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Abstract

Li et al. [‘Weak 2-local isometries on uniform algebras and Lipschitz algebras’, Publ. Mat. 63 (2019),
241–264] generalized the Kowalski–Słodkowski theorem by establishing the following spherical variant:
let A be a unital complex Banach algebra and let Δ : A→ C be a mapping satisfying the following
properties:

(a) Δ is 1-homogeneous (that is, Δ(λx) = λΔ(x) for all x ∈ A, λ ∈ C);
(b) Δ(x) − Δ(y) ∈ Tσ(x − y), x, y ∈ A.

Then Δ is linear and there exists λ0 ∈ T such that λ0Δ is multiplicative. In this note we prove that if
(a) is relaxed to Δ(0) = 0, then Δ is complex-linear or conjugate-linear and Δ(1)Δ is multiplicative. We
extend the Kowalski–Słodkowski theorem as a conclusion. As a corollary, we prove that every 2-local
map in the set of all surjective isometries (without assuming linearity) on a certain function space is
in fact a surjective isometry. This gives an affirmative answer to a problem on 2-local isometries posed
by Molnár [‘On 2-local *-automorphisms and 2-local isometries of B(H)’, J. Math. Anal. Appl. 479(1)
(2019), 569–580] and also in a private communication between Molnár and O. Hatori, 2018.
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1. Introduction

One of the basic problems in operator theory is to find sufficient conditions to deduce
linearity and multiplicativity of maps between Banach algebras. As a generalization
of the Gleason–Kahane–Żelazko theorem [6, 14, 35], Kowalski and Słodkowski
[16] proved the linearity and the multiplicativity of a functional Δ on a Banach
algebra A under the spectral condition; Δ(a) − Δ(b) ∈ σ(a − b) for a, b ∈ A. Recently,
Li et al. proved interesting spherical variants of the Gleason–Kahane–Żelazko theorem
and the Kowalski–Słodkowski theorem [17]. They proved that a 1-homogeneous
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functional on a unital Banach algebra that satisfies a mild spectral condition is linear.
Applying it, they studied 2-local and weak 2-local complex-linear isometries.

Motivated by the Kowalski–Słodkowski theorem, the concept of a 2-local map
was introduced by Šemrl [34], who proved the first results on 2-local automor-
phisms and derivations on algebras of operators. Molnár [22] began to study 2-local
complex-linear isometries. Given a Banach space Mj for j = 1, 2, an isometry from
M1 into M2 is a distance-preserving map. The set of all surjective complex-linear
isometries from M1 onto M2 is denoted by IsoC(M1,M2). The set of all maps from
M1 intoM2 is denoted by M(M1,M2). We say that a map T ∈ M(M1,M2) is a 2-local
complex-linear isometry if for every x, y ∈ M1 there is a Tx,y ∈ IsoC(M1,M2) such that
T(x) = Tx,y(x) and T(y) = Tx,y(y). Molnár [22] proved that each 2-local complex-linear
isometry on certain C∗-algebras is a surjective complex-linear isometry. Initiated by
his result, there are a lot of studies on 2-local complex-linear isometries on operator
algebras and function spaces assuring that each 2-local complex-linear isometry is in
fact a surjective complex-linear isometry [1, 3, 7, 9, 12, 13, 17, 22, 24].

Molnár raised a problem on 2-local isometries [25, 26]. The set of all
(non-necessarily linear) surjective isometries from M1 onto M2 is denoted by
Iso(M1,M2). We say that T ∈ M(M1,M2) is a 2-local isometry or T is 2-local in
Iso(M1,M2) if for every x, y ∈ M1 there is a Tx,y ∈ Iso(M1,M2) such that

T(x) = Tx,y(x) and T(y) = Tx,y(y).

The problem asks whether a 2-local isometry is in fact a surjective isometry or not.
One may expect that the problems on 2-local complex-linear isometries and 2-local
isometries are not so different. But the problem on 2-local isometries is very different
from the one on 2-local complex-linear isometries. To clarify the situation, we exhibit
an example showing that the assumption of linearity makes a quite big difference in
the conclusion for 2-local maps. Let A(C,C) = {T : C→ C; Tx = ax + b (∃a, b ∈ C)}.
Since any map T : C→ C is 2-local in A(C,C), T need not be in A(C,C) in general.
However, let

AC(C,C) = {T; T ∈ A(C,C), T is C-linear} = {T : C→ C; Tx = ax (∃a ∈ C)}.

Then we get that every 2-local map in AC(C,C) is an element of AC(C,C). We can
easily prove that a 2-local isometry is necessarily an isometry. What we need to
prove is that a 2-local isometry is surjective. One may think that it is not a difficult
problem, but it is. Molnár [26] worked quite hard to prove that for each separable
complex Hilbert space H, every 2-local isometry on B(H) is in fact a surjective
isometry on B(H). The author believes that this is the first result on the problem of
2-local isometries. Molnár asked whether a 2-local map in Iso(C([0, 1]), C([0, 1])) is
an element in Iso(C([0, 1]), C([0, 1])) or not [25]. Inspired by his problem, Hatori and
the author proved that a 2-local map in Iso(B, B) is an element of Iso(B, B), where B is
the Banach space of all continuously differentiable functions or the Banach space of
Lipschitz functions on the closed unit interval equipped with a certain norm [10].
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The aim of this paper is to establish a generalization of the spherical variant of the
Kowalski–Słodkowski theorem exhibited in [17]. Applying it, we prove that 2-local
isometries on several function spaces are surjective isometries. In particular, we give
an affirmative answer to the problem posed by Molnár (Corollary 4.3). We remark
that Mori [29] also got an affirmative answer to the problem by a different approach
applying the theory of operator algebras.

In this paper, we denote the unit circle on the complex plane by T = {z ∈ C; |z|= 1}.
For simplicity of notation, we denote [ f ]1 = f and [ f ]−1 = f , the complex-conjugate
of f for any complex-valued function f . For any unital Banach algebra, 1 stands for its
unit element. The identity map is denoted by Id.

2. Generalization of the Kowalski–Słodkowski theorem

Li et al. [17] proved the spherical variant of the Kowalski–Słodkowski theorem; a
1-homogeneous functional that satisfies a certain spectral condition is complex-linear.
The concrete result reads as follows.

THEOREM 2.1 (Li et al. [17]). Let A be a unital complex Banach algebra and let Δ :
A→ C be a mapping satisfying the following properties:

(a) Δ is 1-homogeneous, that is, Δ(λx) = λΔ(x) for all x ∈ A, λ ∈ C;
(b) Δ(x) − Δ(y) ∈ Tσ(x − y), x, y ∈ A.

Then Δ is linear and there exists λ0 ∈ T such that λ0Δ is multiplicative.

In this note, we consider the case that the hypothesis (a) is relaxed to Δ(0) = 0. This
hypothesis is closer to the one of the original Kowalski–Słodkowski theorem; however;
the conclusion also admits conjugete-linear maps.

THEOREM 2.2. Let A be a unital complex Banach algebra. Suppose that a map Δ :
A→ C satisfies the conditions:

(a) Δ(0) = 0;
(b) Δ(x) − Δ(y) ∈ Tσ(x − y), x, y ∈ A.

Then Δ is complex-linear or conjugate-linear and Δ(1)Δ is multiplicative.

