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We find positive rapidly decaying solutions for the equation

− div(K(x)∇u) = K(x)u2∗−1 + λK(x)|x|α−2u

in RN , where N � 3, the nonlinearity is given by the critical Sobolev exponent
2∗ = 2N/(N − 2), the weight is K(x) = exp( 1

4 |x|α), α � 2 and λ is a parameter.

1. Introduction

We study the equation

− div(K(x)∇u) = K(x)u2∗−1 + λK(x)|x|α−2u, u > 0 ∈ R
N , (1.1)

where N � 3, the nonlinearity is given by the critical Sobolev exponent 2∗ =
2N/(N−2), the weight is K(x) = exp(1

4 |x|α), α � 2 and λ is a parameter. According
to the function space in which we seek solutions, u is forced to decrease sufficiently
fast to infinity.

As in [12], for α = 2 and λ = (N − 2)/(N + 2), equation (1.1) occurs when one
tries to find self-similar solutions

v(x, t) = t(2−N)/(N+2)u(xt−1/2)

to the parabolic equation

vt − ∆v = |v|4/(N−2)v, R
N × (0, +∞).

Notice that (1.1) is equivalent to

−∆u − 1
4α|x|α−2(x · ∇u) = |u|2∗−2u + λ|x|α−2u. (1.2)
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Equation (1.1) was treated in [11] in the case α = 2. The authors noticed a
dichotomy in the existence range of λ for N = 3, relative to space dimensions
N � 4. More precisely, for N � 4, there is a solution if and only if λ ∈ ( 1

4N, 1
2N). If

N = 3, there is a solution for λ ∈ (1, 3
2 ), there is no solution for λ � 3

4 and λ � 3
2 .

Complementing this result, it was proved in [1] that no radial solution exists for
λ � 1. Here we present the situations where an analogous dichotomy happens,
depending on the parameters α � 2 and λ, thus extending the existence results
of [11] for (1.1) and every α � 2. We also show in detail a non-existence result simi-
lar to the one in [1], relative to radial solutions of (1.1). We address questions about
symmetry breaking and multiplicity of solutions, where the least energy solutions
of (1.1) are not radial, and there are at least two positive solutions.

Our main results are stated below in terms of the first eigenvalue,

λ1 = 1
4α(N − 2 + α),

of the problem
− div(K(x)∇u) = λK(x)|x|α−2u in R

N . (1.3)

We obtain solutions of (1.1) by minimizing the expression

Qλ(u) =

∫
RN K(x)|∇u|2 − λ

∫
RN K(x)|x|α−2u2

(
∫

RN K(x)|u|2∗)2/2∗ (1.4)

over the space H(α) defined as the completion of the smooth functions with compact
support C∞

c (RN ) with respect to the norm

‖u‖ =
( ∫ N

R

K(x)|∇u|2
)1/2

.

The infima of Qλ in H(α) are called ground states.
We shall prove the following results.

Theorem 1.1 (strong weights). If 2 < α � N − 2, problem (1.1) has a solution if
and only if λ ∈ ( 1

2λ1, λ1). Moreover, in this situation the ground state is achieved.

Theorem 1.2 (very strong weights). If N − 2 < α and λ ∈ ( 1
4α2, λ1), problem

(1.1) has a ground-state solution. Moreover, if λ � 1
2λ1 or λ � λ1, then (1.1) has

no solution.

The next results complement the ones above.

Theorem 1.3 (no radial solution). If N − 2 < α and λ � 1
4α2, the problem (1.1)

has no radial solution.

Theorem 1.4 (symmetry breaking). Let

B2 =
42/α

α2 sup
0<y<∞

∫ y

0
essµ−1 ds

∫ ∞

y

e−ss−µ+(2/α)−1 ds,

where µ = N/α. If
1

4B2

(
1 − λ

λ1

)
>

(N − 1)(N − 2)
4
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when either

1
2

<
λ

λ1
< 1 if 2 < α � N − 2

or

α2

4λ1
<

λ

λ1
< 1 if α > N − 2

holds, then the ground-state solution of (1.1) exists and it is non-radial.

The motivation for studying such problems stems from a phenomenon noted in [6]
which led to the notion of critical dimension (see [17]). Let B1(0) be the unit ball
in R

N , with N � 3. Let µ1 denote the first eigenvalue of the Laplacian with zero
Dirichlet boundary conditions on B1(0). The following problem was studied in [6]:

−∆u = u2∗−1 + λu, u > 0 in B1(0),
u = 0 on ∂B1(0).

}
(1.5)

The authors proved that, for N � 4, (1.5) has a solution if and only if λ ∈ (0, µ1),
while, for N = 3, problem (1.5) has a solution if and only if λ ∈ ( 1

4µ1, µ1). The same
phenomenon has been noted for problems with critical exponents on geodesic balls
on the sphere [2–4,7], and also for more general equations involving the p-Laplacian
on the ball in R

N [9, 10] or on the N -dimensional sphere [5]. A similar situation in
R

N should be in some sense expected when the Dirichlet boundary conditions are
replaced by a requirement that solutions have a fast decay at infinity. We impose
this requirement by introducing the fast increasing weights K(x). By the method
developed in [6], we obtain solutions of (1.1) as critical points of Qλ.

We note that for our existence results we consistently use radial test functions. We
infer that, whenever a ground-state solution is achieved in H(α), the ground state
in Hrad(α) (radial functions in H(α)) is also achieved. Indeed, this fact follows by
repeating the original arguments in H(α) in the radial setting Hrad(α). We do not
know a priori whether the ground state in H(α) is radial. Theorem 1.4 guarantees
cases when the ground state is not radial and, considering the least energy solution
in Hrad(α), we are thus led to the existence of at least two positive solutions of (1.1).

