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We extend the vortex-surface field (VSF), whose isosurface is a vortex surface
consisting of vortex lines, to identify vortex tubes and sheets in homogeneous isotropic
turbulence. The VSF at a time instant is constructed by solving a pseudo-transport
equation. This equation is convected by a given instantaneous vorticity obtained from
direct numerical simulation. In each pseudo-time step, we develop a novel local
optimization algorithm to minimize a hybrid VSF constraint, balancing the accuracy
and smoothness of VSF solutions. This key improvement makes the numerical
construction of VSFs feasible for arbitrarily complex flow fields, as a general flow
diagnostic tool. In the visualization of VSF isosurfaces in decaying homogeneous
isotropic turbulence, the initial curved vortex sheets first evolve into vortex tubes,
and then the vortex tubes are stretched and tangled, constituting a complex network.
Some vortex tubes exhibit helical geometry, which suggests the important role of
vortex twisting in the generation of small-scale structures in energy cascade.
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1. Introduction

Although there is no formal definition of ‘turbulence’, we may picture turbulence
as a tangle of conceptual vortex tubes and sheets (e.g. figure 2.18 in Davidson
2004). These elementary vortical structures consisting of vortex lines evolve under
the influence of their self-induced velocity through the Biot–Savart law. The organized
vortical structures with candidate tube-like or sheet-like geometries are described as
‘sinews of turbulence’ (Moffatt, Kida & Ohkitani 1994), and they are hypothesized to
be related to some statistical features of turbulence at a large Reynolds number (Re).
In particular, Lundgren (1982, 1993) demonstrated that the energy spectrum with the
five-thirds scaling law can be calculated from an ensemble of strained spiral model
vortices, which appears to offer some hope of modelling fine-scale turbulence based
on a vortex model with specific geometries (see Pullin & Saffman 1998).

The vortex tubes and sheets are presumed to be important in turbulence dynamics,
but there is a lack of accurate and objective methods to identify these structures in
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Identifying the tangle of vortex tubes in isotropic turbulence 953

turbulence or highly chaotic flows. In general, three types of visualization methods
have been reported to identify vortical structures from three-dimensional direct
numerical simulation (DNS) in the literature as follows.

(i) Vorticity vector and vortex line. The early visualizations of vortical structures
from DNS of homogeneous isotropic turbulence (HIT) simply plot the vorticity vector
field with the vorticity magnitude above a specified threshold (e.g. Kerr 1985; Ruetsch
& Maxey 1991; Vincent & Meneguzzi 1991, 1994). However, a swarm of vorticity
vector arrows with chaotic directions may not well capture the spatial coherence of
vortical structures in high-Re turbulence. The vortex line, an integral curve of vorticity,
is another natural candidate, but it is difficult to objectively select seed points so that
vortex lines form coherent structures or have a spatial density proportional to vorticity
magnitude (Weißmann, Pinkall & Schröder 2014). Although we can intentionally
select the seed points of interest, e.g. the region with large vorticity magnitude (see
She, Jackson & Orszag 1990), a general algorithm of plotting coherent vortex lines
in turbulence is still lacking.

(ii) Eulerian vortex-identification criteria. In order to display the vortical structures
as smooth surfaces in turbulence, we can use the isosurface of a scalar field related
to vorticity. The simplest choice is the vorticity magnitude (e.g. Jimenez et al. 1993;
Ishihara et al. 2007), which visualizes intermittent vortical structures in very high-Re
HIT. Furthermore, several vortex-identification criteria based on the Eulerian velocity
gradient tensor were proposed to distinguish the highly rotational region or ‘vortex
core’ from the large vorticity field in shear flows (e.g. Hunt, Wray & Moin 1988;
Jeong & Hussain 1995; Zhou et al. 1999). On the other hand, the isosurfaces of the
Eulerian vortex identification criteria cannot accurately display the real vortex tubes
and sheets, because they lose the directional information of vorticity and the resultant
surfaces can be significantly misaligned with vortex lines. The confusion between
the isosurface of these identification criteria and the vortex surface can lead to the
misinterpretation of some critical vortex dynamics (see Kida & Takaoka 1994; Zhao,
Yang & Chen 2016a).

(iii) Vortex surfaces. The vortex tubes and sheets can be generalized as vortex
surfaces (or ‘vorticity surfaces’ in some literature). Within the representation of
Clebsch (1859), Yang & Pullin (2010) define the vortex-surface field (VSF) as a
smooth scalar field whose isosurfaces are vortex surfaces, and the VSF has been
used to construct vortex surfaces in highly symmetric flows (Yang & Pullin 2010; He
& Yang 2016) and shear flows (Xiong & Yang 2017). Subsequently, Yang & Pullin
(2011) develop the two-time method with a dissipative numerical regularization to
compute the Lagrangian-like evolution of VSFs in viscous flows, and the evolving
VSF has been used to analyse the dynamics of vortex surfaces in transitional wall
flows (Zhao, Yang & Chen 2016b; Zhao et al. 2018), compressible flows (Peng &
Yang 2018), reacting flows (Zhou et al. 2019) and magnetohydrodynamic flows (Hao,
Xiong & Yang 2019). In addition, Chern et al. (2017) develop the spherical Clebsch
map to visualize vortex lines and surfaces in computer graphics. Although the VSF
is applicable to flows with moderately complex vorticity fields, the construction of
exact, unique and globally smooth vortex surfaces in general three-dimensional flows
and particularly in fully developed turbulence appears to be impossible.

In the present study, we extend the construction of VSFs from simple flow fields
with symmetries or dominant vorticity directions, which can significantly facilitate
VSF construction, to HIT with very chaotic vortex lines, which is one of the
most challenging cases for constructing VSFs. The numerical implementation of
constructing the VSF for a given instantaneous vorticity field is to evolve an arbitrary
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scalar field into an approximate VSF solution by solving a pseudo-transport equation
(Yang & Pullin 2011). This pseudo-transport equation is a first-order convection
equation driven by the ‘frozen’ vorticity, which can easily cause numerical oscillation.
In particular, some portion of the numerical VSF solution tends to evolve into nearly
singular structures owing to the persistent straining motion driven by the chaotic and
intermittent vorticity field in fully developed HIT (Pullin & Yang 2014). In other
words, some parts of the accurate VSF solution tend to be non-differentiable in
turbulence.

Hence, the major challenge for constructing VSFs in HIT is to balance the accuracy
and smoothness of numerical VSF solutions on a finite number of grid points. The
total-variation-diminishing (TVD) schemes can partially suppress scalar oscillations
(see Hirsch 1990; Tannehill, Anderson & Pletcher 2012) to ensure the smoothness of
VSF solutions, but they suffer the relatively low accuracy, e.g. Goodman & Leveque
(1985) proved that any conservative TVD scheme for solving scalar conservation laws
in two-dimensional space is at most first-order accurate. An alternative approach is to
introduce a penalty function (e.g. Galar et al. 2013) associated with the scalar gradient
to achieve an approximative TVD property by reducing the norm of scalar gradient
during VSF calculation.