Fix a ∈ A; we define a map f : C→ C by f (λ) = Δ(a + λ · 1) − Δ(a). For any
λ1, λ2 ∈ C,

Δ(a + λ1 · 1) − Δ(a + λ2 · 1) ∈ Tσ((λ1 − λ2) · 1) = (λ1 − λ2)Tσ(1) = (λ1 − λ2)T,

by the assumption (b). Thus,

| f (λ1) − f (λ2)| = |Δ(a + λ1 · 1) − Δ(a) − (Δ(a + λ2 · 1) − Δ(a))|
= |Δ(a + λ1 · 1) − Δ(a + λ2 · 1)|
= |λ1 − λ2|.
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This implies that the map f is an isometry on C. The form of an isometry on C is
well known. Without assuming surjectivity on the isometry, there exist α, β ∈ C with
|α| = 1 such that f (λ) = β + λα (λ ∈ C) or f (λ) = β + λ̄α (λ ∈ C). Since

f (0) = Δ(a + 0 · 1) − Δ(a) = Δ(a) − Δ(a) = 0,

f (λ) = λα, λ ∈ C,
or

f (λ) = λα, λ ∈ C.
In addition, we have α = f (1) = Δ(a + 1) − Δ(a) and we infer that

Δ(a + λ · 1) − Δ(a) = λ(Δ(a + 1) − Δ(a)), λ ∈ C,

or

Δ(a + λ · 1) − Δ(a) = λ(Δ(a + 1) − Δ(a)), λ ∈ C.
Let

A1 = {a ∈ A;Δ(a + λ · 1) − Δ(a) = λ(Δ(a + 1) − Δ(a)), λ ∈ C}
and

A−1 = {a ∈ A;Δ(a + λ · 1) − Δ(a) = λ(Δ(a + 1) − Δ(a)), λ ∈ C}.
For any a ∈ A, the map λ �→ Δ(a + λ · 1) − Δ(a) is an isometry on C, so we have A =
A1 ∪ A−1.

LEMMA 2.3. We have A = A1 or A = A−1.

PROOF. We have proved that A = A1 ∪ A−1. We prove that A1 and A−1 are closed
subsets of A. Let {an} be a sequence in A1 converging to a point a0 ∈ A. By assumption
(b), we have Δ(an) − Δ(a0) ∈ Tσ(an − a0). Hence, |Δ(an) − Δ(a0)| ≤ r(an − a0) for the
spectral radius r(·). Since r(·) ≤ ‖·‖ for the original norm ‖·‖ on A, we get that
Δ(an) − Δ(a0)→ 0 as n→ ∞. In the same way, we have Δ(a0 + λ · 1) − Δ(an + λ · 1)
converges to 0 for λ ∈ C. Thus, for any λ ∈ C,

|Δ(a0 + λ · 1) − Δ(a0) − λ(Δ(a0 + 1) − Δ(a0))|
= |Δ(a0 + λ · 1) − Δ(a0) − (Δ(an + λ · 1) − Δ(an))

+ λ(Δ(an + 1) − Δ(an)) − λ(Δ(a0 + 1) − Δ(a0))|
≤ |Δ(a0 + λ · 1) − Δ(an + λ · 1)| + |Δ(a0) − Δ(an)|
+ |λ||Δ(an + 1) − Δ(a0 + 1)| + |λ||Δ(an) − Δ(a0)|
→ 0

as n→ ∞. This implies that Δ(a0 + λ · 1) − Δ(a0) = λ(Δ(a0 + 1) − Δ(a0)) for any λ ∈
C. Since a0 ∈ A1, we have that A1 is closed. We can prove that A−1 is also closed in the
same way. In addition, suppose that a ∈ A1 ∩ A−1. Then, for any λ ∈ C,

λ(Δ(a + 1) − Δ(a)) = Δ(a + λ · 1) − Δ(a) = λ(Δ(a + 1) − Δ(a)).
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This shows that Δ(a + 1) − Δ(a) = 0. On the other hand,

Δ(a + 1) − Δ(a) ∈ Tσ(1) = T.

We arrive at a contradiction. Therefore, A1 ∩ A−1 = ∅. Since A is connected, we
conclude that A1 = A or A−1 = A. �

PROOF OF THEOREM 2.2. Lemma 2.3 shows that one of A = A1 and A = A−1 occurs.
We consider first the case in which A = A1.

(i) Let us assume that A is separable. By the definition of A1, for any a ∈ A1,

Δ(a + λ · 1) − Δ(a) = λ(Δ(a + 1) − Δ(a)), λ ∈ C. (2-1)

By assumption (b),

|Δ(a) − Δ(b)| ≤ ‖a − b‖, a, b ∈ A,

which implies that Δ is a Lipschitz map. Kowalski and Słodkowski [16, Theorem 2.3]
(see also [17, Theorem 3.4]) showed that Δ has real differentials except for some zero
set. We say that Δ has a real differential at a point of a ∈ A if for every x ∈ A the
derivative Δ′x(a) = limR�r→0(Δ(a + rx) − Δ(a))/r exists and the map (DΔ)a : A→ C,
defined by (DΔ)a(x) = Δ′x(a), is real-linear and continuous (cf. [16–18]). Since

Δ(a + rx) − Δ(a)
r

∈ Tσ(rx)
r
=

rTσ(x)
r

= Tσ(x), r ∈ R \ {0},

(DΔ)a(x) = lim
R�r→0

Δ(a + rx) − Δ(a)
r

∈ Tσ(x).

As (DΔ)a is real-linear, [17, Lemma 3.3] implies that (DΔ)a is complex-linear or
conjugate-linear. Since a ∈ A = A1, Δ satisfies (2-1) and thus

(DΔ)a(1) = lim
r→0

Δ(a + r1) − Δ(a)
r

= lim
r→0

r(Δ(a + 1) − Δ(a))
r

= Δ(a + 1) − Δ(a) ∈ Tσ(1) = T

and

(DΔ)a(i1) = lim
r→0

Δ(a + ri1) − Δ(a)
r

= lim
r→0

ri(Δ(a + 1) − Δ(a))
r

= i(Δ(a + 1) − Δ(a)).

It follows that (DΔ)a(i1) = i(DΔ)a(1) and (DΔ)a(1) � 0. We conclude that (DΔ)a is
complex-linear. We have proved that if Δ has a real differential at a point a ∈ A = A1,
then (DΔ)a is complex-linear. We conclude that Δ is holomorphic on A by applying
[16, Lemma 2.4]. For a, b ∈ A, we define a map fa,b : C→ C by

fa,b(λ) = Δ(λa + b) − Δ(b).

Since Δ is holomorphic on A, fa,b is entire. Moreover, for any λ ∈ C \ {0},
fa,b(λ)
λ

=
Δ(λa + b) − Δ(b)

λ
∈ Tσ(λa)

λ
=
λTσ(a)
λ

= Tσ(a)
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and ∣∣∣∣∣ fa,b(λ)
λ

∣∣∣∣∣ ≤ ‖a‖.
By Liouville’s theorem, there exists M ∈ C such that fa,b(λ) = λM for all λ ∈ C. As
M = fa,b(1) = Δ(a + b) − Δ(b),

Δ(λa + b) − Δ(b) = λ(Δ(a + b) − Δ(b)), λ ∈ C,

and

Δ(λa + b) = λ(Δ(a + b) − Δ(b)) + Δ(b), λ ∈ C. (2-2)

Taking b = 0 in (2-2),

Δ(λa) = λΔ(a), λ ∈ C, (2-3)

by the hypothesis (a). We have shown that Δ is 1-homogeneous. We can therefore apply
Theorem 2.1 (see also [17, Proposition 3.2]) to conclude that Δ is complex-linear.

(ii) We consider the case in which A is not separable. If we fix a ∈ A and consider
the subalgebra generated by a and 1, it follows from the above that Δ(λa) = λΔ(a), that
is, Δ is 1-homogeneous, and we finish by Theorem 2.1.

In addition, since Δ(a) = Δ(a) − Δ(0) ∈ Tσ(a), we apply [17, Proposition 2.2] to
conclude that Δ(1)Δ is multiplicative.

Secondly, we assume that A = A−1. We define the map Δ : A→ C by

Δ(a) = Δ(a), a ∈ A.

In the case in which A = A−1, Δ satisfies, for any a ∈ A,

Δ(a + λ · 1) − Δ(a) = λ(Δ(a + 1) − Δ(a)), λ ∈ C.

Thus,

Δ(a + λ · 1) − Δ(a) = λ(Δ(a + 1) − Δ(a)), λ ∈ C.