One is left with the following open question: are there situations when the ground
state is achieved, but no radial solutions exist? According to our result above, if
this happens, it has to be in the range α > N − 2 and 1

2λ1 < λ � 1
4α2.

The paper is structured as follows. After a brief section of preparatory results,
we discuss in § 3 the non-existence parts of theorems 1.1 and 1.2. Section 4 deals
with the existence part of theorem 1.1. We prove theorem 1.2 in § 5, and theo-
rem 1.3 in § 6. Finally, we present the symmetry-breaking argument that leads to
theorem 1.4 in § 7.

2. Preliminaries

Hereafter we write only
∫

u to denote
∫

RN u(x) dx. For any α � 2 we define
θ(x) = 1

4 |x|α, K(x) = exp(θ(x)), the Hilbert space H(α) as being the completion
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of C∞
c (RN ) with respect to the norm

‖u‖ =
( ∫

K(x)|∇u|2
)1/2

induced by the inner product

(u, v) =
∫

K(x)∇u · ∇v.

We define the weighted spaces

L2(α) =
{

u measurable in R
N :

∫
K(x)|x|α−2u2 < ∞

}

and

L2∗
(α) =

{
u measurable in R

N :
∫

K(x)|u|2∗
< ∞

}
.

Proposition 2.1. The space H(α) is continuously embedded in L2(α) and L2∗
(α).

Proof. For any u ∈ C∞
c (RN ) we have∫

|∇(K(x)1/2u)|2 =
∫

|K(x)1/2∇u + ∇(K(x)1/2)u|2

=
∫

K(x)|∇u|2 +
∫

∇(K(x)1/2u2) · ∇(K(x)1/2).

Integrating by parts we get∫
|∇(K(x)1/2u)|2 =

∫
K(x)|∇u|2 −

∫
K(x)1/2u2∆(K(x)1/2)

=
∫

K(x)|∇u|2 − 1
2

∫
K(x)(∆θ(x) + 1

2 |∇θ(x)|2)u2.

From the Sobolev inequality we have

∫
|∇(K(x)1/2u)|2 � S0

( ∫
(K(x)1/2|u|)2∗

)2/2∗

� S0

( ∫
K(x)|u|2∗

)2/2∗

,

where S0 > 0 denotes the best Sobolev constant. Hence,

∫
K(x)|∇u|2 � 1

2

∫
K(x)(∆θ(x) + 1

2 |∇θ(x)|2)u2 + S0

( ∫
K(x)|u|2∗

)2/2∗

. (2.1)

We therefore obtain∫
K(x)|∇u|2 � 1

2

∫
K(x)(∆θ(x) + 1

2 |∇θ(x)|2)u2 (2.2)
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and, since

∆θ(x) + 1
2 |∇θ(x)|2 = |x|α−2

(
α(N − 2 + α)

4
+

α2

32
|x|α

)

� α(N − 2 + α)
4

|x|α−2,

we find from (2.1) that∫
K(x)|∇u|2 � α(N − 2 + α)

8

∫
K(x)|x|α−2u2,

which implies that H(α) embeds continuously in L2(α), and∫
K(x)|∇u|2 � S0

( ∫
K(x)|u|2∗

)2/2∗

,

which implies that H(α) embeds continuously into L2∗
(α).

Proposition 2.2. For any α � 2 the space H(α) is compactly embedded in L2(α).

Proof. In order to show that the embedding is compact, we proceed as in [11,
proposition 1.1]. Let (un) ⊂ H(α) be such that

un ⇀ 0 weakly in H(α) and ‖un‖ � 1.

Given ε > 0, we can use the definition of θ to obtain R = R(ε) > 0 such that

∆θ(x) + 1
2 |∇θ(x)|2 = |x|α−2

(
α(N − 2 + α)

4
+

α2

32
|x|α

)
� 2

ε
|x|α−2

for any |x| � R. Hence, by (2.2), we obtain∫
RN \BR(0)

K(x)|x|α−2u2
n � ε

∫
K(x)|∇un|2 � ε. (2.3)

On the other hand, arguments based on the Rellich–Kondrachov theorem imply
that un → 0 in L2(BR(0)). Since K(x)|x|α−2 ∈ L∞(BR(0)), it follows that∫

BR(0)
K(x)|x|α−2u2

n � ε for n � nε.

The above expression and (2.3) imply that
∫

K(x)|x|α−2u2
n � 2ε for n � nε,

i.e. un → 0 strongly in L2(α). The proposition is proved.

Proposition 2.2 and standard spectral theory for compact operators imply that
the eigenvalue problem (1.3) has a sequence of eigenvalues

0 < λ1 < λ2 � · · · � λk � · · ·

such that λk → ∞ as k → ∞. Moreover, the first eigenvalue can be characterized
as the infimum of the Rayleigh quotient

λ1 = inf
u∈H1(α)\{0}

∫
|∇u|2K(x)∫

|u|2K(x)|x|α−2 .
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We note that (1.3) is equivalent to

−∆u − 1
4α(x · ∇u)|x|α−2 = λu|x|α−2.

A direct calculation shows that ϕ1(x) = exp(− 1
4 |x|α) > 0 is an eigenfunction

associated with the first eigenvalue λ1 = 1
4α(N − 2 + α).

3. Non-existence range

In this section we deal with the non-existence parts of theorems 1.1 and 1.2. We use
a Pohozaev identity to show that equation (1.1) has no non-trivial solution when
λ � 1

2λ1. The result is quite flexible in the sense that it prevents not only positive
solutions, but also sign-changing solutions in H(α) (see proposition 3.3). For the
reader’s convenience we give a proof of the following inequality.