Furthermore, a topic closely related to the identification of vortex surfaces is
the physical picture of energy cascade in turbulence (e.g. Goto 2008; Wan et al.
2010; Cardesa, Vela-Martin & Jimenez 2017; Carter & Coletti 2018). From the
hypothesis of Richardson (1920) and Kolmogorov (1941b), three-dimensional HIT
is often viewed as composed of different scales with energy transferred from large
scales to small scales in a self-similar process, but different structure-identification
methods may depict different pathways in this multi-stage process. Using Eulerian
vortex-identification methods, the vortical structures are visualized as a cluster of
short and broken structures perhaps with fractal features (e.g. Jimenez et al. 1993;
Moisy & Jimenez 2004; Ishihara et al. 2007). Based on the Lagrangian view or
vorticity equation, some studies speculated that the vortical structures are persistently
stretched and twisted (e.g. She, Jackson & Orszag 1991; Vincent & Meneguzzi 1994;
Horiuti & Fujisawa 2008; Yang, Pullin & Bermejo-Moreno 2010), which is consistent
with the formation of the strained spiral vortex model proposed by Lundgren (1982).
Lundgren & Mansour (1996) commented that the spirals are commonly seen in
experimental visualization but appear to be harder to observe in DNS, so Pullin &
Saffman (1998) pointed out that the development of a visualization technique for
characterizing vortex tubes remains a considerable challenge.

Therefore, the major objective of the present study is to develop a numerical
method to calculate a smooth and relatively accurate VSF solution in an arbitrary
flow field with a moderate number of grid points, so that we can obtain the VSF
solution to identify the tangle of highly convoluted vortex tubes in HIT. Compared
with the existing structure-identification methods, the isosurface of numerical VSF
solutions provides the best approximation of vortex surfaces, and the VSF isocontour
level can be fixed without the subjective threshold selection in visualization. The
morphology of vortex surfaces in decaying HIT is consistent with the equation of
vorticity dynamics and can be used to elucidate vortex dynamics in energy cascade.
Additionally, the VSF construction at a time instant in HIT can be used as an initial
VSF condition for the further calculation of the temporal evolution of VSFs in viscous
flows (see Yang & Pullin 2011).

The outline of this paper is as follows. In § 2, we describe the numerical details
of DNS. In § 3, we provide an overview of the theoretical formulation and numerical
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implementation of the VSF construction. In § 4, we illustrate the identification of
twisted vortex tubes in simple Taylor–Green (TG) flows. In § 5, we visualize and
characterize the vortex surfaces in decaying HIT. Some conclusions are drawn in § 6.

2. DNS
2.1. Numerical methods

The fluid velocity field u(x, t) of an incompressible viscous flow is governed by the
Navier–Stokes (NS) equations

∂u
∂t
+ (u · ∇)u=− 1

ρ
∇p+ ν∇2u,

∇ · u= 0,
(2.1)

where x denotes spatial coordinates, t the time, p the pressure, ρ the density and ν
the kinematic viscosity.

The DNS of decaying HIT is performed to solve (2.1) in a periodic box of side
L= 2π using a standard pseudo-spectral method (see Rogallo 1981; Yang et al. 2010).
The computational domain Ω is discretized on uniform grid points N3. Aliasing errors
are removed using the two-thirds truncation method with the maximum wavenumber
kmax ≈ N/3. The Fourier coefficient of the velocity is advanced in time using a
second-order Adams–Bashforth method, and the time step is chosen to ensure that
the Courant–Friedrichs–Lewy (CFL) number is less than 0.5 for numerical stability
and accuracy.

The initial velocity u0 ≡ u(x, t = 0) for decaying HIT is a random Gaussian field
with the initial total energy E0 ≡

∫ |u0|2/2 dx = 1 and a prescribed energy spectrum
(e.g. Kraichnan 1970; Ishida, Davidson & Kaneda 2006)

E(k, t= 0)∼ k4e−2(k/kp)
2
, (2.2)

where k = |k| denotes the wavenumber magnitude. The wavenumber kp = 4 where
E(k, t= 0) peaks was selected to ensure that the fully developed HIT field has a broad
range of length scales, and it is comparable to the choices of kp in previous DNS (e.g.
Hosokawa & Yamamoto 1986; Elghobashi & Truesdell 1992; Mansour & Wray 1994).

Additionally, in order to illustrate the identification of twisted vortex tubes, we carry
out another DNS of TG flows (Taylor & Green 1937; Brachet et al. 1983) with the
initial velocity

u0 = (sin x cos y cos z,− cos x sin y cos z, 0) (2.3)

at various Reynolds numbers Re= 1/ν. The initial set-up parameters of the DNS of
decaying HIT, as well as the TG flows at four Re, are summarized in table 1.

2.2. DNS statistics
Important statistics in the DNS of decaying HIT at six typical times are summarized in
table 2, including the total turbulent kinetic energy Etot =

∫
E(k) dk, mean dissipation

rate ε = 2ν
∫

k2E(k) dk, root-mean-square velocity u′ = (2Etot/3)1/2, Taylor–Reynolds
number Reλ = u′λT/ν with the Taylor micro-length scale λT = (15νu′2/ε)1/2,
Kolmogorov length scale η = (ν3/ε)1/4, Kolmogorov time scale τη = (ν/ε)1/2, spatial
resolution kmaxη and integral length scale Le = π/(2u′2)

∫
E(k)/k dk. We remark that

the spatial resolution in the present DNS is always greater than two, which satisfies
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Cases N3 u0 ν E0

HIT 5123 Gaussian random field 1/500 1.0
TG1 5123 (2.3) 1/400 0.125
TG2 5123 (2.3) 1/800 0.125
TG3 10243 (2.3) 1/1600 0.125
TG4 10243 (2.3) 1/3200 0.125

TABLE 1. Set-up of DNS cases.

t= 0 t= 1 t= 2 t= 10 t= 20 t= 60

Etot 1.0 0.79 0.42 0.023 0.0087 0.0019
ε 0.084 0.36 0.32 0.0035 0.0006 0.00005
u′ 0.82 0.73 0.53 0.12 0.076 0.035
Reλ 200 77 43 23 21 15
η 0.018 0.012 0.013 0.039 0.061 0.11
τη 0.15 0.075 0.080 0.76 1.87 6.31
kmaxη 2.99 2.08 2.14 6.61 10.37 19.10
Le 0.63 0.47 0.43 0.94 1.26 1.51

TABLE 2. Statistics in the DNS of decaying HIT at six typical times.

the common criterion kmaxη > 1.5 (Pope 2000) for resolving the smallest scales in
HIT.

