
J. Fluid Mech. (2019), vol. 871, pp. 113–138. c© Cambridge University Press 2019
doi:10.1017/jfm.2019.271

113

Adjoint-based shape optimization of the
microchannels in an inkjet printhead

Petr V. Kungurtsev1 and Matthew P. Juniper1,†
1Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK

(Received 17 August 2018; revised 4 February 2019; accepted 30 March 2019;
first published online 17 May 2019)

In drop-on-demand inkjet printheads, ink is pumped steadily through small channels,
each of which contains an actuator and a nozzle. When an actuator pulses, a droplet
is forced through the nozzle, after which acoustic oscillations reverberate within
the channel. Manufacturers would like to damp the residual reverberations, without
increasing the pressure drop required to drive the steady flow. In this paper we
use gradient-based optimization to show that this can be achieved by constricting
the channel where the acoustic velocity is largest and enlarging the channel where
the acoustic velocity is smallest. This increases the viscothermal dissipation of the
acoustics without changing the viscous dissipation of the steady flow. We separate
the compressible Navier–Stokes equations into equations for a steady flow with
no oscillations and equations for oscillations with no steady flow. We define two
objective functions: the viscous dissipation of the steady flow and the dissipation of
the oscillations. We then derive the adjoints for both sets of equations, and obtain
expressions for the gradient of each objective function with respect to boundary
deformations in Hadamard form. We combine these with a gradient-based optimization
algorithm, incorporating constraints such as the shapes of the actuator and nozzle.
This algorithm quickly converges to a design that has the same viscous dissipation
for the steady flow but a 50 % larger decay rate for the oscillating flow. We show that
this design is nearly optimal. It is a shape that inkjet manufacturers, using physical
insight and trial and error, have probably not yet considered. We also show how the
adjoint fields provide physical insight into the mechanisms affecting each objective
function. The main requirements of this method are that the steady flow Mach number
and oscillating flow Mach number are small, and that dissipation is dominated by
thermoviscous mechanisms. These requirements are often satisfied in microfluidics,
so the method in this paper could be applied to many other applications.

Key words: microfluidics

1. Introduction

Inkjet printers are used extensively in industry to print pictures, patterns and
labels onto textiles, ceramics and packaging. Increasingly they are used for 3-D
printing and advanced manufacturing (Hoath 2016). This paper concerns one type of
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drop-on-demand printhead. This contains several hundred ink-filled parallel channels,
each of which has a piezo-electric actuator on one side and a 20–50 µm nozzle
on the opposite side. When a drop is demanded, an electric signal is applied to
the actuator. The actuator moves the boundary of the channel by several hundred
nanometres, forcing an ink droplet out of the nozzle and onto a moving substrate
below. After this droplet formation stage, acoustic oscillations reverberate within the
channel, decaying through viscous and thermal dissipation.

In inkjet printers, it is crucial that every nozzle functions identically and that all
drops are the same. If a single nozzle stops working, it leaves a straight unprinted line
on the substrate. For this reason, ink is flushed continually through the channels. This
flushes away any air bubbles and also reduces the chance that any solid impurities
become lodged in the nozzle. This, however, comes at a cost: a pump is required
to push the ink through the narrow channels. A faster flowrate or more constricted
channels require more power, which is dissipated by viscosity in the printhead.
In addition, if the characteristics of one droplet depend on the time since the
previous droplet, sharp edges become fuzzy. This occurs if the acoustic reverberations
from the previous droplet have not died away sufficiently when the next droplet is
demanded. This limits the rate at which droplets can be printed to around 100 000 s−1.
Manufacturers would like to increase this rate but, to do so, need the reverberations
to decay more quickly.

In this paper we consider the reverberation stage of the drop-on-demand process.
We ask whether it is possible to change the shape of the printhead’s microchannels
in order to increase the decay rate of acoustic reverberations while decreasing
(or at least maintaining) the pressure drop required to flush ink through the
printhead. In both cases, viscous dissipation in the channel is the major damping
mechanism. We discover that it is possible to increase one while decreasing the
other. The question then arises as to how to find the optimal channel shape. So
many shape parameters can be changed that a particularly efficient approach is to use
gradient-based optimization algorithms. We define two objective functions: the steady
flow viscous dissipation and the oscillating flow decay rate. In this paper we obtain
the shape sensitivities of both objective functions and their gradients with respect to
all shape parameters using adjoint methods. We then set one objective function to be
a constraint.

We reduce the complexity of the problem by splitting the compressible Navier–
Stokes equations into equations for a steady flow with no oscillation and equations for
an oscillation with no steady flow. This is done by two-parameter low Mach number
asymptotic expansion of the equations of motion (Müller 1998; Culick, Heitor &
Whitelaw 2012). The oscillating flow equations describe the wave propagation inside
the printhead’s microchannels (Bogy & Talke 1984). The efficiency of the inkjet
devices depends on the natural frequency and the decay rate of the thermoviscous
acoustic oscillations (Beltman 1998). In microchannels, the viscous and thermal
losses due to the boundary effects are the main damping mechanisms. This also
applies to other microfluidic applications, such as hearing aid devices (Christensen
2017), micro electro mechanical systems (MEMS) (Homentcovschi, Murray & Miles
2010; Homentcovschi et al. 2014), micro-loudspeakers and microphones (Kampinga,
Wijnant & de Boer 2011).

The low Mach number acoustic equations can be simplified for particularly simple
geometries (Tijdeman 1975; Moser 1980), or by using boundary-layer analysis
(Beltman 1999; Rienstra & Hirschberg 2013; Berggren, Bernland & Noreland 2018).
The results of these reduced models, however, are not valid when the thickness of
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the boundary layer is of the order of the radii of the surface curvature. Because this
paper considers shape deformations without restrictions on the surface curvature, we
perform our analysis on the full system of thermoviscous acoustic equations.