Lemma 3.1 (Hardy inequality). Let u ∈ C∞
c (RN ), a > −N and R � 0. Then∫

RN \BR(0)
|u|2|x|a � 4

(N + a)2

∫
RN \BR(0)

(x · ∇u)2|x|a.

Moreover, if R = 0, the inequality is strict unless u ≡ 0.

Proof. Integrate the identity

div(u2|x|ax) = |x|ax · ∇(u2) + (N + a)|x|au2

on the domain R
N \ BR(0) to get

0 � −Ra+1
∫

∂BR(0)
u2 dσ

= 2
∫

RN \BR(0)
|x|aux · ∇u + (N + a)

∫
RN \BR(0)

|x|au2.

The Cauchy–Schwarz inequality then gives

2
( ∫

RN \BR(0)
|x|au2

)1/2( ∫
RN \BR(0)

|x|a(x · ∇u)2
)1/2

� (N + a)
∫

RN \BR(0)
|x|au2,

which is the desired inequality.
When R = 0 the only way to have equality is if the functions |u(x)| and |x·∇u(x)|

are proportional. This can only happen when u ≡ 0.

Remark 3.2. We note that when a = α − 2 lemma 3.1 holds for u ∈ H(α).

In the following we derive our non-existence result.

Proposition 3.3. Suppose that u ∈ H(α), α � 2, satisfies (1.2) and λ � 1
2λ1.

Then u ≡ 0.

Proof. On multiplying (1.2) by u and integrating by parts we obtain∫
|∇u|2 − 1

8α

∫
|x|α−2(∇u2 · x) =

∫
|u|2∗

+ λ

∫
|x|α−2u2. (3.1)
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We now note that∫
|x|α−2(∇u2 · x) = −

∫
u2 div(x|x|α−2) = −(N − 2 + α)

∫
|x|α−2u2;

hence, from (3.1) we obtain∫
|∇u|2 + 1

8α(N − 2 + α)
∫

|x|α−2u2 =
∫

|u|2∗
+ λ

∫
|x|α−2u2. (3.2)

On the other hand, we can multiply (1.2) by (x ·∇u) and integrate by parts once
more to obtain

N − 2
2

∫
|∇u|2 +

α

4

∫
|x|α−2(x · ∇u)2 =

N

2∗

∫
|u|2∗

+
λ(N − 2 + α)

2

∫
|x|α−2u2.

Suppose, by contradiction, that u �≡ 0. Combining the above expression with (3.2)
we obtain

( 1
2αλ + 1

16α(N − 2)(N − 2 + α))
∫

|x|α−2u2 = 1
4α

∫
|x|α−2(x · ∇u)2

> 1
16α(N − 2 + α)2

∫
|x|α−2u2,

where we have used the strict Hardy inequality of lemma 3.1. The above expression
implies that

λ > 1
8α(N − 2 + α) = 1

2λ1,

which contradicts the hypothesis. Hence, u ≡ 0 and the proposition is proved.

It is also easy to see that (1.2) does not admit positive solutions when λ � λ1.
Indeed, since ϕ1 satisfies (1.3), we assume that equation (1.1) has a positive solution,
we multiply (1.1) by ϕ1 and integrate by parts. We obtain

(λ1 − λ)
∫

K(x)uϕ1 =
∫

K(x)u2∗−1ϕ1,

which implies that λ < λ1.

4. Existence range

In this section we prove the existence stated in theorem 1.1. We define

Sλ = inf
u∈H(α)\{0}

Qλ(u),

and S0(K) in accordance with λ = 0. For α � 2 fixed and λ ∈ R, we follow [6]
by using the expression (1.4). We first note that S0(K) = S0, the best Sobolev
constant. Indeed, from (2.1) we have S0(K) � S0. Using a smooth cut-off function
ϕ(x) ≡ 1 in B1(0) and ϕ(x) ≡ 0 outside B2(0), and a sequence un(x) = ϕ(x)(εn +
|x2|)(2−N)/2 with εn → 0, we obtain S0(K) � lim infn→∞ Q0(un) = S0.

The existence result will be proved by checking that, under the hypotheses of
theorem 1.1, the number Sλ is achieved. This is exactly the content of the next two
results.
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Lemma 4.1. If 0 < Sλ(K) < S0(K), then Sλ(K) is achieved.

Proof. It suffices to argue as in [11, lemma 4.11].

Proposition 4.2. If 2 � α � N − 2, for any λ ∈ ( 1
2λ1, λ1) we have 0 < Sλ(K) <

S0(K).

Proof. Let ϕ ∈ C∞(RN , [0, 1]) be such that ϕ ≡ 1 on B1(0) and ϕ ≡ 0 outside
B2(0). Given a � 2 and b � 0, we can easily check that∫

|x|a(1 + |x|2)b−N < ∞ provided that N > a + 2b.

In this case, we can compute∫
ϕ2|x|a

(ε + |x|2)N−b
=

∫ |x|a
(ε + |x|2)N−b

+
∫

(ϕ2 − 1)|x|a
(ε + |x|2)N−b

= O(1) +
∫

εa/2|x/
√

ε|a
εN−b(1 + |x/

√
ε|2)N−b

= O(1) + εb+a/2−N/2
∫ |x|a

(1 + |x|2)N−b
, (4.1)

as ε → 0+.
For ε > 0, let us define

uε = K−1/2ϕvε,

where vε is the ‘instanton’ given by

vε(x) =
(

1
ε + |x|2

)(N−2)/2

.

