A SPHERICAL VERSION OF THE KOWALSKI–SŁODKOWSKI THEOREM AND ITS APPLICATIONS

SHIHO OI

(Received 31 August 2019; accepted 17 September 2020; first published online 3 December 2020)

Communicated by Lisa Orloff Clark

Dedicated to Professor Osamu Hatori on the occasion of his retirement from Niigata University

Abstract

Li *et al.* ['Weak 2-local isometries on uniform algebras and Lipschitz algebras', *Publ. Mat.* **63** (2019), 241–264] generalized the Kowalski–Słodkowski theorem by establishing the following spherical variant: let *A* be a unital complex Banach algebra and let $\Delta : A \to \mathbb{C}$ be a mapping satisfying the following properties:

(a) Δ is 1-homogeneous (that is, $\Delta(\lambda x) = \lambda \Delta(x)$ for all $x \in A, \lambda \in \mathbb{C}$);

(b) $\Delta(x) - \Delta(y) \in \mathbb{T}\sigma(x - y), x, y \in A.$

Then Δ is linear and there exists $\lambda_0 \in \mathbb{T}$ such that $\lambda_0 \Delta$ is multiplicative. In this note we prove that if (a) is relaxed to $\Delta(0) = 0$, then Δ is complex-linear or conjugate-linear and $\overline{\Delta(1)}\Delta$ is multiplicative. We extend the Kowalski–Słodkowski theorem as a conclusion. As a corollary, we prove that every 2-local map in the set of all surjective isometries (without assuming linearity) on a certain function space is in fact a surjective isometry. This gives an affirmative answer to a problem on 2-local isometries posed by Molnár ['On 2-local *-automorphisms and 2-local isometries of B(H)', J. Math. Anal. Appl. **479**(1) (2019), 569–580] and also in a private communication between Molnár and O. Hatori, 2018.

2020 *Mathematics subject classification*: primary 46B04; secondary 46B20, 46J10, 46J15, 30H05. *Keywords and phrases*: 2-local maps, surjective isometries, the Kowalski–Słodkowski theorem.

1. Introduction

One of the basic problems in operator theory is to find sufficient conditions to deduce linearity and multiplicativity of maps between Banach algebras. As a generalization of the Gleason–Kahane–Żelazko theorem [6, 14, 35], Kowalski and Słodkowski [16] proved the linearity and the multiplicativity of a functional Δ on a Banach algebra A under the spectral condition; $\Delta(a) - \Delta(b) \in \sigma(a - b)$ for $a, b \in A$. Recently, Li *et al.* proved interesting spherical variants of the Gleason–Kahane–Żelazko theorem and the Kowalski–Słodkowski theorem [17]. They proved that a 1-homogeneous

^{© 2020} Australian Mathematical Publishing Association Inc.

functional on a unital Banach algebra that satisfies a mild spectral condition is linear. Applying it, they studied 2-local and weak 2-local complex-linear isometries.

Motivated by the Kowalski–Słodkowski theorem, the concept of a 2-local map was introduced by Šemrl [34], who proved the first results on 2-local automorphisms and derivations on algebras of operators. Molnár [22] began to study 2-local complex-linear isometries. Given a Banach space \mathfrak{M}_j for j = 1, 2, an isometry from \mathfrak{M}_1 into \mathfrak{M}_2 is a distance-preserving map. The set of all surjective complex-linear isometries from \mathfrak{M}_1 onto \mathfrak{M}_2 is denoted by $Iso_{\mathbb{C}}(\mathfrak{M}_1, \mathfrak{M}_2)$. The set of all maps from \mathfrak{M}_1 into \mathfrak{M}_2 is denoted by $M(\mathfrak{M}_1, \mathfrak{M}_2)$. We say that a map $T \in M(\mathfrak{M}_1, \mathfrak{M}_2)$ is a 2-local complex-linear isometry if for every $x, y \in \mathfrak{M}_1$ there is a $T_{x,y} \in Iso_{\mathbb{C}}(\mathfrak{M}_1, \mathfrak{M}_2)$ such that $T(x) = T_{x,y}(x)$ and $T(y) = T_{x,y}(y)$. Molnár [22] proved that each 2-local complex-linear isometry on certain C^* -algebras is a surjective complex-linear isometry. Initiated by his result, there are a lot of studies on 2-local complex-linear isometries on operator algebras and function spaces assuring that each 2-local complex-linear isometry is in fact a surjective complex-linear isometry [1, 3, 7, 9, 12, 13, 17, 22, 24].

Molnár raised a problem on 2-local isometries [25, 26]. The set of all (non-necessarily linear) surjective isometries from \mathfrak{M}_1 onto \mathfrak{M}_2 is denoted by $\mathrm{Iso}(\mathfrak{M}_1,\mathfrak{M}_2)$. We say that $T \in M(\mathfrak{M}_1,\mathfrak{M}_2)$ is a 2-local isometry or T is 2-local in $\mathrm{Iso}(\mathfrak{M}_1,\mathfrak{M}_2)$ if for every $x, y \in \mathfrak{M}_1$ there is a $T_{x,y} \in \mathrm{Iso}(\mathfrak{M}_1,\mathfrak{M}_2)$ such that

$$T(x) = T_{x,y}(x)$$
 and $T(y) = T_{x,y}(y)$.

The problem asks whether a 2-local isometry is in fact a surjective isometry or not. One may expect that the problems on 2-local *complex-linear* isometries and 2-local isometries are not so different. But the problem on 2-local isometries is very different from the one on 2-local complex-linear isometries. To clarify the situation, we exhibit an example showing that the assumption of linearity makes a quite big difference in the conclusion for 2-local maps. Let $A(\mathbb{C}, \mathbb{C}) = \{T : \mathbb{C} \to \mathbb{C}; Tx = ax + b \ (\exists a, b \in \mathbb{C})\}$. Since any map $T : \mathbb{C} \to \mathbb{C}$ is 2-local in $A(\mathbb{C}, \mathbb{C}), T$ need not be in $A(\mathbb{C}, \mathbb{C})$ in general. However, let

$$A_{\mathbb{C}}(\mathbb{C},\mathbb{C}) = \{T; T \in A(\mathbb{C},\mathbb{C}), T \text{ is } \mathbb{C}\text{-linear}\} = \{T : \mathbb{C} \to \mathbb{C}; Tx = ax \ (\exists a \in \mathbb{C})\}.$$

Then we get that every 2-local map in $A_{\mathbb{C}}(\mathbb{C}, \mathbb{C})$ is an element of $A_{\mathbb{C}}(\mathbb{C}, \mathbb{C})$. We can easily prove that a 2-local isometry is necessarily an isometry. What we need to prove is that a 2-local isometry is surjective. One may think that it is not a difficult problem, but it is. Molnár [26] worked quite hard to prove that for each separable complex Hilbert space H, every 2-local isometry on B(H) is in fact a surjective isometry on B(H). The author believes that this is the first result on the problem of 2-local isometries. Molnár asked whether a 2-local map in Iso(C([0, 1]), C([0, 1])) is an element in Iso(C([0, 1]), C([0, 1])) or not [25]. Inspired by his problem, Hatori and the author proved that a 2-local map in Iso(B, B) is an element of Iso(B, B), where B is the Banach space of all continuously differentiable functions or the Banach space of Lipschitz functions on the closed unit interval equipped with a certain norm [10].

The aim of this paper is to establish a generalization of the spherical variant of the Kowalski–Słodkowski theorem exhibited in [17]. Applying it, we prove that 2-local isometries on several function spaces are surjective isometries. In particular, we give an affirmative answer to the problem posed by Molnár (Corollary 4.3). We remark that Mori [29] also got an affirmative answer to the problem by a different approach applying the theory of operator algebras.

In this paper, we denote the unit circle on the complex plane by $\mathbb{T} = \{z \in \mathbb{C}; |z| = 1\}$. For simplicity of notation, we denote $[f]^1 = f$ and $[f]^{-1} = \overline{f}$, the complex-conjugate of f for any complex-valued function f. For any unital Banach algebra, **1** stands for its unit element. The identity map is denoted by Id.

2. Generalization of the Kowalski-Słodkowski theorem

Li *et al.* [17] proved the spherical variant of the Kowalski–Słodkowski theorem; a 1-homogeneous functional that satisfies a certain spectral condition is complex-linear. The concrete result reads as follows.

THEOREM 2.1 (Li *et al.* [17]). Let A be a unital complex Banach algebra and let Δ : $A \rightarrow \mathbb{C}$ be a mapping satisfying the following properties:

- (a) Δ is 1-homogeneous, that is, $\Delta(\lambda x) = \lambda \Delta(x)$ for all $x \in A$, $\lambda \in \mathbb{C}$;
- (b) $\Delta(x) \Delta(y) \in \mathbb{T}\sigma(x y), \quad x, y \in A.$

Then Δ is linear and there exists $\lambda_0 \in \mathbb{T}$ such that $\lambda_0 \Delta$ is multiplicative.

In this note, we consider the case that the hypothesis (a) is relaxed to $\Delta(0) = 0$. This hypothesis is closer to the one of the original Kowalski–Słodkowski theorem; however; the conclusion also admits conjugete-linear maps.

THEOREM 2.2. Let A be a unital complex Banach algebra. Suppose that a map Δ : $A \rightarrow \mathbb{C}$ satisfies the conditions:

- (a) $\Delta(0) = 0;$
- (b) $\Delta(x) \Delta(y) \in \mathbb{T}\sigma(x y), \quad x, y \in A.$

Then Δ *is complex-linear or conjugate-linear and* $\overline{\Delta(\mathbf{1})}\Delta$ *is multiplicative.*

Fix $a \in A$; we define a map $f : \mathbb{C} \to \mathbb{C}$ by $f(\lambda) = \Delta(a + \lambda \cdot \mathbf{1}) - \Delta(a)$. For any $\lambda_1, \lambda_2 \in \mathbb{C}$,

 $\Delta(a + \lambda_1 \cdot \mathbf{1}) - \Delta(a + \lambda_2 \cdot \mathbf{1}) \in \mathbb{T}\sigma((\lambda_1 - \lambda_2) \cdot \mathbf{1}) = (\lambda_1 - \lambda_2)\mathbb{T}\sigma(\mathbf{1}) = (\lambda_1 - \lambda_2)\mathbb{T},$ by the assumption (b). Thus,

$$|f(\lambda_1) - f(\lambda_2)| = |\Delta(a + \lambda_1 \cdot \mathbf{1}) - \Delta(a) - (\Delta(a + \lambda_2 \cdot \mathbf{1}) - \Delta(a))|$$

= $|\Delta(a + \lambda_1 \cdot \mathbf{1}) - \Delta(a + \lambda_2 \cdot \mathbf{1})|$
= $|\lambda_1 - \lambda_2|.$

388

A Kowalski-Słodkowski theorem

This implies that the map f is an isometry on \mathbb{C} . The form of an isometry on \mathbb{C} is well known. Without assuming surjectivity on the isometry, there exist $\alpha, \beta \in \mathbb{C}$ with $|\alpha| = 1$ such that $f(\lambda) = \beta + \lambda \alpha$ ($\lambda \in \mathbb{C}$) or $f(\lambda) = \beta + \overline{\lambda} \alpha$ ($\lambda \in \mathbb{C}$). Since

$$f(0) = \Delta(a + 0 \cdot \mathbf{1}) - \Delta(a) = \Delta(a) - \Delta(a) = 0,$$

$$f(\lambda) = \lambda \alpha, \quad \lambda \in \mathbb{C},$$

or

 $f(\lambda) = \overline{\lambda} \alpha, \quad \lambda \in \mathbb{C}.$

In addition, we have $\alpha = f(1) = \Delta(a + 1) - \Delta(a)$ and we infer that

$$\Delta(a + \lambda \cdot \mathbf{1}) - \Delta(a) = \lambda(\Delta(a + \mathbf{1}) - \Delta(a)), \quad \lambda \in \mathbb{C},$$

or

$$\Delta(a + \lambda \cdot \mathbf{1}) - \Delta(a) = \lambda(\Delta(a + \mathbf{1}) - \Delta(a)), \quad \lambda \in \mathbb{C}$$

Let

$$A_1 = \{a \in A; \Delta(a + \lambda \cdot \mathbf{1}) - \Delta(a) = \lambda(\Delta(a + \mathbf{1}) - \Delta(a)), \ \lambda \in \mathbb{C}\}$$

and

$$A_{-1} = \{a \in A; \Delta(a + \lambda \cdot \mathbf{1}) - \Delta(a) = \lambda(\Delta(a + \mathbf{1}) - \Delta(a)), \ \lambda \in \mathbb{C}\}.$$

For any $a \in A$, the map $\lambda \mapsto \Delta(a + \lambda \cdot \mathbf{1}) - \Delta(a)$ is an isometry on \mathbb{C} , so we have $A = A_1 \cup A_{-1}$.