Using the adjoint approach, it is possible to obtain the sensitivity of the objective
functions to shape modifications. The shape sensitivity of the steady flow viscous
dissipation is calculated using results obtained by Schmidt & Schulz (2010). In this
paper we derive the adjoint counterpart of the thermoviscous acoustic equations and
calculate the natural frequency and decay rate shape sensitivities (e.g. Luchini &
Bottaro 2014). The gradient-based optimization is then applied to a two-dimensional
(2-D) channel and a generic geometry of the printhead’s microchannels. The main
goal of this paper is to describe the method that we use and the physics that it
exploits. Constraining the channel to be two-dimensional considerably reduces the
computational expense of the problem without altering the most influential aspects
of the physics. This is because the longest-lasting residual oscillations are those of
the lowest frequency mode, whose frequency is determined mainly by the length of
the channel and whose dissipation is predominantly in the boundary layers at the
sides of the channel. Our 2-D optimization process changes the height of the channel,
increasing this dissipation in influential areas. A 3-D process would also change the
width of the channel, but we expect this change to be in the same areas, for the same
reasons. The 2-D simulations under-estimate the dissipation because they have two
sides, rather than four, but they capture the major shape changes required in both the
2-D and 3-D cases. Nevertheless, our next step is to repeat the calculations for a 3-D
geometry and with the large number of extra shape parameters that this will entail.

2. Equations of motion in the low Mach number limit
The motion of a fluid with viscosity, heat conductivity, compressibility and external

body forces is governed by the compressible Navier–Stokes equations, which, in
conservative form, are governed by:

∂

∂t
q+∇k(f c

k(q)− f vk(q,∇ · q))= 0 in Ω, (2.1)

where ∇k is the kth component of the spatial derivative ∇k ≡ ∂/∂xk, superscripts c

and v refer to convective and viscous components of the equations. The vector of
conservative variables, q, and the fluxes, f c(q), f v(q), are defined by

q≡

 ρρui
ρE

 , f c
k (q)=

 ρuk
ρuiuk + Pδik
ρuk(ρE+ P)

 , f vk (q)=

 0
τki

τkjuj + κ∇kT

 . (2.2a−c)

The variables ρ, u, P, T denote the flow density, velocity vector, pressure and
temperature; τij is the viscous stress tensor, which is proportional to the dynamic
viscosity coefficient µvis

τij =µvis
(
∇iuj +∇jui −

2
3δij∇kuk

)
, (2.3)

and the total energy of the flow E is a sum of the kinetic energy and the static internal
energy e= e(T, P):

ρE= ρe+
ρukuk

2
, (2.4)

and κ is the thermal conductivity coefficient. We also introduce an equation of state,
which relates the pressure, density and temperature:

ρ = ρ(P, T). (2.5)
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2.1. Low Mach number expansion
Equation (2.1) can describe a range of physical phenomena, which is excessive in this
case because the system’s behaviour is governed to first order by only two phenomena.
The first is steady flow in a channel with rigid boundaries, with the inlet velocity of
order Ū = 0.1 m s−1 and Re ≈ 1. The second is periodic acoustic oscillation, with
a small displacement amplitude at the boundary ∆ 6 0.1 µm and a high oscillation
frequency ω≈ 100 kHz. The characteristic oscillation velocity is of order Ũ = ω∆≈
0.01 m s−1.

We choose the ambient state density ρb and the speed of sound (cb
s )

2
= (∂P/∂ρ)s as

the reference dimensional density and velocity, and the characteristic domain size L
as the reference length. The reference pressure Pb is chosen as a function of density
and the speed of sound: Pb

= ρb(cb
s )

2, and the reference temperature Tb is the ambient
temperature.

In this problem, we assume that the local Mach number is small:

M ≡
|u|
cb

s

� 1. (2.6)

The characteristic velocity amplitudes of the steady flow, Ū, and the oscillating flow,
Ũ, are also small in comparison to the speed of sound, which allows us to introduce
two small parameters: the steady flow Mach number, µ, and the oscillating flow Mach
number, ε:

µ≡
Ū
cb

s

'
0.1

1000
� 1, (2.7a)

ε ≡
Ũ
cb

s

'
0.01
1000

� 1. (2.7b)

The oscillating flow time scale differs greatly from the steady flow time scale. The
oscillating time scale is tac ∼ L/cs, and the steady flow time scale is thyd ∼ L/Ū =
µ−1tac� tac. This allows us to decouple two phenomena and study them independently.
We consider a generic state variable ψ(x, t)= (ρ, ui,P). We denote a zero-order state
variable by ψ0(x, t), as if the steady flow and the oscillating flow were absent, i.e.
ε = µ = 0. If there is no external energy and momentum production (by imposed
temperature gradients, heat release or body forces), then ψ0 is uniform in space and
constant in time. We then assume that the perturbation φ(x, t) of ψ0 is at least linearly
proportional to µ and ε, such that:

ψ(x, t)=ψ0 + φ(x, t, µ, ε). (2.8)

We assume that a flow state perturbation related to a particular phenomenon depends
solely on the phenomenon’s temporal scale, such that φ(x, t) becomes a sum of the
slow hydrodynamic perturbation φ̄(x, t, µ), labelled the steady flow, and the fast
acoustic perturbation φ̃(x, t.ε), labelled the oscillating flow:

φ(x, t, µ, ε)= φ̄(x, t, µ)+ φ̃(x, t, ε), (2.9a)