Moreover, it is clear that Δ(0) = Δ(0) = 0. Therefore, the map Δ : A→ C satisfies the
conditions for Δ in the case of A = A1. This in turn implies that Δ is complex-linear

and Δ(1)Δ is multiplicative. Thus, we conclude that Δ is conjugate-linear and Δ(1)Δ is
multiplicative. �

3. 2-local maps in GWC

In this section Bj is a unital semisimple commutative Banach algebra with maximal
ideal space Mj for j = 1, 2. The Gelfand transform ·̂ : Bj → B̂j ⊂ C(Mj) is a continuous
isomorphism. Identifying Bj with B̂j, we consider that Bj is a subalgebra of C(Mj). We
say that f ∈ Bj is unimodular if | f | = 1 on Mj. Since Mj is a maximal ideal space and
a unimodular element f of Bj has no zeros on Mj, f̄ = 1/ f ∈ Bj.
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An interesting generalization of the concept of 2-local maps is weak 2-locality.
There are some papers dealing with weak 2-local maps, not only with 2-local maps
(see, for example, [5, 17, 30, 31]). We define next pointwise 2-local maps.

DEFINITION 3.1. Let S ⊂ M(B1, B2). We say that T ∈ M(B1, B2) is pointwise 2-local
in S if for every trio f , g ∈ B1 and x ∈ M2 there exists T f ,g,x ∈ S such that

(T( f ))(x) = (T f ,g,x( f ))(x) and (T(g))(x) = (T f ,g,x(g))(x).

Note that if a map T is 2-local, then T is weak 2-local. If T is weak 2-local, then T
is pointwise 2-local. We say that T ∈ M(B1, B2) is a pointwise 2-local isometry if T is
pointwise 2-local in Iso(B1, B2). Our interest is whether a pointwise 2-local isometry
in Iso(B1, B2) is in fact a surjective isometry from B1 onto B2 or not. Simple examples
show that a pointwise 2-local isometry need not be a surjection or an isometry. We
show three of them.

• A map on C[0, 1]. We denote the algebra of all complex-valued continuous
functions on [0, 1] by C[0, 1]. The supremum norm ‖·‖∞ makes it a Banach algebra.
Let π : [0, 1]→ [0, 1] be a continuous function such that π(0) = 0, π(1) = 1 and
0 < π(x) < 1 for x ∈ (0, 1). Put T( f ) = f ◦ π, f ∈ C[0, 1]. It is easy to see that T is
pointwise 2-local in Iso(C[0, 1], C[0, 1]) while it is not surjective when π is not a
homeomorphism.

• A map on C1[0, 1]. We denote the algebra of all continuously differentiable
functions defined on the closed unit interval [0, 1] by C1[0, 1]. With the norm
‖ f ‖Σ = ‖ f ‖∞ + ‖ f ′‖∞ for f ∈ C1[0, 1], C1[0, 1] is a unital semisimple commuta-
tive Banach algebra with maximal ideal space [0, 1]. Let T : C1[0, 1]→ C1[0, 1]
stand for T( f ) = exp(i·) f , f ∈ C1[0, 1]. By [33, Theorem 4.1], every surjective
complex-linear isometry on C1[0, 1] is of the form f (x) �→ eiθ f (x) or f (x) �→
eiθ f (1 − x) and, conversely, θ ∈ [−π, π], and therefore T is pointwise 2-local
in Iso(C1[0, 1], C1[0, 1]). However, T is not an isometry since ‖1‖Σ = 1 and
‖T(1)‖Σ = 2.

• A map on the disk algebra A(D̄). The disk algebra A(D̄) on the closed unit disk D̄
is the algebra of all continuous functions on D̄ that are analytic on the open unit
disk D. The disk algebra on D̄ is a uniform algebra on D̄. It is well known that the
maximal ideal space of A(D̄) is D̄. Let π0(z) = z2, z ∈ D̄. Then the map T : A(D̄)→
A(D̄) is defined by T( f ) = f ◦ π0, f ∈ A(D̄). Trivially, T is not surjective and hence
T � Iso(A(D̄), A(D̄)). On the other hand, T is pointwise 2-local in Iso(A(D̄), A(D̄)).
The reason is as follows. Let f , g ∈ A(D̄) and x ∈ D̄ be arbitrary. If |x| = 1, then put
ϕx(z) = xz. If |x| < 1, then it is well known that there is a Möbius transformation
ϕx such that ϕx(x) = x2 since both of x and x2 are in D. Put T f ,g,x(h) = h ◦ ϕx,
h ∈ A(D̄). We infer by a calculation that (T( f ))(x) = (T f ,g,x( f ))(x) and (T(g))(x) =
(T f ,g,x(g))(x). Thus, T is pointwise 2-local in Iso(A(D̄), A(D̄)).

It is interesting to point out that a pointwise 2-local isometry is in fact a surjective
isometry for some Banach algebras (see Subsections 4.4 and 4.5). A simple example
is a pointwise 2-local isometry on the annulus algebra.

https://doi.org/10.1017/S1446788720000452 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788720000452


[8] A Kowalski-Słodkowski theorem 393

• Let 0 < r < 1 and Ω = {z : r ≤ |z| ≤ 1} be an annulus. Let A(Ω) be the algebra of
all complex-valued continuous functions that are analytic on the interior of Ω. It
is well known that A(Ω) is a uniform algebra on Ω whose maximal ideal space is
homeomorphic to Ω. A pointwise 2-local map in Iso(A(Ω), A(Ω)) is a surjective
isometry (cf. Corollary 4.14).

Recall that for an ε ∈ {±1} and f ∈ Bj, [ f ]ε = f if ε = 1 and [ f ]ε = f̄ if ε = −1. Let

GWC = {T ∈ M(B1, B2); there exist a β ∈ B2,
an α ∈ B2 with |α| = 1 on M2,
a continuous map π : M2 → M1

and a continuous map ε : M2 → {±1}
such that T( f ) = β + α[ f ◦ π]ε for every f ∈ B1}.

Applying Theorem 2.2, we show that a pointwise 2-local map in GWC is also in
GWC.

THEOREM 3.2. Suppose that T ∈ M(B1, B2) is pointwise 2-local in GWC. Then there
exist a continuous map π : M2 → M1 and a continuous map ε : M2 → {±1} such that

T( f ) = T(0) + (T(1) − T(0))[ f ◦ π]ε , f ∈ B1, (3-1)

where T(1) − T(0) is a unimodular element in B2. In particular, a pointwise 2-local
map in GWC is an element in GWC.

PROOF. Put T0 = T − T(0). We infer that T0(0) = 0. Since T is pointwise 2-local in
GWC, it is obvious that T0 is also pointwise 2-local in GWC. Let x ∈ M2. There exist
β0,1,x,α0,1,x ∈ B2 with |α0,1,x| = 1 on M2, a continuous map π0,1,x : M2 → M1 and a
continuous map ε0,1,x : M2 → {±1} such that

T0(1)(x) = β0,1,x(x) + α0,1,x(x)[1 ◦ π0,1,x]
ε

0,1,x
(x)

(x) = β0,1,x(x) + α0,1,x(x)

and

0 = T0(0)(x) = β0,1,x(x) + α0,1,x(x)[0 ◦ π0,1,x]
ε

0,1,x
(x)

(x) = β0,1,x(x).

It follows that T0(1)(x) = α0,1,x(x). As x ∈ M2 is arbitrary,

|T0(1)(x)| = 1, x ∈ M2. (3-2)

Hence, T0(1) has no zeros on M2, so T0(1) = T0(1)−1 ∈ B2. We define T1 ∈
M(B1, B2) by

T1 = T0(1)T0. (3-3)

We see that

T1(0) = T0(1)T0(0) = 0, T1(1) = T0(1)T0(1) = 1, (3-4)

by (3-2). To proceed with the proof of Theorem 3.2, we need some claims.
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Claim 1. There exist a map π : M2 → M1 and a map ε : M2 → {±1} such that

T1( f ) = [ f ◦ π]ε , f ∈ B1.