LEMMA 2.3. We have $A = A_1$ or $A = A_{-1}$.

PROOF. We have proved that $A = A_1 \cup A_{-1}$. We prove that A_1 and A_{-1} are closed subsets of *A*. Let $\{a_n\}$ be a sequence in A_1 converging to a point $a_0 \in A$. By assumption (b), we have $\Delta(a_n) - \Delta(a_0) \in \mathbb{T}\sigma(a_n - a_0)$. Hence, $|\Delta(a_n) - \Delta(a_0)| \le r(a_n - a_0)$ for the spectral radius $r(\cdot)$. Since $r(\cdot) \le || \cdot ||$ for the original norm $|| \cdot ||$ on *A*, we get that $\Delta(a_n) - \Delta(a_0) \to 0$ as $n \to \infty$. In the same way, we have $\Delta(a_0 + \lambda \cdot \mathbf{1}) - \Delta(a_n + \lambda \cdot \mathbf{1})$ converges to 0 for $\lambda \in \mathbb{C}$. Thus, for any $\lambda \in \mathbb{C}$,

$$\begin{split} |\Delta(a_0 + \lambda \cdot \mathbf{1}) - \Delta(a_0) - \lambda(\Delta(a_0 + \mathbf{1}) - \Delta(a_0))| \\ &= |\Delta(a_0 + \lambda \cdot \mathbf{1}) - \Delta(a_0) - (\Delta(a_n + \lambda \cdot \mathbf{1}) - \Delta(a_n)) \\ &+ \lambda(\Delta(a_n + \mathbf{1}) - \Delta(a_n)) - \lambda(\Delta(a_0 + \mathbf{1}) - \Delta(a_0))| \\ &\leq |\Delta(a_0 + \lambda \cdot \mathbf{1}) - \Delta(a_n + \lambda \cdot \mathbf{1})| + |\Delta(a_0) - \Delta(a_0)| \\ &+ |\lambda| |\Delta(a_n + \mathbf{1}) - \Delta(a_0 + \mathbf{1})| + |\lambda| |\Delta(a_n) - \Delta(a_0)| \\ &\to 0 \end{split}$$

as $n \to \infty$. This implies that $\Delta(a_0 + \lambda \cdot \mathbf{1}) - \Delta(a_0) = \lambda(\Delta(a_0 + \mathbf{1}) - \Delta(a_0))$ for any $\lambda \in \mathbb{C}$. Since $a_0 \in A_1$, we have that A_1 is closed. We can prove that A_{-1} is also closed in the same way. In addition, suppose that $a \in A_1 \cap A_{-1}$. Then, for any $\lambda \in \mathbb{C}$,

$$\lambda(\Delta(a+1) - \Delta(a)) = \Delta(a+\lambda \cdot 1) - \Delta(a) = \lambda(\Delta(a+1) - \Delta(a)).$$

This shows that $\Delta(a + 1) - \Delta(a) = 0$. On the other hand,

$$\Delta(a+1) - \Delta(a) \in \mathbb{T}\sigma(1) = \mathbb{T}.$$

We arrive at a contradiction. Therefore, $A_1 \cap A_{-1} = \emptyset$. Since A is connected, we conclude that $A_1 = A$ or $A_{-1} = A$.

PROOF OF THEOREM 2.2. Lemma 2.3 shows that one of $A = A_1$ and $A = A_{-1}$ occurs. We consider first the case in which $A = A_1$.

(i) Let us assume that A is separable. By the definition of A_1 , for any $a \in A_1$,

$$\Delta(a + \lambda \cdot \mathbf{1}) - \Delta(a) = \lambda(\Delta(a + \mathbf{1}) - \Delta(a)), \quad \lambda \in \mathbb{C}.$$
 (2-1)

By assumption (b),

$$|\Delta(a) - \Delta(b)| \le ||a - b||, \quad a, b \in A,$$

which implies that Δ is a Lipschitz map. Kowalski and Słodkowski [16, Theorem 2.3] (see also [17, Theorem 3.4]) showed that Δ has real differentials except for some zero set. We say that Δ has a real differential at a point of $a \in A$ if for every $x \in A$ the derivative $\Delta'_x(a) = \lim_{\mathbb{R} \ni r \to 0} (\Delta(a + rx) - \Delta(a))/r$ exists and the map $(D\Delta)_a : A \to \mathbb{C}$, defined by $(D\Delta)_a(x) = \Delta'_x(a)$, is real-linear and continuous (cf. [16–18]). Since

$$\frac{\Delta(a+rx) - \Delta(a)}{r} \in \frac{\mathbb{T}\sigma(rx)}{r} = \frac{r\mathbb{T}\sigma(x)}{r} = \mathbb{T}\sigma(x), \quad r \in \mathbb{R} \setminus \{0\},$$
$$(D\Delta)_a(x) = \lim_{\mathbb{R} \ni r \to 0} \frac{\Delta(a+rx) - \Delta(a)}{r} \in \mathbb{T}\sigma(x).$$

As $(D\Delta)_a$ is real-linear, [17, Lemma 3.3] implies that $(D\Delta)_a$ is complex-linear or conjugate-linear. Since $a \in A = A_1$, Δ satisfies (2-1) and thus

$$(D\Delta)_a(\mathbf{1}) = \lim_{r \to 0} \frac{\Delta(a+r\mathbf{1}) - \Delta(a)}{r} = \lim_{r \to 0} \frac{r(\Delta(a+\mathbf{1}) - \Delta(a))}{r}$$
$$= \Delta(a+\mathbf{1}) - \Delta(a) \in \mathbb{T}\sigma(\mathbf{1}) = \mathbb{T}$$

and

$$(D\Delta)_a(i\mathbf{1}) = \lim_{r \to 0} \frac{\Delta(a+ri\mathbf{1}) - \Delta(a)}{r} = \lim_{r \to 0} \frac{ri(\Delta(a+\mathbf{1}) - \Delta(a))}{r}$$
$$= i(\Delta(a+\mathbf{1}) - \Delta(a)).$$

It follows that $(D\Delta)_a(i\mathbf{1}) = i(D\Delta)_a(\mathbf{1})$ and $(D\Delta)_a(\mathbf{1}) \neq 0$. We conclude that $(D\Delta)_a$ is complex-linear. We have proved that if Δ has a real differential at a point $a \in A = A_1$, then $(D\Delta)_a$ is complex-linear. We conclude that Δ is holomorphic on A by applying [16, Lemma 2.4]. For $a, b \in A$, we define a map $f_{a,b} : \mathbb{C} \to \mathbb{C}$ by

$$f_{a,b}(\lambda) = \Delta(\lambda a + b) - \Delta(b)$$

Since Δ is holomorphic on A, $f_{a,b}$ is entire. Moreover, for any $\lambda \in \mathbb{C} \setminus \{0\}$,

$$\frac{f_{a,b}(\lambda)}{\lambda} = \frac{\Delta(\lambda a + b) - \Delta(b)}{\lambda} \in \frac{\mathbb{T}\sigma(\lambda a)}{\lambda} = \frac{\lambda \mathbb{T}\sigma(a)}{\lambda} = \mathbb{T}\sigma(a)$$

[5]

and

[6]

$$\left|\frac{f_{a,b}(\lambda)}{\lambda}\right| \le ||a||.$$

By Liouville's theorem, there exists $M \in \mathbb{C}$ such that $f_{a,b}(\lambda) = \lambda M$ for all $\lambda \in \mathbb{C}$. As $M = f_{a,b}(1) = \Delta(a+b) - \Delta(b)$,

$$\Delta(\lambda a + b) - \Delta(b) = \lambda(\Delta(a + b) - \Delta(b)), \quad \lambda \in \mathbb{C},$$

and

$$\Delta(\lambda a + b) = \lambda(\Delta(a + b) - \Delta(b)) + \Delta(b), \quad \lambda \in \mathbb{C}.$$
 (2-2)

Taking b = 0 in (2-2),

$$\Delta(\lambda a) = \lambda \Delta(a), \quad \lambda \in \mathbb{C}, \tag{2-3}$$

by the hypothesis (a). We have shown that Δ is 1-homogeneous. We can therefore apply Theorem 2.1 (see also [17, Proposition 3.2]) to conclude that Δ is complex-linear.

(ii) We consider the case in which A is not separable. If we fix $a \in A$ and consider the subalgebra generated by a and **1**, it follows from the above that $\Delta(\lambda a) = \lambda \Delta(a)$, that is, Δ is 1-homogeneous, and we finish by Theorem 2.1.

In addition, since $\Delta(a) = \Delta(a) - \Delta(0) \in \mathbb{T}\sigma(a)$, we apply [17, Proposition 2.2] to conclude that $\overline{\Delta(1)}\Delta$ is multiplicative.

Secondly, we assume that $A = A_{-1}$. We define the map $\overline{\Delta} : A \to \mathbb{C}$ by

$$\overline{\Delta}(a) = \overline{\Delta(a)}, \quad a \in A.$$

In the case in which $A = A_{-1}$, Δ satisfies, for any $a \in A$,

$$\Delta(a + \lambda \cdot \mathbf{1}) - \Delta(a) = \lambda(\Delta(a + \mathbf{1}) - \Delta(a)), \quad \lambda \in \mathbb{C}.$$

Thus,

$$\overline{\Delta}(a+\lambda\cdot\mathbf{1})-\overline{\Delta}(a)=\lambda(\overline{\Delta}(a+\mathbf{1})-\overline{\Delta}(a)),\quad\lambda\in\mathbb{C}.$$

Moreover, it is clear that $\overline{\Delta}(0) = \overline{\Delta(0)} = 0$. Therefore, the map $\overline{\Delta} : A \to \mathbb{C}$ satisfies the conditions for Δ in the case of $A = A_1$. This in turn implies that $\overline{\Delta}$ is complex-linear and $\overline{\overline{\Delta}(1)}\overline{\Delta}$ is multiplicative. Thus, we conclude that Δ is conjugate-linear and $\overline{\overline{\Delta}(1)}\Delta$ is multiplicative.

3. 2-local maps in GWC

In this section B_j is a unital semisimple commutative Banach algebra with maximal ideal space M_j for j = 1, 2. The Gelfand transform $\widehat{:} : B_j \to \widehat{B_j} \subset C(M_j)$ is a continuous isomorphism. Identifying B_j with $\widehat{B_j}$, we consider that B_j is a subalgebra of $C(M_j)$. We say that $f \in B_j$ is unimodular if |f| = 1 on M_j . Since M_j is a maximal ideal space and a unimodular element f of B_j has no zeros on M_j , $\overline{f} = 1/f \in B_j$.