φ̄(x, t, µ)=
1

Tac

∫
Tac

φ(x, t, µ, ε) dt. (2.9b)
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In summary, the generic flow variable ψ(x, t) consists of the zero-frequency ambient
state, ψ0, the low-frequency hydrodynamic perturbation φ̄(x, thyd, µ) and the high-
frequency acoustic perturbation φ̃(x, tac, ε):

ψ(x, t)=ψ0 + φ̄(x, thyd, µ)+ φ̃(x, tac, ε). (2.10)

We can perform a low Mach number expansion in terms of µ and ε because they
are both small. The state perturbations φ̄(x, thyd) and φ̃(x, tac) independently tend to
zero as µ→ 0 and ε→ 0, so we assume low Mach number decompositions of the
form φ̄(x, thyd) = ‖φ̄‖

∑
µkφ̄(k)(x, thyd) and φ̃(x, tac) = ‖φ̃‖

∑
εkφ̃(k)(x, tac), where

φ̄(k), φ̃(k) are the kth-order non-dimensional perturbation shapes, and ‖φ̄‖, ‖φ̃‖ are
the characteristic dimensional magnitudes of the variables: ‖ρ̄‖ = ‖ρ̃‖ = ρb, ‖ū‖ = Ū,
‖ũ‖ = Ũ, ‖P̄‖ = ‖P̃‖ = Pb.

We neglect the interaction between the steady flow and the oscillating flow given
by the higher-order mixed terms

∑
µnεmφ(m+n)(x, tac, thyd); m, n > 1 because ε and µ

are both small. The expansion of the primal variables is therefore:

ρ(x, t) = ρbρ0 + ρ
b(µρ̄(1) + ερ̃(1))+O(µ2, ε2, µε), (2.11a)

u(x, t) = cb
s (µū(1) + εũ(1))+O(µ2, ε2, µε), (2.11b)

P(x, t) = PbP0 + Pb(µP̄(1) +µ2P̄(2) + εP̃(1))+O(µ3, ε2, µε). (2.11c)

We keep µ2P̄(2) here because the first-order steady flow pressure perturbation P̄(1) does
not contribute to the steady flow, being a part of the ambient state, as shown by Müller
(1998).

2.2. Zero Mach number limit
Substituting the primal variables expansion (2.11) into (2.1) and (2.5), and collecting
the zero-order terms, we obtain:

∇iP(0)(x)= 0, (2.12a)
∇k(κ∇kT (0)(x))= 0, (2.12b)
ρ(0)(x)= ρ(P(0), T (0)). (2.12c)

The zeroth-order equations describe the ambient state, ε = µ= 0. Equation (2.12a)
shows that the ambient pressure P0 is spatially uniform, and (2.12b) describes the
temperature distribution of the ambient state. If all the boundaries have uniform and
constant temperature, then the ambient temperature and density are uniform and non-
dimensionalized as T (0)(x)= 1, ρ(0)(x)= 1.

2.3. Low Mach number steady flow
Collecting the first-order terms of µ in the continuity equation and the second-order
terms of µ2 in the momentum equations (2.2) and assuming a Newtonian fluid results
in the incompressible Navier–Stokes equation:

∇iū
(1)
i = 0, (2.13a)

∂

∂thyd
ū(1)i + (ū

(1)
j ∇j)ū

(1)
i +∇iP̄(2) −

1
Re
1ū(1)i = 0. (2.13b)
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The steady flow pressure perturbation, P̄, balances the nonlinear convective term in
the momentum equation, so P̄=µ2P̄(2) +O(µ3). Here Re≡ ρbLUin/µvis is the steady
flow Reynolds number.

We supplement the steady flow equations with a prescribed velocity boundary
condition at the inlet, Γin, a no-slip boundary condition on the walls, Γw, and a zero
stress boundary condition at the outlet, Γout:

ū(1)i = Ui on Γin, (2.14a)

ū(1)i = 0 on Γw, (2.14b)

−P̄(2)ni +
1

Re
∂ ū(1)i

∂n
= 0 on Γout. (2.14c)

2.4. Low Mach number oscillating flow
Collecting the first-order terms of ε, the oscillating flow continuity, momentum and
energy equations are governed by:

∂

∂tac
ρ̃(1) +∇iũ

(1)
i = 0, (2.15a)

∂

∂tac
ũ(1)i +∇iP̃(1) =

1
R̃e
∇jτ̃

(1)
ij , (2.15b)

sb

cp

∂

∂tac
s̃(1) =

1
P̃e
1T̃ (1). (2.15c)

The Reynolds and Péclet numbers based on the speed of sound are R̃e≡ ρbLcb
s/µvis

and P̃e ≡ ρbLcb
s cp/κ . The heat capacity ratio is γ ≡ cp/cv, where cp and cv are the

specific heats at constant pressure and constant volume, and sb is the dimensional
ambient state entropy. The viscous contribution to the mechanical energy dissipation
∇k(τ̃

(1)
kj ũ(1)j ) is absent in (2.15c) because it is second order in ε and therefore negligible.