PROOF. Let f , g ∈ GWC and x ∈ M2. Since T0 is pointwise 2-local in GWC, there
exist β f ,g,x,α f ,g,x ∈ B2 with |α f ,g,x| = 1 on M2, a continuous map π f ,g,x : M2 → M1 and
a continuous map ε f ,g,x : M2 → {±1} such that

T0( f )(x) = β f ,g,x(x) + α f ,g,x(x)[ f ◦ π f ,g,x]ε f ,g,x(x)(x)

and

T0(g)(x) = β f ,g,x(x) + α f ,g,x(x)[g ◦ π f ,g,x]ε f ,g,x(x)(x).

As T1 = T0(1)T0,

T1( f )(x) = T0(1)(x)β f ,g,x(x) + T0(1)(x)α f ,g,x(x)[ f ◦ π f ,g,x]ε f ,g,x(x)(x)

and

T1(g)(x) = T0(1)(x)β f ,g,x(x) + T0(1)(x)α f ,g,x(x)[g ◦ π f ,g,x]ε f ,g,x(x)(x).

By (3-2), T0(1)α f ,g,x is a unimodular function and thus T1 is pointwise 2-local in GWC
by the definition of GWC. Fix x ∈ M2. We define Δx : B1 → C by

Δx( f ) = (T1( f ))(x), f ∈ B1.

As T1 is pointwise 2-local in GWC, for any f , g ∈ B1, there exists T f ,g,x ∈ GWC such
that

Δx( f ) = (T1( f ))(x)

= T f ,g,x( f )(x) = β f ,g,x(x) + α f ,g,x(x)[ f ◦ π f ,g,x]ε f ,g,x(x)(x)

and

Δx(g) = (T1(g))(x)

= T f ,g,x(g)(x) = β f ,g,x(x) + α f ,g,x(x)[g ◦ π f ,g,x]ε f ,g,x(x)(x).

We infer that

Δx( f ) − Δx(g) = α f ,g,x(x)[( f − g) ◦ π f ,g,x]ε f ,g,x(x)(x).

If x ∈ ε−1
f ,g,x(1),

[( f − g) ◦ π f ,g,x]ε f ,g,x(x)(x) = ( f − g)(π f ,g,x(x)) ∈ σ( f − g).

If x ∈ ε−1
f ,g,x(−1),

[( f − g) ◦ π f ,g,x]ε f ,g,x(x)(x) = ( f − g)(π f ,g,x(x)) ∈ Tσ( f − g).

Therefore,

Δx( f ) − Δx(g) ∈ Tσ( f − g), f , g ∈ B1.
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By (3-4), we have Δx(0) = T1(0)(x) = 0. Applying Theorem 2.2, we obtain that
Δx is complex-linear or conjugate-linear and Δx(1)Δx is multiplicative. As Δx(1) =
T1(1)(x) = 1 by (3-4), we conclude that Δx is multiplicative. In addition, Δx(1) = 1
implies that Δx � 0. Therefore, for any x ∈ M2, one of the following (i) and (ii) occurs:

(i) Δx is a nonzero multiplicative complex-linear functional;
(ii) Δx is a nonzero multiplicative conjugate-linear functional.

In the case (i), by Gelfand theory, there exists π(x) ∈ M1 such that

Δx( f ) = f (π(x)), f ∈ B1.

In the case (ii), Δx is a nonzero multiplicative complex-linear functional. Thus, there
exists π(x) ∈ M1 such that

Δx( f ) = f (π(x)), f ∈ B1,

and hence

Δx( f ) = f (π(x)), f ∈ B1.

Recalling that Δx( f ) = (T1( f ))(x),

T1( f )(x) =

⎧⎪⎪⎨⎪⎪⎩ f ◦ π(x) (Δx is complex-linear),
f ◦ π(x) (Δx is conjugate-linear).

We define a map ε : M2 → {±1} by

ε(x) =

⎧⎪⎪⎨⎪⎪⎩1 (Δx is complex-linear),
−1 (Δx is conjugate-linear).

(3-5)

Then

T1( f )(x) = [ f ◦ π]ε(x)(x), f ∈ B1, x ∈ M2.

�

Let

K1 = {x ∈ M2;Δx is complex-linear}

and

K−1 = {x ∈ M2;Δx is conjugate-linear}.

Rewriting (3-5),

ε(x) =

⎧⎪⎪⎨⎪⎪⎩1 (x ∈ K1),
−1 (x ∈ K−1).

Claim 2. We have K1 = {x ∈ M2;Δx(i) = i} and K−1 = {x ∈ M2;Δx(i) = −i}. In addition,
M2 = K1 ∪ K−1, K1 ∩ K−1 = ∅ and K1 and K−1 are closed subsets of M2.
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PROOF. Since, for any x ∈ M2, Δx is complex-linear or conjugate-linear, it is clear
that M2 = K1 ∪ K−1. By the definition of K1 and Δx(1) = 1, if x ∈ K1, then we have
x ∈ {y ∈ M2;Δy(i) = i}. Suppose that x ∈ {y ∈ M2;Δy(i) = i}. Then Δx(i) = iΔx(1). This
implies that x ∈ K1. We conclude that K1 = {x ∈ M2;Δx(i) = i}. We can also prove that
K−1 = {x ∈ M2;Δx(i) = −i} with a similar argument. Therefore, it is easy to see that
K1 ∩ K−1 = ∅. Let {xα} ⊂ K1 be a net with xα → x0 ∈ M2. We get

i = Δxα(i) = (T1(i))(xα)→ (T1(i))(x0) = Δx0 (i).

This implies that Δx0 (i) = i and x0 ∈ K1. We have that K1 is closed in M2. We also get
that K−1 is closed in the same way. �

Claim 2 shows that ε : M2 → {±1} is continuous.

Claim 3. The mapping π : M2 → M1 is continuous.

PROOF. Let {xα} ⊂ M2 be a net with xα → x0 ∈ M2. By Claim 2, K1 and K−1 are closed
and K1 ∩ K−1 = ∅. Thus, there is no loss of generality to assume that:

(i) {xα} ⊂ K1 and x0 ∈ K1;
(ii) {xα} ⊂ K−1 and x0 ∈ K−1.

First, we consider the case (i). Then

T1( f )(xα)→ T1( f )(x0), f ∈ B1,

and hence

( f ◦ π)(xα)→ ( f ◦ π)(x0), f ∈ B1.
This implies that π(xα)→ π(x0) with the Gelfand topology. In case (ii) a similar
argument gives that π is continuous and therefore we finish the proof. �

CONTINUATION OF PROOF OF THEOREM 3.2. By (3-3), we get T0 = T0(1)T1. By
applying T0 = T − T(0) and Claim 1,

T( f ) = T0( f ) + T(0)

= T0(1)T1( f ) + T(0)

= T0(1)[ f ◦ π]ε + T(0), f ∈ B1.

Putting f = 1, we have T0(1) = T(1) − T(0) and

T( f ) = (T(1) − T(0))[ f ◦ π]ε + T(0).

In addition, by (3-2), we have |T0(1)| = 1. We obtain that T0(1) = T(1) − T(0) is a
unimodular element in B2. �

REMARK. Even though a map T ∈ M(B1, B2) is a 2-local map in GWC, it is not
always the case that π : M2 → M1 is a homeomorphism. In fact, the map T0 in
[9, Theorem 2.3] is a 2-local automorphism and hence 2-local in IsoC(C(K̄), C(K̄)).
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On the other hand, the corresponding continuous map is not injective and hence it is
not a homeomorphism.

COROLLARY 3.3. Suppose that T ∈ M(B1, B2) is pointwise 2-local in GWC and T is
injective. Then π(M2) is a uniqueness set for B1, that is, if g ∈ B1 and g = 0 on π(M2),
then g = 0.

PROOF. Suppose that g ∈ B1 and g = 0 on π(M2). Substituting g in (3-1),

T(g) = T(0) + (T(1) − T(0))[g ◦ π]ε = T(0) + (T(1) − T(0))[0]ε = T(0).