From the temporal evolution of Etot, ε and E(k) in the DNS of decaying HIT in
figures 1(a), 1(b) and 2(a), we generally divide the flow evolution into two stages. In
the early stage, the dissipation increases and the flow field evolves from an artificially
constructed random field to the fully developed turbulent state. In the later stage, the
dissipation decreases and the turbulent flow gradually decays towards a stationary
flow. In figure 1(b), the dissipation peaks around t ≈ 2, implying that the flow field
has the maximum total enstrophy with the most intensive vortical structures. In
figure 1(a), the total energy decays with the decay law Etot ∼ t−10/7 (Kolmogorov
1941a). In figure 2(a), the energy spectrum is gradually broadened in the early stage
and has a short inertial region with the five-thirds law E(k) ∼ k−5/3 and a range of
length scales in the HIT field at t = 2. Subsequently the entire spectrum decays in
the late stage after t= 10.

The evolution of TG flows also has two stages similar to the case of decaying
HIT (see Brachet et al. 1983; Yang & Pullin 2011). Additionally, as Re increases, the
energy spectrum in TG flows at the two-stage separation point t= 7.5 in figure 2(b) is
broadened and approaches the fully developed turbulent state with the five-thirds law.

3. Construction of VSFs
3.1. VSF constraint and pseudo-transport equation

The VSF φv is defined as a globally smooth scalar field whose isosurface is a vortex
surface consisting of vortex lines. The constraint of the VSF (Yang & Pullin 2010) is

Cv ≡ω · ∇φv = 0, (3.1)

where ω≡∇× u is the vorticity. The construction of VSF is equivalent to finding a
solution of φv satisfying (3.1) for a given, instantaneous ω. For a vorticity field with
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FIGURE 1. (Colour online) Evolution of (a) total energy and (b) mean dissipation rate in
HIT.
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FIGURE 2. (Colour online) Energy spectra in (a) HIT at different times and (b) TG flows
at t= 7.5.

vanishing helicity density h≡ u ·ω= 0, we can obtain exact VSF solutions from (3.1)
(He & Yang 2016). Nonetheless, for a general vorticity field with h 6=0, the non-trivial
analytic solution of (3.1) may not exist, so we have to seek an approximate solution
of (3.1) using numerical methods.

Based on the definition of VSF, the deviation of an approximate VSF solution φv
from an exact VSF is defined as the cosine of the angle between ω and ∇φv as (Yang
& Pullin 2010)

λω ≡ ω · ∇φv

|ω||∇φv| . (3.2)

For a given instantaneous vorticity field ω, the goal of constructing an approximate
VSF solution is to minimize the volume-averaged VSF deviation 〈|λω|〉 by varying φv.

To obtain an approximate VSF solution, Yang & Pullin (2011) developed the
pseudo-transport equation

∂φv

∂τ
+ω · ∇φv = 0, x ∈Ω, 0< τ 6 Tτ (3.3)

driven by the given ‘frozen’ vorticity, where Tτ denotes the largest pseudo-time in the
VSF calculation. The initial condition φv0 ≡ φv(x, τ = 0) of (3.3) can be an arbitrary

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

48
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.487


958 S. Xiong and Y. Yang

scalar field with large 〈|λω|〉. Although the exact VSF solution is not unique (see Yang
& Pullin 2010), we found that the statistical geometry of converged VSF solutions is
insensitive to the choice of φv0 if the given vorticity field is chaotic (see Xiong &
Yang 2017), e.g. in turbulence. The sensitivity of the VSF solution to initial conditions
is further discussed in appendix A. Moreover, the boundary conditions for (3.3) should
be treated carefully except for the periodic boundary condition that can be naturally
applied (see Xiong & Yang 2017).

3.2. Numerical construction of VSFs with the local optimization
Although the VSF deviation of the solution of (3.3) can be converged at large
pseudo-time Tτ , the converged solution tends to have nearly singular structures with
a very large scalar gradient owing to the persistent straining of φv driven by the
frozen vorticity in turbulence or highly chaotic flows (see Pullin & Yang 2014). This
dilemma hinders the effective VSF construction and visualization in complex flow
fields.

Thus we propose a new hybrid constraint

Ch = (1− ζ )|ω · ∇φv|2 + ζ |∇φv|2 (3.4)

to balance the small VSF deviation with the desired smoothness of VSF solutions,
where ζ is a weighting factor to characterize the preference for the minimization
of |Cv| or |∇φv|. The construction of a non-trivial normalized VSF solution is then
equivalent to an optimization problem as

min Ch, s.t.〈φv〉 = 0 and Var(φv)= 1, (3.5a,b)

where Var( f ) ≡ 〈( f − 〈 f 〉)2〉 denotes the variance of an arbitrary function f in a
volume.

With this key improvement, each computational step in the implementation of VSF
construction is divided into two sub-steps: (i) solving the pseudo-transport equation
(3.3); (ii) applying the local optimization (3.5). First, a temporary VSF φ∗v is evolved
as (3.3) in pseudo-time, where φ∗v is advanced in τ using the third-order TVD Runge–
Kutta method, and the convection term is approximated by the fifth-order weighted
essentially non-oscillatory (WENO) scheme (Jiang & Shu 1996). The pseudo-time step
should be small enough to ensure that the CFL number based on vorticity is less than
0.5 for numerical stability.

Subsequently, we minimize Ch to obtain a local optimized solution φ̃v, where the
weighting factor in (3.4) is chosen as

ζ (τ )= (1− τ/Tτ )2. (3.6)

In other words, we prefer smooth VSF solutions for small τ and accurate solutions
for large τ . It is noted that the specific form of (3.6) is ad hoc based on both the
accuracy and smoothness of VSF solutions in numerical experiments. In general, if
ζ = 1 or ζ is closer to unity than (3.6), 〈|λω|〉 and

√〈|∇φv|2〉 tend to slightly increase
and decrease at large τ , respectively, but geometries of corresponding VSF isosurfaces
are almost identical. Furthermore, appendix B provides a two-dimensional example to
illustrate the effect of the local optimization and the choice of ζ on VSF calculation.
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The numerical algorithm of minimizing the hybrid constraint Ch using the variational
method is described in detail below. The minimization of Ch in (3.4) by varying φ∗v
is equivalent to a local optimization problem satisfying

∂‖Ch(φ
∗
v (a), x)‖δΩ
∂φ∗v (a)

= 0 and
∂2‖Ch(φ

∗
v (a), x)‖δΩ

∂φ∗v (a)2
> 0. (3.7a,b)

Here, a denotes the coordinates at which φ∗v is varied in the optimization, and ‖f‖δΩ ≡∫
δΩ
|f | dx denotes the L1 norm of a function f over a finite subdomain δΩ containing

a.
The temporary scalar field φ∗v is discretized on uniform grid points N3

φ in
computational domain Ω . Coordinates for the uniform grids are xi ≡ (xi, yj, zk) =
(i1x, j1x, k1x) with grid spacing 1x = 2π/Nφ , which can be expressed as a point
set

G= {xi | i, j, k ∈ {0, 1, . . . ,Nφ − 1}}. (3.8)

In the local optimization, φ∗v is varied on coarse staggered grids. Coordinates for the
staggered grids are am ≡ (am, bn, cl)= (m1x, n1x, l1x). The N3

φ/(ns + 1) variational
points are selected as a subset of G as

G′ = {am |m, n, l ∈ {0, 1, . . . ,Nφ − 1} and m+ n+ l≡ 0 (mod ns + 1)}, (3.9)

where ns is the order of the finite difference scheme utilized for evaluating Ch, and
satisfies Nφ ≡ 0 (mod ns + 1). The staggered grids and a specific finite difference
scheme define staggered overlapping subdomains δΩm, so that the variation of φ∗v
at am only influences Ch in each subdomain. In the schematic diagram in figure 3,
each δΩm is enclosed by red dashed lines, and it only has one variational point at
am marked by the open circle to avoid the interference among the variations of φ∗v at
multiple points in the subdomain.

