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Boundary streaming by internal waves
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Damped internal wave beams in stratified fluids have long been known to generate
strong mean flows through a mechanism analogous to acoustic streaming. While the
role of viscous boundary layers in acoustic streaming has been thoroughly addressed,
it remains largely unexplored in the case of internal waves. Here we compute the
mean flow generated close to an undulating wall that emits internal waves in a viscous,
linearly stratified two-dimensional Boussinesq fluid. Using a quasi-linear approach,
we demonstrate that the form of the boundary conditions dramatically impacts the
generated boundary streaming. In the no-slip scenario, the early-time Reynolds stress
divergence within the viscous boundary layer is much stronger than within the bulk
while also driving flow in the opposite direction. Whatever the boundary condition,
boundary streaming is however dominated by bulk streaming at larger time. Using
a Wentzel–Kramers–Brillouin approach, we investigate the consequences of adding
boundary streaming effects to an idealised model of wave–mean flow interactions
known to reproduce the salient features of the quasi-biennial oscillation. The presence
of wave boundary layers has a quantitative impact on the flow reversals.

Key words: geophysical and geological flows, internal waves, stratified flows

1. Introduction
Internal gravity waves play a crucial role in the dynamics of atmospheres and

oceans by redistributing energy and momentum (Sutherland 2010). In particular,
strong mean flows can be generated by nonlinear effects within internal wave
beams (Lighthill 1978), a phenomenon analogous to acoustic streaming (Eckart
1948; Riley 2001). Internal wave streaming is central to the quasi-biennial oscillation
of zonal winds in the equatorial stratosphere (Baldwin et al. 2001). The salient
features of this robust phenomenon have been reproduced in a celebrated laboratory
experiment (Plumb & McEwan 1978) and in direct numerical simulations (Wedi
& Smolarkiewicz 2006). Since then, other instances of internal wave streaming
have been reported in various experimental and numerical configurations: Semin
et al. (2016) used a quasi-two-dimensional experimental setting similar to that of
Plumb & McEwan (1978) to describe internal wave streaming in the absence of
flow reversal; Bordes et al. (2012), Grisouard & Bühler (2012) and Kataoka &
Akylas (2015) showed that three-dimensional effects lead to vortical streaming in the
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domain bulk. However, those previous studies have not addressed the role of viscous
boundary layers and their potential implications for the generation of mean flows
confined to the boundary. This contrasts with acoustic waves, which have long been
known to produce strong mean flows within their viscous boundary layers (Rayleigh
1884; Nyborg 1958). Boundaries are essential to the generation of the waves in
laboratory experiments (Gostiaux et al. 2006) or numerical models (Legg 2014),
and to energy focusing (Maas et al. 1997). In the atmosphere and oceans, internal
gravity waves are often generated through the interaction between a mean flow and
a solid boundary (orography in the atmosphere, bathymetry in the oceans). Viscous
effects are negligible at those geophysical scales, but numerical simulations of these
flows are usually performed with larger effective turbulent viscosities. It is, therefore,
crucial to understand the effect of viscous boundary layers.

Viscous internal wave beams generated by boundaries have been extensively
studied (Voisin 2003), together with their consequences on the bulk energy budget of
numerical ocean models (Shakespeare & Hogg 2017). The role of viscous boundary
layers has been addressed by Beckebanze & Maas (2016) to close the energy budget
of internal wave attractors; Chini & Leibovich (2003) described the viscous boundary
layers in the case of Klemp and Durran boundary conditions; Passaggia, Meunier
& Le Dizès (2014) studied the structure of a stratified boundary layer over a tilted
bottom with a small streamwise undulation. The effect of the viscous boundary layers
on the mean flow, however, is not discussed in those works. By contrast, Grisouard
& Thomas (2015, 2016) carried out full nonlinear simulations of internal wave
reflections and showed the existence of strong mean flows induced by the waves
in the vicinity of a reflecting boundary. They also showed the importance of the
wave boundary layers in the energy budget of the mean flow. This provides a strong
incentive to revisit the mean flow generation associated with internal gravity wave
boundary layers.

Here, using a two-dimensional and quasi-linear framework, we compute the mean
flow generated by internal gravity waves close to a boundary, paying particular
attention to the role of boundary conditions. The importance of changing the
boundary condition in numerical models of internal wave dynamics close to bottom
topography has been noted in previous work related to mixing and wave dissipation
(Nikurashin & Ferrari 2010). We will show that changing boundary conditions also
substantially affects wave-driven mean flows. The quasi-linear approach is introduced
in § 2. The structure of the viscous linear waves, their induced Reynolds stress
divergences and the consequences for mean flow generation are discussed in § 3. An
application to an idealised model of a quasi-biennial oscillation analogue is presented
in § 4. A Wentzel–Kramers–Brillouin (WKB) treatment of the problem is provided in
appendix A.

2. Internal gravity wave–mean flow interactions with zonal symmetry
We consider a fluid within a two-dimensional domain, periodic in the zonal

x-direction with period L and semi-infinite in the vertical z-direction. The bottom
boundary is a vertically undulating line located on average at z = 0. The fluid is
considered incompressible, Boussinesq, viscous with viscosity ν and linearly stratified
with buoyancy frequency N. For the sake of simplicity, we ignore any buoyancy
diffusion process. This approximation is relevant for experimental configurations
where the stratification agent is salt, given the low diffusivity κ = ν/1000, but it does
not apply to the atmosphere and the ocean, where turbulent viscosity and diffusivity
have the same order of magnitude.
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Throughout this work, we solely consider monochromatic waves. Let us introduce
the typical zonal wavenumber k = 2π/L, angular frequency ω and amplitude of the
bottom undulation hb. There are three independent dimensionless numbers in the
problem. The Froude number Fr = ω/N controls the angle of propagation of the
wave. The wave Reynolds number Re = ω/(k2ν) controls the viscous damping and
the viscous boundary layer thickness of the wave field. When considering the lee
wave generation case, this wave Reynolds number scales as UL/ν, where U is the
typical mean zonal velocity. The third parameter is the dimensionless amplitude of
the wave ε= hbk, which corresponds to the typical slope of the bottom boundary and
controls the linearity of the wave. In numerical simulations, an additional aspect ratio
r= kH and a wave Péclet number ω/(k2κ) have to be taken into account, because the
domain has a finite height H, and because it includes a buoyancy diffusivity κ . Both
parameters will be much larger than one in the numerical simulations presented in this
paper, and we will assume that they do not play a significant role in this limit. We use
k−1 and ω−1 as reference length and time for the space–time coordinates, c=ω/k as
a reference velocity, N2/k as a reference buoyancy, and write the dynamical equation
in a dimensionless form