Since T is injective, we have that g = 0. Hence, π(M2) is a uniqueness set for B1. �

Let

WCC = {T ∈ M(B1, B2); there exist
an α ∈ B2 with |α| = 1 on M2

and a continuous map π : M2 → M1

such that T( f ) = α f ◦ π for every f ∈ B1}.

Then WCC is a set of weighted composition operators. We see that a pointwise 2-local
weighted composition operator is a weighted composition operator.

COROLLARY 3.4. Suppose that T ∈ M(B1, B2) is pointwise 2-local in WCC. Then
T ∈ WCC.

PROOF. Let T ∈ M(B1, B2) be pointwise 2-local in WCC. Since WCC ⊂ GWC, we see
by Theorem 3.2 that there exist a continuous map π : M2 → M1 and a continuous map
ε : M2 → {±1} such that

T( f ) = T(0) + (T(1) − T(0))[ f ◦ π]ε , f ∈ B1, (3-6)

where T(1) − T(0) is a unimodular element in B2. Since any map in WCC is
complex-linear, we infer by a simple calculation that T(0) = 0 and T is homogeneous
with respect to a complex scalar. We see by (3-6) that

T( f ) = T(1) f ◦ π, f ∈ B1,

where T(1) is a unimodular function. Thus, T ∈WCC. �

4. Applications

In this section we study 2-local isometries on several function spaces by applying
Theorem 3.2.

4.1. Uniform algebras. Let X be a compact Hausdorff space. The algebra of all
complex-valued continuous functions on X is denoted by C(X), which is a Banach
algebra with respect to the supremum norm ‖·‖∞ on X. We say that A is a uniform
algebra on X if A is a uniformly closed subalgebra of C(X) that contains constant

https://doi.org/10.1017/S1446788720000452 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788720000452


398 S. Oi [13]

functions and separates the points of X. As the Gelfand transformation on a uniform
algebra is an isometric isomorphism, a uniform algebra is isometrically isomorphic to
its Gelfand transform. We may suppose that X is a subset of the maximal ideal space
MA and A is a uniform algebra on MA. The Banach algebra C(X) is a uniform algebra
on X whose maximal ideal space is X. The next result is obtained in [8, Theorem 2.1
and Corollary 3.4]. Note that we denote the maximal ideal space of a uniform algebra
Aj by Mj for j = 1, 2.

THEOREM 4.1. Let Aj be a uniform algebra on a compact Hausdorff space Xj for
j = 1, 2. Suppose that U : A1 → A2 is a surjective isometry from A1 onto A2. Then there
exist a homeomorphism π : M2 → M1, an α ∈ A2 with |α| = 1 on M2 and a continuous
map ε : M2 → {±1} such that

U( f ) = U(0) + α[ f ◦ π]ε , f ∈ A1. (4-1)

If Aj = C(Xj), the map U defined by (4-1) is a surjective isometry from C(X1) onto
C(X2).

By Theorem 4.1,
Iso(A1, A2) ⊂ GWC

for uniform algebras A1 and A2. As a direct consequence of Theorem 3.2, we get
Corollary 4.2, which is a generalization of Theorem 3.10 of [17].

COROLLARY 4.2. Let Aj be a uniform algebra on a compact Hausdorff space Xj for
j = 1, 2. Suppose that T ∈ M(A1, A2) is pointwise 2-local in Iso(A1, A2). Then there
exist a continuous map π : M2 → M1 and a continuous map ε : M2 → {±1} such that

T( f ) = T(0) + (T(1) − T(0))[ f ◦ π]ε , f ∈ A1,

where T(1) − T(0) is a unimodular function.

We also obtain the following corollary.

COROLLARY 4.3. Let Xj be a first countable compact Hausdorff space for j = 1, 2.
Suppose that T ∈ M(C(X1), C(X2)) is 2-local in Iso(C(X1), C(X2)). Then we have T ∈
Iso(C(X1), C(X2)).

PROOF. Let T be 2-local in Iso(C(X1), C(X2)). By Corollary 4.2, there exist a
continuous map π : X2 → X1 and a continuous map ε : X2 → {±1} such that

T( f ) = T(0) + (T(1) − T(0))[ f ◦ π]ε , f ∈ C(X1). (4-2)

We prove that π is an injection. Suppose that y1, y2 ∈ X2 are such that π(y1) = π(y2) =
x ∈ X1. Since X1 is first countable, there exists g ∈ C(X1) such that g−1(0) = {x}. (For
example, in [23, Page 117, line 19–21], we see the existence of such a function g.)
Since, for T0 = T − T(0), T1 = T0(1)T0 is 2-local in Iso(C(X1), C(X2)),

0 = T1(0) = T0,g(0)

= β0,g + α0,g[0 ◦ π0,g]ε0,g = β0,g
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and

T1(g) = T0,g(g)

= β0,g + α0,g[g ◦ π0,g]ε0,g .

Hence,

T1(g) = α0,g[g ◦ π0,g]ε0,g

and thus

(T1(g))−1(0) = (g ◦ π0,g)−1(0) = π−1
0,g(x).

Since π0,g is homeomorphism, the set π−1
0,g(x) is a singleton. Moreover, applying (4-2),

T1(g) = [g ◦ π]ε .

Thus,

(T1(g))−1(0) = (g ◦ π)−1(0) = π−1(x) � {y1, y2}.

As we have already proved that the set (T1(g))−1(0) = π−1
0,g(x) is a singleton, we infer

that y1 = y2. Thus, π is injective. Since T is a 2-local isometry, T is an isometry
by definition of 2-local isometries. Hence, T is injective. By Corollary 3.3, π(X2) is
a uniqueness set for C(X1), which must coincide with X1 itself. Since a one-to-one
continuous mapping of a compact space onto a Hausdorff space is a homeomorphism,
we infer that π is a homeomorphism. It follows that T ∈ Iso(C(X1), C(X2)) �

Corollary 4.3 gives an affirmative answer to the problem mentioned by Molnár.
Mori proved the same statement in [29, Theorem 4.6] by a different argument.

Next we consider the disk algebra. Let D̄ be the closed unit disk.

COROLLARY 4.4. Suppose that U is a surjective isometry from the disk algebra
A(D̄) onto itself. Then there exist a Möbius transformation ϕ on D̄ and a unimodular
constant α such that

U( f ) = U(0) + α f ◦ ϕ, f ∈ A(D̄),

or

U( f ) = U(0) + α f ◦ ϕ̄, f ∈ A(D̄).

Conversely, if one of the above equations holds, then U is a surjective isometry from
the disk algebra onto itself.

PROOF. Applying Theorem 4.1, we have a homeomorphism π : D̄→ D̄, a unimodular
function α ∈ A(D̄) and a continuous map ε : D̄→ {±1} such that

U( f ) = U(0) + α[ f ◦ π]ε , f ∈ A(D̄). (4-3)

Due to the maximum modulus principle for analytic functions, α is a unimodular
constant. Since D̄ is connected, ε = 1 on D̄ or ε = −1 on D̄. Letting f = Id, the identity
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function, in (4-3),

ᾱ(U(Id) − U(0)) = π if ε = 1, (4-4)

ᾱ(U(Id) − U(0)) = π̄ if ε = −1. (4-5)

Suppose that ε = 1. Then π is analytic on D by (4-4). As π is a homeomorphism,
we conclude that π is a Möbius transformation. In the same way, π̄ is a Möbius
transformation if ε = −1. Letting ϕ = π if ε = 1, and ϕ = π̄ if ε = −1, ϕ is a Möbius
transformation. It follows that

U( f ) = U(0) + α f ◦ ϕ, f ∈ A(D̄)

if ε = 1 and

U( f ) = U(0) + α f ◦ ϕ̄, f ∈ A(D̄)

if ε = −1.
The converse statement is trivial. �

By Corollary 4.4,

Iso(A(D̄), A(D̄)) ⊂ GWC

for the disk algebra A(D̄).

COROLLARY 4.5. Suppose that T ∈ M(A(D̄), A(D̄)) is 2-local in Iso(A(D̄), A(D̄)). Then
T ∈ Iso(A(D̄), A(D̄)).