391

An interesting generalization of the concept of 2-local maps is weak 2-locality. There are some papers dealing with weak 2-local maps, not only with 2-local maps (see, for example, [5, 17, 30, 31]). We define next *pointwise* 2-local maps.

DEFINITION 3.1. Let $S \subset M(B_1, B_2)$. We say that $T \in M(B_1, B_2)$ is pointwise 2-local in S if for every trio $f, g \in B_1$ and $x \in M_2$ there exists $T_{f,g,x} \in S$ such that

$$(T(f))(x) = (T_{f,g,x}(f))(x)$$
 and $(T(g))(x) = (T_{f,g,x}(g))(x)$.

Note that if a map *T* is 2-local, then *T* is weak 2-local. If *T* is weak 2-local, then *T* is pointwise 2-local. We say that $T \in M(B_1, B_2)$ is a pointwise 2-local isometry if *T* is pointwise 2-local in $Iso(B_1, B_2)$. Our interest is whether a pointwise 2-local isometry in $Iso(B_1, B_2)$ is in fact a surjective isometry from B_1 onto B_2 or not. Simple examples show that a pointwise 2-local isometry need not be a surjection or an isometry. We show three of them.

- A map on C[0, 1]. We denote the algebra of all complex-valued continuous functions on [0, 1] by C[0, 1]. The supremum norm ||·||_∞ makes it a Banach algebra. Let π : [0, 1] → [0, 1] be a continuous function such that π(0) = 0, π(1) = 1 and 0 < π(x) < 1 for x ∈ (0, 1). Put T(f) = f ∘ π, f ∈ C[0, 1]. It is easy to see that T is pointwise 2-local in Iso(C[0, 1], C[0, 1]) while it is not surjective when π is not a homeomorphism.
- A map on C¹[0, 1]. We denote the algebra of all continuously differentiable functions defined on the closed unit interval [0, 1] by C¹[0, 1]. With the norm || f||_Σ = || f||_∞ + || f'||_∞ for f ∈ C¹[0, 1], C¹[0, 1] is a unital semisimple commutative Banach algebra with maximal ideal space [0, 1]. Let T : C¹[0, 1] → C¹[0, 1] stand for T(f) = exp(i·)f, f ∈ C¹[0, 1]. By [33, Theorem 4.1], every surjective complex-linear isometry on C¹[0, 1] is of the form f(x) → e^{iθ}f(x) or f(x) → e^{iθ}f(1 − x) and, conversely, θ ∈ [−π, π], and therefore T is pointwise 2-local in Iso(C¹[0, 1], C¹[0, 1]). However, T is not an isometry since ||1||_Σ = 1 and ||T(1)||_Σ = 2.
- A map on the disk algebra A(D). The disk algebra A(D) on the closed unit disk D
 is the algebra of all continuous functions on D
 that are analytic on the open unit
 disk D. The disk algebra on D
 is a uniform algebra on D. It is well known that the
 maximal ideal space of A(D) is D. Let π₀(z) = z², z ∈ D. Then the map T : A(D) →
 A(D) is defined by T(f) = f ∘ π₀, f ∈ A(D). Trivially, T is not surjective and hence
 T ∉ Iso(A(D), A(D)). On the other hand, T is pointwise 2-local in Iso(A(D), A(D)).
 The reason is as follows. Let f, g ∈ A(D) and x ∈ D be arbitrary. If |x| = 1, then put
 φ_x(z) = xz. If |x| < 1, then it is well known that there is a Möbius transformation
 φ_x such that φ_x(x) = x² since both of x and x² are in D. Put T_{f,g,x}(h) = h ∘ φ_x,
 h ∈ A(D). We infer by a calculation that (T(f))(x) = (T_{f,g,x}(f))(x) and (T(g))(x) =
 (T_{f,g,x}(g))(x). Thus, T is pointwise 2-local in Iso(A(D), A(D)).

It is interesting to point out that a pointwise 2-local isometry is in fact a surjective isometry for some Banach algebras (see Subsections 4.4 and 4.5). A simple example is a pointwise 2-local isometry on the annulus algebra.

• Let 0 < r < 1 and $\Omega = \{z : r \le |z| \le 1\}$ be an annulus. Let $A(\Omega)$ be the algebra of all complex-valued continuous functions that are analytic on the interior of Ω . It is well known that $A(\Omega)$ is a uniform algebra on Ω whose maximal ideal space is homeomorphic to Ω . A pointwise 2-local map in $Iso(A(\Omega), A(\Omega))$ is a surjective isometry (cf. Corollary 4.14).

Recall that for an $\epsilon \in \{\pm 1\}$ and $f \in B_j$, $[f]^{\epsilon} = f$ if $\epsilon = 1$ and $[f]^{\epsilon} = \overline{f}$ if $\epsilon = -1$. Let

GWC = {
$$T \in M(B_1, B_2)$$
; there exist a $\beta \in B_2$,
an $\alpha \in B_2$ with $|\alpha| = 1$ on M_2 ,
a continuous map $\pi : M_2 \to M_1$
and a continuous map $\epsilon : M_2 \to \{\pm 1\}$
such that $T(f) = \beta + \alpha [f \circ \pi]^{\epsilon}$ for every $f \in B_1$ }.

Applying Theorem 2.2, we show that a pointwise 2-local map in GWC is also in GWC.

THEOREM 3.2. Suppose that $T \in M(B_1, B_2)$ is pointwise 2-local in GWC. Then there exist a continuous map $\pi : M_2 \to M_1$ and a continuous map $\epsilon : M_2 \to \{\pm 1\}$ such that

$$T(f) = T(0) + (T(1) - T(0))[f \circ \pi]^{\epsilon}, \quad f \in B_1,$$
(3-1)

where T(1) - T(0) is a unimodular element in B_2 . In particular, a pointwise 2-local map in GWC is an element in GWC.

PROOF. Put $T_0 = T - T(0)$. We infer that $T_0(0) = 0$. Since *T* is pointwise 2-local in GWC, it is obvious that T_0 is also pointwise 2-local in GWC. Let $x \in M_2$. There exist $\beta_{0,1,x}, \alpha_{0,1,x} \in B_2$ with $|\alpha_{0,1,x}| = 1$ on M_2 , a continuous map $\pi_{0,1,x} : M_2 \to M_1$ and a continuous map $\epsilon_{0,1,x} : M_2 \to \{\pm 1\}$ such that

$$T_0(\mathbf{1})(x) = \beta_{0,\mathbf{1},x}(x) + \alpha_{0,\mathbf{1},x}(x) [\mathbf{1} \circ \pi_{0,\mathbf{1},x}]^{\epsilon_0 \mathbf{1}_x(x)}(x) = \beta_{0,\mathbf{1},x}(x) + \alpha_{0,\mathbf{1},x}(x)$$

and

$$0 = T_0(0)(x) = \beta_{0,\mathbf{1},x}(x) + \alpha_{0,\mathbf{1},x}(x)[0 \circ \pi_{0,\mathbf{1},x}]^{\epsilon_{0,\mathbf{1},x}(x)}(x) = \beta_{0,\mathbf{1},x}(x).$$

It follows that $T_0(1)(x) = \alpha_{0,1,x}(x)$. As $x \in M_2$ is arbitrary,

$$|T_0(\mathbf{1})(x)| = 1, \quad x \in M_2. \tag{3-2}$$

Hence, $T_0(1)$ has no zeros on M_2 , so $\overline{T_0(1)} = T_0(1)^{-1} \in B_2$. We define $T_1 \in M(B_1, B_2)$ by

$$T_1 = \overline{T_0(1)}T_0. \tag{3-3}$$

We see that

$$T_1(0) = T_0(1)T_0(0) = 0, \quad T_1(1) = T_0(1)T_0(1) = 1,$$
 (3-4)

by (3-2). To proceed with the proof of Theorem 3.2, we need some claims.

[8]

Claim 1. There exist a map $\pi: M_2 \to M_1$ and a map $\epsilon: M_2 \to \{\pm 1\}$ such that

$$T_1(f) = [f \circ \pi]^{\epsilon}, \quad f \in B_1.$$

PROOF. Let $f, g \in \text{GWC}$ and $x \in M_2$. Since T_0 is pointwise 2-local in GWC, there exist $\beta_{f,g,x}, \alpha_{f,g,x} \in B_2$ with $|\alpha_{f,g,x}| = 1$ on M_2 , a continuous map $\pi_{f,g,x} : M_2 \to M_1$ and a continuous map $\epsilon_{f,g,x} : M_2 \to \{\pm 1\}$ such that

$$T_0(f)(x) = \beta_{f,g,x}(x) + \alpha_{f,g,x}(x) [f \circ \pi_{f,g,x}]^{\epsilon_{f,g,x}(x)}(x)$$

and

$$T_0(g)(x) = \beta_{f,g,x}(x) + \alpha_{f,g,x}(x) [g \circ \pi_{f,g,x}]^{\epsilon_{f,g,x}(x)}(x)$$

As $T_1 = \overline{T_0(\mathbf{1})}T_0$,

$$T_1(f)(x) = \overline{T_0(1)}(x)\beta_{f,g,x}(x) + \overline{T_0(1)}(x)\alpha_{f,g,x}(x)[f \circ \pi_{f,g,x}]^{\epsilon_{f,g,x}(x)}(x)$$

and

$$T_1(g)(x) = \overline{T_0(1)}(x)\beta_{f,g,x}(x) + \overline{T_0(1)}(x)\alpha_{f,g,x}(x)[g \circ \pi_{f,g,x}]^{\epsilon_{f,g,x}(x)}(x).$$

By (3-2), $\overline{T_0(1)}\alpha_{f,g,x}$ is a unimodular function and thus T_1 is pointwise 2-local in GWC by the definition of GWC. Fix $x \in M_2$. We define $\Delta_x : B_1 \to \mathbb{C}$ by

$$\Delta_x(f) = (T_1(f))(x), \quad f \in B_1.$$

As T_1 is pointwise 2-local in GWC, for any $f, g \in B_1$, there exists $T_{f,g,x} \in$ GWC such that

$$\Delta_x(f) = (T_1(f))(x)$$

= $T_{f,g,x}(f)(x) = \beta_{f,g,x}(x) + \alpha_{f,g,x}(x) [f \circ \pi_{f,g,x}]^{\epsilon_{f,g,x}(x)}(x)$

and

$$\begin{split} \Delta_x(g) &= (T_1(g))(x) \\ &= T_{f,g,x}(g)(x) = \beta_{f,g,x}(x) + \alpha_{f,g,x}(x) [g \circ \pi_{f,g,x}]^{\epsilon_{f,g,x}(x)}(x). \end{split}$$

We infer that

$$\Delta_x(f) - \Delta_x(g) = \alpha_{f,g,x}(x) [(f-g) \circ \pi_{f,g,x}]^{\epsilon_{f,g,x}(x)}(x).$$

If $x \in \epsilon_{f,\varrho,x}^{-1}(1)$,

$$[(f-g) \circ \pi_{f,g,x}]^{\epsilon_{f,g,x}(x)}(x) = (f-g)(\pi_{f,g,x}(x)) \in \sigma(f-g).$$

If $x \in \epsilon_{f,g,x}^{-1}(-1)$,

$$[(f-g)\circ\pi_{f,g,x}]^{\epsilon_{f,g,x}(x)}(x)=\overline{(f-g)(\pi_{f,g,x}(x))}\in\mathbb{T}\sigma(f-g).$$

Therefore,

$$\Delta_x(f) - \Delta_x(g) \in \mathbb{T}\sigma(f-g), \quad f,g \in B_1.$$

By (3-4), we have $\Delta_x(0) = T_1(0)(x) = 0$. Applying Theorem 2.2, we obtain that Δ_x is complex-linear or conjugate-linear and $\Delta_x(1)\Delta_x$ is multiplicative. As $\overline{\Delta_x(1)} = T_1(1)(x) = 1$ by (3-4), we conclude that Δ_x is multiplicative. In addition, $\Delta_x(1) = 1$ implies that $\Delta_x \neq 0$. Therefore, for any $x \in M_2$, one of the following (i) and (ii) occurs:

- (i) Δ_x is a nonzero multiplicative complex-linear functional;
- (ii) Δ_x is a nonzero multiplicative conjugate-linear functional.