∂tu+ (u · ∇)u=−∇p+ Fr−2bez + Re−1
∇

2u,
∂tb+ u · ∇b+w= 0,

∇ · u= 0,

 (2.1)

where u= (u, w) is the two-dimensional velocity, p the renormalised pressure, b the
buoyancy anomaly, ez the unit vector of the vertical direction pointing upwards and
∇

2
= ∂xx + ∂zz the standard Laplacian operator.

Previous studies in the context of acoustic streaming have investigated the effect of
changing boundary conditions on mean flow properties (Xie & Vanneste 2014). In this
paper devoted to internal wave streaming, we discuss two different bottom boundary
conditions on z= εh(x, t), i.e.

free-slip: w= ε(∂th+ u∂xh), G[nh] · n⊥h = 0; no-slip: u= ε∂thez, (2.2a−c)

where nh = ∇(z − εh(x, t)) is a local normal vector of the bottom boundary, n⊥h a
local tangent vector and G the velocity gradient tensor (Gij = ∂jui). This free-slip
condition is the one implemented in the numerical model considered in this paper (see
the MITgcm’s User Manual for the MIT global circulation model (GCM) (Adcroft
et al. 2018)). It is equivalent to the stress-free condition when boundary curvature
can be neglected. In the stress-free case, G is replaced by its symmetric part only.
Regarding the boundary streaming, we confirmed that the discrepancies between stress-
free and our free-slip condition arise only in non-hydrostatic regimes of internal waves.
Therefore, in most practical cases, the results obtained by considering the free-slip
condition (2.2) will also be relevant for numerical simulation using the stress-free
condition. Finally, we require all gradients with respect to z to vanish as z→∞.

When considering a progressive pattern (h(x, t) = h(x − t)) in (2.2), a Galilean
change of reference yields the case of lee-wave generation by a depth-independent
mean flow passing over bottom topography. Then, the free-slip bottom boundary
condition for the generation of lee waves obviates the need to treat the near-bottom
critical layer induced by a more realistic no-slip condition (Passaggia et al. 2014).
Regarding the free-slip condition, the predictions will be compared against direct
numerical simulations of monochromatic lee-wave generation using the MIT GCM
(Adcroft, Hill & Marshall 1997), which specifically uses our definition for the
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free-slip condition. The no-slip boundary condition in (2.2) is relevant to modelling
the generation of internal gravity waves in laboratory experiments using vertically
oscillating bottom membranes (Plumb & McEwan 1978; Semin et al. 2016) or a
system of plates and camshafts (Gostiaux et al. 2006). We will, however, consider
limiting cases where the viscous boundary layer is larger than the boundary height
variations, which is not always the case in actual experiments.

We decompose any field φ into a mean flow part φ and a wave part φ′ using the
zonal averaging procedure (see Bühler 2014):

φ(z, t)=
1

2π

∫ 2π

0
dxφ(x, z, t), φ′ = φ − φ. (2.3)

The averaging of the zonal momentum equation in (2.1) leads to the mean flow
evolution equation

∂tu=−∂zu′w′ + Re−1∂zzu. (2.4)

The source of streaming is the divergence of the Reynolds stress −∂zu′w′. To compute
this term, we subtract the averaged equations from (2.1) and linearise the result
assuming (u′, w′, b′, p′) = O(ε) with ε � 1. In the limit ε � 1, in the absence of
dissipation in the buoyancy equation, it turns out that b scales with ε2 at all time
(see Bühler 2014). In the following, we will ignore b and its evolution.

At this stage, we assume that |u|� 1. Starting from a state of rest, at early times of
its evolution, the mean flow is weak, which justifies this assumption. At later times,
the feedback of the mean flow on the wave can no longer be ignored (Kataoka &
Akylas 2015; Fan, Kataoka & Akylas 2018), as will be discussed in more detail in
§ 4 (see also (A 1) in appendix A). This case without feedback from the mean flow
leads to homogeneous wave equations, which provides a simple framework to describe
essential features of boundary streaming:

∂tu′ + ∂xp′ − Re−1
∇

2u′ = 0,
∂tw′ + ∂zp′ − Fr−2b′ − Re−1

∇
2w′ = 0,

∂tb′ +w′ = 0,
∂xu′ + ∂zw′ = 0.

 (2.5)

The coupled equations (2.4) and (2.5) form a quasi-linear model for the interaction
between boundary generated viscous waves and the zonal mean flow. The Reynolds
stress divergence, −∂zu′w′, at the origin of streaming is the only nonlinear term
remaining in the problem. It acts as a forcing term and is computed from the wave
field.

We perform the wave–mean decomposition on the boundary conditions (2.2) and
we linearise the result assuming as above a wave amplitude of order ε on an
asymptotically flat boundary at z= 0, i.e.

free-slip:

∂zu= 0,
w′ − ∂th= 0,
∂zu′ = 0;

no-slip:

u= 0,
w′ − ∂th= 0,
u′ = 0.