We solve the oscillating flow equations in terms of the oscillating flow pressure P̃(1),
velocity ũ(1)i and temperature T̃ (1), and express the flow density and entropy as s̃(1) =
s̃(P̃(1), T̃ (1)), and ρ̃(1) = ρ̃(P̃(1), T̃ (1)) using the following thermodynamic equalities:

sbs̃(1) =
(
∂S
∂P

)
T

PbP̃(1) +
(
∂S
∂T

)
P

TbT̃ (1) =−
αp

ρb
PbP̃(1) +

cp

Tb
TbT̃ (1), (2.16a)

ρbρ̃(1) =

(
∂ρ

∂P

)
T

PbP̃(1) +
(
∂ρ

∂T

)
P

TbT̃ (1) =
γ

(cb
s )

2
PbP̃(1) − ρbαpTbT̃ (1), (2.16b)

where αp ≡ ρ
b(∂V/∂T)P is the volumetric coefficient of thermal expansion. These

expressions are substituted into (2.15). For convenience, we redefine the oscillating
flow temperature as αpTbT̃ (1)→ T̃ (1), and use the fact that cp − cv = Tb(cb

s )
2α2

p/γ to
express the continuity (2.15a) and energy (2.15c) equations in terms of pressure and
temperature:

∂

∂tac
(γ P̃(1) − T̃ (1))+∇iũ

(1)
i = 0, (2.17a)

∂

∂tac

(
T̃ (1)

γ − 1
− P̃(1)

)
=

1
P̃e
1T̃ (1). (2.17b)
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The density and entropy variables become

ρ̃(1) ≡ γ P̃(1) − T̃ (1), s̃(1) ≡
T̃ (1)

γ − 1
− P̃(1). (2.18a,b)

No-slip velocity ũ(1) = 0 and isothermal T̃ (1) = 0 boundary conditions induce
viscous and thermal boundary layers, which damp the acoustic waves. The thickness
of the viscous boundary layer δν and the thermal boundary layer δT depends on
the oscillation frequency (Beltman 1999): δν(ω) =

√
µvis/(ρbω) = δT

√
Pr. The

non-dimensional viscous and thermal boundary layers thicknesses, δ̃ν(ω), δ̃T(ω),
are:

δ̃2
ν(ω)=

δ2
ν(ω)

L2
=

1
R̃e

ωac

ω
, δ̃2

T(ω)=
δ2

T(ω)

L2
=

1
P̃e

ωac

ω
, (2.19a,b)

where ωac= t−1
ac is the characteristic acoustic frequency. If the oscillation frequency, ω,

is similar to or smaller than the acoustic frequency, ωac, then the viscothermal effects
cannot be ignored for general R̃e, P̃e. For an inkjet printhead, the fluid viscosity is of
order 10−2 Pa s, the speed of sound is 103 ms−1 and the channel width is of order
100 µm, which results in ωac= 10 MHz. At the typical operational frequency of ω=
100 kHz the viscous boundary-layer thickness is then δ̃ν ∼ 0.1. The thermal boundary
layer thickness is smaller by a factor of

√
Pr. For inks used in inkjet printers, with

10< Pr< 30 (Seccombe et al. 1997) δ̃T ∼ 0.025.
We perform a modal decomposition of the oscillating flow state vector q̃(x, t) =

q̂(x)est. The Laplace transform of (2.15) results in an eigenvalue problem sBq̂+Aq̂= 0
in terms of q̂= (ûi, P̂, T̂), where q̂ is the complex eigenfunction, and s is the complex
eigenvalue:

s

1 0 0
0 γ −1

0 −1
1

γ − 1


ûi

P̂
T̂

+

−

1
R̃e
∇jτ̂ij ∇i 0

∇i 0 0

0 0 −
∆

(γ − 1)P̃e


ûi

P̂
T̂

= 0, (2.20a)

s= σ + iω, (2.20b)

where −σ is the decay rate and ω is the angular frequency of the mode. The matrix
form of the governing equation for the oscillating flow written in this particular form
is Hermitian: B= BH, A= AH .

2.4.1. Boundary conditions
For rigid boundaries we apply a no-slip boundary condition and for open boundaries

we apply a stress-free boundary condition:

ûi = 0 on Γnsl, (2.21a)

(−P̂δij + R̃e
−1
τ̂ij)nj = 0 on Γfree. (2.21b)

We also apply isothermal and adiabatic boundary conditions for temperature:

T̂ = 0 on Γiso,
∂T̂
∂n
= 0 on Γad. (2.22a,b)

If the boundaries are not rigid, they displace in reaction to the flow on the boundary.
For inviscid flow, the boundary impedance, Z, links the pressure to the velocity on the
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boundary (Myers 1980). Z is typically frequency dependent: Z = Z(s). For viscous
flow, the force at the boundary needs to include the viscous stress, such that the
impedance boundary condition is

Zûi = (−P̂δij + R̃e
−1
τ̂ij)nj. (2.23)

Here we neither restrict the tangential velocity to be zero nor forbid tangential
displacements of the compliant boundary. As Z → 0, the boundary becomes a free
surface, σ̂ijnj→ 0. As Z→∞, the boundary becomes a no-slip rigid wall, ûi→ 0.

Similarly, the thermal accommodation coefficient αw > 0 can be introduced to
describe the temperature boundary condition (Carslaw & Jaeger 1986; Beltman 1999),

T̂ =−αw
∂T̂
∂n
. (2.24)

As αw→ 0, the boundary becomes isothermal. As αw→∞, the boundary becomes
adiabatic.

The domain boundaries can have non-uniform compliance and thermal properties.
The boundary impedance and thermal accommodation coefficients are non-uniform
frequency-dependent functions, Z= Z(s), αw= αw(s) on ∂Ω . In summary, the velocity
and temperature boundary conditions can be generalized to Robin boundary conditions
(2.23), (2.24), with special cases for rigid and open boundaries:

Z = 0 on Γnsl, Z−1
= 0 on Γfree, (2.25a,b)

αw = 0 on Γiso, α−1
w = 0 on Γad. (2.25c,d)

2.4.2. Energy of the acoustic oscillation
The thermoviscous acoustic problem (2.15) is dissipative, and later we will

investigate how and where this dissipation occurs. For this we introduce an energy
norm (Chu 1965), Ê, where ∗ denotes the complex conjugate:

Ê=
∫
Ω

ûiû∗i + ρ̂P̂∗ + ŝT̂∗ dx, (2.26)

such that the total energy Ẽ = Êe2st decays in time as e2σ t (2.20b). We premultiply
the oscillating flow governing equation (2.20) by the state vector q̂T and integrate it
over the volume,

∫
Ω

sq̂TBq̂ + q̂TAq̂ = 0. We integrate the second term by parts once
and apply the boundary conditions (2.23), (2.24). The first term is the energy norm,∫
Ω

q̂TBq̂ = Ê, and the second term is the energy dissipation inside the domain and
the energy flux through the boundary. We take the real part of this volume integral to
express the decay rate of the mode as the sum of volumetric energy dissipation σΩ
and the surface energy transfer σ∂Ω :

σ ≡Re(s) =
1

Ê

∫
Ω

−
1

R̃e
τ̂ij∇jû∗i −

1
(γ − 1)P̃e

‖∇iT̂‖2 dx

+
1

Ê

∫
∂Ω

−
Re(αw)

(γ − 1)P̃e
‖
∂T̂
∂n
‖

2
+Re(Z)‖ûi‖

2 ds

≡
1

Ê

(∫
Ω

σΩ dx+
∫
∂Ω

σ∂Ω ds
)
. (2.27)
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The volumetric energy dissipation of the acoustic perturbation consists of viscous and
thermal dissipation and is always negative, σΩ 6 0, while the surface energy transfer
of the acoustic perturbation depends on the heat losses through the boundary and
the work done by or on the fluid at the boundary. For the rigid and open boundary
conditions (2.25) the surface energy transfer vanishes.

3. Shape sensitivities
3.1. Shape gradients in Hadamard form

We consider a governing equation R(q,a)=0 satisfied over a domain Ω , with solution
q for parameters a. We define an objective function J(q,Ω, a). The gradient of J with
respect to a parameter variation, δa, at a= a0, q0= q(a0),Ω0=Ω(a0), is denoted with
a square bracket J′[δa]:

J′(q0, Ω0, a0)[δa] = lim
ξ→0+

J(q(a0 + ξδa), Ω(a0 + ξδa))− J0

ξ
. (3.1)

In shape optimization, the parameters a also determine the domain boundary Γ =
∂Ω . In two dimensions, a displacement field V :R2

→R2 defined in Ω represents the
domain deformation, and ξ is the displacement amplitude. We denote the perturbed
domain as Ωξ , and qξ as the corresponding perturbed flow state. A perturbed boundary
Γξ = ∂Ωξ is given by

Γξ = Γ + ξV(x) for x ∈ Γ . (3.2)

If the domain boundary Γ is sufficiently smooth, any tangential displacement only
changes the boundary parametrization but not the actual shape. Therefore the boundary
displacements in the direction of V and its normal component (V · n)n are equivalent,
where n is the boundary unit normal vector.

The shape derivative of a general boundary condition independent of the geometry,
in particular independent of the surface normal, can be calculated as follows. Given a
boundary condition g(q0)=g0 on the unperturbed boundary Γ0, the perturbed boundary
condition g(qξ )= gξ on Γξ can be linearized around Γ0 for a small shape deformation
with magnitude ξ � 1. We expand the perturbed solution as

qξ (Γξ ) = (1+ ξ(V · ∇))qξ (Γ0)+O(ξ 2)= (1+ ξ(V · ∇))(q0(Γ0)+ ξq′0[V](Γ0))+O(ξ 2)

= q0(Γ0)+ ξq′0[V](Γ0)+ ξ(V · ∇)q0(Γ0)+O(ξ 2), (3.3)

such that the total derivative of the solution with respect to the shape perturbation
V is dq[V] ≡ q′0[V](Γ0)+ (V · ∇)qξ (Γ0) and q′0[V] is the local shape derivative. The
linearization of the boundary condition is

g(qξ (Γξ ))= g(q0 + ξ dq[V])= g(q0, Γ0)+ ξ

(
∂g
∂q

∣∣∣∣
0

(q′0[V] + (V · ∇)q0)

)
+O(ξ 2),

(3.4)
where the subscript |0 indicates the value at q= q0, Γ = Γ0. The term (∂g/∂q)|0q′[V]
represents the boundary condition of the first-order solution’s response to shape
deformation on the unperturbed boundary. It can be expressed in terms of the initial
solution q0 as

∂g
∂q

∣∣∣∣
0

q′[V] = lim
ξ→0+

gb,ξ − gb,0

ξ
−
∂g
∂q

∣∣∣∣
0

(V · ∇)q0 = (V · ∇)gb,0 −
∂g
∂q

∣∣∣∣
0

(V · ∇)q0. (3.5)
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A shape derivative J′(Ω)[V] can be written in Hadamard form as a scalar product
of a sensitivity functional G(q, q+) and the normal component of the deformation field
V , where q+ is the adjoint state:

J′[V] =
∫
Γ0

(V · n)G(q, q+) ds. (3.6)

In the following sections, we discuss the choice of the objective functions for
the steady and the oscillating flows, construct the adjoint states and derive the
corresponding sensitivity functionals.

3.2. Steady flow shape sensitivity
For the steady flow, we wish to minimize the viscous dissipation, Jvd, in the domain:

Jvd(ū, Ω)=
∫
Ω

1
Re
(∇jūi)

2 dx, (3.7)

where ū satisfies the momentum equation and the divergence-free condition given
by (2.13), (2.14). As discussed by Schmidt & Schulz (2010), the viscous dissipation
sensitivity functional Gvd for a shape displacement defined on a no-slip surface is

Gvd(ūi, λi)=
1

Re
∂ ūi

∂n
∂(λi − ūi)

∂n
, (3.8)

where λi and λp are the adjoint velocity and pressure states satisfying

ūj∇jλi + ūj∇iλj + ν1λi +∇iλp =
2

Re
1ūi, (3.9a)

∇iλi = 0, in Ω, (3.9b)
λi = 0 on Γin ∪ Γw, (3.9c)

λiūjnj + λjūjni + ν
∂λi

∂n
+ λpni =

2
Re
∂ ūi

∂n
on Γout. (3.9d)

The right-hand side source terms of the adjoint equations and boundary conditions
depend on the choice of the objective function, while the left-hand sides are governed
only by the direct steady flow formulation.