PROOF. Corollary 4.2 asserts that there exist a continuous map π : D̄→ D̄ and a
continuous map ε : D̄→ {±1} such that

T( f ) = T(0) + (T(1) − T(0))[ f ◦ π]ε , f ∈ A(D̄), (4-6)

where T(1) − T(0) is a unimodular function. By the same way as in the proof of
Corollary 4.4, we see that T(1) − T(0) is a unimodular constant. We also see that ε = 1
on D̄ or ε = −1 on D̄ because D̄ is connected and ε is continuous. Letting f = Id in
(4-6), we have that π is analytic on D if ε = 1, and π̄ is analytic on D if ε = −1. Put
ϕ = π if ε = 1, ϕ = π̄ if ε = −1 and T1 = T(1) − T(0)(T − T(0)). Then

T1( f ) = f ◦ ϕ, f ∈ A(D̄)

if ε = 1 and

T1( f ) = f ◦ ϕ̄, f ∈ A(D̄)

if ε = −1. Since T1 is 2-local in Iso(A(D̄), A(D̄)), we apply Corollary 4.4 and thus there
exist a Möbius transform ϕ0, u ∈ A(D̄) and a unimodular constant α such that

ϕ = T1(Id) = u + αϕ0 and 0 = T1(0) = u.

It follows that ϕ = αϕ0. As |α| = 1, we infer that ϕ is a Möbius transformation on D̄.
We infer by Corollary 4.4 that T ∈ Iso(A(D̄), A(D̄)). �
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4.2. Lipschitz algebras. Let (Xj, d) be a compact metric space for j = 1, 2. Let

Lip(Xj) =
{

f ∈ C(Xj) : L( f ) = sup
x�y

| f (x) − f (y)|
d(x, y)

< ∞
}
.

We say that L( f ) is the Lipschitz constant for f . With the norm ‖ f ‖Σ = ‖ f ‖∞ + L( f )
for f ∈ Lip(Xj), the algebra Lip(Xj) is a unital semisimple commutative Banach
algebra. In addition, the maximal ideal space of Lip(Xj) can be identified with Xj.

COROLLARY 4.6. Let ‖·‖j be any norm on Lip(Xj). We do not assume that ‖·‖j is
complete. Suppose that

Iso((Lip(X1), ‖·‖1), (Lip(X2), ‖·‖2))

= {T ∈ M(Lip(X1), Lip(X2));
there exist β ∈ Lip(X2), α ∈ T,
a surjective isometry π : X2 → X1 and ε = ±1
such that T( f ) = β + α[ f ◦ π]ε for every f ∈ Lip(X1)}. (4-7)

Let T ∈ M((Lip(X1), ‖·‖1), (Lip(X2), ‖·‖2)) be 2-local in Iso((Lip(X1), ‖·‖1),
(Lip(X2), ‖·‖2)). Then T ∈ Iso((Lip(X1), ‖·‖1), (Lip(X2), ‖·‖2)).

PROOF. Suppose that T is 2-local in Iso((Lip(X1), ‖·‖1), (Lip(X2), ‖·‖2)). The equality
(4-7) implies that Iso((Lip(X1), ‖·‖1), (Lip(X2), ‖·‖2)) ⊂ GWC. Applying Theorem 3.2,
there exist a continuous map π : X2 → X1 and a continuous map ε : X2 → {±1} such
that

T( f ) = T(0) + (T(1) − T(0))[ f ◦ π]ε , f ∈ Lip(X1). (4-8)

Recall that T1 = T0(1)T0 for T0 = T − T(0). Since T0 is 2-local,

T0(1) = β0,1 + α0,1[1 ◦ π0,1]
ε

0,1

and

0 = T0(0) = β0,1 + α0,1[0 ◦ π0,1]
ε

0,1 = β0,1.

It follows that T(1) − T(0) = T0(1) is a unimodular constant. Thus, T1 = T0(1)T0 is
2-local in Iso((Lip(X1), ‖·‖1), (Lip(X2), ‖·‖2)). We get

0 = T1(0) = T0,i(0)

= β0,i + α0,i[0 ◦ π0,i]
ε0,i = β0,i

and

T1(i) = T0,i(i)
= β0,i + α0,i[i ◦ π0,i]

ε0,i .

Therefore,

T1(i) = α0,i[i ◦ π0,i]
ε0,i .
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Since α0,i is a unimodular constant and ε0,i = ±1, we obtain that T1(i) is a constant.
Moreover, applying (4-8),

T1(i) = [i ◦ π]ε .
Thus, we conclude that ε = 1 or ε = −1. As T is a 2-local isometry, T is an isometry
and hence T is injective. Corollary 3.3 asserts that π(X2) is a uniqueness set for Lip(X1).
Thus, we have π(X2) = X1. This implies that π is surjective. Finally, we shall prove that
π is an isometry. Let x0 ∈ X2. We define a Lipschitz function g on X1 by

g(x) = d(x, π(x0)), x ∈ X1.

As T1 is 2-local in Iso((Lip(X1), ‖·‖1), (Lip(X2), ‖·‖2)), there exists α0,g ∈ T and π0,g :
X2 → X1 is a surjective isometry such that

0 = T1(0) = T0,g(0)

= β0,g + α0,g[0 ◦ π0,g]ε0,g = β0,g

and

T1(g) = T0,g(g)

= β0,g + α0,g[g ◦ π0,g]ε0,g = β0,g + α0,gg ◦ π0,g

because g is a real-valued function. It follows that

(T1(g))(z) = α0,gg(π0,g(z)), z ∈ X2.

By (4-8), for any z ∈ X2,

d(π(z), π(x0)) = [g(π(z))]ε

= (T1(g))(z) = α0,gg(π0,g(z)) = α0,gd(π0,g(z), π(x0)). (4-9)

We may suppose that X1 is not a singleton. (Otherwise, X2 is a singleton since π0,g is a
surjective isometry. Then π is automatically a surjective isometry.) Hence, there exists
z0 ∈ X2 such that d(π0,g(z0), π(x0)) � 0. By (4-9) with z = z0,

α0,g =
d(π(z0), π(x0))

d(π0,g(z0), π(x0))
≥ 0

and we obtain α0,g = 1. Hence, by (4-9),

d(π(z), π(x0)) = d(π0,g(z), π(x0)), z ∈ X2. (4-10)

Putting z = x0 in (4-10),

0 = d(π(x0), π(x0)) = d(π0,g(x0), π(x0)).

It follows π0,g(x0) = π(x0). By (4-10),

d(π(z), π(x0)) = d(π0,g(z), π(x0)) = d(π0,g(z), π0,g(x0)) = d(z, x0)

since π0,g is an isometry. As z and x0 are arbitrary, we conclude that π is an isometry.
This completes the proof. �
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For an arbitrary compact metric space Xj for j = 1, 2, Hatori and the author
[10, Theorem 6] showed that Iso((Lip(X1), ‖·‖Σ), (Lip(X2), ‖·‖Σ)) fulfills the condition
of Corollary 4.6. Thus, we have the following corollary.

COROLLARY 4.7. Let T ∈ M(Lip(X1), Lip(X2)) be 2-local in Iso((Lip(X1), ‖·‖Σ),
(Lip(X2), ‖·‖Σ)). Then T ∈ Iso((Lip(X1), ‖·‖Σ), (Lip(X2), ‖·‖Σ)).

Corollary 4.7 generalizes Theorem 8 in [10], where the case X1 = X2 = [0, 1] is
proved.

4.3. The algebra of continuously differentiable functions. We denote the algebra
of all continuously differentiable functions by C1([0, 1]). It is a unital semisimple
commutative Banach algebra with the norm ‖·‖Σ defined by

‖ f ‖Σ = ‖ f ‖∞ + ‖ f ′‖∞, f ∈ C1([0, 1]).

The maximal ideal space of C1([0, 1]) is homeomorphic to [0, 1]. We have the
following corollary.

