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Abstract
This article continues the study of the genus of regular languages that the authors introduced in a 2013
paper (published in 2018). In order to understand further the genus g(L) of a regular language L, we
introduce the genus size of |L|gen to be the minimal size of all finite deterministic automata of genus g(L)
computing L. We show that the minimal finite deterministic automaton of a regular language can be arbi-
trarily far away from a finite deterministic automaton realizing the minimal genus and computing the
same language, in terms of both the difference of genera and the difference in size. In particular, we show
that the genus size |L|gen can grow at least exponentially in size |L|. We conjecture, however, the genus of
every regular language to be computable. This conjecture implies in particular that the planarity of a reg-
ular language is decidable, a question asked in 1976 by R. V. Book and A. K. Chandra. We prove here the
conjecture for a fairly generic class of regular languages having no short cycles. The methods developed
for the proof are used to produce new genus-based hierarchies of regular languages and in particular, we
show a new family of regular languages on a two-letter alphabet having arbitrary high genus.

Keywords: Deterministic finite automaton; regular language; topological genus; graph embedding; planarity

1. Introduction
Regular languages form a robust and well-studied class of languages: they are recognized by deter-
ministic finite automata (DFA), as well as various formalisms such as Monadic Second-Order
logic, finite monoids, regular expressions. Traditionally, the canonical measure of the complexity
of a regular language is given by the number of states of its minimal deterministic automaton.

In this paper, we study an alternative measure of language complexity, with a more topological
flavor. We will be interested in the topological genus of underlying graph structures of deter-
ministic automata recognizing the language. A surface is a 2-manifold. We shall consider only
connected compact and oriented surfaces in this paper. Recall that the genus of a surface � is the
maximal number of mutually disjoint simple closed curves C1, . . . , Cg ⊂� such that the comple-
ment � − (C1 ∪ · · · ∪ Cg) remains connected. This yields a natural notion of genus of a graph: a
graph has genus n if it is embeddable in a surface of genus n but cannot be embedded in a surface
of strictly smaller genus.

This definition was used in Bonfante and Deloup (2018) to define the genus of a regular
language L as the minimal genus among the genera of all underlying graphs of deterministic
automata recognizing L. In particular, L has genus 0 if and only if it can be recognized by a planar
deterministic automaton.
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One of the main questions is the computability of the genus of a regular language (Conjecture 4
below). This conjecture implies the decidability of the planarity of a regular language – a question
raised in 1976 by R. V. Book and A.K. Chandra (Book and Chandra 1976). Our main result is the
proof of the conjecture for the class of regular languages having no short cycle (Theorem 4).

The complexity of the computation of the genus is reflected on the cost of extra states needed
to build a deterministic automaton of minimal genus. We show that the number of states required
may be exponential in the size of the minimal automaton of the language (Theorem 1).

In an earlier paper Bonfante and Deloup (2018), we proved that there are regular languages of
arbitrary high genus. We also provide new hierarchies of regular languages based on the genus,
including for regular languages on two letters (Theorem 6).

Plan of the paper. Section 2 provides introductory examples (for the reader familiar with
automata theory), background, definitions of genus and genus sizes, and examples, notably
an example of language which features an exponential gap between its size and its genus size
(Theorem 1). Section 3 is the most technical part of the paper: it introduces the notion of a lan-
guage without short cycles. Within the class of languages without short cycles, we find a lower
bound for the genus of the language in terms of the size of the language (Theorem 2). Section 4
states the computability conjecture of the genus of any regular language. The main results are the
finiteness of complete DFA without short cycles of given genus (Theorem 3) and the computabil-
ity of the genus of a regular language without short cycles (Theorem 4). We also provide examples
where we show that the hypothesis of absence of short cycles cannot be removed (Proposition 1).
Section 5 provides two new examples of genus-based hierarchies: in the first example, we give an
exact closed formula for the genus (Theorem 5); the second example is a genus-based hierarchy
of two-letter languages (Theorem 6). Section 6 contains the proof that the absence of short cycles
in the minimal complete finite deterministic automaton is a property of the underlying language,
a fact often used in this paper.

2. The genus and genus size of a regular language
2.1 Introductory examples
This paragraph is intended to provide motivation for the reader familiar with automata theory.
For background and references, see Section 2.2. The Myhill–Nerode theorem provides construc-
tive existence and uniqueness of a deterministic finite automaton with minimal number of states
recognizing a given regular language.

Definition 1. For each k≥ 1, we define the regular language on the alphabet Z/kZ:

Zk :=
{
a1a2 . . . an |

n∑
i=1

ai ≡ 0 mod k

}
.

It will be convenient to denote Za1,...,ar
k the regular language obtained from Zk by restriction to the

subalphabet {a1, . . . , ar} ⊆Z/kZ.

Example 1. The language Z0,1,2
5 . Figure 1 depicts the minimal automaton A. The transitions

are of the form i
j−→ i+ j mod 5. Since it contains the complete graph K5, A is not planar.

However, there exists a deterministic automaton with six states that is planar and computes the
same language L: see Figure 2.
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Figure 1. Theminimal automaton for the language Z0,1,25 .
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Figure 2. A planar automaton B computing L. Note that states 4 and
4′ are equivalent: they produce the same output (they are the sources
of the same transitions) and merging them yields back the previous
automaton (see Figure 1).
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Figure 3. The minimal automaton of Z6. For simplicity, the self-loop labeled 0 at each
vertex is omitted and each edge represents two transitions in opposite directions.