Our aim is to check that, for small values of ε, we have Qλ(uε) < S. In order to do
this, we first compute

∫
|∇uε|2K =

∫
ϕ2

(
|∇vε|2 − α

4
vε(x · ∇vε)|x|α−2 +

α2

4 · 16
v2

ε |x|2(α−1)
)

+
∫

v2
ε |∇ϕ|2 + 2

∫
ϕvε∇ϕ ·

(
∇vε − α

8
vε|x|α−2x

)
.

It is easy to check that the two last terms of the right-hand side are bounded as
ε → 0. Thus, by using the definition of vε, we get∫

|∇uε|2K = (2 − N)2
∫

ϕ2|x|2
(ε + |x|2)N

+
α(N − 2)

4

∫
ϕ2|x|α

(ε + |x|2)N−1

+
α2

4 · 16

∫
ϕ2|x|2(α−1)

(ε + |x|2)N−2 + O(1)

= I1 + I2 + I3 + O(1).
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By using the estimate in (4.1) we obtain

I1 = ε1−N/2A1 + O(1) (for N > 2),

I2 = εα/2+(1−N/2)A2 + O(1) (for N > α + 2),

I3 = εα+(1−N/2)A3 + O(1) (for N > 2α + 2),

⎫⎪⎪⎬
⎪⎪⎭ (4.2)

with

A1 := (N − 2)2
∫ |x|2

(1 + |x|2)N
(for N > 2),

A2 :=
α(N − 2)

4

∫ |x|α
(1 + |x|2)N−1 (for N > α + 2),

A3 :=
α2

4 · 16

∫ |x|2(α−1)

(1 + |x|2)N−2 (for N > 2α + 2).

In the same way, we have

λ

∫
|uε|2K|x|α−2 = λ

∫
ϕ2|x|α−2

(ε + |x|2)N−2

= εα/2+(1−N/2)λA4 + O(1) (for N > α + 2), (4.3)

where

A4 :=
∫ |x|α−2

(1 + |x|2)N−2 (for N > α + 2).

Arguing as in (4.1), we can compute

∫
|uε|2

∗
K =

∫
ϕ2∗

K2/(2−N)

(ε + |x|2)N
= ε−N/2A0 + O(1) (for N > 2),

where

A0 :=
∫

1
(1 + |x|2)N

(for N > 2).

Hence, we get

( ∫
|uε|2

∗
K

)2/2∗

= (ε−N/2A0 + O(1))2/2∗

= (ε−N/2A0)2/2∗
+

N − 2
N

(ε−N/2A0 + O(1))−2/NO(1),

and therefore( ∫
|uε|2

∗
K

)2/2∗

= ε1−N/2A
(N−2)/N
0 + O(ε) (for N > 2). (4.4)

We now consider several distinct cases depending on the values of N and α.
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Case 1 (N > 2α + 2). In this case, all the equalities in (4.2)–(4.4) hold and we
have

Qλ(uε) =
ε1−N/2(A1 + εα/2(A2 − λA4) + εαA3) + O(1)

ε1−N/2A
(N−2)/N
0 + O(ε)

= A
−1+2/N
0 (A1 + εα/2(A2 − λA4) + εαA3 + O(εN/2−1))

< A
−1+2/N
0 A1,

for ε > 0 small enough, provided that λ > A2/A4. However, it is well known [6]
that A

−1+2/N
0 A1 = S0 = S0(K) and therefore it remains to check that

A2

A4
= 1

8α(N + α − 2) (for N > α + 2). (4.5)

In order to do this, we denote by ωN−1 the area of the sphere S
N−1 ⊂ R

N and
integrate by parts to get

A4 =
∫ |x|α−2

(1 + |x|2)N−2

= ωN−1

∫ ∞

0
r(N+α−2)−1 1

(1 + r2)N−2 dr

=
2(N − 2)

(N + α − 2)
ωN−1

∫ ∞

0

rN+α−1

(1 + r2)N−1 dr

=
8

α(N + α − 2)
A2.

Thus, (4.5) holds and the proposition is proved in the case when N > 2α + 2.

Case 2 (N = 2α + 2). In this case, we need to perform another estimate for I3.
Thus, we first note that∫

B1(0)

|x|2(α−1)

(ε + |x|2)2α
� I3 �

∫
B2(0)

|x|2(α−1)

(ε + |x|2)2α
.

On the other hand, for any R > 0, it holds that∫
BR(0)

|x|2(α−1)

(ε + |x|2)2α
= 1

2ωN−1

∫ R

0

r2(α−1)r2α(2r)
(ε + r2)2α

dr

= 1
2ωN−1

∫ ε+R2

ε

(s − ε)2α−1

s2α
ds

= 1
2ωN−1

( ∫ ε+R2

ε

1
s

ds +
∫ ε+R2

ε

2α−1∑
i=1

Ci
s(2α−1)−i

s2α
εi ds

)

= 1
2ωN−1 log |ε + R2| − 1

2ωN−1 log |ε| + O(1)

= 1
2ωN−1| log ε| + O(1).
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Hence, as in case 1, we get∫
|∇uε|2K = ε1−N/2(A1 + εα/2A2 + 1

2ε−1+N/2ωN−1| log ε|) + O(1)

= ε1−N/2(A1 + εα/2A2 + 1
2εαωN−1| log ε|) + O(1),

and therefore

Qλ(uε) = A
−1+2/N
0 (A1 + εα/2(A2 − λA4) + 1

2εαωN−1| log ε| + O(εN/2−1)) < S0,

for ε sufficiently small.