(2.6a,b)

In the free-slip case, the Reynolds stress divergence vanishes at the bottom
(∂zu′w′|z=0 = 0), while, in the no-slip case, the Reynolds stress itself vanishes at
the bottom (u′w′|z=0 = 0). Given that u′w′|z→∞ = 0 for damped waves, the integrated
streaming in the no-slip case has to be zero:

∫
∞

0 ∂zu′w′ dz= 0. Consequently, all the
streaming far from the bottom boundary has to be compensated for by an opposite
boundary streaming.
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Boundary streaming by internal waves 75

3. From viscous waves to boundary streaming
3.1. Viscous internal gravity waves

We describe in this section the detailed structure of the Reynolds stress divergences
for both the free-slip and the no-slip boundary conditions, when the mean flow can
be neglected. Inserting the ansatz (u′, w′, b′, p′) = Re[(ũ, w̃, b̃, p̃)ei(x+mz−t)

] into (2.5)
leads to the dispersion relation for viscous internal gravity waves, expressed here as

m2
=

iRe
2

(
1±

√
1+

4i
Fr2Re

)
− 1. (3.1)

Among the four possible solutions for m, we retain only the two upward-propagating
ones, by discarding the solutions with a negative imaginary part. To simplify the
discussion, it will be useful to express these solutions in the asymptotic regime
Fr2Re� 1, followed by Fr� 1:

mw =−1/Fr+ i/(2LRe)+O((ReFr3)−1),

mbl = (1+ i)/δRe +O(Re1/2),

}
(3.2)

with
LRe = ReFr3 and δRe =

√
2/Re. (3.3a,b)

The solution mw corresponds to the propagating solution converging towards the
inviscid solution in the limit Re→∞. Here LRe is the damping length scale of
the wave beam, scaling linearly with the wave Reynolds number. The solution mbl

corresponds to the wave boundary layer. The boundary layer thickness, given by δRe,
scales as Re−1/2 as in the classical case of a horizontally oscillating flat boundary. This
last solution is needed to match the propagating solution with the viscous boundary
conditions and is analogous to the one discussed in acoustic boundary streaming
(Nyborg 1958). Importantly the ratio LRe/δRe diverges in the limit Fr2Re→+∞. This
limit, therefore, allows for a clear separation between bulk and boundary effects.

The viscous internal wave dispersion relation has already been extensively studied.
Chini & Leibovich (2003) considered a finite Prandtl number, which provides an
additional branch of boundary layer solutions associated with the diffusion operator
in the buoyancy equation. They also gave asymptotic expansions for large Reynolds
number. Grisouard & Thomas (2016) considered the effect of a Coriolis force, which
also gives rise to an additional branch of boundary layer solutions. Although rotation,
buoyancy diffusion and their associated boundary layer solutions undoubtedly impact
boundary streaming, we do not consider these additional effects, to simplify the
presentation.

In the case of a progressive sine-shaped bottom undulation, h(x, t) = Re[ei(x−t)
],

the general expression of the wave field is given by the linear combination of a
propagating (w) and a boundary layer (bl) part:

[u′,w′, b′, p′] =Re{(φwP[mw]eimwz
+ φblP[mbl]eimblz)ei(x−t)

}, (3.4)

with
P[m] = [1,−m−1, iFr−2m−1, Fr−2(1+m2)−1

]. (3.5)
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z z

No-slip
Free-slip

2πFr πFr/2

u�(z)u�(z)

∂ReLRe

(a) (b)

FIGURE 1. (Colour online) (a) Example of a linear computation of the vertical profile of
the fully established wave field, u′, in the absence of a mean flow, with the free-slip (blue)
and no-slip (red) boundary conditions. (b) Zoom on the boundary layer of the wave. The
wave damping length, LRe, and the boundary layer thickness, δRe, are represented on the
graph along with the inviscid vertical wavelength, λz = 2πFr.

Here P[m] is the polarisation of the wave obtained from (2.5), (mw,mbl) are given in
(3.2) and (φw, φbl) are scalars determined by the boundary conditions (2.6), i.e.

free-slip:


φw = iε

mwm2
bl

m2
bl −m2

w

,

φbl = iε
mblm2

w

m2
w −m2

bl
;

no-slip:


φw = iε

mwmbl

mbl −mw
,

φbl = iε
mwmbl

mw −mbl
.

(3.6a,b)

The generic vertical profiles of the wave field u′ are drawn in figure 1 for both
boundary conditions. Most of the differences between the two profiles are located in
the boundary layer close to the bottom. We will see that these different profiles lead
to very different boundary streaming behaviours, by computing the Reynolds stress
divergence of the corresponding wave fields.

3.2. Reynolds stress divergence

The Reynolds stress u′w′ is composed of cross-terms involving both the propagative
and the boundary layer contributions. In the limit of small viscosity, the ‘self-
interaction’ of the propagating contribution decreases exponentially over a scale LRe.
This effect is responsible for bulk streaming. All the other terms involve a pairing
with the boundary layer contribution that decays exponentially over the scale δRe.
The sum of these terms induces the boundary streaming. We thus decompose the
Reynolds stress into a bulk and a boundary term, i.e.

u′w′(z)= Fw(z)+ Fbl(z). (3.7)

In the remainder of this section, the quasi-linear computations will be performed
by using the exact solutions of (3.1). In order to get insights on the basic differences
between the free-slip and the no-slip cases, it is useful, however, to estimate the
Reynolds stress by using the asymptotic expression (3.2) for both boundary conditions
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in (2.6), i.e.

free-slip:


Fw(z)=

ε2

2Fr
exp

{
−

z
LRe

}
,

Fbl(z)=
ε2

Fr22
√

2Re
exp

{
−

z
δRe

}(
sin

z
δRe
+ cos

z
δRe

)
;

no-slip:


Fw(z)=

ε2

2Fr
exp

{
−

z
LRe

}
,

Fbl(z)=−
ε2

2Fr
exp

{
−

z
δRe

}
cos

z
δRe
.


(3.8)

The bulk Reynolds stress Fw is the same at leading order for both the free-slip and
the no-slip cases. The difference lies in the boundary-driven Reynolds stress Fbl. The
corresponding asymptotic expressions for the streaming body forces are

free-slip:


−∂zFw(z)=

ε2

2Fr4Re
exp

{
−

z
LRe

}
,

−∂zFbl(z)=
ε2

2Fr2
exp

{
−

z
δRe

}
sin

z
δRe
;

no-slip:


−∂zFw(z)=

ε2

2Fr4Re
exp

{
−

z
LRe

}
,

−∂zFbl(z)=−
ε2
√

Re

2Fr
√

2
exp

{
−

z
δRe

}(
cos

z
δRe
+ sin

z
δRe

)
.