The discretized L1 norm of Ch(φ
∗
v (am), xi) over each δΩm is minimized by varying

φ∗v (am). A third-order difference scheme with ns=3 is applied to compute the gradient
of φ∗v (xi) in Ch(φ

∗
v (am), xi), e.g. the partial derivative respect to x at specific xi on the

left of am = xi +1x (see figure 3) with 1x= (1x, 0, 0) is discretized as

∂φ∗v (xi)

∂x
= 1
1x
φ∗v (am)− 1

61x
[2φ∗v (xi −1x)+ 3φ∗v (xi)+ φ∗v (xi + 21x)]. (3.10)

The partial derivatives respect to y and z have a similar form to (3.10). Substituting
all the discretized partial derivatives in three directions into (3.4) yields the discretized
hybrid constraint in a polynomial form as

Ch(φ
∗
v (am), xi)= ξ2(xi, am)φ

∗
v (am)

2 + ξ1(xi, am)φ
∗
v (am)+ ξ0(xi, am), (3.11)

where ξ0, ξ1 and ξ2 are obtained by collecting finite difference coefficients in
the discretized partial derivatives such as (3.10). After the discretization, (3.7) is
re-expressed as

∂

∂φ∗v (am)

[ ∑
xi∈δΩm

Ch(φ
∗
v (am), xi)

]
=
∑

xi∈δΩm

[2ξ2(xi, am)φ
∗
v (am)+ ξ1(xi, am)] = 0, (3.12)
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xi åm

∂Øm

Ø

: Variational point
Ø: Computational domain

∂Øm: Subdomain enclosed by red dashed lines

: Grid point

FIGURE 3. (Colour online) Schematic diagram for the subdivision of the computational
domain.

t= 0 t= 1 t= 2 t= 10 t= 20 t= 60

N3
φ 5123 5123 10243 5123 5123 5123

CPU hours 1019 6697 64 219 1916 1716 1521

TABLE 3. The number of scalar grid points and CPU hours in the construction of VSFs
in decaying HIT at six typical times.

and the corresponding second partial derivative only containing squared terms must be
positive. Thus scalar values at all the variational points ai are optimized as

φ′v(am)=−1
2

∑
xi∈δΩm

ξ1(xi, am)

/ ∑
xi∈δΩm

ξ2(xi, am) (3.13)

to minimize the local hybrid constraint.
Finally, the VSF solution in the local optimization sub-step is updated as

φ̃v(xi)=
{
φ′v(xi), if xi ∈G′,
φ∗v (xi), if xi ∈G \G′.

(3.14)

Then the VSF solution is normalized to zero mean and unity variance as

φv = φ̃v − 〈φ̃v〉√
Var(φ̃v)

. (3.15)

3.3. Assessment of VSF construction
We construct VSFs from instantaneous vorticity fields in DNS of decaying HIT at six
typical times listed in table 2. The number of grid points N3

φ for the VSF, as listed
in table 3, can be larger than required N3 for DNS, and ω from DNS is interpolated
onto the finer VSF grids by the cubic spline interpolation for further VSF construction.
In general, required N3

φ increases with decreasing the tolerance of 〈|λω|〉 or increasing
the complexity of vorticity.

The initial condition φv0 is a spatial delta-correlated field in which the scalar
value at each point is generated independently as a random number satisfying the
uniform distribution from 0 to 1. Although a tailored smooth φv0 should achieve faster
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FIGURE 4. (Colour online) Plane cuts of the contour of VSF solutions at three
pseudo-times during the VSF construction for HIT at t= 20. (a) τ/Tv = 0; (b) τ/Tv = 1;
(c) τ/Tv = 4.

convergence in VSF construction, the present choice avoids the subjective selection
of φv0.

Figure 4 displays the plane cuts of VSF solution contours at three pseudo-times
during VSF construction for the HIT field at t=20. In the pseudo-evolution, the scalar
field evolves from a very noisy initial random field through a fine-scale scalar field
at τ/Tv = 1 to a relatively smooth field at τ/Tv = 4 when the VSF solution has been
nearly converged. Here, Tv≡LΩ/〈|ω|〉 is the characteristic pseudo-time scale (Xiong &
Yang 2017), where the characteristic length scale of the computational domain LΩ =
2
√

3π is the diagonal length of the DNS cube.
We compare the convergence and smoothness of VSF solutions with and without

local optimization. In the VSF construction for instantaneous ω of decaying HIT at t=
2, 20 and 60 with Nφ = 512, pseudo-evolutions of 〈|λω|〉 and 〈|∇φv|2〉 in normalized
pseudo-time τ/Tv are shown in figures 5(a) and 5(b), respectively. In general, 〈|λω|〉
and 〈|∇φv|2〉 of VSF solutions have converged before τ/Tv = 10, so we set Tτ = 10Tv.
Additionally, 〈|∇φv|2〉 without local optimization becomes larger at higher Reλ. By
contrast, the pseudo-transport with local optimization significantly reduces the scalar
gradient to ensure both satisfactory VSF deviation 〈|λω|〉 6 10 % and smoothness of
VSF solutions, although the optimization strategy of ζ (τ ) in (3.6) slightly sacrifices
the convergence rate of VSF solutions for small pseudo-times.

The averaged VSF deviation can be further reduced by increasing the grid
resolution for VSF (see Yang & Pullin 2011). Taking the VSF construction for
the most fluctuating HIT field at t = 2 for example, 〈|λω|〉 is reduced from 18 %
with N3

φ = 2563 to 6 % with N3
φ = 10243 in figure 6(a), and 〈|λω|〉 for converged

numerical VSF solutions is proportional to N−0.8
φ . At the meantime, 〈|∇φv|2〉 is

increased from 10 with N3
φ = 2563 to 28 with N3

φ = 10243 in figure 6(b), indicating
that the high-resolution VSF solution reveals finer-scale structures of vortex surfaces.

We remark that the VSF construction is computationally expansive, which needs to
be improved in future work. The computational time depends on the number of VSF
grid points, the tolerance of 〈|λω|〉 and the complexity of vorticity (see Xiong & Yang
2017). Typical CPU hours for constructing VSFs in decaying HIT are summarized in
table 3.