COROLLARY 4.8. Let ‖·‖j be any norm on C1([0, 1]) for j = 1, 2. We do not assume
that ‖·‖j is complete. Suppose that

Iso((C1([0, 1]), ‖·‖1), (C1([0, 1]), ‖·‖2))

= {T ∈ M(C1([0, 1]), C1([0, 1]));

there exist β ∈ C1([0, 1]), α ∈ T,
π = Id or π = 1 − Id and ε = ±1

such that T( f ) = β + α[ f ◦ π]ε for every f ∈ C1([0, 1])}. (4-11)

Suppose that T ∈ M(C1([0, 1]), C1([0, 1])) is 2-local in Iso((C1([0, 1]), ‖·‖1),
(C1([0, 1]), ‖·‖2)). Then T ∈ Iso((C1([0, 1]), ‖·‖1), (C1([0, 1]), ‖·‖2)).

PROOF. Let T be 2-local in Iso((C1([0, 1]), ‖·‖1), (C1([0, 1]), ‖·‖2)). By (4-11),
Iso((C1([0, 1]), ‖·‖1), (C1([0, 1]), ‖·‖2)) ⊂ GWC. Theorem 3.2 asserts that there exist
a continuous map π : [0, 1]→ [0, 1] and a continuous map ε : [0, 1]→ {±1} such that

T( f ) = T(0) + (T(1) − T(0))[ f ◦ π]ε , f ∈ C1([0, 1]). (4-12)

Since ε : [0, 1]→ {±1} is continuous and [0, 1] is connected, we conclude that ε =
±1. As T is a 2-local isometry, we get that T is an isometry. This implies that T
is injective. Corollary 3.3 asserts that π([0, 1]) is a uniqueness set for C1([0, 1]),
which is [0, 1]. Thus, we have that π is surjective. To complete the proof, we
prove that π is an isometry. Let x0 ∈ [0, 1]. We define the function g(x) = x − π(x0) ∈
C1([0, 1]). Define T1 = T0(1)T0 for T0 = T − T(0). It is easy to see that T0 is 2-local in
Iso((C1([0, 1]), ‖·‖1), (C1([0, 1]), ‖·‖2)):

T0(1) = β0,1 + α0,1[1 ◦ π0,1]
ε

0,1
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and

0 = T0(0) = β0,1 + α0,1[0 ◦ π0,1]
ε

0,1 = β0,1.

It follows that T(1) − T(0) = T0(1) is a unimodular constant. We have that T1 =

T0(1)T0 is 2-local in Iso((C1([0, 1]), ‖·‖1), (C1([0, 1]), ‖·‖2)). Hence,

0 = T1(0) = T0,g(0)

= β0,g + α0,g[0 ◦ π0,g]ε0,g = β0,g

and

T1(g) = T0,g(g)

= β0,g + α0,g[g ◦ π0,g]ε0,g .

It follows that

(T1(g))(z) = α0,g[g ◦ π0,g]ε0,g (z) = α0,g[g(π0,g(z))]ε0,g , z ∈ [0, 1].

Thus, by (4-12),

[π(z) − π(x0)]ε = [g(π(z))]ε = (T1(g))(z)

= α0,g[g(π0,g(z))]ε0,g = α0,g[π0,g(z) − π(x0)]ε0,g

for any z ∈ [0, 1], where α0,g ∈ T and π0,g = Id or π0,g = 1 − Id. Putting z = x0,

0 = [π(x0) − π(x0)]ε = α0,g[π0,g(x0) − π(x0)]ε0,g .

It follows that π0,g(x0) = π(x0). Thus,

[π(z) − π(x0)]ε = α0,g[π0,g(z) − π(x0)]ε0,g = α0,g[π0,g(z) − π0,g(x0)]ε0,g

and

|π(z) − π(x0)| = |π0,g(z) − π0,g(x0)| = |z − x0|.

As z and x0 are arbitrary, we conclude that π is an isometry. This completes the
proof. �

In [15, 20], the authors gave a complete characterization of all surjective isometries
on C1([0, 1]) with respect to various norms. There are many norms with which the
groups of surjective isometries on C1([0, 1]) fulfill the condition of Corollary 4.8. We
present one of them.

COROLLARY 4.9. Suppose that T ∈ M((C1([0, 1]), ‖·‖Σ), (C1([0, 1]), ‖·‖Σ)) and
T is 2-local in Iso((C1([0, 1]), ‖·‖Σ), (C1([0, 1]), ‖·‖Σ)). We conclude that T ∈
Iso((C1([0, 1]), ‖·‖Σ), (C1([0, 1]), ‖·‖Σ)).

Corollary 4.9 has been also obtained in [10, Theorem 9] with a different argument.
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4.4. The algebra S∞(D). As we stated in the beginning of Section 3, for some
Banach algebras Bj, a pointwise 2-local map in Iso(B1, B2) is not always a surjective
isometry. But, in this subsection and the next, we show examples of Banach algebras
Bj in which every pointwise 2-local map in Iso(B1, B2) is always a surjective isometry.

Let

S∞(D) = { f ∈ H(D); f ′ ∈ H∞(D)},
where H(D) is the linear space of all analytic functions on D and H∞(D) is the
algebra of all bounded analytic functions on D. The algebra S∞(D) equipped with
the norm ‖ f ‖Σ = supz∈D | f (z)| + supw∈D | f ′(w)| for f ∈ S∞(D) is a unital semisimple
commutative Banach algebra. As is described in [19], S∞(D) coincides with the space
of all Lipschitz functions in the linear space of all analytic functions on D and each
f ∈ S∞(D) is continuously extended to the closed unit disk D̄. Hence, we may suppose
that S∞(D) is a unital subalgebra of the disk algebra on D̄. Trivially, all analytic
polynomials are in S∞(D).

THEOREM 4.10. The maximal ideal space M∞ of S∞(D) is homeomorphic to the
closed unit disk D̄.

PROOF. To prove that D̄ = M∞, firstly we show that if f1, . . . , fn are arbitrary functions
in S∞(D) such that

n∑
j=1

| fj| > 0 on D̄,

then there exist g1, . . . , gn ∈ S∞(D) such that
n∑

j=1

fjgj = 1.

It is well known that the maximal ideal space of the disk algebra A(D̄) is D̄. As
f1, . . . , fn ∈ S∞(D) ⊂ A(D̄), there exist h1, . . . , hn ∈ A(D̄) such that

n∑
j=1

fjhj = 1.

As functions in A(D̄) are uniformly approximated by analytic polynomials, there exists
a sequence of polynomials {p(j)

m }∞m=1 such that ‖p(j)
m − hj‖∞ → 0 as m→ ∞ for every

j = 1, . . . , n. Hence, for sufficiently large m0,∥∥∥∥∥1 −
n∑

j=1

fj p
(j)
m0

∥∥∥∥∥ < 1/2.

In particular,
∑n

j=1 fj p
(j)
m0 has no zeros on D̄. Then 1/

∑n
j=1 fj p

(j)
m0 ∈ S∞(D). Put gj =

p(j)
m0/
∑n

k=1 fk p(k)
m0 for j = 1, . . . , n. Then gj ∈ S∞(D) and

∑n
j=1 fjgj = 1 by a simple

calculation.
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For each p ∈ D̄, the point evaluation δp on S∞(D) which takes the value at p is a
nontrivial complex homomorphism. Hence, we have that D̄ ⊂ M∞. Suppose that there
exists δ ∈ M∞ such that δ � δp for any p ∈ D̄. It follows that for any p ∈ D̄, there exists
fp ∈ S∞(D) such that

δ( fp) = 0, δp( fp) � 0. (4-13)
For every p ∈ D̄, we define an open subset of D̄ by Vp = {x ∈ D̄; fp(x) � 0} and we
have p ∈ Vp. Since D̄ is compact, let p1, . . . , pn be the corresponding elements in D̄;
thus, we have

∑n
j=1 | fpj | > 0. By the above arguments, there exist g1, . . . , gn ∈ S∞(D)

such that
∑n

j=1 fpj gj = 1. By (4-13),

1 = δ(1) = δ
( n∑

j=1

fpj gj

)
=

n∑
j=1

δ( fpj )δ(gj) = 0,

which is a contradiction. It follows that D̄ = M∞. �

Miura [19, Theorem 1] determined the form of all surjective isometries on
S∞(D).