(3.9)

In the free-slip case, the boundary forcing amplitude does not depend on the wave
Reynolds number at leading order, only its e-folding height does. This amplitude
decreases with the Froude number. This effect can be seen in figure 2, where
the free-slip Reynolds stress divergence ∂zu′w′ is plotted for three different values
of Reynolds and Froude numbers. These quasi-linear calculations are successfully
compared to high-resolution direct numerical simulations (DNS) of the established
wave pattern generated by a depth-independent flow above a sine-shaped topography
in a linearly stratified fluid.

In the no-slip case, boundary forcing is opposite to (and much stronger than) the
bulk forcing, as shown in figure 3(a). The underlying reason is the vanishing of the
integral of the Reynolds stress divergence over the whole domain, as discussed at the
end of § 2. According to (3.9), the amplitude of the boundary forcing evaluated at the
bottom scales as ε2Re1/2/Fr. In the limit ReFr2

�1, this amplitude is much larger than
in the free-slip case. In addition, it increases with the Reynolds number. However, we
will see in § 3.3 that the amplitude does not blow up in a distinguished limit that is
consistent with the linearisation of the equations.

3.3. Boundary flows
We now look for the mean flow response to the Reynolds stress divergences, by
inserting the linear predictions for wave fields into (2.4). When ignoring the influence
of the mean flow on the wave fields, (2.4) becomes a linear diffusion equation
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0
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3

0 0.5 1.0 1.5 2.0

z

-™zu�w�/´2

DNS, Re = 50, Fr = 0.3
DNS, Re = 200, Fr = 0.3
DNS, Re = 200, Fr = 0.8
Linear theory, Re = 50, Fr = 0.3
Linear theory, Re = 200, Fr = 0.3
Linear theory, Re = 200, Fr = 0.8

FIGURE 2. (Colour online) Plot of the vertical profile of the Reynolds stress divergence in
the absence of mean flow (u= 0) considering the free-slip boundary condition for different
pairs (Re,Fr). The symbols come from high-resolution DNS while the dashed lines come
from the full linear theory without mean flow. The other dimensionless parameters for the
simulation are ε=0.01 (wave amplitude) and r=6LRe (domain aspect ratio); the resolution
is 1x = 1z = δRe/50; the grid is stretched above z = 6LRe to avoid wave reflection; the
simulated data have been smoothed over 10 time steps of the simulation to get rid of the
fast motion coming from surface waves present in the numerical model.

0
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0
t
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z

-16 -8 0 -0.01 0 2 4 6 8 10
-0.015

-0.010

-0.005

0

0.005

-™zu�w�/´2 u

u

(a) (b) (c)

FIGURE 3. (Colour online) (a) Plot of the vertical profile of the Reynolds stress
divergence for the no-slip boundary condition computed using the full linear theory
without mean flow. (b) Plot of the vertical profile of the mean flow at t = 10 computed
using the quasi-linear model for the no-slip boundary condition. (c) Hovmöller diagram of
the mean flow, u(z, t), computed using the quasi-linear theory for the scenario in which the
lower boundary condition is no-slip. The parameters are Re= 200, Fr= 0.3 and ε= 0.005.

with a steady forcing, which can be decomposed into a bulk and a boundary
contribution, as in (3.7).

The typical time scales τw and τbl for the mean flow to reach a given velocity
U in the presence of either bulk or boundary streaming forcing terms are obtained
by balancing ∂tu with ∂zFw and ∂zFbl, respectively. Using the large-Reynolds-number
asymptotic estimates given in (3.9) leads then to τbl/τw ∼ 1/(Fr2Re) in the free-slip
case and τbl/τw ∼ 1/(Fr2Re)3/2 in the no-slip case. We thus expect the boundary
streaming to dominate over the bulk streaming at the early stage of the mean flow
evolution in both cases.

At a quasi-linear level, the early stage of the mean flow evolution is obtained for
both the free-slip and the no-slip conditions by solving (2.4) numerically, assuming
that the wave field is described by (3.1), (3.4), (3.5) and (3.6). A finite size domain is
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(c)

FIGURE 4. (Colour online) Hovmöller diagrams of the mean flow, u(z, t), for the scenario
in which the bottom boundary condition is free-slip: (a) DNS, (b) quasi-linear model
and (c) quasi-linear model without the boundary streaming terms in the Reynolds stress
divergence. The parameters are Re=200, Fr=0.3 and ε=0.01, with dx=dz= δRe/15. The
grid is exponentially stretched on the vertical axis above z= 6LRe in the DNS. At larger
time, around t∼ 300, the mean flow induced by bulk streaming becomes larger than the
mean flow induced by boundary streaming.

considered in the simulations with an aspect ratio r= 6LRe. The waves are computed
as if the domain were semi-infinite and a free-slip upper boundary condition is
considered for the mean flow.

In figure 4, we compare the quasi-linear predictions for the free-slip boundary
condition against direct numerical simulations. The parameters are Re= 200, Fr= 0.3
and ε = 0.01. For those parameters, the wave boundary layer thickness is δRe = 0.1
and the viscous damping length is LRe = 5.15. The Hovmöller diagrams focus on
an area close to the bottom boundary. We use a vertical resolution of dz = 0.0067,
which resolves the wave boundary layer properly. In the DNS, a stretched grid has
been implemented on the vertical to avoid any downward reflection. The quasi-linear
model captures well the boundary streaming effect. To emphasise the crucial role
of the boundary streaming term, we added a diagram in figure 4 of a quasi-linear
computation where the boundary forcing has been removed in (2.4) (Fbl = 0 in
(3.7)). We clearly see that the presence of boundary streaming is important to predict
accurately the early evolution of the mean flow in this case.