3.3. Oscillating flow shape sensitivity
For the oscillating flow we wish to control the decay rate and frequency (Luchini &
Bottaro 2014), so the objective function is the complex natural frequency, s, of the
thermoviscous acoustic flow (2.20):

Js = s. (3.10)

We introduce an adjoint state vector q+ = (P+, u+i , T+) containing the adjoint
pressure, velocity and temperature variables. Taking the inner product of the direct
equations and the corresponding adjoint variables, we construct a Lagrangian of the
system (Gunzburger 2002),

L= s− 〈q+, sBq̂+ Aq̂〉. (3.11)
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The optimality condition sets any first Lagrangian variation to zero. Variation with
respect to the adjoint and direct variables gives the direct and the adjoint state
equations, respectively. As discussed in § A.1, the adjoint and the direct states of the
thermoviscous acoustic problem are related by P+ = P̂∗, u+i = −û∗i , T+ = T̂∗, subject
to the normalization condition:

1 = 〈u+i , ûi〉 + 〈P+, γ P̂− T̂〉 +

〈
T+,

T̂
γ − 1

− P̂

〉
+

{
u+i ,

∂Z
∂s

ûi

}

−

{
∂T+

∂n
,
(∂αw/∂s)

(γ − 1)P̃e

∂T̂
∂n

}
, (3.12)

where we define the volume inner product 〈a+, b〉 =
∫
Ω
(a+)∗b dx (A 3a) and the

surface inner product {a+, b} =
∫
∂Ω
(a+)∗b ds (A 3b).

For a shape deformation normal to a boundary, the oscillating flow eigenvalue
sensitivity Gs consists of the surface stress and the thermal terms, Gs = Gstr

s + Gth
s

(derived in § A.2). Given that the direct and adjoint states are identical up to the sign
of the velocity term, the sensitivity functionals are:

Gstr
s =−

(
2
∂ ûi

∂n
njσ̂ij + κ ûiσ̂ijnj −∇j(ûiσ̂ij)

)
,

Gth
s = 2

∂T̂
∂n

q̂n + κT̂q̂n −∇j(T̂q̂j),

 (3.13)

where q̂i ≡ ((γ − 1)P̃e)−1∇iT̂ is the boundary heat flux, and q̂n = (q̂ · n) is its normal
component. The viscous and the thermal sensitivity functionals have equivalent
structure in terms of the (ûi, σ̂ij) and (T̂, q̂i) pairs.

On the no-slip and stress-free boundaries, the viscous sensitivity functional
simplifies to

Gstr
s,nsl = −

∂ ûi

∂n
njσ̂ij, (3.14a)

Gstr
s,free = ∇j(ûiσ̂ij), (3.14b)

and on the isothermal and adiabatic boundaries, the thermal sensitivity functional
simplifies to

Gth
s,iso =

∂T̂
∂n

q̂n, (3.15a)

Gth
s,ad = −∇j(T̂q̂j). (3.15b)

4. Shape optimization in a 2-D channel
4.1. Numerical methods

4.1.1. Optimization domain
We start with a flow in a two-dimensional uniform-width channel, defined as

Ω0 = {(x, y) ∈R2
| [0, 1] × [0, 0.1]}, (4.1)
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with inlet and outlet boundaries

Γin,0 = {(x, y) ∈R2
| x= 0}, (4.2a)

Γout,0 = {(x, y) ∈R2
| x= 1}, (4.2b)

and no-slip boundaries Γw,0 = ∂Ω0\(Γin,0 ∪ Γout,0). For the oscillating flow, the stress-
free boundary is Γfree,0 = Γin,0 ∪ Γout,0.

The boundary Γw,0 is to be optimized by modifying the no-slip boundaries, while
fixing the inlet and the outlet. If equivalent boundary displacement fields are applied
to the top and the bottom no-slip surfaces then the steady flow and the oscillating
flow boundary sensitivities and the shape gradients remain symmetric. Therefore we
may consider deformation of only the top boundary.

In this study, we parametrize the boundary with a set of N control points
{ak
∈ R2

| k = 1 . . . N} defining the third-order rational uniform B-spline curve.
This provides a smooth surface of class C2 for which parametric sensitivities can be
calculated (Samareh 2001). Boundary displacement fields, Vk, are, by definition, the
boundary shape sensitivities to the control point positions,

Vk
=
∂Γw

∂ak
, (4.3)

which implies that the objective function gradient with respect to the displacement
field J′[Vk

] transforms to the sensitivity with respect to the control parameters, J′[ak
].

As the positions of the control points are moved in the gradient direction, the domain
is updated and the computational mesh is rebuilt.

We parametrize the top boundary of the initial rectangular domain with 11 control
points, ai= (i/10, 0.1), i= 0 . . . 10, spaced uniformly at intervals of 0.1. The first and
last points are kept at their initial positions so that the inlet and outlet boundaries are
fixed and the channel’s length remains equal to 1.