Case 3 (α + 2 < N < 2α + 2). In this case, since N < 2α + 2, we can estimate I3
as follows:

I3 =
α2

4 · 16

∫
B2(0)

ϕ2|x|2(α−1)

(ε + |x|2)N−2 �
∫

B2(0)

|x|2(α−1)

|x|2(N−2) = O(1)

and therefore

Qλ(uε) = A
−1+2/N
0 (A1 + εα/2(A2 − λA4) + O(εN/2−1)) < S0

for ε small enough.

Case 4 (N = α + 2). In this case I3 = O(1). However, (4.3) does not hold and we
also need to estimate I2. But this can be made as in case 2, and we can check that

I2 = 1
2ωN−1

1
4α(N − 2)| log ε| + O(1)

and

λ

∫
|uε|2K|x|α−2 = 1

2ωN−1| log ε| + O(1).

Hence,

Qλ(uε) = A
−1+2/N
0 (A1 + 1

2ωN−1( 1
4α(N − 2) − λ) + O(εN/2−1)) < S0,

provided ε is small and

λ > 1
4α(N − 2) = 1

4α2 = 1
8α(N + α − 2).

This concludes the proof of the proposition.

5. Existence when N < α + 2 and 1
4α2 < λ < 1

4α(N − 2 + α)

In this section we prove the existence statement of theorem 1.2. For this we work
with test functions using the solutions

U(x) = cN

(
ε

ε2 + |x|2

)(N−2)/2
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of −∆U = U2∗−1. For convenience, define ϕ(x) = K−1/2(x) = exp(− 1
8 |x|α) and let

u = ϕ2U . We calculate∫
K|∇u|2 =

∫
ϕ−2|∇(ϕ2U)|2

=
∫

|2U∇ϕ + ϕ∇U |2

=
∫

4U2|∇ϕ|2 + 2ϕU(∇ϕ · ∇U) + div(ϕ2U∇U) − ϕ2U∆U

=
∫

4U2|∇ϕ|2 + 1
2 (∇ϕ2 · ∇U2) + ϕ2U2∗

+ div(ϕ2U∇U)

=
∫

4U2|∇ϕ|2 − 1
2U2∆ϕ2 + ϕ2U2∗

+ div(ϕ2U∇U + 1
2U2∇ϕ2).

Since the divergences integrate to zero, we get∫
K|∇u|2 =

∫
ϕ2U2∗

+
∫

U2(4|∇ϕ|2 − 1
2∆ϕ2).

Using the explicit form of ϕ, a direct calculation yields

4|∇ϕ|2 − 1
2∆ϕ2 = 1

8α(N + α − 2)|x|α−2ϕ2 + 1
32α2|x|2α−2ϕ2

so we can write ∫
U2(4|∇ϕ|2 − 1

2∆ϕ2) =
∫

U2|x|α−2Ψ(x),

where Ψ(x) = 1
8α(N + α − 2)ϕ2 + 1

32α2|x|αϕ2.
We now show that∫

U2|x|α−2Ψ(x) = c2
NεN−2

∫
|x|α+2−2NΨ(x) + o(εN−2); (5.1)

therefore,

∫
K|∇u|2 =

∫
ϕ2U2∗

+ c2
NεN−2 1

8α(N + α − 2)
∫ |x|α−2

|x|2(N−2) ϕ
2

+ c2
NεN−2 1

32α2
∫ |x|2α−2

|x|2(N−2) ϕ
2 + o(εN−2). (5.2)

Indeed,

∫
|x|α+2−2NΨ(x) −

∫ |x|α−2

(|x|2 + ε2)N−2 Ψ(x)

=
∫ |x|α+2−2N ((|x|2 + ε2)N−2 − |x|2(N−2))

(|x|2 + ε2)N−2 Ψ(x)
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=
N−2∑
k=1

(
N − 2

k

) ∫ |x|α+2−2N |x|2(N−2−k)ε2k

(|x|2 + ε2)N−2 Ψ(x)

�
N−2∑
k=1

(
N − 2

k

) ∫ |x|α+2−2Nε2k

(|x|2 + ε2)k
Ψ(x).

Each of the integrals ∫ |x|α+2−2Nε2k

(|x|2 + ε2)k
Ψ(x)

is estimated as follows. Pick

0 < µ < min
{

α

N − 2
− 1, 2

}
, p =

2
µ

, q =
2

2 − µ
.

We use Young’s inequality,

ap

p
+

bq

q
� ab, with a = (p|x|2)1/p and b = (qε2)1/q.

Then
|x|2 + ε2 � 2

µµ/2(2 − µ)(2−µ)/2 |x|µε2−µ; (5.3)

hence,∫ |x|α+2−2Nε2k

(|x|2 + ε2)k
Ψ(x) � µkµ/2(2 − µ)k(2−µ)/2

2k

∫
|x|α+2−2N−kµεkµΨ(x).

From α + 2 − 2N − kµ > −N we find that every integral on the right-hand side is
convergent. Hence, ∫ |x|α+2−2Nε2k

(|x|2 + ε2)k
Ψ(x) � C(k, µ)εkµ

and this proves (5.1).
Returning to (5.2), we use

0 =
∫

div
(

|x|α−2x

|x|2(N−2) ϕ
2
)

= (α − N + 2)
∫ |x|α−2

|x|2(N−2) ϕ
2 − 1

4α

∫ |x|2α−2

|x|2(N−2) ϕ
2

from which we may infer that

1
32α2

∫ |x|2α−2

|x|2(N−2) ϕ
2 = 1

8α(α − N + 2)
∫ |x|α−2

|x|2(N−2) ϕ
2.