In figure 3(c), we show a Hovmöller diagram of the mean flow computed using
the quasi-linear model in the case of no-slip boundary condition. The parameters are
Re = 200, Fr = 0.3 and ε = 0.005. As expected from the discussion following (3.9),
the boundary forcing generates a strong boundary mean flow going in a direction
opposite to the direction of the bulk mean flow. Consistently with our previous
estimates of typical time scales for the mean flow evolution, the establishment of the
bulk flow occurs at a time scale larger than the establishment of the quasi-stationary
boundary flow.
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In the no-slip case, the mean flow eventually reaches a stationary state given by

u∞(z)= Re
∫ z

0
u′w′(z′) dz′. (3.10)

Then, the contribution from the boundary streaming is negligible with respect to the
contribution from the bulk streaming. This can be quantified by computing the order
of magnitude of typical mean flow amplitudes Uw and Ubl obtained by splitting the
Reynolds stresses in (3.10) into a bulk and a boundary contribution, respectively.
Using the large-Reynolds-number asymptotic expressions obtained in (3.8) assuming
ReFr2

→+∞ and Fr→ 0, we get Uw ∼ (εReFr)2 and Ubl ∼ ε
2Re1/2Fr−1. Their ratio

scales as (ReFr2)3/2, and thus tends to diverge: the bulk flow is dominant in the
long-time limit.

In the free-slip case, no stationary regime is reached and the mean flow amplitude
keeps increasing in time. It can be assessed by considering the z-integrated momentum,
P(t)=

∫
∞

0 u(z, t) dz. Using the free-slip boundary condition and integrating (2.4), we
get P(t) = (u′w′|z=0)t. At sufficiently large times, the mean flow varies over the
characteristic length scale

√
t/Re. Consequently, the mean flow amplitude P/

√
t/Re

increases as t1/2: eventually, the feedback of the mean flow on the wave will no
longer be negligible. We can however use this mean flow amplitude estimate,
together with the large-Reynolds-number asymptotic expressions in (3.8), to infer
that Ubl/Uw ∼ 1/(FrRe1/2). This scaling has been obtained under the assumption
Fr2Re→+∞. This means that the bulk flow is dominant in the long-time limit, just
as in the no-slip case. It is also possible to estimate the time scale τ for which the
mean flow induced by the bulk streaming becomes of the same order as the mean
flow induced by the boundary streaming. When this occurs, the long-time limit is
relevant for the estimate of the mean flow induced by boundary streaming, as above:
Ubl ∼ Fbl(0)

√
τ/Re. By contrast, assuming LRe � δRe, the flow induced by the bulk

streaming must be estimated using an early-time limit: Uw ∼ τ∂zFw|z=0. Then, using
Ubl ∼ Uw yields τ ∼ Fr4Re2. Using the parameters corresponding to figure 4 yields
τ ∼ 300.

3.4. Limitation of the quasi-linear model
To derive the quasi-linear model around a state of rest presented above, the only
necessary assumption is ε → 0, with all other parameters fixed. The quasi-linear
numerical calculations have been made using the actual solution of the dispersion
relation (3.1), but we obtained scalings by assuming simplified expressions for the
wave field in the inviscid limit Fr2Re → +∞, together with the hydrostatic limit
Fr→ 0. These two conditions imply that δRe/LRe ∼ (ReFr2)−3/2

→ 0, and therefore
make possible a clear distinction between a bulk and a boundary contribution to
streaming. To establish a self-consistent distinguished limit, we write

(ε, Fr, Re)= (ε, εα, ε−β). (3.11)

The two simplifying assumptions above correspond to β > 2α and α > 0. With these
assumptions, the wave amplitudes scale as (φw, φbl) ∼ (ε

1−α, ε1−2α+β/2) in the free-
slip case and (φw, φbl)∼ (ε

1−α, ε1−α) in the no-slip case. We now list the conditions
required for the validity of the linearisation procedure.

In the bulk, neglecting the nonlinear (advection) terms with respect to the viscous
terms and the time derivative terms yields the conditions β < 1 + α and α < 1,
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FIGURE 5. (Colour online) Distinguished limits for the validity of the linear dynamics
around a state of rest in the no-slip case: (Fr, Re) = (εα, ε−β). Each line delimits a
half-plane where one of the constraints is satisfied. The grey scale shows the number
of constraints that are satisfied. The black region corresponds to the range of exponents
(α, β) for which the asymptotic approach is self-consistent: all the constraints are satisfied
for those scalings. In the free-slip case, there is an additional constraint β < 4α− 2, which
is not represented here, but which is fulfilled within the black area. The dashed red lines
correspond to limit cases above which the mean flows induced by the bulk streaming
and boundary streaming impact the wave field. The red dot corresponds to the regime
(α, β) = (1, 2) where the distinguished limit is marginally satisfied, and where two-way
coupling between waves and mean flow can no longer be neglected.

respectively. Within the boundary layer, the full solution is composed of a bulk
and a boundary term. Neglecting nonlinear terms involving both bulk and boundary
components leads to an additional constraint β < 2. Neglecting nonlinear terms
involving only boundary components leads to an additional constraint β > 4α− 2 only
in the free-slip case. Neglecting nonlinear terms in the bottom boundary conditions
(2.2) does not add any new constraint. There are therefore six inequalities to be
satisfied for α and β in the free-slip case, five inequalities for the no-slip case. For
the latter case, regimes of parameters for which these conditions are all fulfilled
are presented in figure 5. The black area corresponds to regimes fulfilling all the
constraints. The additional condition required for the free-slip case is also fulfilled
within this black area.