4. Identification of twisted vortex tubes in TG flows
Before studying the convoluted vortex surfaces in HIT, we first demonstrate the

capability of the VSF for identifying relatively isolated vortex tubes in TG flows. As
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FIGURE 5. (Colour online) The pseudo-evolution of (a) 〈|λω|〉 and (b)
√〈|∇φv|2〉 in

decaying HIT at t= 2, 20 and 60 with Nφ = 512 and with or without local optimization.
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FIGURE 6. (Colour online) The pseudo-evolution of (a) 〈|λω|〉 and (b)
√〈|∇φv|2〉 in

decaying HIT at t= 2 on different VSF grids with local optimization.

shown in figure 2, the high-Re TG flow at the late stage has a similar spectrum as
that in HIT, thus the vortex surfaces identified in high-Re TG flows can represent some
geometrical features in real turbulence.

The former VSF study of TG flows at moderate Re in Yang & Pullin (2011)
suggests that, based on evolutionary geometry and topology of vortex surfaces, the
entire VSF evolution can be divided into three stages: (i) vortex flattening; (ii) vortex
reconnection during transition; (iii) rolling-up, stretching and twisting of vortex tubes.
Furthermore, Yang & Pullin (2011) showed that the vortex surfaces of TG flows with
Re= 400 and 800 at t= 7.5 in the late stage appear to have the same topology, but
the tubes with large Re are more twisted than those with small Re. The helical vortex
tubes (e.g. Ricca 1994; Fukumoto & Okuluv 2005) in high-Re flows can generate
more intense small-scale velocity fields than those in low-Re flows.

In the present study, we construct the VSF in TG flows at a range of Re from 400
to 3200 by solving the pseudo-transport equation (3.3). Since the velocity–vorticity
field has mirror and rotational symmetries in TG flows (Brachet et al. 1983) which
can significantly facilitate the VSF construction (Yang & Pullin 2010), the boundary-
constraint method (Xiong & Yang 2017) is used to construct VSFs without the sub-
step of local optimization (3.5). The VSF for the initial TG field (Yang & Pullin 2011)
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FIGURE 7. (Colour online) Isosurfaces of φv and |ω| in TG flows with different Re at
t = 7.5. Some vortex lines are integrated on the isosurfaces of φv . The vortex lines and
the isosurfaces of |ω| are colour coded by |ω|. (a) φ̂v = 0.5 and (b) |ω| = 7.0 at Re= 400;
(c) φ̂v = 0.5 and (d) |ω| = 10.0 at Re= 800; (e) φ̂v = 0.5 and ( f ) |ω| = 15.0 at Re= 1600;
(g) φ̂v = 0.5 and (h) |ω| = 27.0 at Re= 3200.

φv0= (cos 2x− cos 2y) cos z/2 is used as the initial condition of (3.3). The VSF within
[0, π/2] × [0, π/2] × [π/2, π] is calculated on uniform grid points N3

φ with Nφ =
N/4 + 1 in TG flows with different Re at t = 7.5. After the pseudo-evolution from
τ = 0 to τ/Tv = 2, we achieved very accurate VSF solutions as the VSF deviations
converge to a level less than 4 % (not shown).

At the late stage of TG flows at t = 7.5, the initially large-scale, blob-like vortex
surfaces have evolved into tube-like structures in TG flows (see Yang & Pullin 2011).
These vortex tubes are twisted and flattened either by self-induced dynamics or
interactions with other tubes. Figure 7 shows the isosurfaces of φ̂v = 0.5 and varied
|ω| in a typical subdomain [π/2, 3π/2] × [5π/8,π] × [3π/2, 7π/4] at t= 7.5 in TG
flows with four Re from 400 to 3200. Here, φ̂v denotes the normalized VSF, which is
implicitly determined by M̂(φ̂v = ϕ, t)= M̂(φv0= ϕ, t= 0) by searching the isocontour
values φ̂v = ϕ at a given time t and φv0 at t= 0 which correspond to the same fluid
mass M̂ (see Peng & Yang 2018).
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(b)(a)

(d)(c)

FIGURE 8. (Colour online) Vortex lines in TG flows with different Re at t= 7.5. These
vortex lines are integrated on the isosurfaces of φv and colour coded by |ω| with the same
colour map as in figure 7. (a) Re= 400, (b) Re= 800, (c) Re= 1600, (d) Re= 3200.

With increasing Re, the VSF isosurface becomes distorted and helical in figure 7,
but it is still coherent. The curved and twisted vortex tubes are related to the
intermittent statistics in turbulence (e.g. She et al. 1990). By contrast, the isosurface
of |ω| becomes broken and dispersed with increasing Re. In particular, for the case
of Re= 3200 in which the energy spectrum is close to that of fully developed HIT in
figure 2, the very scattered isosurfaces of |ω| in figure 7(h) make it hard to identify
coherent vortical structures.

To further illustrate the visual differences between the isosurfaces of VSF and
vorticity magnitude in figure 7, we extract two typical vortex lines in figure 8, which
are integrated on the isosurfaces of φ̂v= 0.5 and colour coded by |ω|. As Re increases,
the vortex lines become helical, consistent with the observation of VSF isosurfaces.
The intermittent vorticity magnitude on the very distorted vortex lines at high Re
causes the broken isosurfaces of |ω| in figure 7(h), which are sometimes referred
to as ‘vortex worms’ in the literature. This visual breakdown of vortical structures,
however, cannot characterize the geometry of highly twisted coherent vortex tubes,
which may depend on the selection of the isocontour value of |ω|.

5. Identification of vortex surfaces in decaying HIT
5.1. Isocontour values and VSF deviations

As demonstrated in §§ 3.3 and 4, we are able to construct relatively accurate and
smooth VSFs in HIT by improving the VSF calculation with local optimization (3.5),
and the VSF isosurface can effectively identify coherent and twisted vortex tubes.
These indicate that the VSF is promising to identify the very convoluted vortex
surfaces in fully developed HIT.

Isosurfaces of the VSF solution and vorticity magnitude in decaying HIT at six
typical times listed in table 3 are shown in figures 9 and 10. The isosurfaces are
colour coded by |ω|, and the VSF isosurfaces with |ω| < 0.2|ω|max are cut off for
clarity, where |ω|max denotes the maximum vorticity magnitude in each instantaneous
|ω|.

The probability density function (p.d.f.) of the space-filling, normalized φv evolves
from the initial double-delta distribution towards the standard Gaussian distribution
in the pseudo-transport with numerical diffusion and local optimization, and it has a
strong peak at zero with a slight skewness in figure 11(a). Thus we use the isocontour
level φv = 0 to display the typical VSF isosurface which almost occupies the largest
space of all the VSF isosurfaces. We remark that the subjective selection of isocontour
levels is an important issue suffered by many vortex-identification methods. As listed
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FIGURE 9. (Colour online) Isosurfaces of φv and |ω| in decaying HIT at t= 0, 1 and 2.
The isocontour values and averaged VSF deviations of φv and |ω| are listed in table 4.
All the isosurfaces are colour coded by |ω|, and the VSF isosurfaces with |ω|< 0.2|ω|max
are cut off for clarity. (a) φv and (b) |ω| at t= 0; (c) φv and (d) |ω| at t= 1; (e) φv and
( f ) |ω| at t= 2.

in table 4, we fix the isocontour level φv = 0 in the visualization of VSFs, whereas
we have to tune the threshold of normalized |ω| to display the structures with similar
characteristic sizes in figures 9 and 10.
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FIGURE 10. (Colour online) Same as figure 9 except t = 10, 20 and 60. Some vortex
lines are integrated on the isosurfaces at t= 20. (a) φv and (b) |ω| at t= 10; (c) φv and
(d) |ω| at t= 20; and (e) φv and ( f ) |ω| at t= 60.