Therefore,∫
K|∇u|2 =

∫
ϕ2U2∗

+ c2
NεN−2 1

4α2
∫ |x|α−2

|x|2(N−2) ϕ
2 + o(εN−2).

The same estimates used for (5.1) give

λ

∫
K|x|α−2u2 = λc2

NεN−2
∫ |x|α−2

|x|2(N−2) ϕ
2 + o(εN−2)
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and so∫
K|∇u|2 − λ

∫
K|x|α−2u2

=
∫

ϕ2U2∗
+ c2

NεN−2( 1
4α2 − λ)

∫ |x|α−2

|x|2(N−2) ϕ
2 + o(εN−2).

Also ∫
Ku2∗

=
∫

ϕ2(N+2)/(N−2)U2∗
.

We show that, for p > 0, we can write estimates of the type∫
ϕpU2∗

=
∫

U2∗
+ o(εN−2). (5.4)

This is because ∫
ϕpU2∗

=
∫

U2∗
+

∫
(1 − ϕp)c2∗

N

εN

(|x|2 + ε2)N
.

Using Young’s inequality (5.3) again, with

min
{

α + N

N
, 2

}
> µ > 2

N − 1
N

,

we obtain∫
(1 − ϕp)c2∗

N

εN

(|x|2 + ε2)N
� c2∗

N

µNµ/2(2 − µ)N(2−µ)/2

2N

∫
(1 − ϕp)

εN(µ−1)

|x|Nµ
,

which proves (5.4) because the exponent of ε is

N(µ − 1) > N − 2

and the integral is convergent since, for |x| small,

1 − ϕp(x) � 1
4p|x|α and α + N − 1 − Nµ > −1.

Then, the definition of Qλ(u) gives

Qλ(u) =

∫
U2∗

+ c2
NεN−2( 1

4α2 − λ)
∫

(|x|α−2/|x|2(N−2))ϕ2 + o(εN−2)
(
∫

U2∗ + o(εN−2))2/2∗ < S0

for small ε > 0, provided that λ > 1
4α2.

6. The radial case for N < α + 2 and 0 < λ � 1
4α2

In this section we prove theorem 1.3, so we show non-existence of positive radial
solutions in the case N < α + 2 and 0 < λ � 1

4α2. The argument is more general
than that in [1] for the case α = 2. We use the method in [8] to obtain a Pohozaev-
type identity.
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Positive radial solutions u = u(r) of equation (1.2) satisfy

−urr −
(

N − 1
r

+
αrα−1

4

)
ur = λrα−2u + u2∗−1. (6.1)

We set

h(r) =
N − 1

r
+

αrα−1

4
and H(r) = rN−1erα/4.

Note that Hr = hH. After multiplication by H, (6.1) can be written as

−(Hur)r = λrα−2Hu + Hu2∗−1. (6.2)

Let ξ and ζ be solutions of the linearized (6.2) about u ≡ 0, i.e. solutions of

−(Hξr)r = λrα−2Hξ. (6.3)

We define the Wronskian of u and ξ as

W [u, ξ](r) = H(r)(u(r)ξr(r) − ur(r)ξ(r)).

After multiplying equation (6.2) by ξ and equation (6.3) by −u, we add the two
equalities to obtain

d
dr

W [u, ξ] = Hu2∗−1ξ. (6.4)

Similarly, by using the solution ζ instead of ξ we obtain

d
dr

W [u, ζ] = Hu2∗−1ζ. (6.5)

We multiply equality (6.4) by W [u, ζ] and equality (6.5) by W [u, ξ] and add the
results. We therefore obtain

d
dr

(W [u, ξ]W [u, ζ]) = Hu2∗−1(ξW [u, ζ] + ζW [u, ξ]).

A straightforward calculation yields

d
dr

(
W [u, ξ]W [u, ζ] +

2
2∗ H2u2∗

ξζ

)
=

2 + 2∗

2∗ H(2·2∗)/(2+2∗)u2∗
(H4/(2+2∗)ξζ)r.

(6.6)
We now show how to pick suitable ξ and ζ, positive solutions of (6.3), so that if

N < α + 2 and 0 < λ < 1
4α2, the right-hand side of (6.6) is negative for all r > 0.

That is
(H4/(2+2∗)ξζ)r < 0,

which—because ξ and ζ will be positive—is equivalent to

N − 2
r

+
N − 2
N − 1

αrα−1

4
+

ξr

ξ
+

ζr

ζ
< 0. (6.7)

Making the change of variables

s = 1
4rα, ξ(r) = e−sf(s), ζ(r) = e−sg(s),
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equation (6.3) for ξ and ζ transforms into the confluent hypergeometric equation,
also known as Kummer’s equation, for f and g:

sfss + (b − s)fs − af = 0, (6.8)

where b = (N − 2 + α)/α ∈ (1, 2) and a = (N − 2 + α)/α − (4λ/α2) ∈ (0, b).
Let Φ(a, b; s) and Ψ(a, b; s) be the confluent hypergeometric function and confluent
hypergeometric function of the second kind, respectively (see [15, §§ 9.9–9.12]).

We define

f(s) =
Γ (a)Γ (b − a)

Γ (b)
Φ(a, b; s) and g(s) = Γ (a)Ψ(a, b; s)

so that f and g solve (6.8) and have the integral representations

f(s) = es

∫ 1

0
e−sttb−a−1(1 − t)a−1 dt

and

g(s) = es

∫ ∞

1
e−sttb−a−1(t − 1)a−1 dt.