In all the above analysis, we have neglected the feedback of the mean flow on the
wave field. This is always valid at sufficiently short times. However, we saw that this
can never be satisfied at a long time in the free-slip case since the mean flow keeps
increasing in time. In the no-slip case, we found that both the bulk and the boundary
mean flow are indeed negligible with respect to the horizontal phase speed (|∂t| �

|u∂x|), as Uw ∼ (εReFr)2→ 0 and Ubl ∼ ε
2Re1/2Fr−1

→ 0 in the distinguished limit.
In the no-slip case, we expect a two-way coupling between waves and mean

flow when the induced flows are of order one – with εReFr ∼ 1 for the bulk flow
and εRe1/4Fr−1

∼ 1 for the boundary-driven flow – since the terms involving the
mean flow can no longer be ignored to compute the wave field in that case. These
additional conditions are represented by the dashed red lines in figure 5. The red
dot corresponds to the regime (α, β)= (1, 2) satisfying marginally the distinguished
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limit while allowing for order-one mean flows induced by both the bulk and the
boundary forcing. Within this regime the viscous terms are of the order of nonlinear
terms in the bulk wave equation, thus invalidating the quasi-linear approach. This
limitation can be bypassed by introducing additional dissipative terms, such as a
linear friction term in the zonal flow equation or the buoyancy equation. Such terms
would allow us to control the typical vertical length scale for wave attenuation, related
to the intensity of the bulk internal wave streaming, without varying the Reynolds
number that constrains the mean flow vertical gradients. To avoid the introduction of
such additional parameters, we choose in the following to consider the quasi-linear
equations as an ad hoc model for wave–mean flow interactions. This simplified model
will illustrate how boundary streaming can affect mean flow properties in the bulk
when the feedback of the mean flow on the wave field is taken into account.

4. Application to an idealised analogue of the quasi-biennial oscillation

We consider a standing wave pattern imposed at the bottom boundary: h(x, t) =
cos(x) cos(t) with a no-slip boundary condition. This idealised configuration is thought
to capture the essential mechanism at the origin of the equatorial stratospheric
quasi-biennial oscillation (Plumb 1977), and has been experimentally studied by
Plumb & McEwan (1978). Two linear waves with equal amplitude and opposite
zonal phase speeds are emitted by such a bottom excitation. The resulting Reynolds
stress is simply the sum of the Reynolds stresses computed from each individual
wave plus a rapidly oscillating term that can be smoothed out by averaging over
this fast oscillation. The Reynolds stress divergences induced by the two waves are
opposite and annihilate each other in the absence of mean flow. Above a certain
value of the amplitude of the waves, a Hopf bifurcation occurs: a vacillating mean
flow is generated and approaches a limit cycle (Plumb 1977). Plumb & McEwan
(1978) reported the spontaneous generation of an oscillating mean flow in laboratory
experiments when the wave amplitude exceeds a threshold, and compared their
measurements against quasi-linear computations. They considered a no-slip bottom
boundary condition for the mean flow but inviscid impermeability condition for the
wave field, allowing them to ignore any boundary layer effect. Here, we investigate
the effect of the viscous boundary layers and the associated boundary streaming on
the oscillation arising with the standing wave excitation, assuming a no-slip condition
for both the mean flow and the waves. We show that the inclusion of boundary
streaming induces important alterations on the mean flow in this idealised model of
wave–mean flow interactions.

In § 3, we ignored the effect of the mean flow on the wave field. We need here
to take this feedback into account, as the initial instability arises from a perturbation
of the mean flow itself. The effect of the mean flow on the wave is included by
performing a WKB expansion of the wave field following the method of Muraschko
et al. (2015), but including dissipative effects. The full calculation is detailed in
appendix A. The Reynolds stress divergence is then computed and inserted into the
mean flow equation (2.4) in order to compute the long-time evolution of u. This task
is done numerically using the results of appendix A and for the no-slip boundary
condition in (3.6). While Plumb & McEwan (1978) considered an asymptotic
expression for the bulk solution of the dispersion relation (A 5), our numerical
calculations use the actual solutions. As discussed at the end of appendix A, this
solution captures important corrections close to the critical layers, where the mean
flow is of the order of the wave zonal phase speed.
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The resulting Hovmöller diagrams of mean flow time series are shown in figure 6
for different values of the Reynolds number. The time series used for the upper plots
have been computed using the full quasi-linear model while those used for the bottom
plots have been computed without the boundary layer contributions. All simulations
start with the same initial perturbation. In figure 6(a), we see that the inclusion of
boundary streaming has altered the critical parameter values at which the bifurcation
to mean flow reversals occurs. In figure 6(b), the Reynolds number is increased and
the oscillation is present in both cases. However, the oscillation period is decreased
by 20 % when the boundary streaming is included. By further increasing the Reynolds
number we see in figure 6(c) that the inclusion of the boundary streaming significantly
changes the mean flow oscillation. This new regime exhibiting an additional frequency
in the signal can actually be reached without the boundary streaming but at a larger
Reynolds number. A similar regime has been reported by Kim & MacGregor (2001),
and we will study these bifurcations more thoroughly in a companion paper. Our aim
here is to show that the presence of the wave boundary layer has an impact on such
bifurcation diagrams, in addition to significantly altering the period of oscillations in
the periodic case.

For the range of parameters corresponding to figure 6(b,c), the mean flow reaches
an amplitude close to the phase speed of the waves. To investigate the effect of the
boundary layers in these cases, we consider two mean flow snapshots, plotted in
figure 7, taken from the two time series plotted in figure 6(b). The snapshots are
taken at the same stage of the oscillation cycle.

The Reynolds stress divergences computed using the two mean flow snapshots
shown in figure 7(a) and considering the counter-propagating waves separately are
plotted in figure 7(b). The total Reynolds stress divergences are plotted in figure 7(c).
As expected, the boundary layers significantly modify the streaming vertical profiles.
Interestingly, while bulk streaming is dominated by the wave travelling in the same
direction as the mean flow, the main discrepancy between the case with and without
boundary streaming comes from the boundary forcing associated with the wave going
in a direction opposite to the mean flow near the bottom boundary.

In figure 6(b), we see that the bottom profile of the mean flow is approximately
steady before a reversal. Let us call λRe the typical length over which the mean
flow reaches its extremum value. This velocity is of order one as it is close to the
gravity wave zonal phase speed. Using (2.4), we infer the typical scaling of λRe by
balancing the viscous term Re−1∂zzu and the streaming term ∂zu′w′. This last term
is dominated by the bulk contribution Fw associated with the wave that propagates
in the same direction as the mean flow. This yields λRe ∼ (Re Fw(0))−1. The order
of magnitude of Fw(0) can be obtained by using the asymptotic expression in (3.8),
under the assumption Fr→ 0 and Re2Fr→∞. This yields λRe ∼ Fr/(ε2Re). Using
the parameters of figure 7, we find λRe ∼ 0.1.