In the case (i), by Gelfand theory, there exists $\pi(x) \in M_1$ such that

$$\Delta_x(f) = f(\pi(x)), \quad f \in B_1.$$

In the case (ii), $\overline{\Delta_x}$ is a nonzero multiplicative complex-linear functional. Thus, there exists $\pi(x) \in M_1$ such that

$$\Delta_x(f) = f(\pi(x)), \quad f \in B_1,$$

and hence

$$\Delta_x(f) = \overline{f(\pi(x))}, \quad f \in B_1.$$

Recalling that $\Delta_x(f) = (T_1(f))(x)$,

$$T_1(f)(x) = \begin{cases} f \circ \pi(x) & (\Delta_x \text{ is complex-linear}), \\ \overline{f \circ \pi}(x) & (\Delta_x \text{ is conjugate-linear}). \end{cases}$$

We define a map $\epsilon : M_2 \to \{\pm 1\}$ by

$$\epsilon(x) = \begin{cases} 1 & (\Delta_x \text{ is complex-linear}), \\ -1 & (\Delta_x \text{ is conjugate-linear}). \end{cases}$$
(3-5)

Then

$$T_1(f)(x) = [f \circ \pi]^{\epsilon(x)}(x), \quad f \in B_1, \ x \in M_2$$

Let

$$K_1 = \{x \in M_2; \Delta_x \text{ is complex-linear}\}$$

and

$$K_{-1} = \{x \in M_2; \Delta_x \text{ is conjugate-linear}\}$$

Rewriting (3-5),

$$\epsilon(x) = \begin{cases} 1 & (x \in K_1), \\ -1 & (x \in K_{-1}). \end{cases}$$

Claim 2. We have $K_1 = \{x \in M_2; \Delta_x(i) = i\}$ and $K_{-1} = \{x \in M_2; \Delta_x(i) = -i\}$. In addition, $M_2 = K_1 \cup K_{-1}, K_1 \cap K_{-1} = \emptyset$ and K_1 and K_{-1} are closed subsets of M_2 .

PROOF. Since, for any $x \in M_2$, Δ_x is complex-linear or conjugate-linear, it is clear that $M_2 = K_1 \cup K_{-1}$. By the definition of K_1 and $\Delta_x(1) = 1$, if $x \in K_1$, then we have $x \in \{y \in M_2; \Delta_y(i) = i\}$. Suppose that $x \in \{y \in M_2; \Delta_y(i) = i\}$. Then $\Delta_x(i) = i\Delta_x(1)$. This implies that $x \in K_1$. We conclude that $K_1 = \{x \in M_2; \Delta_x(i) = i\}$. We can also prove that $K_{-1} = \{x \in M_2; \Delta_x(i) = -i\}$ with a similar argument. Therefore, it is easy to see that $K_1 \cap K_{-1} = \emptyset$. Let $\{x_\alpha\} \subset K_1$ be a net with $x_\alpha \to x_0 \in M_2$. We get

$$i = \Delta_{x_{\alpha}}(i) = (T_1(i))(x_{\alpha}) \rightarrow (T_1(i))(x_0) = \Delta_{x_0}(i).$$

This implies that $\Delta_{x_0}(i) = i$ and $x_0 \in K_1$. We have that K_1 is closed in M_2 . We also get that K_{-1} is closed in the same way.

Claim 2 shows that $\epsilon : M_2 \rightarrow \{\pm 1\}$ is continuous.

Claim 3. The mapping $\pi : M_2 \to M_1$ is continuous.

PROOF. Let $\{x_{\alpha}\} \subset M_2$ be a net with $x_{\alpha} \to x_0 \in M_2$. By Claim 2, K_1 and K_{-1} are closed and $K_1 \cap K_{-1} = \emptyset$. Thus, there is no loss of generality to assume that:

(i) $\{x_{\alpha}\} \subset K_1 \text{ and } x_0 \in K_1;$

(ii) $\{x_{\alpha}\} \subset K_{-1} \text{ and } x_0 \in K_{-1}.$

First, we consider the case (i). Then

$$T_1(f)(x_\alpha) \to T_1(f)(x_0), \quad f \in B_1,$$

and hence

$$(f \circ \pi)(x_{\alpha}) \to (f \circ \pi)(x_0), \quad f \in B_1.$$

This implies that $\pi(x_{\alpha}) \to \pi(x_0)$ with the Gelfand topology. In case (ii) a similar argument gives that π is continuous and therefore we finish the proof.

CONTINUATION OF PROOF OF THEOREM 3.2. By (3-3), we get $T_0 = T_0(1)T_1$. By applying $T_0 = T - T(0)$ and Claim 1,

$$T(f) = T_0(f) + T(0)$$

= $T_0(1)T_1(f) + T(0)$
= $T_0(1)[f \circ \pi]^{\epsilon} + T(0), \quad f \in B_1.$

Putting f = 1, we have $T_0(1) = T(1) - T(0)$ and

$$T(f) = (T(1) - T(0))[f \circ \pi]^{\epsilon} + T(0).$$

In addition, by (3-2), we have $|T_0(1)| = 1$. We obtain that $T_0(1) = T(1) - T(0)$ is a unimodular element in B_2 .

REMARK. Even though a map $T \in M(B_1, B_2)$ is a 2-local map in GWC, it is not always the case that $\pi : M_2 \to M_1$ is a homeomorphism. In fact, the map T_0 in [9, Theorem 2.3] is a 2-local automorphism and hence 2-local in $Iso_{\mathbb{C}}(C(\bar{\mathcal{K}}), C(\bar{\mathcal{K}}))$.

On the other hand, the corresponding continuous map is not injective and hence it is not a homeomorphism.

COROLLARY 3.3. Suppose that $T \in M(B_1, B_2)$ is pointwise 2-local in GWC and T is injective. Then $\pi(M_2)$ is a uniqueness set for B_1 , that is, if $g \in B_1$ and g = 0 on $\pi(M_2)$, then g = 0.

PROOF. Suppose that $g \in B_1$ and g = 0 on $\pi(M_2)$. Substituting g in (3-1),

$$T(g) = T(0) + (T(1) - T(0))[g \circ \pi]^{\epsilon} = T(0) + (T(1) - T(0))[0]^{\epsilon} = T(0).$$

Since T is injective, we have that g = 0. Hence, $\pi(M_2)$ is a uniqueness set for B_1 . \Box

Let

WC_{\mathbb{C}} = { $T \in M(B_1, B_2)$; there exist

an $\alpha \in B_2$ with $|\alpha| = 1$ on M_2

and a continuous map $\pi: M_2 \to M_1$

such that
$$T(f) = \alpha f \circ \pi$$
 for every $f \in B_1$.

Then $WC_{\mathbb{C}}$ is a set of weighted composition operators. We see that a pointwise 2-local weighted composition operator is a weighted composition operator.

COROLLARY 3.4. Suppose that $T \in M(B_1, B_2)$ is pointwise 2-local in WC_C. Then $T \in WC_C$.

PROOF. Let $T \in M(B_1, B_2)$ be pointwise 2-local in WC_C. Since WC_C \subset GWC, we see by Theorem 3.2 that there exist a continuous map $\pi : M_2 \to M_1$ and a continuous map $\epsilon : M_2 \to \{\pm 1\}$ such that

$$T(f) = T(0) + (T(1) - T(0))[f \circ \pi]^{\epsilon}, \quad f \in B_1,$$
(3-6)

where T(1) - T(0) is a unimodular element in B_2 . Since any map in WC_C is complex-linear, we infer by a simple calculation that T(0) = 0 and T is homogeneous with respect to a complex scalar. We see by (3-6) that

$$T(f) = T(\mathbf{1})f \circ \pi, \quad f \in B_1,$$

where T(1) is a unimodular function. Thus, $T \in WC_{\mathbb{C}}$.

4. Applications

In this section we study 2-local isometries on several function spaces by applying Theorem 3.2.

4.1. Uniform algebras. Let X be a compact Hausdorff space. The algebra of all complex-valued continuous functions on X is denoted by C(X), which is a Banach algebra with respect to the supremum norm $\|\cdot\|_{\infty}$ on X. We say that A is a uniform algebra on X if A is a uniformly closed subalgebra of C(X) that contains constant

functions and separates the points of X. As the Gelfand transformation on a uniform algebra is an isometric isomorphism, a uniform algebra is isometrically isomorphic to its Gelfand transform. We may suppose that X is a subset of the maximal ideal space M_A and A is a uniform algebra on M_A . The Banach algebra C(X) is a uniform algebra on X whose maximal ideal space is X. The next result is obtained in [8, Theorem 2.1 and Corollary 3.4]. Note that we denote the maximal ideal space of a uniform algebra A_j by M_j for j = 1, 2.

THEOREM 4.1. Let A_j be a uniform algebra on a compact Hausdorff space X_j for j = 1, 2. Suppose that $U : A_1 \to A_2$ is a surjective isometry from A_1 onto A_2 . Then there exist a homeomorphism $\pi : M_2 \to M_1$, an $\alpha \in A_2$ with $|\alpha| = 1$ on M_2 and a continuous map $\epsilon : M_2 \to \{\pm 1\}$ such that

$$U(f) = U(0) + \alpha [f \circ \pi]^{\epsilon}, \quad f \in A_1.$$

$$(4-1)$$

If $A_j = C(X_j)$, the map U defined by (4-1) is a surjective isometry from $C(X_1)$ onto $C(X_2)$.

By Theorem 4.1,

$Iso(A_1, A_2) \subset GWC$

for uniform algebras A_1 and A_2 . As a direct consequence of Theorem 3.2, we get Corollary 4.2, which is a generalization of Theorem 3.10 of [17].

COROLLARY 4.2. Let A_j be a uniform algebra on a compact Hausdorff space X_j for j = 1, 2. Suppose that $T \in M(A_1, A_2)$ is pointwise 2-local in $Iso(A_1, A_2)$. Then there exist a continuous map $\pi : M_2 \to M_1$ and a continuous map $\epsilon : M_2 \to \{\pm 1\}$ such that

$$T(f) = T(0) + (T(1) - T(0))[f \circ \pi]^{\epsilon}, f \in A_1,$$

where T(1) - T(0) is a unimodular function.

We also obtain the following corollary.

COROLLARY 4.3. Let X_j be a first countable compact Hausdorff space for j = 1, 2. Suppose that $T \in M(C(X_1), C(X_2))$ is 2-local in $Iso(C(X_1), C(X_2))$. Then we have $T \in Iso(C(X_1), C(X_2))$.