Using the differentiation formula (9.10.12) and the recurrence relations (9.10.14)
and (9.10.13) in [15] we have

d
ds

Ψ(a, b; s) = −aΨ(a + 1, b + 1; s),

Ψ(a + 1, b + 1; s) =
b − a − 1

s
Ψ(a + 1, b; s) +

1
s
Ψ(a, b; s),

Ψ(a + 1, b; s) =
1
a
Ψ(a, b; s) − 1

a
Ψ(a, b − 1; s).

Combining the three equalities above we get

d
ds

Ψ(a, b; s) = −b − 1
s

Ψ(a, b; s) +
b − a − 1

s
Ψ(a, b − 1; s).

After multiplication by Γ (a) this becomes

d
ds

g +
b − 1

s
g =

b − a − 1
s

es

∫ ∞

1
e−sttb−a−2(t − 1)a−1 dt.

Changing the variables back to r and ζ, we obtain

ζr +
(

αrα−1

4
+

(b − 1)α
r

)
ζ =

α(b − a − 1)
r

∫ ∞

1
e−rαt/4tb−a−2(t − 1)a−1 dt. (6.9)

When
b − a − 1 < 0, i.e. λ < 1

4α2,

we find that the left-hand side of (6.9) is negative, and, hence,

ζr

ζ
< −αrα−1

4
− N − 2

r
.

Since ξr/ξ is also negative, inequality (6.7) follows from the inequality above.
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Assuming that (6.2) has a positive solution, we get a contradiction, as follows:
let

H = W [u, ξ]W [u, ζ] +
2
2∗ H2u2∗

ξζ

be the expression differentiated on the left-hand side of (6.6). Then

H = H2
(

u2
rξζ − uru(ξζ)r + u2ξrζr +

2
2∗ u2∗

ξζ

)
.

Since we have

ξ(r) = O(1) and ζ(r) = O(rα(1−b)) = O(r−(N−2))

near r = 0, we obtain
lim

r→0+
H(r) = 0.

On the other hand, for large r we have

ξ(r) = O(r−α(b−a)) = O(r−4λ/α)

and

ζ(r) = O(e−rα/4r−αa) = O(e−rα/4r−(N−2+α−(4λ/α))).

These estimates, together with the requirements (which follow from u ∈ H(α)) that∫ ∞

0
Hu2

r < ∞,

∫ ∞

0
Hu2 < ∞ and

∫ ∞

0
Hu2∗

< ∞,

imply that
lim

r→∞
H(r) = 0.

But this contradicts dH/dr < 0 for all r > 0. When λ = 1
4α2, (6.9) can be integrated

explicitly.

7. Non-radial solutions

In this section we show that there are cases when the least energy solutions are
non-radial, proving theorem 1.4. For this, we look at the second derivative of Qλ

calculated at a radial solution u, and we argue that there are situations when this
cannot be positive semi-definite. This implies that u is not a ground state. This
reasoning appeared in [13,18].

Proof of theorem 1.4. Let u = u(r) be a radial solution of (1.2), s ∈ R and h ∈
H(α). We write

Qλ(u) =
N (u)
D(u)

,

where

N (u) =
∫

K|∇u|2 − λ

∫
K|x|α−2u2
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and

D(u) =
( ∫

Ku2∗
)2/2∗

(see (1.4)). Therefore,

d2

ds2 Qλ(u + sh)
∣∣∣∣
s=0

=
〈N ′′(u)h, h〉

D(u)
− 2

N ′(u)h
D2(u)

D′(u)h

+ 2
N (u)
D3(u)

(D′(u)h)2 − N (u)
D2(u)

〈D′′(u)h, h〉.

Since by assumption u is a critical point of Qλ, it follows that the second and third
terms cancel each other out. Therefore,

〈Q′′
λ(u)h, h〉 =

〈N ′′(u)h, h〉 − Qλ(u)〈D′′(u)h, h〉
D(u)

.

Direct calculations show that

〈N ′′(u)h, h〉 = 2
∫

K|∇h|2 − 2λ

∫
K|x|α−2h2

and

〈D′′(u)h, h〉 = 2(2 − 2∗)
( ∫

Ku2∗
)(2/2∗)−2( ∫

Ku2∗−1h

)2

+ 2(2∗ − 1)
( ∫

Ku2∗
)(2/2∗)−1 ∫

Ku2∗−2h2.

Again, since u is solution of (1.2), we have

N (u) =
∫

K|∇u|2 − λ

∫
K|x|α−2u2 =

∫
Ku2∗

= D(u)2
∗/2 = Qλ(u)1/2N.

If u is a local minimum of Qλ, then

〈Q′′
λ(u)h, h〉 � 0

for all h ∈ H(α), that is∫
K|∇h|2 − λ

∫
K|x|α−2h2

+
4

N − 2
Qλ(u)−N/2

( ∫
Ku2∗−1h

)2

− N + 2
N − 2

∫
Ku2∗−2h2 � 0. (7.1)

Of course, if we substitute u for h in the inequality above, we obtain an equality
because Qλ is constant in the direction of u. We are therefore led to test an h
orthogonal to u. We will choose h(x) = u(r)Y (ω), where ω ∈ S

N−1, x = rω and Y
is a first spherical harmonic function. That is, Y is not identically zero: it satisfies

−∆ωY = (N − 1)Y,

∫
SN−1

Y dω = 0;
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we will also assume that Y is normalized so that

‖Y ‖2
L2(SN−1) = 1 and ‖∇ωY ‖2

L2(SN−1) = N − 1.