In the previous example, adding just an extra state suffices to produce a planar automaton that
recognizes the same language. The following example suggests that the general case may require
many more states.

Example 2. The language Z6. Figure 3 represents the minimal deterministic finite automaton A

computing Z6. Its state space is Z/6Z and its transitions are i
j−→ i+ j mod 6, for all i, j ∈Z/6Z.

There is no planar representation for A. (Since A has the complete graph K5 as a minor, A is
not planar.) However, there exists a deterministic automaton with 12 states that is planar and
computes the same language L (Figure 4). We regard the additional six states as the price to pay in
order to simplify the topology of an embedding of the automaton into a surface. Since any 6-state
automaton has an underlying graph which is a subgraph of Z6, it follows that any language of size
|L| ≤ 6 (which admits an automaton representation with 6 states or less) can be represented by a
planar finite deterministic automaton with at most 12 states. (A detailed proof of this fact and a
generalization of it will be published in another forthcoming paper.)
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Figure 4. A deterministic automaton of minimal genus
(planar) recognizing the same language Z6 (with the
same representation conventions as in Figure 3).

2.2 Automata and graphs
For a general reference on automata, we refer to Sakarovitch (2009). For a general reference on
graphs, we refer to Gross and Tucker (2001). Here we give a brief review of the few notions used
in this paper.

An automaton A consists of a set Q of states, with one distinguished initial state i ∈Q and
a subset F of distinguished final states, a finite set (alphabet) A and a subset (the set of transi-
tions) T ⊆Q×A×Q. The automaton is finite if the set of states is finite. The size of a finite
automaton A, denoted |A|, is the number of states of A, i.e., the cardinality of Q. A state q ∈Q is
accessible if there is a sequence of transitions (i, a1, q1), (q1, a2, q2), . . . , (qn−1, an, q) connecting
the initial state to the state q. A state q ∈Q is co-accessible if there is a sequence of transitions
(q, a1, q1), . . . , (qn−1, an, f ) with q ∈ F connecting the state q to some final state f . A successful
computation is a word w= a1 . . . an with ai ∈A for 1≤ i≤ n, such that there is a sequence of
transitions (i, a1, q1), (q1, a2, q2), . . . , (qn−1, an, f ) connecting the initial state i to a final state f .
A state q is complete if for any a ∈A, there is at least one transition (q, a, q′) ∈ T for some state
q′ ∈Q. The automaton is complete1 if each state q ∈Q is complete. A state q is deterministic if for
any a ∈A, there is at most one transition (q, a, q′) ∈ T for some state q′ ∈Q. The automaton is
deterministic if each state q ∈Q is deterministic. An automaton A is deterministic and complete
if and only if the transition relation T is the graph of a function δ :Q×A→Q, the transition
function of A. Two automata A and A′ over the same alphabet are isomorphic if there is a bijective
map sending each state of A to a state of A′ which sends bijectively the set of transitions of A to the
set of transitions of A′. The language L(A) computed (or recognized) by an automaton A is the set
of all successful computations of A. Two isomorphic automata compute the same language, but a
language can be computed by two non-isomorphic automata.

Any automaton A gives rise to a directed graph: the set of vertices is the set of states, and the set
of directed edges is defined by setting a directed edge from vertex q to vertex q′ if and only if there
is some letter a ∈A such that (q, a, q′) ∈ T. The graph may have multiple edges. This is sometimes
referred to as a multigraph in the literature. Throughout this paper, graph will mean multigraph.
If we wish to emphasize that a graph has no multiple edge, we shall say that the graph is simple.
A directed graph is strongly connected if given any pair (u, v) of vertices, there is a directed path
joining u to v.

Since any directed graph induces an undirected graph by forgetting the orientation of the edges,
any automaton A also gives rise to an undirected graph. Let k≥ 1. A cycle of length k in A is a closed
walk of length k in the underlying undirected graph, considered up to circular permutation. Note
that a cycle may or may not respect the orientation of the original transitions. We say that the
cycle respects the direction of (the underlying directed graph of) A if each oriented edge of the
cycle respects the orientation of the original transition in A. A cycle of length 1 is also called a loop
(or a self-loop, for emphasis). A cycle is simple if it is represented by a closed walk in which no edge
is used more than once. For instance, a closed walk in which one edge is traveled twice in opposite
directions does not induce a simple cycle. The genus of a closed oriented surface � is defined as
half the rank of the homology groupH1(�). It is equal to the maximal number of nonintersecting
simple closed curves C1, . . . , Cg such that � − (C1 ∪ · · · ∪ Cg) remains connected.
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Given a graph G, it is easy to find a surface � such that G embeds in �: consider a generic
immersion of G into the 2-sphere S2 with only double points (“crossings of two distinct edges”);
for each double point, create a handle S1 × I which contains exactly one edge. Once there are no
more double points, one obtains an embedding of G into a new surface �. The process of creat-
ing a handle increases the genus of the surface. In particular, the surface thus created, into which
G embeds, may not have minimal genus. The genus of a graph G is the minimal genus among all
closed oriented surfaces into whichG embeds. An embedding into a surface of minimal genus will
be called minimal. Any minimal embedding is cellular: the complement of the embedded graph
in the surface is a finite disjoint union of cells (topological two-dimensional discs). Such a cell is
called a face of the embedding. The boundary ∂c of a cell c is defined as usual as in simplicial or
singular homology. Given a cellular embedding, a closed walk w induces a one-dimensional com-
plex, namely the union of embedded edges defined by the closed walk. We say that a closed walk
w bounds a cell c if the one-dimensional complex it induces bounds c. A closed walk bounding
a cell is necessarily a cycle. The length of a cell is a well-defined positive integer: it is intuitively
the length of a bounding cycle. For details, see Gross and Tucker (2001) or Bonfante and Deloup
(2018, Section 4.2).