On the faithful identification of vortex tubes and sheets, the VSF, due to its
own definition, is superior to other vortex-identification methods. Table 4 compares
the averaged VSF deviations between the VSF solution and vorticity magnitude in
decaying HIT at six typical times, and 〈|λω|〉 for φv is approximately five times less
than that for |ω|. As an example, some vortex lines are integrated on the isosurfaces
at t= 20 in figure 10(c,d). The large VSF deviation 〈|λω|〉 ≈ 30.8 % for the isosurface
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FIGURE 11. (Colour online) Statistics of VSF solutions in decaying HIT at t= 2, 20 and
60. (a) Probability density function of φv; (b) volume average of |λω| conditioned on |ω|.

t= 0 t= 1 t= 2 t= 10 t= 20 t= 60

Isocontour value for φv 0 0 0 0 0 0
Isocontour value for |ω|/|ω|max 0.65 0.18 0.24 0.44 0.40 0.41
〈|λω|〉 for φv 4.9 % 8.0 % 6.0 % 6.3 % 5.5 % 5.7 %
〈|λω|〉 for |ω| 41.4 % 24.6 % 26.8 % 30.5 % 30.8 % 30.5 %

TABLE 4. Comparisons between the VSF and vorticity magnitude at the isocontour value
selection and averaged VSF deviation in the vortex identifications in decaying HIT at six
typical times.

of |ω| implies a significant misalignment between the isosurface and vortex lines
in figure 10(d). The isosurface of |ω| only displays strong vorticity regions, but
loses directional information of vorticity, so it is hard to use in Lagrangian-like
structure tracking based on the Helmholtz vorticity theorem owing to the large
deviation from the vortex surfaces (see Yang & Pullin 2011). For comparison, the
isosurface of φv displays the vortex tubes or sheets with a relatively small VSF
deviation 〈|λω|〉 ≈ 5.5 %, so vortex lines are almost attached to the isosurface in
figure 9(c), and the VSF isosurface colour coded by |ω| captures both the magnitude
and directional information of vorticity. Additionally, the geometry of the isosurfaces
of other vortex-identification criteria based on the velocity gradient tensor is very
similar to the isosurface of |ω|.

The averaged VSF deviation conditioned on |ω| in figure 11(b) implies that the
construction of VSFs tends to be more accurate in the region with strong vorticity
than in that with weak vorticity, because the visualization of vortex lines (She et al.
1990; Jimenez et al. 1993) depicts that, in general, the vortex lines with large |ω| are
fairly straight while the vorticity vectors with small |ω| have chaotic orientations.

5.2. Geometry of vortex surfaces in HIT
There is still considerable debate on the geometry of vortical structures in HIT (see
Davidson 2004). Multi-scale diagnostic tools illustrate that structures of |ω| evolve in
a continuous distribution from blob-like and moderately stretched tube-like shapes at
large scales, through a predominance of tube-like structures at intermediate scales, to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

48
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.487


968 S. Xiong and Y. Yang

2
ƒ√

1

0

-1

-2

2
ƒ√

1

0

-1

-2

2
ƒ√

1

0

-1

-2

20
|ø|

15

10

5

0

0.8

|ø|

0.6

0.4

0.2

0

0.4
|ø|

0.3

0.2

0.1

0

(a) (b)

(c) (d)

(e) (f)

FIGURE 12. Plane cuts of VSF and vorticity magnitude contours in decaying HIT. (a) φv
and (b) |ω| at t= 2; (c) φv and (d) |ω| at t= 20; (e) φv and ( f ) |ω| at t= 60.

highly stretched sheet-like structures at small scales (Ishihara et al. 2007; Bermejo-
Moreno, Pullin & Horiuti 2009; Leung, Swaminathan & Davidson 2012).

In figures 9 and 10, the VSF isosurfaces with strong and weak |ω|, in general, tend
to be tube-like and sheet-like, respectively. This observation is qualitatively consistent
with that from isosurfaces of |ω|. On the other hand, the VSF reveals more details of
twisting and spirals of vortical structures than |ω|. Plane cuts of the contour of φv in
figure 12 depict the spiral structures in the contour of φv which are similar to passive
scalars in HIT in Brethouwer, Hunt & Nieuwstadt (2003) and Yang et al. (2010).

The theoretical analysis in Yang et al. (2010) suggests that a passive scalar field
φ with vanishing diffusivity in stationary HIT tends to be attracted towards a VSF,
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but 〈|λω|〉 is converged around 25 % owing to small but persistent viscous effects.
The multi-scale geometric analysis of φ characterizes a geometrical progression
from blobs through tubes to sheet-like structures with decreasing length scale in a
space of reduced geometrical parameters. Compared with the statistical geometry
of instantaneous |ω| in HIT obtained by Bermejo-Moreno et al. (2009), φ tends
to exhibit more prevalent sheet-like shapes at intermediate and small scales, which
agrees with the visual difference between the VSF and |ω| in figures 9, 10 and 12.

The generic spiral patterns of φv driven by frozen vorticity and the passive scalar
driven by evolving velocity imply that the bundle of vortex lines can be highly twisted
at large Reλ, which is hypothesized as an elementary vortical structure in turbulence
and is a key ingredient in the spiral vortex model for obtaining E(k) ∼ k−5/3 (see
Lundgren 1982; Pullin & Saffman 1998). For comparison, the contours of large
|ω| in figure 12 are concentrated in blob-like regions, which correspond to the
three-dimensional tube-like structures in figures 9 and 10 and appear not to illustrate
the fine, internal structures in vortex tubes.

5.3. Implications of the morphology of vortex surfaces for energy cascade
The energy cascade is hypothesized to be related to the morphology of vortical
structures at different scales. The isosurfaces of φv and |ω| from t= 0 to 2 are shown
in figure 9, when the flow evolves from a Gaussian random field into fully developed
HIT. At t = 0, the isosurfaces of φv and |ω| exhibit very different geometries,
i.e. curved sheet-like structures and scattered blob-like structures in figures 9(a)
and 9(b), respectively. The sheet-like vortex surfaces are rolled up into tube-like
structures at t = 1, which is consistent with the observations of decaying HIT in
Vincent & Meneguzzi (1994) using vorticity vectors and with the transitional stage
in TG flows in Yang & Pullin (2011) using VSF.