The presence of the mean flow thus leads to a new ‘bulk scale’ λRe that differs from
the bulk dissipative scale LRe for the flow at rest; in particular, in our distinguished
limit (i.e. an inviscid limit), the former tends to zero, while the latter tends to infinity.
In the bulk, the wave propagating in the same direction as the mean flow is controlled
by λRe; the wave propagating in the other direction is controlled by LRe. The typical
scale of bulk flow reversals is thus given by λRe. We expect boundary streaming to
have a significant impact on these reversals when they occur within the boundary layer,
i.e. when λRe ∼ δRe or λRe� δRe. This is indeed the case in figure 6(c), where δRe ≈

0.1. It is instructive to establish the range of parameters for which this condition is
satisfied. Using δRe ∼ 1/Re1/2, we find that this length scale is larger than or of the
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FIGURE 6. (Colour online) The mean flow, u(z, t), is generated by the streaming coming
from two counter-propagating waves with the same amplitude and opposite horizontal
phase speed, generated by a vertically oscillating bottom boundary with no-slip condition
using the quasi-linear model. Hovmöller diagrams of the mean flow time series are shown
for three different Reynolds numbers. In each panel (a–c) the upper plot corresponds to a
case where the boundary streaming has been included in the computation while the lower
plot corresponds to a computation with the same parameters but without the contribution
of the boundary streaming terms. In all cases, Fr = 0.15 and ε = 0.3. In panel (b), the
mean flow oscillates with an oscillation period of approximately 40 and 50 time units for
the case with (upper plot) and without (lower plot) boundary streaming, respectively.
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FIGURE 7. (Colour online) (a) Mean flow snapshots extracted from the two time series
plotted in figure 6(b) computed with (BL) and without (NoBL) boundary streaming and
taken at t = 10 and t = 12.5, respectively. (b) Plot of the associated Reynolds stress
divergences obtained for the wave propagating in the direction of positive mean flow (‘+’)
and for the counter-propagating one (‘−’) considering the mean flow profile obtained by
either including (BL) or ignoring (NoBL) the boundary streaming. (c) Plot of the total
Reynolds stress divergences, the sum of the two counter-propagating waves contributions
for the case with boundary streaming (BL) and without boundary streaming (NoBL).

order of λRe when Fr/(ε2Re1/2)→ 0. The above analysis suggests the possibility for
active control of the boundary layer on the bulk flow when (Fr, Re)= (εα, ε−β) with
β > 4− 2α, α > 0 and β > 2α.

As seen in figure 5, the distinguished limits consistent with an active control of the
boundary layer on bulk flow reversal in the ad hoc quasi-linear model do not overlap
with the distinguished limits ensuring the validity of the quasi-linear dynamics around
a state of rest. In fact, both sets of constraints can only be marginally satisfied at
the point (α, β) = (1, 2). This is the main caveat of the analysis presented in this
section and illustrated in figure 7: because εReFr ∼ 1, the nonlinear terms involving
bulk waves are not negligible with respect to the bulk viscous term. Furthermore,
since εRe1/2

∼ 1, the boundary layer can hardly be considered as linear. Whether
active control of the boundary on the bulk flow persists when nonlinear effects are
reincorporated into the problem needs to be addressed in a future work.

Another caveat of the quasi-linear model presented here comes from the assumptions
underlying the WKB approach used to compute the wave field. We assumed that there
is a vertical scale separation between the wave and the mean flow and that the wave
field reaches its steady state in a time much shorter than the typical time of evolution
of the mean flow. The wave field is thus computed using a static WKB approximation
with a frozen-in-time mean flow. Since the mean flows shown in figure 6 exhibit
sharp shear at the bottom, and since they reach values of the order of the zonal
phase speed of the waves, those hypotheses are not valid. Nevertheless, this WKB
approximation is the simplest way of accounting for the mean flow effect on the
wave field, and a useful first step to understand their interactions.
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We should finally stress that the no-slip bottom boundary condition is most certainly
irrelevant to the actual quasi-biennial oscillation occurring in the upper atmosphere
and that our model has been derived in a distinguished limit for which the viscous
boundary layer is much larger than the boundary height variations, which is not
satisfied in laboratory experiments. However, despite these limitations, our results
show that the boundary conditions and the associated wave boundary layers should
not be overlooked, since boundary streaming may have a quantitative impact on mean
flow reversals in the domain bulk.

5. Conclusion

We have shown that changing the boundary conditions has a significant impact
on the boundary mean flow generated by internal waves emitted from an undulating
wall in a viscous stratified fluid. We first compared the effect of no-slip and free-slip
boundary conditions by considering a distinguished limit that makes possible a clear
separation between the bulk and a viscous boundary layer. In the no-slip scenario,
the Reynolds stress divergence scales at early time in direct proportion to ε2

√
Re/Fr,

where ε is the dimensionless wave amplitude, Re is the wave Reynolds number and
Fr is the wave Froude number. However, bulk streaming dominates over boundary
streaming in the long-time limit, and the system reaches a stationary state with a
mean flow that remains negligible with respect to the wave field. In the free-slip
scenario, the boundary forcing amplitude does not depend on the Reynolds number,
only its e-folding depth does. The presence of the boundary layer qualitatively alters
the early-time flow evolution. Just as in the no-slip case, bulk streaming has a
dominant contribution at long time. However, contrary to the no-slip case, the system
does not reach a stationary state. In both cases, the distinguished limit considered to
derive these results prevents a two-way coupling between waves and mean flows.