The genus g(A) of an automaton A is defined as the genus of the underlying undirected graph
(see, e.g., Gross and Tucker, 2001, Section 1.4.6).

2.3 The genus of a regular language
We start with the definition of the genus of a regular language, introduced in Bonfante andDeloup
(2018). The basic idea is to consider among all finite automata computing a given regular language
those that have the smallest genus (as graphs). As to why we need to restrict to deterministic
automata in the definition below, see Bonfante and Deloup (2018, Section 8, Theorem 11).

Definition 2. Let L be a regular language. Let DFA(L) be the set of all DFA computing L. The genus
g(L) is

g(L)=min{g(A) | A ∈DFA(L)}.
A regular language is said to be planar (resp. toric) if its genus is zero (resp. one).

In other words, the genus of a regular language is the minimal genus among all genera of
closed oriented surfaces into which a finite deterministic automaton recognizing the language
embeds. There are many nonplanar languages. A hierarchy of languages of strictly increasing
genus is explicitly constructed in Bonfante and Deloup (2018). We shall produce other examples
of hierarchies in Section 5 (see also Remark 6).

Remark 1. Taking the minimum over all complete and accessible DFA does not change the genus
of the language. See Bonfante and Deloup (2018, Proposition 3 & 4).
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2.4 Genus and genus size
Given a regular language L, we let Amin(L)= Amin be the minimal deterministic automaton asso-
ciated with L. The size |L|set of the language L is the size of the minimal deterministic automaton
Amin:

|L|set = |Amin|.

Definition 3. We define the genus size of L to be

|L|gen =min{|A| | L(A)= L, g(A)= g(L)}
where the minimum is taken over all DFA recognizing L of minimal genus.

By definition |L|gen ≥ |L|set with equality if and only if the minimal automaton realizes the
genus of L. From Bonfante and Deloup (2018, Section 5) we know that the genus size is in general
reached by several non-isomorphic deterministic automata. In light of the previous examples, a
number of natural questions arise. What is the trade-off between size and genus? Can a regular
language be planar and its minimal automaton have an arbitrary high genus? Indeed, the follow-
ing result shows that the genus size of L can grow at least exponentially in terms of (minimal
automaton) size of L:

Theorem 1. There is a family of planar regular languages (Ln)n∈N and a positive number K > 1
such that

|Ln|gen =O(K|Ln|set ).

The construction consists in building a sequence of planar languages Ln having increasingly high
genus minimal automata Amin(Ln). The language Ln will be finite, so there will be a spanning tree
for Ln, ensuring planarity, while the high genus of the minimal automaton is produced by means
of a cascade of n directed K5,5’s, completed by one initial state and one single final state.

Proof of Theorem 1. On the alphabet Z/5Z, given n≥ 0, let us consider the automaton An =
(Qn, in, Fn, δn) defined as follows. The set of states is Qn =Z/5Z× {0, · · ·, n} ∪ {p0,�,⊥}. The
initial state is p0, there is a unique final state �. For all a, b ∈Z/5Z, let δn(p0, a)= (a, 0),
δn((a, n), a)=�, if a �= b, δn((a, n), b)=⊥ and for j< n, δn((a, j), b)= (a+ b, j+ 1). A typical
computation path is

p0
a0→ (a0, 0)

a1→ (a0 + a1, 1)
a2→· · · an→ (x= a0 + · · · + an, n)

x→�.
The corresponding language is Ln = {a0 · · · an+1 |∑i=0,n ai = an+1}.

It is straightforward that all states of An are accessible. Given a state (a, j), consider the lan-
guage L(a,j) of suffixes (that consists of words sending (a, j) to the final state �). For j= n,
L(a,n) = {a}; for j= n− 1, L(a,n−1) = {a1a2 | a2 = a+ a1}; more generally, for 0≤ j≤ n− 1, L(a,j) =
{a1a2 · · · an−j+1 | a+∑n−j

i=0 ai = an−j+1}: hence L(a,j) �= L(b,k) if (a, j) �= (b, k), so the states are
pairwise nonequivalent and An is minimal. The language Ln is finite, thus planar. Indeed, one
may span the complete tree of depth n+ 2 to describe the language which has thus topological
size smaller than 5n+2. Let us suppose that Bn = (Rn, jn,Gn, ηn) is a minimal planar automaton
recognizing Ln. The set Rn of states of Bn can be viewed as a finite subset of Q×N. Hence we can
suppose that the states have the shape (s, t) with s ∈Qn and t ∈ Ts, that is, π : (s, t) �→ s defines the
projection on the minimal automaton.

We qualify states of the shape (a, j, t) with j< n to be internal states. For any internal state s=
(a, j, t), the transition function ηn(s, ·) :Z/5Z→ Rn is injective, because δn = π ◦ ηn is injective.
Explicitly, for any b �= c ∈Z/5Z, we have ηn(s, b) �= ηn(s, c).
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Let Gn be the underlying graph of Bn. Since Gn is planar, we regard henceforth Gn as an
embedded graph in the plane. Given j ∈ {0, . . . , n− 1}, let Sj be the subgraph of Gn where any
vertices outside Z/5Z× {j, j+ 1} × T have been removed with their incoming and outcoming
edges. Being a subgraph of Gn, the graph Sj is planar. We denote K (respectively M) the set of
states of Bn of the shape (a, j, t) (resp. (a, j+ 1, t)) and k= |K| (resp.m= |M|).