THEOREM 4.11 (Miura [19]). Suppose that U : S∞(D)→ S∞(D) is a surjective isome-
try with respect to the norm ‖·‖Σ. Then there exist unimodular constants α, λ ∈ C such
that

U( f ) = U(0) + α f (λ·), f ∈ S∞(D),
or

U( f ) = U(0) + α f (λ·), f ∈ S∞(D).

Conversely, each mapping of the above form is a surjective isometry from S∞(D) onto
S∞(D).

COROLLARY 4.12. Suppose that T ∈ M(S∞(D), S∞(D)) is pointwise 2-local in
Iso(S∞(D), S∞(D)). Then T ∈ Iso(S∞(D), S∞(D)).

PROOF. Suppose that T ∈ M(S∞(D), S∞(D)) is pointwise 2-local in Iso(S∞(D),
S∞(D)). By Theorem 4.11, Iso(S∞(D), S∞(D)) ⊂ GWC. Then Theorem 3.2 asserts
that there exist a continuous map π : D̄→ D̄ and a continuous map ε : D̄→ {±1} such
that

T( f ) = T(0) + α[ f ◦ π]ε , f ∈ S∞(D),
where α = T(1) − T(0) is a unimodular constant since T(1) − T(0) is a unimodular
function and it is analytic on D. Furthermore, ε = 1 on D̄ or ε = −1 on D̄. Put T1 =

ᾱ(T − T(0)). Then

T1 = f ◦ π, f ∈ S∞(D)
if ε = 1 and

T1( f ) = f ◦ π, f ∈ S∞(D)
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if ε = −1. Letting f = Id, the identity function, we see that π ∈ S∞(D) if ε = 1 and π̄ ∈
S∞(D) if ε = −1. Put ϕ = π if ε = 1 and ϕ = π̄ if ε = −1. Then we have that ϕ ∈ S∞(D)
and

T1( f ) = f ◦ ϕ, f ∈ S∞(D)

if ε = 1 and

T1( f ) = f ◦ ϕ̄, f ∈ S∞(D)

if ε = −1. In particular,

T1(Id) = ϕ (4-14)

either for ε = 1 or for ε = −1. Since T1 is pointwise 2-local in Iso(S∞(D), S∞(D)) by
the definition of T1, for every x ∈ D̄ there exist ux ∈ S∞(D) and unimodular constants
αx, λx such that

(T1(Id))(x) = ux(x) + αx Id(λxx)

and

0 = (T1(0))(x) = ux(x),

or

(T1(Id))(x) = ux(x) + αxId(λxx) = ux(x) + αx Id(λxx)

and

0 = (T1(0))(x) = ux(x).

In any case,

(T1(Id))(x) = αxλxx. (4-15)

Combining (4-14) and (4-15),

ϕ(x) = αxλxx

for every x ∈ D̄. Then we have ϕ(0) = 0 and |ϕ(x)| = |x| for every x ∈ D̄. Since ϕ : D̄→
D̄ is analytic in D, the Schwartz lemma asserts that there is a unimodular constant λ0
such that

ϕ(x) = λ0x, x ∈ D̄.

It follows that

T( f ) = T(0) + (T(1) − T(0)) f (λ0·), f ∈ S∞(D)

or

T( f ) = T(0) + (T(1) − T(0)) f (λ0·), f ∈ S∞(D).

By Theorem 4.11, we conclude that T ∈ Iso(S∞(D), S∞(D)). �
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4.5. The algebra A(˙). Let 0 < r < 1 and Ω = {z : r ≤ |z| ≤ 1} be an annulus. Let
A(Ω) be the algebra of all complex-valued continuous functions that are analytic on
the interior of Ω. It is well known that A(Ω) is a uniform algebra on Ω whose maximal
ideal space is homeomorphic to Ω.

COROLLARY 4.13. Suppose that U is a surjective isometry from the annulus algebra
A(Ω) onto itself. Then there exist unimodular constants α, λ ∈ T such that

U( f ) = U(0) + α f (λ·), f ∈ A(Ω),

or

U( f ) = U(0) + α f (λ·), f ∈ A(Ω).

Conversely, each mapping of the form is a surjective isometry from A(Ω) onto A(Ω).

PROOF. Let π be a homeomorphism on Ω that is analytic on the interior of Ω. Then
there exists a unimodular constant λ ∈ T such that π(z) = λz for any z ∈ Ω. The desired
statement follows from a similar argument to that of Corollary 4.4, in which we get a
characterization of all surjective isometries on the disk algebra. �

COROLLARY 4.14. Suppose that T ∈ M(A(Ω), A(Ω)) is pointwise 2-local in
Iso(A(Ω), A(Ω)). Then T ∈ Iso(A(Ω), A(Ω)).

PROOF. By Corollary 4.13, we get Iso(A(Ω), A(Ω)) ⊂ GWC. A homeomorphism on
Ω which is analytic on the interior is just a rotation and thus we finish by a similar
argument to Corollary 4.12. �

5. Iso-reflexivity

Many references in the literature study isometries from the point of view of how
they are determined by their local actions [2, 4, 11, 21, 27, 28, 32]. By Theorem
3.2, we have that several 2-local maps are linear and hence they are local maps. In
this section we prove that a local isometry in IsoC(B1, B2) is 2-local in Iso(B1, B2).
Applying corollaries of the above section, we see the reflexivity of IsoC(B1, B2) for
several Banach spaces of continuous functions.

DEFINITION 5.1. Put

MC(B1, B2) = {T ∈ M(B1, B2); T is complex-linear},

IsoC(B1, B2) = {T ∈ Iso(B1, B2); T is complex-linear}.
Recall that T ∈ MC(B1, B2) is local in IsoC(B1, B2) if, for every f ∈ B1, there exists
T f ∈ IsoC(B1, B2) such that

T( f ) = T f ( f ).

We say that IsoC(B1, B2) is iso-reflexive if every local map in IsoC(B1, B2) is an
element in IsoC(B1, B2).

https://doi.org/10.1017/S1446788720000452 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788720000452


[24] A Kowalski-Słodkowski theorem 409

PROPOSITION 5.2. Suppose that T ∈ MC(B1, B2) is local in IsoC(B1, B2). Then T is
2-local in Iso(B1, B2).

PROOF. Let f , g ∈ B1 be arbitrary. Then there exists T f ,g ∈ IsoC(B1, B2) such that

T( f − g) = T f ,g( f − g).

As T and T f ,g are complex-linear,

T( f ) − T(g) = T f ,g( f ) − T f ,g(g). (5-1)

Put

h f ,g = T( f ) − T f ,g( f ).

By (5-1),

T( f ) = h f ,g + T f ,g( f ),

T(g) = h f ,g + T f ,g(g).

It is easy to see that h f ,g + T f ,g(·) ∈ Iso(B1, B2). It follows that T is 2-local in
Iso(B1, B2). �

COROLLARY 5.3. Suppose that every 2-local map in Iso(B1, B2) is an element in
Iso(B1, B2). Then IsoC(B1, B2) is iso-reflexive.

PROOF. Suppose that T ∈ MC(B1, B2) is local in IsoC(B1, B2). Then, by Proposition
5.2, T is 2-local in Iso(B1, B2). By assumption, we have T ∈ Iso(B1, B2). Since T is
complex-linear, we infer that T ∈ IsoC(B1, B2). �

Applying Corollaries 4.3, 4.5, 4.7, 4.9, 4.12 and 4.14, we obtain IsoC(C(X1), C(X2))
for first countable compact Hausdorff spaces X1 and X2 and IsoC(A(D̄), A(D̄)),
IsoC(Lip(X1), Lip(X2)), IsoC(C1[0, 1], C1[0, 1]), IsoC(S∞(D), S∞(D)) and IsoC(A(Ω),
A(Ω)) are iso-reflexive.
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