The vortex tubes are then stretched and their characteristic scales decrease until the
viscous effect becomes dominant to suppress the scale cascade. The smallest scale of
vortex surfaces in figure 9 occurs around t = 2, which also corresponds to the time
of the maximum dissipation rate in figure 1(b). The differences of the morphology of
vortex surfaces from t= 0 to 2 are also highlighted in the close-up views in figure 13.
Instead of the isolated helical vortex tubes in TG flows in figure 7 and scattered short
tubes of |ω| in figure 9( f ), the vortex tubes and sheets in HIT generally connect
and tangle with neighbouring ones to constitute a complex network in figure 9(e).
Subsequently, the scale of vortex surfaces begins to increase during the late evolution
stage after t= 10 in figure 10 owing to the viscous effect (see Hao et al. 2019), when
the turbulent kinetic energy has diminished below 1 % of the initial value. Moreover,
appendix A explains that the statistical geometry of VSF isosurfaces is insensitive to
the initial condition of (3.3), so the tangle of vortex tubes appears to be a global
attractor in the chaotic vorticity system of fully developed HIT.

The deformation of VSF isosurfaces is accompanied by intensive stretching, folding
and twisting of the attached vortex lines with increasing curvature and torsion. The
local curvature and torsion of vortex lines are calculated from instantaneous ω as

κ = |ω× (ω · ∇ω)|
|ω|3 (5.1)

and
T = ω · [∇(ω · ∇ω)] · [ω× (ω · ∇ω)]

|ω× (ω · ∇ω)|2 , (5.2)
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(a) (b) (c)

FIGURE 13. (Colour online) Close-up views of the VSF isosurfaces (from left to right:
t= 0, 1 and 2) around the central region in figures 9(a), (c) and (e).
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FIGURE 14. (Colour online) Temporal evolution of the curvature and absolute value of
torsion averaged over the VSF isosurface of φv = 0.

respectively. Figure 14 plots the temporal evolution of κ and |T | averaged over
the isosurface of φv = 0. The averaged curvature and torsion peak at t ≈ 2, which
coincides with the occurrence of the maximum distortion of VSF isosurfaces in
figures 9 and 10 and the maximum dissipation rate in figure 1(b). Hence, we speculate
that the stretching and twisting of vortex surfaces/lines are correlated to the energy
cascade in HIT, which is also supported by the VSF characterization of filtered HIT
fields in appendix C.

Additionally, the understanding of vortex morphology depends on the structure-
identification method. For example, in figure 10(a,b) at t = 10, the isosurface of
φv displays a complex network of vortex surfaces as a tangle of long vortex tubes,
whereas the isosurface of |ω| displays clusters of short tube-like structures as ‘vortex
worms’. Sometimes the energy cascade is characterized by the visual ‘breakdown’ of
isosurfaces of |ω|, as shown in the right columns of figures 9 and 10 and illustrated
by blue patches in figure 15. However, this breakdown of isosurfaces of |ω| is elusive
in terms of vortex dynamics, because physically reasonable deformation of vortex
lines and surfaces in energy cascade should be due to continuous processes such as
stretching, twisting and reconnection, as illustrated by red patches in figure 15.

Therefore, as sketched in figure 15, the isosurface of φv appears to depict a more
comprehensive picture than the isosurface of |ω| of vortex dynamics in energy cascade,
e.g. vortex twisting at small scales and rolling-up of vortex sheets. A similar visual
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In the view of the
isosurface of |ø|

In the view of the
vortex surface

Persistently stretched

Twisted by local induction

Large-scale vortex surface
under straining motion

‘Breakdown’ into
smaller structures

Smaller and smaller
structures

FIGURE 15. (Colour online) A schematic diagram of different views of the scale cascade
of vortical structures in turbulence. Blue and red patches denote the isosurfaces of vorticity
magnitude and VSF, respectively. Red lines with arrows denote vortex lines, dashed black
lines with arrows denote the velocity induced by the vortex lines attached to vortex
surfaces and grey arrows denote the background straining motion.

difference between isosurfaces of φv and |ω| is observed in TG flows in figure 7. For
comparison, HIT has less isolated twisted vortex tubes in figures 9 and 10, because
vortex surfaces in HIT are superposed and tangled together with strong interactions.

6. Conclusions
We extend the VSF to fully developed turbulence to identify vortex tubes and sheets.

These elementary vortical structures consisting of vortex lines are hypothesized to be
important in turbulence dynamics, but they cannot be accurately identified using most
of the existing structure-identification methods.

The VSF at an instant is constructed by solving a pseudo-transport equation
convected by a given instantaneous vorticity obtained from DNS. Since the VSF
solution tends to be non-smooth in the pseudo-transport owing to the persistent
straining of scalar structures driven by the frozen vorticity in turbulence, we develop
a local optimization algorithm to minimize the hybrid constraint for achieving both
satisfactory VSF deviation and smoothness of VSF solutions.

In the numerical construction of VSFs in decaying HIT with moderate numbers of
VSF grid points, the volume-averaged VSF deviation can be controlled to a level as
small as 〈|λω|〉 6 8.0 %, and this deviation can be further reduced by increasing the
grid resolution for VSFs. We choose the isosurface of fixed φv = 0 to identify typical
vortex surfaces and use the spatial delta-correlated scalar field as the initial condition
in the pseudo-evolution. These choices are adopted in all the VSF constructions in
HIT to avoid the subjectivity in structure identification.

In the visualization of VSF isosurfaces in decaying HIT, the initial curved vortex
sheets first evolve into vortex tubes, and then the tubes are stretched with decreasing
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length scale. At the fully developed turbulent stage, in general, the VSF isosurfaces
tend to form tube-like structures with a large vorticity magnitude and small VSF
deviation, and the tangled vortex tubes constitute a complex network. Some vortex
tubes exhibit helical geometry, which reveals the important role of vortex twisting in
the generation of small-scale structures in energy cascade and supports Lundgren’s
spiral vortex model. The occurrence of maximum curvature and torsion of vortex
lines attached to the VSF isosurfaces coincides with that of the maximum dissipation
rate in HIT, so the stretching and twisting of vortex surfaces/lines are correlated
to the energy cascade. At the later decaying stage, the size of the vortex tubes is
increased due to the dominate viscous effect.

By contrast, the VSF deviation for the isosurface of vorticity magnitude can be as
large as 〈|λω|〉 ≈ 30 %, which is manifested as the significant misalignment between
the isosurface of |ω| and vortex lines. We demonstrate that the large variation of |ω|
on the same vortex surface causes the visual ‘breakdown’ of the isosurface of |ω|
as ‘vortex worms’ in HIT and TG flows, so the isosurface of |ω| cannot accurately
identify complete and coherent vortex surfaces in turbulence.