PROOF. Let *T* be 2-local in $Iso(C(X_1), C(X_2))$. By Corollary 4.2, there exist a continuous map $\pi : X_2 \to X_1$ and a continuous map $\epsilon : X_2 \to \{\pm 1\}$ such that

$$T(f) = T(0) + (T(1) - T(0))[f \circ \pi]^{\epsilon}, \quad f \in C(X_1).$$
(4-2)

We prove that π is an injection. Suppose that $y_1, y_2 \in X_2$ are such that $\pi(y_1) = \pi(y_2) = x \in X_1$. Since X_1 is first countable, there exists $g \in C(X_1)$ such that $g^{-1}(0) = \{x\}$. (For example, in [23, Page 117, line 19–21], we see the existence of such a function g.) Since, for $T_0 = T - T(0)$, $T_1 = \overline{T_0(1)}T_0$ is 2-local in Iso($C(X_1), C(X_2)$),

$$\begin{aligned} 0 &= T_1(0) = T_{0,g}(0) \\ &= \beta_{0,g} + \alpha_{0,g} [0 \circ \pi_{0,g}]^{\epsilon_{0,g}} = \beta_{0,g} \end{aligned}$$

A Kowalski-Słodkowski theorem

and

$$T_1(g) = T_{0,g}(g) = \beta_{0,g} + \alpha_{0,g} [g \circ \pi_{0,g}]^{\epsilon_{0,g}}.$$

Hence,

$$T_1(g) = \alpha_{0,g} [g \circ \pi_{0,g}]^{\epsilon_{0,g}}$$

and thus

$$(T_1(g))^{-1}(0) = (g \circ \pi_{0,g})^{-1}(0) = \pi_{0,g}^{-1}(x)$$

Since $\pi_{0,g}$ is homeomorphism, the set $\pi_{0,g}^{-1}(x)$ is a singleton. Moreover, applying (4-2),

 $T_1(g) = [g \circ \pi]^{\epsilon}.$

Thus,

$$(T_1(g))^{-1}(0) = (g \circ \pi)^{-1}(0) = \pi^{-1}(x) \ni \{y_1, y_2\}$$

As we have already proved that the set $(T_1(g))^{-1}(0) = \pi_{0,g}^{-1}(x)$ is a singleton, we infer that $y_1 = y_2$. Thus, π is injective. Since *T* is a 2-local isometry, *T* is an isometry by definition of 2-local isometries. Hence, *T* is injective. By Corollary 3.3, $\pi(X_2)$ is a uniqueness set for $C(X_1)$, which must coincide with X_1 itself. Since a one-to-one continuous mapping of a compact space onto a Hausdorff space is a homeomorphism, we infer that π is a homeomorphism. It follows that $T \in \text{Iso}(C(X_1), C(X_2))$

Corollary 4.3 gives an affirmative answer to the problem mentioned by Molnár. Mori proved the same statement in [29, Theorem 4.6] by a different argument.

Next we consider the disk algebra. Let $\overline{\mathbb{D}}$ be the closed unit disk.

COROLLARY 4.4. Suppose that U is a surjective isometry from the disk algebra $A(\overline{\mathbb{D}})$ onto itself. Then there exist a Möbius transformation φ on $\overline{\mathbb{D}}$ and a unimodular constant α such that

$$U(f) = U(0) + \alpha f \circ \varphi, \quad f \in A(\bar{\mathbb{D}}),$$

or

$$U(f) = U(0) + \alpha \overline{f \circ \overline{\varphi}}, \quad f \in A(\overline{\mathbb{D}}).$$

Conversely, if one of the above equations holds, then U is a surjective isometry from the disk algebra onto itself.

PROOF. Applying Theorem 4.1, we have a homeomorphism $\pi : \overline{\mathbb{D}} \to \overline{\mathbb{D}}$, a unimodular function $\alpha \in A(\overline{\mathbb{D}})$ and a continuous map $\epsilon : \overline{\mathbb{D}} \to \{\pm 1\}$ such that

$$U(f) = U(0) + \alpha [f \circ \pi]^{\epsilon}, \quad f \in A(\bar{\mathbb{D}}).$$
(4-3)

Due to the maximum modulus principle for analytic functions, α is a unimodular constant. Since $\overline{\mathbb{D}}$ is connected, $\epsilon = 1$ on $\overline{\mathbb{D}}$ or $\epsilon = -1$ on $\overline{\mathbb{D}}$. Letting f = Id, the identity

399

[14]

function, in (4-3),

$$\bar{\alpha}(U(\mathrm{Id}) - U(0)) = \pi \quad \text{if } \epsilon = 1, \tag{4-4}$$

$$\bar{\alpha}(U(\mathrm{Id}) - U(0)) = \bar{\pi} \quad \text{if } \epsilon = -1. \tag{4-5}$$

Suppose that $\epsilon = 1$. Then π is analytic on \mathbb{D} by (4-4). As π is a homeomorphism, we conclude that π is a Möbius transformation. In the same way, $\bar{\pi}$ is a Möbius transformation if $\epsilon = -1$. Letting $\varphi = \pi$ if $\epsilon = 1$, and $\varphi = \bar{\pi}$ if $\epsilon = -1$, φ is a Möbius transformation. It follows that

$$U(f) = U(0) + \alpha f \circ \varphi, \quad f \in A(\overline{\mathbb{D}})$$

if $\epsilon = 1$ and

$$U(f) = U(0) + \alpha \overline{f \circ \bar{\varphi}}, \quad f \in A(\bar{\mathbb{D}})$$

if $\epsilon = -1$.

The converse statement is trivial.

By Corollary 4.4,

$$\operatorname{Iso}(A(\bar{\mathbb{D}}), A(\bar{\mathbb{D}})) \subset \operatorname{GWC}$$

for the disk algebra $A(\overline{\mathbb{D}})$.

COROLLARY 4.5. Suppose that $T \in M(A(\overline{\mathbb{D}}), A(\overline{\mathbb{D}}))$ is 2-local in $Iso(A(\overline{\mathbb{D}}), A(\overline{\mathbb{D}}))$. Then $T \in Iso(A(\overline{\mathbb{D}}), A(\overline{\mathbb{D}}))$.

PROOF. Corollary 4.2 asserts that there exist a continuous map $\pi : \overline{\mathbb{D}} \to \overline{\mathbb{D}}$ and a continuous map $\epsilon : \overline{\mathbb{D}} \to \{\pm 1\}$ such that

$$T(f) = T(0) + (T(1) - T(0))[f \circ \pi]^{\epsilon}, \quad f \in A(\bar{\mathbb{D}}),$$
(4-6)

where T(1) - T(0) is a unimodular function. By the same way as in the proof of Corollary 4.4, we see that T(1) - T(0) is a unimodular constant. We also see that $\epsilon = 1$ on $\overline{\mathbb{D}}$ or $\epsilon = -1$ on $\overline{\mathbb{D}}$ because $\overline{\mathbb{D}}$ is connected and ϵ is continuous. Letting f = Id in (4-6), we have that π is analytic on \mathbb{D} if $\epsilon = 1$, and $\overline{\pi}$ is analytic on \mathbb{D} if $\epsilon = -1$. Put $\varphi = \pi$ if $\epsilon = 1$, $\varphi = \overline{\pi}$ if $\epsilon = -1$ and $T_1 = \overline{T(1) - T(0)}(T - T(0))$. Then

$$T_1(f) = f \circ \varphi, \quad f \in A(\bar{\mathbb{D}})$$

if $\epsilon = 1$ and

$$T_1(f) = \overline{f \circ \bar{\varphi}}, \quad f \in A(\bar{\mathbb{D}})$$

if $\epsilon = -1$. Since T_1 is 2-local in Iso $(A(\overline{\mathbb{D}}), A(\overline{\mathbb{D}}))$, we apply Corollary 4.4 and thus there exist a Möbius transform φ_0 , $u \in A(\overline{\mathbb{D}})$ and a unimodular constant α such that

$$\varphi = T_1(Id) = u + \alpha \varphi_0$$
 and $0 = T_1(0) = u$.

It follows that $\varphi = \alpha \varphi_0$. As $|\alpha| = 1$, we infer that φ is a Möbius transformation on $\overline{\mathbb{D}}$. We infer by Corollary 4.4 that $T \in \text{Iso}(A(\overline{\mathbb{D}}), A(\overline{\mathbb{D}}))$.

400

[15]

4.2. Lipschitz algebras. Let (X_j, d) be a compact metric space for j = 1, 2. Let

$$\operatorname{Lip}(X_j) = \left\{ f \in C(X_j) : L(f) = \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)} < \infty \right\}$$

We say that L(f) is the Lipschitz constant for f. With the norm $||f||_{\Sigma} = ||f||_{\infty} + L(f)$ for $f \in \text{Lip}(X_j)$, the algebra $\text{Lip}(X_j)$ is a unital semisimple commutative Banach algebra. In addition, the maximal ideal space of $\text{Lip}(X_j)$ can be identified with X_j .

COROLLARY 4.6. Let $\|\cdot\|_j$ be any norm on $\operatorname{Lip}(X_j)$. We do not assume that $\|\cdot\|_j$ is complete. Suppose that

$$Iso((Lip(X_1), \|\cdot\|_1), (Lip(X_2), \|\cdot\|_2)) = \{T \in M(Lip(X_1), Lip(X_2));$$

there exist $\beta \in Lip(X_2), \alpha \in \mathbb{T},$
a surjective isometry $\pi : X_2 \to X_1$ and $\epsilon = \pm 1$
such that $T(f) = \beta + \alpha [f \circ \pi]^{\epsilon}$ for every $f \in Lip(X_1)\}.$ (4-7)

Let $T \in M((\text{Lip}(X_1), \|\cdot\|_1), (\text{Lip}(X_2), \|\cdot\|_2))$ be 2-local in $\text{Iso}((\text{Lip}(X_1), \|\cdot\|_1), (\text{Lip}(X_2), \|\cdot\|_2))$. (Lip $(X_2), \|\cdot\|_2)$). Then $T \in \text{Iso}((\text{Lip}(X_1), \|\cdot\|_1), (\text{Lip}(X_2), \|\cdot\|_2))$.

PROOF. Suppose that *T* is 2-local in $\text{Iso}((\text{Lip}(X_1), \|\cdot\|_1), (\text{Lip}(X_2), \|\cdot\|_2))$. The equality (4-7) implies that $\text{Iso}((\text{Lip}(X_1), \|\cdot\|_1), (\text{Lip}(X_2), \|\cdot\|_2)) \subset \text{GWC}$. Applying Theorem 3.2, there exist a continuous map $\pi : X_2 \to X_1$ and a continuous map $\epsilon : X_2 \to \{\pm 1\}$ such that

$$T(f) = T(0) + (T(1) - T(0))[f \circ \pi]^{\epsilon}, \quad f \in \operatorname{Lip}(X_1).$$
(4-8)

Recall that $T_1 = \overline{T_0(1)}T_0$ for $T_0 = T - T(0)$. Since T_0 is 2-local,

$$T_0(\mathbf{1}) = \beta_{0,\mathbf{1}} + \alpha_{0,\mathbf{1}} [\mathbf{1} \circ \pi_{0,\mathbf{1}}]^{c_0,\mathbf{1}}$$

and

$$0 = T_0(0) = \beta_{0,1} + \alpha_{0,1} [0 \circ \pi_{0,1}]^{\epsilon_{0,1}} = \beta_{0,1}$$