Any state s ∈K is internal. We have seen above that ηn(s, ·) is injective. Thus, there are exactly
5 outgoing edges from state s, each of which pointing to a different state. Two partial conclusions
are drawn from this. First, let e be the number of edges in Sj, then e= 5k. Second, there are no
bigons in Sj: none of the patterns s→ s′ → s or s→ s′ ← s can happen.

Let f be the number of faces in Sj. Euler’s formula for planar graphs applied in Sj gives us
k+m+ f = 5k+ 2, that we can rewrite:

m+ f = 4k+ 2. (1)
Let fi be the number of i-faces in Sj. Thus, f =∑i≥1 fi. Observe that due to the definition of Bn,
there are neither simple odd polygons (that is, no 2i+ 1-gon for i ∈N), nor bigons as justified
above. Thus, f = f4 + f6 + · · · =∑i≥2 f2i. According to the usual counting argument (see, e.g.,

Bonfante and Deloup 2018, Lemma 7), 2× e= 4f4 + 6f6 + · · · = 10k. In other words,
5k
2
= f4 +

6
4
f6 + · · · ≥ f4 + f6 + · · · = f . By relation (1), we get

m= 4k+ 2− f ≥ 3k
2
+ 2≥ 3k

2
(2)

Take K = 3/2. Denote by Nj the states in layer j, that is of the shape (a, j, t), and by nj the cardinal
of Nj. By induction on j≥ 0, we prove nj ≥ 5× (3/2)j for j≤ n. For the base case, observe that
there are at least 5 states in each layer (there are 5 in the minimal automaton). The induction step
is a direct consequence of the inequality (2). The result follows. �

3. Genus Estimate
In order to study further the genus of a regular language, we introduce some classes of regular
languages that “do not have short cycles.”

It will be convenient to introduce the following function, defined on the set of natural numbers
greater than or equal to 2. It should be understood as a nonincreasing function of the number of
letters of the alphabet.

Definition 4. Let m≥ 2. Set ρ(m)=

⎧⎪⎪⎨
⎪⎪⎩
3 if m≥ 4;
4 if m= 3;
5 if m= 2.

Definition 5. Let j≥ 1. A language L is said to have no simple cycle of length < j if the underlying
undirected graph of the minimal deterministic complete automaton Amin for L has no simple cycle of
length k for all 1≤ k< j.

Recall that the underlying graph of an automaton is not a simple graph in general: it may have
multiple edges. For instance, a double edge induces a simple cycle of length 2.

Example 3. The language Z1,2
5 has no simple cycle of length < 3. Indeed, the minimal automaton

for Z1,2
5 is the one depicted in Figure 1 with all self-loops removed.
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Figure 5. The minimal automata for L1 and L2. Note that they have the
same underlying simple directed graph.

HG
Figure 6. Planar graphs supporting nonsimple bounding
closed walks: the complement in the 2-sphere of each of these
embedded graphs is an open cell whose boundary is a nonsim-
ple closed walk in the graph.

Remark 2. The role of the alphabet is crucial. The language L1 = Z1
3 = ({1}3)∗ = (111)∗ has no

simple cycle of length < 3, while the language L2 = ({1, 2}3)∗ does have simple cycles of length 2.
See Figure 5.

The following result is the central tool of this paper.

Theorem 2. Genus estimate. Let m≥ 2. If a regular language L on an m-letter alphabet has no
simple cycle of length < ρ(m), then

1+ (ρ(m)− 2)m− ρ(m)
2ρ(m)

|L|set ≤ g(L)≤ 1+ (m− 1)
2
|L|set. (3)

The upper bound is a direct consequence of Euler’s formula (see Bonfante and Deloup 2018,
Proposition 2). The crucial information consists in the lower bound. Theorem 2 generalizes that
of Bonfante and Deloup (2018, Theorem 8). The greater the alphabet is, the weaker the constraint
on the required length of cycles is.
Proof of Theorem 2. We need to prove the stated lower bound. Given an integer k≥ 1 and a
minimal embedding of a graph in a surface �, we let fk denote the number of faces of length k.

Set

A(j)=
∑
k≥j

k(m− 1)− 2m
4m

fk, B(j)=
∑
k≥j

k fk.

Then

A(j)≥
(
m− 1
4m
− 1

2j

)
B(j).

Let A be a complete finite deterministic automaton of minimal genus recognizing L, endowed
with a minimal embedding of A into a genus g(L) oriented closed surface �. By Bonfante and
Deloup (2018, Theorem 5), g(A)= 1+A(1). (This accounts for the definition of A.) It is readily
verified that ρ(m) is the smallest natural number j such that m−1

4m − 1
2j > 0. (This accounts for the

definition of ρ.) So now set j= ρ(m). By hypothesis, Amin has no simple cycle of length less or
equal to j− 1. It follows from Lemma 1 (Section 6) that A has no simple cycle of length less or
equal to j− 1. Consider now a face f in �.

Claim. If the length of the face is less than or equal to 4, then any cycle c in A bounding f must be
simple.