4.1.2. Numerical discretization
We use a finite element method for spatial discretization. The direct and adjoint

formulations of the steady flow problem and the direct formulation of the oscillating
flow problem are first written in a variational form and then discretized using the
Fenics finite elements solver (Logg, Mardal & Wells 2012) on a mesh of triangular
elements generated by Gmsh (Geuzaine & Remacle 2009). The velocity and pressure
fields (ūi, P̄) (2.13), (2.14) and the adjoint fields (λi, λp) (3.9) for the steady flow
are discretized using Taylor–Hood (P2, P1) elements. The acoustic perturbation field
(P̃, ũi, T̃) (2.20) is discretized using (P1, P2, P2) elements (see Kampinga, Wijnant
& de Boer 2010). The resulting discrete sparse matrices are inverted by a direct
lower–upper (LU) solver using a multifrontal massively parallel sparse direct solver
(MUMPS).

For the steady flow problem, the Dirichlet-type boundary conditions are set up
strongly for each boundary degree of freedom and the outlet boundary condition is
enforced weakly. The nonlinear direct flow is solved using a Newton iterative method.
The steady flow inlet velocity profile is parabolic. The oscillating flow problem is
a generalized eigenvalue problem and is solved with a shift-invert method from an
initial guess.

The oscillating flow viscous and thermal boundary layers are resolved using
triangular elements. We apply the goal-oriented adjoint-based error control technique
(Rognes & Logg 2013) for the automated adaptive mesh refinement. The goal
functional in our case is the target eigenvalue.
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4.1.3. Constrained gradient optimization
Our goals are to decrease the steady flow viscous dissipation and make the

oscillation’s decay rate, −σ , more negative. There is a trade-off between these
goals, so here we set the steady flow dissipation as an inequality constraint and
minimize Re(s).

min
Ω

Re(s) (4.4a)

subject to Jvd 6 J0
vd (4.4b)

and state equations (2.13), (2.20). (4.4c)

In § A.1 we derive shape gradients in Hadamard form of both the objective
function and the constraint with respect to an arbitrary boundary displacement V . The
parameter-based approach restricts the number of possible boundary deformations to
the number of control parameters. Essentially, a parametrization projects the function
space of the admissible shape deformations onto a lower-dimensional subspace, which
allows us to operate with the vector representation of shape gradients instead of the
continuous boundary sensitivities.

We can estimate the optimality of a shape (but not the parametrization) by
considering the scalar product of the objective shape sensitivity, G, with the constraint
shape sensitivity, G′. The surface inner product {G, G′} (A 3) and the surface norm
‖G‖2

Γ = {G,G} form the optimality coefficient α:

α =
{G,G′}
‖G‖Γ ‖G′‖Γ

>−1. (4.5)

The optimality coefficient indicates the cosine of the angle between the objective
function shape sensitivity and the constraint shape sensitivity, such that α = −1
implies that they point in opposite directions and the system has reached its local
optimum. In the case of N optimization parameters, a sensitivity functional is realized
on a shape deformation subspace, spanned by Vk, k = 1 . . . N. The discrete gradient
vector g ∈RN is defined as gk = {V

k,G}, and the parametric optimality coefficient αp
is:

αp =
gTg′

‖g‖ · ‖g′‖
6 α. (4.6)

In the parameter-based optimization, αp=−1 implies that the local optimum has been
reached within the choice of parametrization.

The optimization algorithm for the problem (4.4) is based on the method of
moving asymptotes (Svanberg 1987). The objective and the constraint values and
their gradients are calculated by (i) solving the steady flow (2.13) and the oscillating
eigenvalue (2.20) problems, (ii) finding the adjoint steady flow (3.9) and oscillating
flow (3.12) states, (iii) calculating the boundary sensitivities Gvd, Gs using (3.8) and
(3.13), and computing the objective and constraint gradients with respect to the
boundary control points s′[ak] = {Vk,Gs}, J′vd[ak] = {Vk,Gvd}. We use εp= αp+ 1 as a
tolerance criteria for the optimization process.

4.2. Optimization results
4.2.1. Initial domain

The steady flow is computed in the initially flat channel (4.1) at Re = 0.1 with
a parabolic inflow velocity profile. In the unaltered domain this results in the
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FIGURE 1. (Colour online) First natural mode of the oscillating flow in a flat channel at
R̃e= 1000. (a–h) Pressure P̂, longitudinal ûx and transverse ûy velocity components, and
temperature T̂ mode shapes; real (a,c,e,g) and imaginary (b,d, f,h) parts.

0 0.5 1.0

0

-30

0.1

FIGURE 2. (Colour online) Spatial distribution of the decay rate production σΩ in a flat
channel. Black lines correspond to the oscillating flow velocity magnitude isolines û =
const.

Poiseuille flow solution, and the corresponding viscous dissipation value J0
vd is

taken as a reference. For the oscillating flow at R̃e = 1000, we choose the smallest
non-zero-frequency natural mode as the target mode, with s0 = −0.555 + 2.81i.
Figure 1 shows the real and imaginary parts of the mode shape, normalized by
(3.12). The pressure gradient ∂xP̂ and the longitudinal velocity ûx are highest on the
stress-free open end boundaries at x= 0, x= 1. As indicated in figure 2, the regions
with the highest contribution to the decay rate σΩ are the no-slip wall regions close
to the open ends, where the velocity magnitude isolines converge and therefore
the transverse velocity gradient is the largest. For the initial channel configuration,
αp =−0.7.

The steady flow state in the unperturbed channel is independent of the longitudinal
coordinate x so the viscous dissipation shape sensitivity Gvd(ūi, λi) is constant along
the no-slip walls (figure 3). Here, and later, Gvd is normalized by the viscous
dissipation value J0

vd in the starting geometry configuration. The shape sensitivity
Gvd is always negative, so any boundary displacement resulting in contraction of the
channel’s width leads to growth of viscous dissipation. The complex eigenvalue shape
sensitivity Gs(P̂, ûi, T̂) is not uniform; the real part Re(Gs) is almost zero in the
middle part of the boundary and grows towards the channel’s open ends where the
decay rate production is highest, as shown previously. As for viscous dissipation, any
shape deformation directed inwards (V · n) < 0 leads to an increase in the decay rate
magnitude.