It follows that $T(1) - T(0) = T_0(1)$ is a unimodular constant. Thus, $T_1 = \overline{T_0(1)}T_0$ is 2-local in Iso((Lip(X_1), $\|\cdot\|_1$), (Lip(X_2), $\|\cdot\|_2$)). We get

$$0 = T_1(0) = T_{0,i}(0)$$

= $\beta_{0,i} + \alpha_{0,i} [0 \circ \pi_{0,i}]^{\epsilon_{0,i}} = \beta_{0,i}$

and

$$T_{1}(i) = T_{0,i}(i)$$

= $\beta_{0,i} + \alpha_{0,i} [i \circ \pi_{0,i}]^{\epsilon_{0,i}}$

Therefore,

$$T_1(i) = \alpha_{0,i} [i \circ \pi_{0,i}]^{\epsilon_{0,i}}.$$

Since $\alpha_{0,i}$ is a unimodular constant and $\epsilon_{0,i} = \pm 1$, we obtain that $T_1(i)$ is a constant. Moreover, applying (4-8),

$$T_1(i) = [i \circ \pi]^{\epsilon}.$$

Thus, we conclude that $\epsilon = 1$ or $\epsilon = -1$. As *T* is a 2-local isometry, *T* is an isometry and hence *T* is injective. Corollary 3.3 asserts that $\pi(X_2)$ is a uniqueness set for Lip(X_1). Thus, we have $\pi(X_2) = X_1$. This implies that π is surjective. Finally, we shall prove that π is an isometry. Let $x_0 \in X_2$. We define a Lipschitz function *g* on X_1 by

$$g(x) = d(x, \pi(x_0)), \quad x \in X_1.$$

As T_1 is 2-local in Iso((Lip(X_1), $\|\cdot\|_1$), (Lip(X_2), $\|\cdot\|_2$)), there exists $\alpha_{0,g} \in \mathbb{T}$ and $\pi_{0,g}$: $X_2 \to X_1$ is a surjective isometry such that

$$0 = T_1(0) = T_{0,g}(0)$$

= $\beta_{0,g} + \alpha_{0,g} [0 \circ \pi_{0,g}]^{\epsilon_{0,g}} = \beta_{0,g}$

and

$$\begin{split} T_1(g) &= T_{0,g}(g) \\ &= \beta_{0,g} + \alpha_{0,g} [g \circ \pi_{0,g}]^{\epsilon_{0,g}} = \beta_{0,g} + \alpha_{0,g} g \circ \pi_{0,g} \end{split}$$

because g is a real-valued function. It follows that

$$(T_1(g))(z) = \alpha_{0,g}g(\pi_{0,g}(z)), \quad z \in X_2.$$

By (4-8), for any $z \in X_2$,

$$d(\pi(z), \pi(x_0)) = [g(\pi(z))]^{\epsilon}$$

= $(T_1(g))(z) = \alpha_{0,g}g(\pi_{0,g}(z)) = \alpha_{0,g}d(\pi_{0,g}(z), \pi(x_0)).$ (4-9)

We may suppose that X_1 is not a singleton. (Otherwise, X_2 is a singleton since $\pi_{0,g}$ is a surjective isometry. Then π is automatically a surjective isometry.) Hence, there exists $z_0 \in X_2$ such that $d(\pi_{0,g}(z_0), \pi(x_0)) \neq 0$. By (4-9) with $z = z_0$,

$$\alpha_{0,g} = \frac{d(\pi(z_0), \pi(x_0))}{d(\pi_{0,g}(z_0), \pi(x_0))} \ge 0$$

and we obtain $\alpha_{0,g} = 1$. Hence, by (4-9),

$$d(\pi(z), \pi(x_0)) = d(\pi_{0,g}(z), \pi(x_0)), \quad z \in X_2.$$
(4-10)

Putting $z = x_0$ in (4-10),

$$0 = d(\pi(x_0), \pi(x_0)) = d(\pi_{0,g}(x_0), \pi(x_0)).$$

It follows $\pi_{0,g}(x_0) = \pi(x_0)$. By (4-10),

$$d(\pi(z), \pi(x_0)) = d(\pi_{0,g}(z), \pi(x_0)) = d(\pi_{0,g}(z), \pi_{0,g}(x_0)) = d(z, x_0)$$

since $\pi_{0,g}$ is an isometry. As *z* and x_0 are arbitrary, we conclude that π is an isometry. This completes the proof.

[18]

For an arbitrary compact metric space X_j for j = 1, 2, Hatori and the author [10, Theorem 6] showed that $Iso((Lip(X_1), ||\cdot||_{\Sigma}), (Lip(X_2), ||\cdot||_{\Sigma}))$ fulfills the condition of Corollary 4.6. Thus, we have the following corollary.

COROLLARY 4.7. Let $T \in M(\operatorname{Lip}(X_1), \operatorname{Lip}(X_2))$ be 2-local in $\operatorname{Iso}((\operatorname{Lip}(X_1), \|\cdot\|_{\Sigma}), (\operatorname{Lip}(X_2), \|\cdot\|_{\Sigma}))$.

Corollary 4.7 generalizes Theorem 8 in [10], where the case $X_1 = X_2 = [0, 1]$ is proved.

4.3. The algebra of continuously differentiable functions. We denote the algebra of all continuously differentiable functions by $C^1([0, 1])$. It is a unital semisimple commutative Banach algebra with the norm $\|\cdot\|_{\Sigma}$ defined by

$$||f||_{\Sigma} = ||f||_{\infty} + ||f'||_{\infty}, \quad f \in C^{1}([0,1]).$$

The maximal ideal space of $C^{1}([0, 1])$ is homeomorphic to [0, 1]. We have the following corollary.

COROLLARY 4.8. Let $\|\cdot\|_j$ be any norm on $C^1([0, 1])$ for j = 1, 2. We do not assume that $\|\cdot\|_j$ is complete. Suppose that

$$Iso((C^{1}([0, 1]), \|\cdot\|_{1}), (C^{1}([0, 1]), \|\cdot\|_{2})) = \{T \in M(C^{1}([0, 1]), C^{1}([0, 1]));$$

there exist $\beta \in C^{1}([0, 1]), \alpha \in \mathbb{T},$
 $\pi = Id \text{ or } \pi = 1 - Id \text{ and } \epsilon = \pm 1$
such that $T(f) = \beta + \alpha [f \circ \pi]^{\epsilon}$ for every $f \in C^{1}([0, 1])\}.$ (4-11)

Suppose that $T \in M(C^1([0,1]), C^1([0,1]))$ is 2-local in $\text{Iso}((C^1([0,1]), \|\cdot\|_1), (C^1([0,1]), \|\cdot\|_2))$. $(C^1([0,1]), \|\cdot\|_2))$. Then $T \in \text{Iso}((C^1([0,1]), \|\cdot\|_1), (C^1([0,1]), \|\cdot\|_2))$.

PROOF. Let *T* be 2-local in $Iso((C^1([0, 1]), \|\cdot\|_1), (C^1([0, 1]), \|\cdot\|_2))$. By (4-11), $Iso((C^1([0, 1]), \|\cdot\|_1), (C^1([0, 1]), \|\cdot\|_2)) \subset GWC$. Theorem 3.2 asserts that there exist a continuous map $\pi : [0, 1] \to [0, 1]$ and a continuous map $\epsilon : [0, 1] \to {\pm 1}$ such that

$$T(f) = T(0) + (T(1) - T(0))[f \circ \pi]^{\epsilon}, \quad f \in C^{1}([0, 1]).$$
(4-12)

Since $\epsilon : [0, 1] \rightarrow \{\pm 1\}$ is continuous and [0, 1] is connected, we conclude that $\epsilon = \pm 1$. As *T* is a 2-local isometry, we get that *T* is an isometry. This implies that *T* is injective. Corollary 3.3 asserts that $\pi([0, 1])$ is a uniqueness set for $C^1([0, 1])$, which is [0, 1]. Thus, we have that π is surjective. To complete the proof, we prove that π is an isometry. Let $x_0 \in [0, 1]$. We define the function $g(x) = x - \pi(x_0) \in C^1([0, 1])$. Define $T_1 = \overline{T_0(1)}T_0$ for $T_0 = T - T(0)$. It is easy to see that T_0 is 2-local in $Iso((C^1([0, 1]), \|\cdot\|_1), (C^1([0, 1]), \|\cdot\|_2))$:

$$T_0(\mathbf{1}) = \beta_{0,\mathbf{1}} + \alpha_{0,\mathbf{1}} [\mathbf{1} \circ \pi_{0,\mathbf{1}}]^{\epsilon_{0,\mathbf{1}}}$$

and

$$0 = T_0(0) = \beta_{0,1} + \alpha_{0,1} [0 \circ \pi_{0,1}]^{\epsilon_{0,1}} = \beta_{0,1}.$$

It follows that $T(1) - T(0) = T_0(1)$ is a unimodular constant. We have that $T_1 = \overline{T_0(1)}T_0$ is 2-local in Iso($(C^1([0, 1]), \|\cdot\|_1), (C^1([0, 1]), \|\cdot\|_2)$). Hence,

$$0 = T_1(0) = T_{0,g}(0)$$

= $\beta_{0,g} + \alpha_{0,g} [0 \circ \pi_{0,g}]^{\epsilon_{0,g}} = \beta_{0,g}$

and

$$\begin{split} T_1(g) &= T_{0,g}(g) \\ &= \beta_{0,g} + \alpha_{0,g} [g \circ \pi_{0,g}]^{\epsilon_{0,g}} \end{split}$$

It follows that

$$(T_1(g))(z) = \alpha_{0,g}[g \circ \pi_{0,g}]^{\epsilon_{0,g}}(z) = \alpha_{0,g}[g(\pi_{0,g}(z))]^{\epsilon_{0,g}}, \quad z \in [0,1].$$

Thus, by (4-12),

$$\begin{aligned} [\pi(z) - \pi(x_0)]^{\epsilon} &= [g(\pi(z))]^{\epsilon} = (T_1(g))(z) \\ &= \alpha_{0,g}[g(\pi_{0,g}(z))]^{\epsilon_{0,g}} = \alpha_{0,g}[\pi_{0,g}(z) - \pi(x_0)]^{\epsilon_{0,g}} \end{aligned}$$

for any $z \in [0, 1]$, where $\alpha_{0,g} \in \mathbb{T}$ and $\pi_{0,g} = \text{Id or } \pi_{0,g} = 1 - \text{Id. Putting } z = x_0$,

$$0 = [\pi(x_0) - \pi(x_0)]^{\epsilon} = \alpha_{0,g} [\pi_{0,g}(x_0) - \pi(x_0)]^{\epsilon_{0,g}}.$$

It follows that $\pi_{0,g}(x_0) = \pi(x_0)$. Thus,

$$[\pi(z) - \pi(x_0)]^{\epsilon} = \alpha_{0,g} [\pi_{0,g}(z) - \pi(x_0)]^{\epsilon_{0,g}} = \alpha_{0,g} [\pi_{0,g}(z) - \pi_{0,g}(x_0)]^{\epsilon_{0,g}}$$

and

$$|\pi(z) - \pi(x_0)| = |\pi_{0,g}(z) - \pi_{0,g}(x_0)| = |z - x_0|.$$

As z and x_0 are arbitrary, we conclude that π is an isometry. This completes the proof.

In [15, 20], the authors gave a complete characterization of all surjective isometries on $C^1([0, 1])$ with respect to various norms. There are many norms with which the groups of surjective isometries on $C^1([0, 1])$ fulfill the condition of Corollary 4.8. We present one of them.

COROLLARY 4.9. Suppose that $T \in M((C^1([0,1]), \|\cdot\|_{\Sigma}), (C^1([0,1]), \|\cdot\|_{\Sigma}))$ and *T* is 2-local in $\text{Iso}((C^1([0,1]), \|\cdot\|_{\Sigma}), (C^1([0,1]), \|\cdot\|_{\Sigma}))$. We conclude that $T \in \text{Iso}((C^1([0,1]), \|\cdot\|_{\Sigma}), (C^1([0,1]), \|\cdot\|_{\Sigma}))$.