In general, there are simple graphs supporting nonsimple bounding cycles. See Figure 6 for a
few examples; amore sophisticated example of such a closed walk (of length 8) is given in Bonfante
and Deloup (2018, end of Section 4.1). We need to rule them out in order to conclude that there
is no small k-face for k≤ j− 1.
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Proof of the claim. Consider a nonsimple bounding closed walk c of length less than or equal to
4. By definition, there must be at least one edge in each graph that is traveled twice. Hence c
contains at most three vertices. We can rule out the case where c is the closed walk that consists
of the same self-loop traveled four times consecutively: indeed, one self-loop is a simple cycle
of length 1, which is prohibited by A having no short simple cycles. So the only possible simple
graphs underlying the nonsimple closed walk c are the first two graphs G and H represented on
the left side in Fig. 6. Consider now the underlying (multi)graph of a complete 2-letter automaton
A containing G (resp. H). An extremal vertex of G (resp. H) must have at least one extra outgoing
edge: it is easy to see that the multigraph has either one self-loop (the outgoing edge is a self-loop
itself) or a simple cycle of length 2 (the outgoing edge points to another vertex). Therefore, A has
a simple cycle of length less than or equal to j− 1, which contradicts the hypothesis. �

End of the proof . It follows from the claim that the only possible k-faces for small k≤ 4 must
be bounded by simple cycles. We deduce that there is no k-face for k≤ j− 1: f1 = · · · = fj−1 = 0.
Hence

g(A)= 1+A(j)≥ 1+
(
m− 1
4m
− 1

2j

)
B(j)

= 1+
(
m− 1
4m
− 1

2j

)
B(1)

= 1+
(
m− 1
4m
− 1

2j

)
2m|A|

The last equality is the usual counting argument relating faces and edges (see, e.g., Bonfante and
Deloup 2018, Lemma 7). Therefore

g(A)≥ 1+ (j− 2)m− j
2j

|A|. (4)

Since |A| ≥ |Amin| = |L|set, we deduce the desired result. �

Remark 3. The inequality (4) holds for any complete deterministic automaton of minimal genus
recognizing L under the hypotheses of Theorem 2. It is in general sharper than the lower bound
of the theorem.

Since the lower bound for the genus is strictly greater than 1, we observe the following fact:

Corollary 3.1. Let m≥ 2. If a regular language L on an m-letter alphabet has no simple cycle of
length < ρ(m), then g(L)> 1.

Remark 4. In the definition of “having no short cycle” for a language, the condition applies to
the underlying graph of the complete minimal deterministic finite automaton. Considering com-
plete automata here is crucial. For instance the language L= (0123)∗ on the four-letter alphabet
{0, 1, 2, 3} is represented by the deterministic finite automaton A whose set of states is Z/4Z, 0
being the initial and final state, with the transitions i i→ i+ 1, i ∈Z/4Z. Here A is minimal and has
no simple cycle of length shorter than 4. (Note that L=w∗ with w= 0123, i.e., L is the homomor-
phic image of a 1-letter language.) In particular L is planar: g(L)= 0. Now the original automaton
A is not complete since there is only one outgoing transition at each state, whereas there are four
letters. It is left to the reader to check that if one completes A in order to obtain the complete min-
imal deterministic automaton for L, then A does have cycles of length 2 and 3, respectively. Hence
L does have cycles of length 2 and, as a consequence, does not satisfy the hypothesis of Theorem 2.
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4. The Computability Conjecture
Theorem 1 shows that the genus size of L can grow at least exponentially in terms of the minimal
automaton size of L. Is this the worst possible case? If there exists a computable function that limits
the growth of the genus size in terms of the minimal automaton size, the following conjecture
would be proved.
Computability Conjecture for the Genus. The genus g(L) of every regular language L is com-
putable.

Note that the genus of a graph is computable in the following sense: given a surface �, there
is a linear time algorithm, such that given any graph G, either finds an embedding of G in � or
returns a subgraph H of G that is a minimal forbidden minor for embeddability in � (see Mohar
(1996)). As explained above (Section 2.2), given a graph G, it is easy to find a surface � such that
G embeds in �. The genus g of � may not be minimal. We apply the linear time algorithm for
each surface of genus g − 1, g − 2, . . . , 1, 0 until there is no embedding. This yields the genus of G
in a finite number of steps.

Although the genus of a graph is computable, the Computability Conjecture for an arbitrary
regular language is not obvious. Indeed, a regular language L is recognized by an infinite number
of deterministic finite automata, and since the genus may be realized by an automaton much
larger than the minimal deterministic finite automaton Amin recognizing L, it is not a priori clear
where and when to stop. How much larger? According to Theorem 1, we may need to go after an
automaton whose size is at least exponential in the size of L. In order to prove the conjecture, one
needs a priori bounds that depend on the intrinsic complexity (ideally the size) of the language.

We prove a partial case of the conjecture above. First, we state a result of special interest about
a particular class of automata.

Theorem 3. Let m≥ 2 and g ≥ 0.

(1) If g ≤ 1, then any genus g complete deterministic finite automaton has at least one simple
cycle of length < ρ(m).

(2) If g ≥ 2, then there is a finite number of genus g complete deterministic finite automaton
without simple cycle of length < ρ(m).

This result is crucial and ensures the computability of the genus for a fairly generic class of regular
languages.