To address the interplay between boundary streaming, waves and mean flows,
we treated the case of a forced standing wave with an ad hoc truncation of the
dynamics based on a quasi-linear approach. This model captures the basic mechanism
responsible for the quasi-biennial oscillation (Plumb 1977). Using a novel WKB
treatment of the waves that takes into account viscous effects, we investigated the
effect of boundary streaming on mean flow reversals in this model. We found that
boundary streaming significantly alters the mean flow reversals by either inhibiting
them, decreasing their period or altering their periodicity depending on the wave
amplitude. Further work will be needed to determine whether this active control
of bulk properties by boundary streaming is robust to the presence of wave–wave
interactions.

Beyond these particular examples, our results show the importance of describing
properly the physical processes taking place in the boundary layers where waves
are emitted to model correctly the large-scale flows induced by these waves. We
have neglected the effects of rotation and diffusion of buoyancy which are known to
change the properties of the wave fields close to boundaries (Grisouard & Thomas
2015, 2016), and will, therefore, affect boundary streaming. By restricting ourselves
to a quasi-linear approach, we have also neglected nonlinear effects that may become
important close to the boundary, even in the limit of weak undulations, due to the
emergence of strong boundary currents. All these effects deserve special attention in
future numerical and laboratory experiments.
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Appendix A. WKB expansion of viscous internal gravity wave within a frozen-in-
time mean flow

We compute here the leading-order terms of a WKB expansion of the viscous
wave field within a weakly sheared mean flow frozen in time. We follow the method
developed in Muraschko et al. (2015), the novelty being the presence of viscosity in
the wave equation (2.5). The internal wave equations can be written as

∂tu′ + u∂xu′ +w′∂zu+ ∂xp′ − Re−1
∇

2u′ = 0,
∂tw′ + u∂xw′ + ∂zp′ − Fr−2b′ − Re−1

∇
2w′ = 0,

∂tb′ + u∂xb′ +w′ = 0,
∂xu′ + ∂zw′ = 0.

 (A 1)

We assume that the mean flow is time-independent and varies over a vertical scale
Lu much larger than the inverse of the vertical wavenumber modulus 1/|m|. None of
those quantities is known prior to our problem. For the present calculation, we assume
Lu � 1 and |m| ∼ 1 but the final result will apply for different scalings as long as
Lum� 1 is fulfilled. We therefore assume that u depends on a smooth variable Z= az
with a= 1/Lu� 1.

We introduce the WKB ansatz for a monochromatic wave solutionu′
w′
b′
p′

=Re


+∞∑
j=0

aj


ũj(Z)
w̃j(Z)
b̃j(Z)
p̃j(Z)

 ei(x−ct)+(iΦ(Z))/a

 , (A 2)

with c = ±1. The function Φ(Z) accounts for the vertical phase progression of
the wave. The local vertical wavenumber is defined by m(Z) = ∂ZΦ. Inserting this
expansion into the previous equation and collecting the leading-order terms in a leads
to

M


ũ0
w̃0

b̃0
p̃0

+ a

M


ũ1
w̃1

b̃1
p̃1

+
w̃0∂Zu− iRe−1(ũ0∂Zm+ 2m∂Z ũ0)

∂Z p̃0 − iRe−1(w̃0∂Zm+ 2m∂Zw̃0)

0
∂Zw̃0


+O(a)= 0, (A 3)

with

M =

Re−1(1+m2)− i(c− u) 0 0 i
0 Re−1(1+m2)− i(c− u) −1 im
0 Fr−2

−i(c− u) 0
i im 0 0

 . (A 4)

We introduce the polarisation P[m] defined by [ũ0, w̃0, b̃0, p̃0] = φ0(Z)P[m], where
φ0(Z) is the amplitude of the wave mode. The cancellation of the zeroth-order term
in (A 2) yields det M = 0. This gives the local dispersion relation

Fr2(c− u)2(1+m2)

(
1+ iRe−1 1+m2

c− u

)
= 1. (A 5)
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Then, using MP= 0 we obtain the polarisation expression

P[m] =
[

c− u,−
1
m
(c− u),

i
Fr2m

,
1

Fr2(1+m2)

]
. (A 6)

The cancellation of the terms proportional to a in (A 3) provides an equation for
the amplitude φ0(Z). To get rid of the terms involving components of the order-one
wave, let us introduce the vector Q= [ũ0, w̃0,−b̃0Fr, p̃0] such that Q⊥M = 0. We then
take the inner product between Q and the terms proportional to a in (A 3). This gives

ũ0w̃0∂Zu+ ∂Z(w̃0p̃0)= iRe−1∂Z(m(ũ2
0 + w̃2

0)). (A 7)

By introducing ϕ2
0 = φ

2
0(c− u)2/m and using the dispersion relation (A 5), we obtain,

after some algebra,

∂Z log ϕ2
0 +

2iRe−1(1+m2)

c− u+ 2iRe−1(1+m2)
∂Z log(1+m2)= 0. (A 8)

This last equation has to be solved for every solution m(Z) of the dispersion relation.
This is done numerically in general.

By solving the dispersion relation (A 5), we find that in the limit of large Reynolds
number the bulk solution is independent of Re and we recover the amplitude equation
obtained by Muraschko et al. (2015), i.e.

∂Zϕ0 = 0. (A 9)

However, for the boundary layer solution we find the scaling m2
bl ' iRe(c − u) at

leading order in the large-Reynolds-number limit. In this case, the amplitude equation
for the boundary layer solution reduces to

∂Z(ϕ
2
0(c− u)2)= 0. (A 10)

These results fail close to critical layers where |c− u| � 1.
Let us consider the momentum flux computed from the self-interaction of the

upwardly propagating bulk solution of (A 5), i.e. the one converging towards the
inviscid solution when we take the limit Re→∞. If we assume Fr|c − u| � 1 and
Re|c− u| ∼ (Fr|c− u|)−3 for every z, we recover the expression of equation (2.1) of
Plumb & McEwan (1978) with a1 = 0:

u′w′(z)= sign(c)|ϕ0(z= 0)|2 exp
{
−

1
Fr3Re

∫ z

0

dz′

(c− u(z′))4

}
. (A 11)

This expression fails close to critical layers where the scaling assumption Re|c− u| ∼
(Fr|c− u|)−3 cannot remain valid.
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