Corollary 4.9 has been also obtained in [10, Theorem 9] with a different argument.

[19]

4.4. The algebra $S^{\infty}(\mathbb{D})$. As we stated in the beginning of Section 3, for some Banach algebras B_j , a pointwise 2-local map in $Iso(B_1, B_2)$ is not always a surjective isometry. But, in this subsection and the next, we show examples of Banach algebras B_j in which every pointwise 2-local map in $Iso(B_1, B_2)$ is always a surjective isometry. Let

$$\mathbf{S}^{\infty}(\mathbb{D}) = \{ f \in H(\mathbb{D}); f' \in H^{\infty}(\mathbb{D}) \},\$$

where $H(\mathbb{D})$ is the linear space of all analytic functions on \mathbb{D} and $H^{\infty}(\mathbb{D})$ is the algebra of all bounded analytic functions on \mathbb{D} . The algebra $S^{\infty}(\mathbb{D})$ equipped with the norm $||f||_{\Sigma} = \sup_{z \in \mathbb{D}} |f(z)| + \sup_{w \in \mathbb{D}} |f'(w)|$ for $f \in S^{\infty}(\mathbb{D})$ is a unital semisimple commutative Banach algebra. As is described in [19], $S^{\infty}(\mathbb{D})$ coincides with the space of all Lipschitz functions in the linear space of all analytic functions on \mathbb{D} and each $f \in S^{\infty}(\mathbb{D})$ is continuously extended to the closed unit disk \mathbb{D} . Hence, we may suppose that $S^{\infty}(\mathbb{D})$ is a unital subalgebra of the disk algebra on \mathbb{D} . Trivially, all analytic polynomials are in $S^{\infty}(\mathbb{D})$.

THEOREM 4.10. The maximal ideal space M_{∞} of $S^{\infty}(\mathbb{D})$ is homeomorphic to the closed unit disk $\overline{\mathbb{D}}$.

PROOF. To prove that $\overline{\mathbb{D}} = M_{\infty}$, firstly we show that if f_1, \ldots, f_n are arbitrary functions in $S^{\infty}(\mathbb{D})$ such that

$$\sum_{j=1}^n |f_j| > 0 \text{ on } \overline{\mathbb{D}},$$

then there exist $g_1, \ldots, g_n \in S^{\infty}(\mathbb{D})$ such that

$$\sum_{j=1}^{n} f_j g_j = 1$$

It is well known that the maximal ideal space of the disk algebra $A(\overline{\mathbb{D}})$ is $\overline{\mathbb{D}}$. As $f_1, \ldots, f_n \in S^{\infty}(\mathbb{D}) \subset A(\overline{\mathbb{D}})$, there exist $h_1, \ldots, h_n \in A(\overline{\mathbb{D}})$ such that

$$\sum_{j=1}^n f_j h_j = 1.$$

As functions in $A(\overline{\mathbb{D}})$ are uniformly approximated by analytic polynomials, there exists a sequence of polynomials $\{p_m^{(j)}\}_{m=1}^{\infty}$ such that $\|p_m^{(j)} - h_j\|_{\infty} \to 0$ as $m \to \infty$ for every j = 1, ..., n. Hence, for sufficiently large m_0 ,

$$\left\|1 - \sum_{j=1}^{n} f_{j} p_{m_{0}}^{(j)}\right\| < 1/2.$$

In particular, $\sum_{j=1}^{n} f_j p_{m_0}^{(j)}$ has no zeros on $\overline{\mathbb{D}}$. Then $1/\sum_{j=1}^{n} f_j p_{m_0}^{(j)} \in S^{\infty}(\mathbb{D})$. Put $g_j = p_{m_0}^{(j)}/\sum_{k=1}^{n} f_k p_{m_0}^{(k)}$ for j = 1, ..., n. Then $g_j \in S^{\infty}(\mathbb{D})$ and $\sum_{j=1}^{n} f_j g_j = 1$ by a simple calculation.

[20]

For each $p \in \overline{\mathbb{D}}$, the point evaluation δ_p on $S^{\infty}(\mathbb{D})$ which takes the value at p is a nontrivial complex homomorphism. Hence, we have that $\overline{\mathbb{D}} \subset M_{\infty}$. Suppose that there exists $\delta \in M_{\infty}$ such that $\delta \neq \delta_p$ for any $p \in \overline{\mathbb{D}}$. It follows that for any $p \in \overline{\mathbb{D}}$, there exists $f_p \in S^{\infty}(\mathbb{D})$ such that

$$\delta(f_p) = 0, \quad \delta_p(f_p) \neq 0. \tag{4-13}$$

For every $p \in \overline{\mathbb{D}}$, we define an open subset of $\overline{\mathbb{D}}$ by $V_p = \{x \in \overline{\mathbb{D}}; f_p(x) \neq 0\}$ and we have $p \in V_p$. Since $\overline{\mathbb{D}}$ is compact, let p_1, \ldots, p_n be the corresponding elements in $\overline{\mathbb{D}}$; thus, we have $\sum_{j=1}^n |f_{p_j}| > 0$. By the above arguments, there exist $g_1, \ldots, g_n \in S^{\infty}(\mathbb{D})$ such that $\sum_{j=1}^n f_{p_j}g_j = 1$. By (4-13),

$$1 = \delta(\mathbf{1}) = \delta\left(\sum_{j=1}^{n} f_{p_j} g_j\right) = \sum_{j=1}^{n} \delta(f_{p_j}) \delta(g_j) = 0,$$

which is a contradiction. It follows that $\overline{\mathbb{D}} = M_{\infty}$.

Miura [19, Theorem 1] determined the form of all surjective isometries on $S^{\infty}(\mathbb{D})$.

THEOREM 4.11 (Miura [19]). Suppose that $U : S^{\infty}(\mathbb{D}) \to S^{\infty}(\mathbb{D})$ is a surjective isometry with respect to the norm $\|\cdot\|_{\Sigma}$. Then there exist unimodular constants $\alpha, \lambda \in \mathbb{C}$ such that

$$U(f) = U(0) + \alpha f(\lambda), \quad f \in S^{\infty}(\mathbb{D}),$$

or

$$U(f) = U(0) + \alpha \overline{f(\overline{\lambda})}, \quad f \in S^{\infty}(\mathbb{D}).$$

Conversely, each mapping of the above form is a surjective isometry from $S^{\infty}(\mathbb{D})$ onto $S^{\infty}(\mathbb{D})$.

COROLLARY 4.12. Suppose that $T \in M(S^{\infty}(\mathbb{D}), S^{\infty}(\mathbb{D}))$ is pointwise 2-local in $Iso(S^{\infty}(\mathbb{D}), S^{\infty}(\mathbb{D}))$. Then $T \in Iso(S^{\infty}(\mathbb{D}), S^{\infty}(\mathbb{D}))$.

PROOF. Suppose that $T \in M(S^{\infty}(\mathbb{D}), S^{\infty}(\mathbb{D}))$ is pointwise 2-local in $Iso(S^{\infty}(\mathbb{D}), S^{\infty}(\mathbb{D}))$. By Theorem 4.11, $Iso(S^{\infty}(\mathbb{D}), S^{\infty}(\mathbb{D})) \subset GWC$. Then Theorem 3.2 asserts that there exist a continuous map $\pi : \overline{\mathbb{D}} \to \overline{\mathbb{D}}$ and a continuous map $\epsilon : \overline{\mathbb{D}} \to \{\pm 1\}$ such that

$$T(f) = T(0) + \alpha [f \circ \pi]^{\epsilon}, \quad f \in \mathcal{S}^{\infty}(\mathbb{D}),$$

where $\alpha = T(1) - T(0)$ is a unimodular constant since T(1) - T(0) is a unimodular function and it is analytic on \mathbb{D} . Furthermore, $\epsilon = 1$ on $\overline{\mathbb{D}}$ or $\epsilon = -1$ on $\overline{\mathbb{D}}$. Put $T_1 = \overline{\alpha}(T - T(0))$. Then

$$T_1 = f \circ \pi, \quad f \in \mathcal{S}^{\infty}(\mathbb{D})$$

if $\epsilon = 1$ and

$$T_1(f) = \overline{f \circ \pi}, \quad f \in \mathcal{S}^{\infty}(\mathbb{D})$$

[21]

if $\epsilon = -1$. Letting f = Id, the identity function, we see that $\pi \in S^{\infty}(\mathbb{D})$ if $\epsilon = 1$ and $\overline{\pi} \in S^{\infty}(\mathbb{D})$ if $\epsilon = -1$. Put $\varphi = \pi$ if $\epsilon = 1$ and $\varphi = \overline{\pi}$ if $\epsilon = -1$. Then we have that $\varphi \in S^{\infty}(\mathbb{D})$ and

$$T_1(f) = f \circ \varphi, \quad f \in \mathcal{S}^{\infty}(\mathbb{D})$$

if $\epsilon = 1$ and

$$T_1(f) = \overline{f \circ \overline{\varphi}}, \quad f \in \mathcal{S}^{\infty}(\mathbb{D})$$

if $\epsilon = -1$. In particular,

$$T_1(\mathrm{Id}) = \varphi \tag{4-14}$$

either for $\epsilon = 1$ or for $\epsilon = -1$. Since T_1 is pointwise 2-local in $\text{Iso}(S^{\infty}(\mathbb{D}), S^{\infty}(\mathbb{D}))$ by the definition of T_1 , for every $x \in \overline{\mathbb{D}}$ there exist $u_x \in S^{\infty}(\mathbb{D})$ and unimodular constants α_x, λ_x such that

$$(T_1(\mathrm{Id}))(x) = u_x(x) + \alpha_x \operatorname{Id}(\lambda_x x)$$

and

$$0 = (T_1(0))(x) = u_x(x),$$

or

$$(T_1(\mathrm{Id}))(x) = u_x(x) + \alpha_x \overline{\mathrm{Id}}(\overline{\lambda_x x}) = u_x(x) + \alpha_x \mathrm{Id}(\lambda_x x)$$

and

$$0 = (T_1(0))(x) = u_x(x)$$

In any case,

$$(T_1(\mathrm{Id}))(x) = \alpha_x \lambda_x x. \tag{4-15}$$

Combining (4-14) and (4-15),

$$\varphi(x) = \alpha_x \lambda_x x$$

for every $x \in \overline{\mathbb{D}}$. Then we have $\varphi(0) = 0$ and $|\varphi(x)| = |x|$ for every $x \in \overline{\mathbb{D}}$. Since $\varphi : \overline{\mathbb{D}} \to \overline{\mathbb{D}}$ is analytic in \mathbb{D} , the Schwartz lemma asserts that there is a unimodular constant λ_0 such that

$$\varphi(x) = \lambda_0 x, \quad x \in \bar{\mathbb{D}}.$$

It follows that

$$T(f) = T(0) + (T(1) - T(0))f(\lambda_0 \cdot), \quad f \in S^{\infty}(\mathbb{D})$$

or

$$T(f) = T(0) + (T(\mathbf{1}) - T(0)) \overline{f(\overline{\lambda_0})}, \quad f \in \mathbf{S}^{\infty}(\mathbb{D})$$

By Theorem 4.11, we conclude that $T \in \text{Iso}(S^{\infty}(\mathbb{D}), S^{\infty}(\mathbb{D}))$.

4.5. The algebra $A(\cdot)$. Let 0 < r < 1 and $\Omega = \{z : r \le |z| \le 1\}$ be an annulus. Let $A(\Omega)$ be the algebra of all complex-valued continuous functions that are analytic on the interior of Ω . It is well known that $A(\Omega)$ is a uniform algebra on Ω whose maximal ideal space is homeomorphic to Ω .