Proof of Theorem 3. Letm≥ 2. Set j= ρ(m). According to (4) (see Remark 3),

1+
(
(j− 2)m− j

2j

)
|A| ≤ g(A)= g

for any genus g complete deterministic finite automaton A without simple cycles of length≤ j− 1.
Therefore, the set

E(g)=
{
n ∈N | 1+

(
(j− 2)m− j

2j
n
)
≤ g

}
(of possible sizes) is finite. For each size n ∈ E(g), there is at most a finite number of finite
automata of size n. Hence there is at most a finite number of genus g complete DFA of fixed size
n and without simple cycles of length≤ j− 1. This proves the second statement (2). Finally, since
(j−2)m−j

2j > 0, we see that g > 1, i.e., E(0) and E(1) are empty. This proves the first statement (1).�

Definition 6. Let m≥ 2. Let C (m) be the class of regular languages on m letters without simple
cycles of length < ρ(m).
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Example 4. The languages Z0,1,2
5 on three letters is not in C (3): its minimal automaton has self-

loops (Figure 1). The language Z1,2
5 on two letters is not in C (2) because it has simple cycles of

length 3 (Figure 1 with self-loops removed).

Example 5. The language Z1,2,3,4
9 on three letters is in C (4): it has no simple cycle of length < 3.

We now state our main result. It is really a corollary of Theorem 3; we state it as a theorem for
emphasis.

Theorem 4. Let m≥ 2 and L ∈C (m). Then

(1) g(L)> 1 and there is a finite number of genus g(L) complete deterministic finite automata A
computing L.

(2) The genus size |L|gen and the genus g(L) are computable.

Proof of Theorem 4. The first statement (1) is a direct corollary of Theorem 3. As to the second
statement, consider the set F of complete deterministic finite automata A computing L such that

1+
(
(j− 2)m− j

2j

)
|A| ≤ g(A)≤ g(Amin).

Since the minimal automaton Amin for L has no simple cycle of length< ρ(m), any complete finite
deterministic automaton A computing L will have the same property (Lemma 1) and therefore
satisfies the left inequality above. Hence F is the set of all complete deterministic finite automata
computing L and having genus smaller than or equal to the genus of the complete minimal
automaton for L. The set F is finite by Theorem 3 and contains all complete deterministic finite
automata computing L with minimal genus g(L). Furthermore, the set F is computable: for each
size |A|, we can decide whether there exists a complete deterministic finite automaton computing
L of size |A|, construct each of them if they exist, and compute the genus of each of them (for the
computation of the genus of a graph, see Mohar (1996)). The second statement (2) follows. �

Corollary 4.1. The planarity of a regular language L ∈ C (m) for m≥ 2 is decidable.

As a corollary, we obtain that there is a finite number of regular languages of fixed genus
without simple short cycles.

Corollary 4.2. Let m≥ 2. For any L ∈C (m), g(L)≥ 2. Furthermore, for each g ≥ 2, there is a finite
number of regular languages L ∈C (m) such that g(L)= g.

A few comments may be useful. The hypotheses about the absence of small short cycles and the
fixed size of the alphabet are essential. For instance, let n, p≥ 3 and consider the language on two
letters

Ln,p = {w ∈ {0, 1}∗ | |w|0 = 0 mod n, |w|1 = 0 mod p}

(where |w|a denotes the number of occurrences of letter a in the word w) which can be regarded
as the shuffle of Z1

n and Z1
p (Sakarovitch, 2009, p. 65). The minimal automaton for Ln,p is obtained

as the shuffle product of the minimal automata of Z1
n and Z1

p , respectively. This automaton
computing Ln,p clearly embeds into the torus. See Figure 7.
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0

1

(0,0) (4,0)

(4,3)(0,3)

Figure 7. The minimal automaton for L4,3 and its embed-
ding in the torus. The states (k, 0) and (k, 3) (0≤ k≤ 4)
and the states (0, l) and (4, l) (0≤ l≤ 3) are to be identi-
fied as well as the corresponding transitions (the result-
ing automaton having exactly 12= 4× 3 states and
24= 2× 12 transitions) so that the picture represents an
embedding of the minimal automaton in the torus.

Proposition 1. For n, p≥ 4, Ln,p is toric.

It follows from Proposition 1 that by contrast to Corollary 4.2, there is an infinite family of toric
languages on a two-letter alphabet. Since g(Ln,p)= 1 and the lower bound of Theorem 2 is always
greater than 1, Ln,p must have short simple cycles. Indeed, for any n, p, the minimal automaton
has simple cycles of length 4, so Ln,p �∈C (2).

The simplest example in the series of toric languages Ln,p is n= p= 4 and has 16 states. (Note
that |Ln,p|set = |Ln,p|gen.) Compare with Book and Chandra (1976) where a two-letter nonplanar
language with 35 states is constructed.

Proof of Proposition 1. Since the minimal automaton Amin of Ln,p embeds in a torus, g(Ln,p)≤ 1.
We have to prove that Ln,p is nonplanar, i.e., g(Ln,p)≥ 1, for n, p≥ 4. Let A be a complete finite
deterministic automaton for Ln,p. The canonical epimorphism A→ Amin (note that Amin is a
complete automaton) induces a graph epimorphism π : G (A)→ G (Amin). Since n, p≥ 4, G (Amin)
has no simple cycle of length≤ 3. Applying Lemma 1, we see that neither has G (A). Consider now
a minimal embedding of A into some closed oriented surface �.

Claim. Each face of the embedding has length at least 4.