With this h we obtain∫ N

R

K|∇h|2 =
∫ N

R

Ku2
rY

2 +
∫ N

R

Ku2|∇ωY |2

=
∫ ∞

0
K(r)rN−1u2

r dr + (N − 1)
∫ ∞

0
K(r)rN−1u2 dr.

Substituting this in (7.1), and since h is orthogonal to all radial functions, we get

∫ ∞

0
K(r)rN−1u2

r dr + (N − 1)
∫ ∞

0
K(r)rN−1u2 dr

− λ

∫ ∞

0
K(r)rN+α−3u2 dr − N + 2

N − 2

∫ ∞

0
K(r)rN−1u2∗ � 0.

Since u is a radial solution of (1.2) we have∫ ∞

0
K(r)rN−1u2

r dr = λ

∫ ∞

0
K(r)rN+α−3u2 +

∫ ∞

0
K(r)rN−1u2∗

.

Therefore, (7.1) implies that

(N − 1)
∫ ∞

0
K(r)rN−1u2 dr � 4

N − 2

∫ ∞

0
K(r)rN−1u2∗

or, equivalently,

1
4 (N − 1)(N − 2)

∫ ∞

0
K(r)rN−1u2 dr + λ

∫ ∞

0
K(r)rN+α−3u2 dr

�
∫ ∞

0
K(r)rN−1u2

r dr. (7.2)

We will show that there exist values of the three parameters N , α and λ such that
the ground state is achieved and the opposite inequality to (7.2) holds. This implies
that the ground state is non-radial. We already have∫ ∞

0
K(r)rN−1u2

r dr � λ1

∫ ∞

0
K(r)rN+α−3u2 dr. (7.3)

Since u is assumed to be a radial solution of (1.2), it satisfies

−(KrN−1ur)r = λKrN+α−3u + KrN−1u2∗−1, ur(0) = 0;

hence, ur(r) < 0 for all r > 0. We can apply the Hardy-type inequality of lemma 7.1,
below, to obtain ∫ ∞

0
K(r)rN−1u2

r dr � C−2
∫ ∞

0
K(r)rN−1u2 dr, (7.4)
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where B � C � 2B and B is defined by

B2 = sup
0<x<∞

∫ x

0
K(r)rN−1 dr

∫ ∞

x

1
K(r)rN−1 dr. (7.5)

Making the change of variables s = 1
4rα, we can write

B2 =
42/α

α2 sup
0<y<∞

∫ y

0
essµ−1 ds

∫ ∞

y

e−ss−µ+(2/α)−1 ds,

where µ = N/α. We see that, by keeping µ relatively constant, we get B ≈ 1/α,
which is small for α large.

From ∫ ∞

0
KrN−1u2

r =
(

1 − λ

λ1

) ∫ ∞

0
KrN−1u2

r +
λ

λ1

∫ ∞

0
KrN−1u2

r

and (7.3) and (7.4) we get∫ ∞

0
KrN−1u2

r � 1
4B2

(
1 − λ

λ1

) ∫ ∞

0
KrN−1u2 + λ

∫ ∞

0
KrN+α−3u2.

Therefore, whenever

1
4B2

(
1 − λ

λ1

)
>

(N − 1)(N − 2)
4

,

the inequality (7.2) cannot hold and so the ground state cannot be radial. Note
that, in order for the ground state to exist, we have the sufficient conditions

1 >
λ

λ1
>

⎧⎪⎨
⎪⎩

1
2 if 2 < α � N − 2,

α2

4λ1
if α > N − 2.

The lemma below is adapted from [14,16].

Lemma 7.1. For every decreasing function u = u(r) in Hrad(α), (7.4) holds where
B � C � 2B, and B is defined by (7.5).

Proof. Let

w(r) = K(r)rN−1 and h(t) =
( ∫ ∞

t

1
w(y)

dy

)1/4

.

Since u is assumed decreasing, positive function, we have

u(x) =
∫ ∞

x

|u′(t)| dt =
∫ ∞

x

|u′(t)|w1/2(t)h(t)
1

w1/2(t)h(t)
dt.

The Cauchy–Schwarz inequality implies that

u(x) �
( ∫ ∞

x

|u′(t)|2w(t)h2(t) dt

)1/2( ∫ ∞

x

1
w(t)h2(t)

dt

)1/2

.
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But ∫ ∞

x

1
w(t)h2(t)

dt = −2
∫ ∞

x

d
dt

( ∫ ∞

t

1
w(y)

dy

)1/2

dt

= 2
( ∫ ∞

x

1
w(y)

dy

)1/2

= 2h2(x).

Therefore,

u(x) �
( ∫ ∞

x

w(t)|u′(t)|2h2(t) dt

)1/2

21/2h(x)

and ∫ ∞

0
w(x)u2(x) � 2

∫ ∞

0
w(x)h2(x)

( ∫ ∞

x

w(t)|u′(t)|2h2(t) dt

)
.

Changing the order of integration yields∫ ∞

0
w(x)u2(x) � 2

∫ ∞

0

( ∫ t

0
w(x)h2(x)

)
w(t)|u′(t)|2h2(t) dt.

From the definition of B, we estimate that

∫ t

0
w(x)h2(x) � B

∫ t

0
w(x)

( ∫ x

0
w(y) dy

)−1/2

= 2B

∫ t

0

d
dx

( ∫ x

0
w(y) dy

)1/2

= 2B

( ∫ t

0
w(y) dy

)1/2

� 2B2
( ∫ ∞

t

1
w(y)

dy

)−1/2

= 2B2h−2(t).

Substituting in the inequality above, we get∫ ∞

0
w(x)u2(x) � 4B2

∫ ∞

0
w(t)|u′(t)|2 dt,

which is the inequality (7.4).
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