The pseudo-transport with the local optimization developed in the present study can
be applied to construct VSFs in arbitrary three-dimensional velocity fields as a general
structure-identification method. We remark that the VSF constructions at a series of
successive time instants are not ensured to display a Lagrangian-like evolution of
the vortex surface owing to the non-uniqueness of VSF solutions (Xiong & Yang
2017), but the constructed VSF at a time instant can be used as an initial condition
in the evolution of VSFs using the two-time method (Yang & Pullin 2011). In future
work, the combination of the present VSF construction and the further improvement
of the computational efficiency of the VSF evolution algorithm and the numerical
regularization near vorticity nulls (Hao et al. 2019) is expected to be applied to
compute the evolution of VSFs in fully developed turbulence for elucidating the
energy cascade from a Lagrangian view.
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Appendix A. Uniqueness of the VSF solution in HIT

In principle, the VSF solution for an instantaneous velocity–vorticity field is not
unique, because the first-order linear homogeneous partial differential equation (3.1)
may have multiple independent solutions (see Evans 2010). It is possible to add
additional constraints to make the solution of (3.1) unique, as discussed for simple
shear flows and transitional channel flows in Xiong & Yang (2017). For more general
flows, if the flow field is chaotic, different VSF-construction methods identify similar
structures. For example, for the TG flow at t = 7.5, both the two-time method and
the boundary-constraint method construct nearly identical vortex tubes (see Xiong
& Yang 2017). Therefore, the coherent vortex tubes appear to be a global attractor
in the set of nonlinear characteristic equations of (3.3) with chaotic vorticity. This
global attractor is a bounded set of numerical values towards which a system tends
to evolve, for a wide variety of initial conditions of the system.
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FIGURE 16. (Colour online) Scalar spectra of the VSF solutions calculated from three
independent initial conditions, the spatial delta-correlated field φ(1)v0 , φ(2)v0 = cos x cos y cos z
and φ(3)v0 = sin x sin y sin z, in decaying HIT at t= 20.

Since the vortex lines in a turbulent flow are highly chaotic, the VSFs constructed
by different methods and initial conditions should have structural similarity. Thus
although the initial field φv0 of (3.3) is arbitrary, the statistical geometry of converged
VSF solutions is insensitive to the choice of φv0. In the decaying HIT at t = 20,
figure 16 shows nearly identical scalar spectra of the VSF solutions calculated
from three independent initial conditions, the spatial delta-correlated field φ

(1)
v0 ,

φ
(2)
v0 = cos x cos y cos z and φ(3)v0 = sin x sin y sin z. This indicates that the pseudo-transport

with local optimization restores uniqueness of the VSF solution, so the tangle of
vortex tubes appears to be the robust geometry of vortex surfaces or a global attractor
of chaotic vortex lines in HIT.

Appendix B. Effects of local optimization on VSF construction
We provide a two-dimensional example to illustrate the effects of the local

optimization, described in § 3.2, on the smoothness of VSF solutions in VSF
construction. We construct a ‘VSF’ or a first integral (see He & Yang 2016) for
a given two-dimensional divergence-free vector field

ω= (ωx, ωy)= (sin x cos y,− cos x sin y). (B 1)

The pseudo-transport equation (3.3) is solved on uniform grid points N2
φ = 1282. The

initial condition is a delta-correlated random field shown in figure 17(a).
We apply three strategies to study the influence of the local optimization (3.5) and

the weighting factor ζ in (3.4) on the quality of VSF solutions: (i) hybrid optimization:
local optimization with adaptive ζ determined by (3.6); (ii) gradient optimization: local
optimization with fixed ζ = 1; (iii) without local optimization.

The pseudo-evolutions of the averaged VSF deviation and gradient magnitude in
the VSF construction with different optimization strategies are shown in figure 18. If
the VSF is calculated without local optimization, the VSF gradient magnitude can
be large, although the VSF deviation is small. This results in the non-smooth VSF
solution, shown as the spiky structures in the solution contour in figure 17(b). On
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FIGURE 17. Contours of φv in the two-dimensional pseudo-evolution. (a) τ/Tv = 0;
(b) τ/Tv = 10, without local optimization; (c) τ/Tv = 10, with local optimization.
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FIGURE 18. (Colour online) The pseudo-evolution of the averaged VSF deviation and
gradient magnitude in the two-dimensional example. (a) 〈|λω|〉; (b)

√〈|∇φv|2〉.
the other hand, if the VSF is calculated with the gradient optimization, although
the smoothness of the VSF solution is significantly improved, the VSF deviation is
relatively large. Finally, we find that the hybrid optimization can balance the accuracy
and smoothness of the VSF solution to obtain the converged solution with both small
〈|λω|〉 and

√〈|∇φv|2〉, shown as the smooth solution contour in figure 17(c).

Appendix C. VSFs of filtered HIT fields
In order to distinguish how the different scales are represented by VSF structures,

we filter the HIT filed at t = 2, which corresponds to the maximum dissipation rate,
using a low-pass Gaussian filter. The filtered velocity is obtained as

ũ(x;∆f )=F−1{F{u}Ĝ(k;∆f )}, (C 1)

where F and F−1 respectively denote Fourier and inverse Fourier transforms, the
Gaussian kernel function (Pope 2000) is defined by Ĝ(k; ∆f ) = exp(−k2∆2

f /24) and
the filter widths are selected as ∆f = 4η, ∆f = Le/2 ≈ 16.3η and ∆f = 2Le ≈ 65.4η.
The spectra of the filtered velocity fields are shown in figure 19(a), and ratios of the
filtered total kinetic energy to the unfiltered Etot are 96.2 %, 67.9 % and 17.4 %.

We calculate filtered VSFs φ̃v(∆f ) based on the filtered vorticity field ω̃(∆f )=∇×
ũ(∆f ) using the method described in § 3.2, and the averaged VSF deviations for all
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FIGURE 19. (Colour online) (a) Energy spectra and (b) the curvature and absolute value
of torsion averaged over the VSF isosurface of φ̃v = 0 in filtered HIT fields with various
filter widths at t= 2.
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FIGURE 20. (Colour online) Isosurfaces of φ̃v=0 in filtered HIT at t=2 with filter widths
(a) ∆f /η= 4, (b) ∆f /η= 16.3 and (c) ∆f /η= 65.4. All the isosurfaces are colour coded
by |ω̃|, and the VSF isosurfaces with |ω̃|< 0.2|ω̃|max are cut off for clarity.

the filtered VSFs are less than 10 %. In figure 20, with increasing ∆f , we observe
that the characteristic length scales of φ̃v(∆f = 4η), φ̃v(∆f = Le/2) and φ̃v(∆f = 2Le)

increase and the structures become less distorted. Comparing this trend with the VSF
isosurfaces in figures 9 and 10, the structural evolution of VSFs with time in decaying
HIT is similar to filtering a HIT with increasing ∆f .

Figure 19(b) plots the variation of the curvature and absolute value of torsion of
vortex lines averaged over the isosurface of φ̃v = 0 in filtered HIT fields at t = 2,
and both decrease with ∆f . This implies that the vortex stretching and twisting
contribute to the small-scale fluctuations in HIT. In particular, filtered HIT with
∆f = 4η only loses 3.8 % of Etot, but the surface-averaged |T | drops from 14 to
6.8, which highlights the contribution of twisting of vortex lines to the turbulent
fluctuations around the Kolmogorov scale.
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