Proof of the claim. Suppose the contrary. There is a face f of length ≤ 3. The boundary of f must
be a nonsimple cycle c= ∂f . Since there is no self-loop in A, c has length 2 and consists in exactly
one edge e with immediate backtracking. It follows that e is monofacial. Let �e be the original
oriented edge in A. Since e is monofacial, one of the endpoints, s(�e) or t(�e), has total degree 1,
which is a contradiction since the alphabet has two letters.

For j≥ 1, let fj be the number of faces of length j. By the claim above, f1 = f2 = f3 = 0. Therefore,
according to the genus formula (Bonfante and Deloup, 2018, Theorem 5),

g(L)= g(A)= 1+
∑
j≥1

j− 4
8

fj = 1+
∑
j≥4

j− 4
8

fj ≥ 1.

This is the desired result. �

Remark 5. Inspection of the proof shows that if L is a two-letter language that does not have any
simple cycle of length ≤ 3, then g(L)≥ 1.
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(1,1)

(0,0) (4,0)

(4,3)(0,3)

(1,0)

(1,0) (−1,1)

(0,0) (4,0)

(4,3)(0,3)

(1,0)

(1,0) (1,1)

Figure 8. The minimal automata for Z(1,0),(0,1),(1,1)4,3 and Z(1,0),(0,1),(1,1),(−1,1)4,3 respectively (with the same identification conven-
tion as in Figure 7). The first one embeds into the torus, the second one (nor any deterministic automaton equivalent to it)
does not.

Remark 6. Let 2≤ n1 ≤ n2 ≤ · · · ≤ nr be integers. For any finite sequence (w1, . . . ,ws) ∈
(Z/n1Z× · · ·Z/nrZ)s, let

Zw1,...,ws
n1,...,nr =

⎧⎨
⎩a1 . . . ak ∈ {w1, . . . ,ws}∗ |

k∑
i=1

ai = 0 ∈Z/n1Z× · · ·Z/nrZ

⎫⎬
⎭ .

This is a generalization of Definition 1 where r= 1. The language Ln,p considered above is also a
particular case with r= 2: Ln,p = Z(0,1),(1,0)

n,p . Observe that Z(0,1),(1,0),(1,1)
n,p is again a toric language,

this time with three letters, and theminimal automaton has simple cycles of length 3, so it does not
belong to C (3). However, the language Z(0,1),(1,0),(1,1),(−1,1)

n,p has four letters and no simple cycles of
length ≤ 2, so by Theorem 2, its genus is bounded below by 1+ 1

6np. See Figure 8. This provides
another example of hierarchy based on the genus.

Remark 7. Genus versus syntactic monoid. By the previous remark, the genus distinguishes
between the languages Z(1,0),(0,1),(1,1)

n,p and Z(1,0),(0,1),(1,1),(−1,1)
n,p :

g
(
Z(1,0),(0,1),(1,1)
n,p

)
= 1, g

(
Z(1,0),(0,1),(1,1),(−1,1)
n,p

)
> 1.

However, the syntactic monoid does not distinguish between the languages Z(0,1),(1,0),(1,1)
n,p and

Z(0,1),(1,0),(1,1),(−1,1)
n,p , since

M
(
Z(0,1),(1,0),(1,1)
n,p

)
=M

(
Z(0,1),(1,0),(1,1),(−1,1)
n,p

)
=Z/nZ×Z/pZ.

(To see this, let C(w) denote the context of a word w=w1 · · ·wr where each letter wi lies in
Z/nZ×Z/pZ. Observe that C(w)= CL(

∑
i wi).)

Another observation is that given a language L ∈C (m), it is easy to build an infinite number of
languages of the same genus g(L) with short simple cycles. For instance, if A denotes the alphabet
of L and has at least two letters, then for any k≥ 0, g(Ak · L)= g(L).

A systematic study of graph transformations on theminimal automaton that preserve the genus
of the language will be undertaken in a forthcoming paper. Here we remark that given a genus-
minimal automaton for L, an automaton of the same genus can be built for the composition A · L:
it is easily seen to have one simple cycle of length 2, see Figure 9 (for a two-letter language).
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ii’

Figure 9. A genus-minimal automaton for L with initial state i; the genus-minimal
automaton for the language A · Lwith initial state i′.

Note that in general, this add-on operation changes nontrivially the syntactic monoid. For
instance, for any given alphabetA,M(Ak ·A∗)=Z/kZ. In particular, the syntacticmonoidM(A∗)
of the freemonoidA∗ is trivial. Hence for k≥ 1,M(Ak ·A∗) �=M(A∗) whereas g(Ak ·A∗)= g(A∗).

5. Genus-based hierarchies
Examples of nonplanar regular languages actually abound. The difficulty lies in classifying them
by their genus. A number of examples were given in Book and Chandra (1976) and Bonfante and
Deloup (2018). Here we show new examples of genus-based hierarchies. The first example yields
a closed formula for the genus.

Theorem5. Let �·� denote the ceiling function on the real numbers, whichmaps x to the least integer
�x� that is equal to or greater than x. Let k≥ 4. The language Z1,2,...,k

2k+1 has genus � (2k−2)(2k−3)12 �. In
particular, g(Z1,2,...,k

2k+1 ) →
k→+∞

+∞.

This result is remarkable in that it yields an explicit, closed formula for the genus. In general,
the computation of the genus is nontrivial, as explained in the previous section.

