal or

internal nodes, respectively, of cell Πi, 1 � i � k.

By looking at the configuration of all polarised cells in the TPCP, and by checking the

conditions determined by such configurations for all gap connections, we are therefore

able to determine which internal nodes of two linked (adjacent) cells can exchange objects,

at any step t of the computation.

Formally, a computation of a TPCP Θ is a sequence of configurations (C0,C1,C2, . . . )

starting from the initial configuration of Θ. A transition Ct → Ct+1 between two

consecutive configurations, at time steps t, t + 1, t � 0, is determined as follows. All

cells appearing in Θ are processed in parallel and, within each cell, the prescriptions given

in Section 3 for symport, antiport, evolution and communication rules are followed.

The computation of a TPCP halts when no further rule can be applied within any node

of any cell of the tissue P system. The output of a TPCP is defined by the multiset of

symbols from (a specified subset of) Σ that occurs in the basal environment in the halting

configuration.

7. Conclusions

Many variants of P systems inspired by various biological phenomena have been defined

in the literature. Following in this tradition, in this paper we have introduced P systems

with cell polarity as a synchronous, parallel and distributed model of computation inspired

by the structure and functioning of the cells that compose the mono-layered intestinal

epithelial tissue. In these systems, polarity is intended to represent the mutual positions of

the computing elements that occur in each cell. These computing elements are placed in

the nodes of a directed graph, and are of three types, apical, basal and internal, all living
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in the same region (the skin membrane). Communication of objects between the nodes

(as well as with the apical and the basal environments) is performed through symport,

antiport, uniport and communication rules. While they are inside the system, single objects

can also be modified by non-cooperative and conservative evolution rules.

We have shown two preliminary results for this new model of computation. From

a theoretical point of view, we have shown that P systems with cell polarity achieve

Turing completeness since they are able to simulate RAMs non-deterministically. From a

modelling point of view, we have shown that the transepithelial movement of glucose from

the intestinal lumen into the blood can be described by such a formal system. We have

subsequently defined tissue P systems with cell polarity as a model of tissue P systems in

which cells are connected by gap junctions. These are communication channels that can

move objects between different cells during computations, depending on their state, which

can be open or closed. Such states are controlled by the presence of specific multisets of

objects in the cells connected by the junction.

Two directions for future research are of clear interest. First, determining whether

a deterministic simulation of RAMs can be performed using a single cell remains an

open problem. It would also be interesting to assess the computational power of purely

communicative systems, where evolution rules are not admitted. A natural question to ask

for these systems is whether we can, by exploiting the controlled states of gap junctions

of polarised tissue P systems, achieve the computational power of Turing machines,

considering the various restrictions on the rules used.
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In: Păun, Gh., Rozenberg, G., Salomaa, A. and Zandron, C. (eds.) Membrane Computing.

https://doi.org/10.1017/S0960129509990156 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990156


D. Besozzi et al. 1160

International Workshop, WMC–CdeA 02. Springer-Verlag Lecture Notes in Computer Science

2597 261–269.
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