COROLLARY 4.13. Suppose that U is a surjective isometry from the annulus algebra $A(\Omega)$ onto itself. Then there exist unimodular constants $\alpha, \lambda \in \mathbb{T}$ such that

$$U(f) = U(0) + \alpha f(\lambda \cdot), \quad f \in A(\Omega),$$

or

$$U(f) = U(0) + \alpha f(\overline{\lambda \cdot}), \quad f \in A(\Omega).$$

Conversely, each mapping of the form is a surjective isometry from $A(\Omega)$ onto $A(\Omega)$.

PROOF. Let π be a homeomorphism on Ω that is analytic on the interior of Ω . Then there exists a unimodular constant $\lambda \in \mathbb{T}$ such that $\pi(z) = \lambda z$ for any $z \in \Omega$. The desired statement follows from a similar argument to that of Corollary 4.4, in which we get a characterization of all surjective isometries on the disk algebra.

COROLLARY 4.14. Suppose that $T \in M(A(\Omega), A(\Omega))$ is pointwise 2-local in $Iso(A(\Omega), A(\Omega))$. Then $T \in Iso(A(\Omega), A(\Omega))$.

PROOF. By Corollary 4.13, we get $Iso(A(\Omega), A(\Omega)) \subset GWC$. A homeomorphism on Ω which is analytic on the interior is just a rotation and thus we finish by a similar argument to Corollary 4.12.

5. Iso-reflexivity

Many references in the literature study isometries from the point of view of how they are determined by their local actions [2, 4, 11, 21, 27, 28, 32]. By Theorem 3.2, we have that several 2-local maps are linear and hence they are local maps. In this section we prove that a local isometry in $Iso_{\mathbb{C}}(B_1, B_2)$ is 2-local in $Iso(B_1, B_2)$. Applying corollaries of the above section, we see the reflexivity of $Iso_{\mathbb{C}}(B_1, B_2)$ for several Banach spaces of continuous functions.

DEFINITION 5.1. Put

 $M_{\mathbb{C}}(B_1, B_2) = \{T \in M(B_1, B_2); T \text{ is complex-linear}\},\$

 $\operatorname{Iso}_{\mathbb{C}}(B_1, B_2) = \{T \in \operatorname{Iso}(B_1, B_2); T \text{ is complex-linear}\}.$

Recall that $T \in M_{\mathbb{C}}(B_1, B_2)$ is local in $\text{Iso}_{\mathbb{C}}(B_1, B_2)$ if, for every $f \in B_1$, there exists $T_f \in \text{Iso}_{\mathbb{C}}(B_1, B_2)$ such that

$$T(f) = T_f(f).$$

We say that $Iso_{\mathbb{C}}(B_1, B_2)$ is iso-reflexive if every local map in $Iso_{\mathbb{C}}(B_1, B_2)$ is an element in $Iso_{\mathbb{C}}(B_1, B_2)$.

PROPOSITION 5.2. Suppose that $T \in M_{\mathbb{C}}(B_1, B_2)$ is local in $\text{Iso}_{\mathbb{C}}(B_1, B_2)$. Then T is 2-local in $\text{Iso}(B_1, B_2)$.

PROOF. Let $f, g \in B_1$ be arbitrary. Then there exists $T_{f,g} \in Iso_{\mathbb{C}}(B_1, B_2)$ such that

$$T(f-g) = T_{f,g}(f-g).$$

As T and $T_{f,g}$ are complex-linear,

$$T(f) - T(g) = T_{f,g}(f) - T_{f,g}(g).$$
(5-1)

Put

$$h_{f,g} = T(f) - T_{f,g}(f).$$

By (5-1),

$$T(f) = h_{f,g} + T_{f,g}(f),$$
$$T(g) = h_{f,g} + T_{f,g}(g).$$

It is easy to see that $h_{f,g} + T_{f,g}(\cdot) \in \text{Iso}(B_1, B_2)$. It follows that T is 2-local in $\text{Iso}(B_1, B_2)$.

COROLLARY 5.3. Suppose that every 2-local map in $Iso(B_1, B_2)$ is an element in $Iso(B_1, B_2)$. Then $Iso_{\mathbb{C}}(B_1, B_2)$ is iso-reflexive.

PROOF. Suppose that $T \in M_{\mathbb{C}}(B_1, B_2)$ is local in $Iso_{\mathbb{C}}(B_1, B_2)$. Then, by Proposition 5.2, *T* is 2-local in $Iso(B_1, B_2)$. By assumption, we have $T \in Iso(B_1, B_2)$. Since *T* is complex-linear, we infer that $T \in Iso_{\mathbb{C}}(B_1, B_2)$.

Applying Corollaries 4.3, 4.5, 4.7, 4.9, 4.12 and 4.14, we obtain $Iso_{\mathbb{C}}(C(X_1), C(X_2))$ for first countable compact Hausdorff spaces X_1 and X_2 and $Iso_{\mathbb{C}}(A(\overline{\mathbb{D}}), A(\overline{\mathbb{D}}))$, $Iso_{\mathbb{C}}(Lip(X_1), Lip(X_2))$, $Iso_{\mathbb{C}}(C^1[0, 1], C^1[0, 1])$, $Iso_{\mathbb{C}}(S^{\infty}(\mathbb{D}), S^{\infty}(\mathbb{D}))$ and $Iso_{\mathbb{C}}(A(\Omega), A(\Omega))$ are iso-reflexive.

Acknowledgement

The author would like to express her gratitude to the referee for his/her various suggestions which have improved the original manuscript.

References

- H. Al-Halees and R. Fleming, 'On 2-local isometries on continuous vector valued function spaces', J. Math. Anal. Appl. 354 (2009), 70–77.
- [2] C. J. K. Batty and L. Molnár, 'On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H)', Arch. Math. 67 (1996), 415–421.
- [3] F. Botelho, J. Jamison and L. Molnár, 'Algebraic reflexivity of isometry groups and automorphism groups of some operator structures', J. Math. Anal. Appl. 408 (2013), 177–195.
- [4] F. Cabello Sánchez, 'Automorphisms of algebras of smooth functions and equivalent functions', *Differential Geom. Appl.* 30 (2012), 216–221.

409

- [5] J. C. Cabello and A. M. Peralta, 'Weak-2-local symmetric maps on *C**-algebras', *Linear Algebra Appl.* **494** (2016), 32–43.
- [6] A. M. Gleason, 'A characterization of maximal ideals', J. Anal. Math. 19 (1967), 171-172.
- [7] M. Győry, '2-local isometries of $C_0(X)$ ', Acta Sci. Math. (Szeged) 67 (2001), 735–746.
- [8] O. Hatori and T. Miura, 'Real linear isometries between function algebras. II', *Cent. Eur. J. Math.* 11 (2013), 1838–1842.
- [9] O. Hatori, T. Miura, H. Oka and H. Takagi, '2-Local isometries and 2-local automorphisms on uniform algebras', *Int. Math. Forum* 50 (2007), 2491–2502.
- [10] O. Hatori and S. Oi, '2-local isometries on function spaces', *Recent Trends in Operator Theory and Applications*, Contemporary Mathematics, 737 (American Mathematical Society, Providence, RI, 2019), 89–106.
- [11] A. Jiménez-Vargas, A. M. Campoy and M. Villegas-Vallecillos, 'Algebraic reflexivity of the isometry group of some spaces of Lipschitz functions', J. Math. Anal. Appl. 366 (2010), 195–201.
- [12] A. Jiménez-Vargas, L. Li, A. M. Peralta, L. Wang and Y.-S. Wang, '2-local standard isometries on vector-valued Lipschitz function spaces', J. Math. Anal. Appl. 461 (2018), 1287–1298.
- [13] A. Jimenez-Vargas and M. Villegas-Vallecillos, '2-local isometries on spaces of Lipschitz functions', *Canad. Math. Bull.* 54 (2011), 680–692.
- [14] J. P. Kahane and W. Żelazko, 'A characterization of maximal ideals in commutative Banach algebras', *Studia Math.* 29 (1968), 339–343.
- [15] K. Kawamura, H. Koshimizu and T. Miura, 'Norms on C¹ ([0, 1]) and their isometries', Acta Sci. Math. (Szeged) 84 (2018), 239–261.
- [16] S. Kowalski and Z. Słodkowski, 'A characterization of multiplicative linear functionals in Banach algebras', *Studia Math.* 67 (1980), 215–223.
- [17] L. Li, A. M. Peralta, L. Wang and Y.-S. Wang, 'Weak-2-local isometries on uniform algebras and Lipschitz algebras', *Publ. Mat.* 63 (2019), 241–264.
- [18] P. Mankiewicz, 'On the differentiability of Lipschitz mappings in Fréchet spaces', *Studia Math.* 45 (1973), 15–29.
- [19] T. Miura, 'Surjective isometries on a Banach space of analytic functions on the open unit disc', Preprint, 2019, arXiv:1901.02737v1.
- [20] T. Miura and H. Takagi, 'Surjective isometries on the Banach space of continuously differentiable functions', *Contemp. Math.* 687 (2017), 181–192.
- [21] L. Molnár, 'Reflexivity of the automorphism and isometry groups of C*-algebras in BDF theory', Arch. Math. 74 (2000), 120–128.
- [22] L. Molnár, '2-local isometries of some operator algebras', Proc. Edinb. Math. Soc. (2) 45 (2002), 349–352.
- [23] L. Molnár, 'Some characterizations of the automorphisms of B(H) and C(X)', Proc. Amer. Math. Soc. 130 (2002), 111–120.
- [24] L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces (Springer, Berlin, 2007).
- [25] L. Molnár, Private communication with O. Hatori, 2018.
- [26] L. Molnár, 'On 2-local *-automorphisms and 2-local isometries of B(H)', J. Math. Anal. Appl. 479(1) (2019), 569–580.
- [27] L. Molnár and M. Györy, 'Reflexivity of the automorphism and isometry groups of the suspension of *B*(*H*)', *J. Funct. Anal.* **159** (1998), 568–586.
- [28] L. Molnár and B. Zalar, 'Reflexivity of the group of surjective isometries on some Banach spaces', *Proc. Edinb. Math. Soc.* 42 (1999), 17–36.
- [29] M. Mori, 'On 2-local nonlinear surjective isometries on normed spaces and C*-algebras', Proc. Amer. Math. Soc. 148(6) (2020), 2477–2485.
- [30] M. Niazi and A. M. Peralta, 'Weak-2-local *-derivations on *B*(*H*)are linear *-derivations', *Linear Algebra Appl.* **487** (2015), 276–300.
- [31] M. Niazi and A. M. Peralta, 'Weak-2-local derivations on M_n ', *FILOMAT* **31**(6) (2017), 1687–1708.

A Kowalski-Słodkowski theorem

- [32] S. Oi, 'Algebraic reflexivity of isometry groups of algebras of Lipschitz maps', *Linear Algebra Appl.* **566** (2019), 167–182.
- [33] N. V. Rao and A. K. Roy, 'Linear isometries of some function spaces', Pacific J. Math. 38 (1971), 177–192.
- [34] P. Šemrl, 'Local automorphisms and derivations on B(H)', Proc. Amer. Math. Soc. 125 (1997), 2677–2680.
- [35] W. Żelazko, 'A characterization of multiplicative linear functionals in complex Banach algebras', *Studia Math.* **30** (1968), 83–85.

SHIHO OI, Niigata Prefectural Hakkai High School, Minamiuonuma 949-6681, Japan Current address: Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181, Japan e-mail: shiho-oi@math.sc.niigata-u.ac.jp

[26]