Proof of Theorem 5. The language Z1,2,...,k
2k+1 is computed by the following automaton, denoted

A=A1,2,...,k
2k+1 . The set of states is Q=Z/(2k+ 1)Z, with initial and final state 0. The transitions

are given by the rule i
j→ i+ j for i ∈Q and j ∈ {1, 2, . . . , k} ⊂Z/(2k+ 1)Z. It follows from the

definition that A is complete. Consider a state q ∈Z/(2k+ 1)Z. Its language Lq of suffixes (words
that send the state q to the final state 0) consists of words w= a1 · · · an in the alphabet {1, . . . , k}
such that

∑n
i=1 ai = q mod 2k+ 1. The languages Lq, q ∈Q, are all distinct since the word 1q is

contained only in Lq. Hence states are inequivalent and A is minimal. The underlying unoriented
multigraph is the complete graph K2k+1. We verify two properties:

• K2k+1 has no self-loop (clear from the definition of the transitions) and has no simple cycle
of length 2 (for a cycle i

j→ i+ j k→ i would imply j+ k= 0 mod 2k+ 1, hence either j or k
is not in {1, 2, . . . , k}). Therefore, the minimal length of a simple cycle is 3.
• The cardinality of the alphabet is k≥ 4.

According to Theorem 2 (see also (Bonfante and Deloup, 2018, Theorem 8)), g(Z1,2,...,k
2k+1 )≥ 1+

(k−3)(2k+1)
6 . To prove that this lower bound for the genus is actually an equality, we notice that the

genus of the minimal automaton provides an upper bound. So

1+ (k− 3)(2k+ 1)
6

≤ g
(
Z1,2,...,k
2k+1

)≤ g(A)= g(K2k+1)=
⌈
(2k− 2)(2k− 3)

12

⌉
.

The last equality is the exact formula for the genus of the complete graph on 2k+ 1 vertices (Ringel
and Youngs, 1968). Since the genus is a natural number, one can take the ceiling function of the
lower bound. It remains to observe that the ceiling function of the lower bound is exactly the
upper bound. This is the desired result. �
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4030201000 50

11 21 31 41 51

0 k−1 1 k−1 2 k−1 3 k−1 4 k−1 5 k−1

5 k−24 k−23 k−22 k−20 k−2 1 k−2

Figure 10. The automaton Ak drawn (with crossings) on a torus: the states (j, 0) and (j, k) for 0≤ j≤ 6 (resp. the states (0, l)
and (6, l) for 0≤ l≤ 6) are to be identified, as well as the corresponding transitions.

Examples of genus-based hierarchies are provided in Bonfante and Deloup (2018) with a fixed
4-letter (or more) alphabet. This left out regular languages on an alphabet with fewer letters,
namely 2 or 3 letters. (Regular languages on a 1-letter alphabet are easily seen to be planar. See,
e.g., Bonfante and Deloup (2018).) R. V. Book and A. K. Chandra have built a regular language on
two letters that is nonplanar (Book and Chandra, 1976). We shall prove here the following result
which is constructive and explicit; it also implies the existence of a genus hierarchy of regular
languages on anym-letter alphabet form≥ 2.

Theorem 6. There is a genus hierarchy of regular languages on only 2-letters: for any nonnegative
integer n≥ 0, there exists a regular language L on a 2-letter alphabet such that g(L)≥ n.

Proof of Theorem 6. Let A=Z/2Z be the alphabet. For k≥ 5, consider the finite deterministic
automaton Ak defined as follows. The set of states is Qk =Z/6Z×Z/kZ. The transitions are

(i, j) 0→ (i+ 1, j), (i, j) 1→ (2i, j+ 1).

Pick the state (0, 0) as the initial and unique final state. See Figure 10 for a picture of the
automaton Ak.

It is easily seen that Ak is deterministic and complete. Given a state (i, j), denote by L(i,j) the lan-
guages of suffixes from state (i, j) (that is, words sending the state (i, j) to the final state). Observe
that L(i,j) contains the word 0r1s if and only if i+ r= 0 mod 6 and j+ s= 0 mod k. This shows
that the states are pairwise nonequivalent. Hence the automaton Ak is also minimal. It is readily
verified that Ak has no simple cycle of length less than or equal to 4. Therefore, Theorem 2 applies:
the language Lk recognized by Ak has genus 1+ 3k

20 ≤ g(Lk). This implies the desired result. �
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Remark 8. Theorem 2 actually implies 1+ 3k
20 ≤ g(Lk)≤ 1+ 3k. However, the exact computation

of the genus of Lk is unknown to the authors.

6. The cycle property
The main result of this section is that the absence of short cycles in the minimal automaton is a
property of the language (Corollary 6.1).

Lemma 1. Let k≥ 1. Assume that the underlying graph G of a minimal automaton of a language L
has no simple cycle of length less than or equal to k. Then neither has the underlying graph G̃ of any
automaton recognizing L.

Proof. The canonical epimorphism from the automaton to the minimal deterministic automaton
induces a graph epimorphism G̃→G. Suppose that G̃ has a simple cycle c′ of length l≤ k. Its
image in G is a closed path c of length l′ ≤ l. The closed path c admits a decomposition into a
product of cycles, each of which has length less than or equal to l′ ≤ l≤ k. At least one of these
cycles is simple in G.

Corollary 6.1. The property for the minimal complete deterministic automaton A to have no simple
cycle of length l for all l≤ k is a property of the language L(A).
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Notes
1 The term “complete” has a different meaning in graph theory: a graph is complete if every pair of distinct vertices is
connected by an edge. Hopefully this should not cause any confusion in this paper.
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