As indicated in figure 3, the decay rate is less sensitive to shape modifications in the
middle region of the channel at 0.3 6 x 6 0.7, and has higher sensitivity on the outer
region. We expect therefore, that the channel will expand in the middle and shrink
around the free boundaries to increase the decay rate while keeping the steady flow
viscous dissipation constant. This is also what we expect on physical grounds: the
channels will constrict where the acoustic velocity is greater.
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FIGURE 3. Shape sensitivity distribution along the flat channel top boundary for the decay
rate Re(Gs) (solid line) and frequency Im(Gs) (dashed line) of the first oscillating mode,
and the steady flow viscous dissipation shape sensitivity Gvd/J0 normalized by viscous
dissipation inside the channel (dotted line).
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FIGURE 4. (Colour online) Steady flow in the optimized channel at Re = 0.1. (a) The
direct steady flow |ū| velocity magnitude, with the streamlines indicated (solid lines).
(b) The adjoint steady flow |λ| velocity magnitude.

4.2.2. Optimized domain
The optimized configuration is found in 20 iterations and has the optimality

coefficient (4.5) of αp = −0.98. The first eigenmode in the optimized channel is
s = −1.31 + 1.68i. In comparison to the initial solution, the decay rate objective
function changes by almost 140 %, and the frequency (which is unconstrained)
decreases by 40 %. The total area almost doubles and the channel’s shape loses
symmetry around the x = 0.5 vertical plane, while remaining symmetric in the
horizontal plane. The channel constricts near x = 0.07 and x = 0.99, and the middle
part of the channel expands, as expected.

Figure 4 shows the steady flow (a) and the adjoint flow (b) velocity magnitude ū
and λ for the optimized channel. The lines correspond to the steady flow streamlines.
The no-slip boundaries are smooth and the flow remains attached to the walls with
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5
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-5

FIGURE 5. (Colour online) Spatial distribution of the absolute value of the decay rate
production in the optimized channel (on a logarithmic scale), ln(−σΩ). Black lines
correspond to the oscillating flow velocity magnitude isolines û= const.
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FIGURE 6. The decay rate shape sensitivity distribution (solid line) of the first oscillating
mode in the optimized channel, and the steady flow viscous dissipation sensitivity (dotted
line) normalized by viscous dissipation inside the channel.

no recirculation zones. Viscous dissipation in the optimized channel is the same as in
the initial channel.

The steady flow velocity amplitude and velocity gradients as well as the adjoint
velocity are highest in the constricted areas. This makes the constricted regions much
more sensitive to shape changes than the expanded part, where the adjoint velocity
magnitude is almost zero.

The decay rate production is initially located in the corner regions of the
uniform-width channel. When the boundaries shift, this region shifts inside the
channel towards the constrictions, as indicated in figure 5. The decay rate production
strongly concentrates in the narrow parts of the channel, with the maximum at
x = 0.99 more than 10 000 times higher than the average value. It is almost zero
between the constrictions.

Figure 6 illustrates the viscous dissipation Gvd/J0
vd (dash-dotted line) and the decay

rate Re(Gs)/ω0 (solid line) boundary sensitivities as functions of the longitudinal
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1840
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FIGURE 7. A 2-D generic printhead geometry with a piezo-electric actuator. The channel
is connected to the ink supply manifolds via the inlet and outlet boundaries. Circles denote
the B-spline boundary control points. All sizes are in µm.

coordinate along the top boundary in the optimized channel. Both sensitivities reach
their extreme values in the constricted areas and are much smaller in the intermediate
region. They are almost equal and opposite to each other, showing that the design is
almost optimal. Further improvements can still be made, for instance, by boundary
re-parametrization or by introducing additional control points. However, this simple
problem has achieved its purpose by showing that the optimization procedure can
indeed increase acoustic dissipation while keeping the steady flow dissipation constant.

5. Shape optimization for a 2-D generic inkjet printhead
5.1. Generic geometry and shape parametrization

Figure 7 shows a 2-D generic inkjet printhead chamber, which consists of a vertical
inlet and outlet, connected to ink manifolds, and a horizontal main channel. The
manifold cross-sections are much larger than the printhead cross-section. A 30 µm
long conical printing nozzle, which has a 20 µm outer diameter and a taper of 8◦, is
located in the middle of the printhead. A flat piezo-electric membrane is located on
the top boundary opposite the nozzle. In three dimensions, the channel has a depth
of 60 µm into the page. For this study, we approximate the channel to be uniform in
that direction and examine only 2-D deformations, as in § 4.2. We aim to increase the
decay rate of the oscillating flow while keeping the steady flow viscous dissipation
constant.

We parametrize the printhead walls by third-order B-splines with the control points
indicated in figure 7. The inlet and the outlet points are fixed. The nozzle shape cannot
change but it can move in the vertical direction. The bottom wall cannot extend below
the nozzle tip.

We choose a characteristic length L= 100 µm. The steady flow Reynolds number
is Re = 0.066 and the Reynolds number based on the speed of sound is R̃e = 6000.
The steady flow Mach number is µ= 10−4 and the oscillating flow Mach number is
ε= 10−5. For the steady flow, the inlet has a fixed parabolic velocity profile, the outlet
is an open end with stress-free boundary condition (2.14c) and the walls are no-slip
boundaries and the nozzle exit is modelled as a no-slip boundary because there is no
flow through it. For the acoustic flow, the walls are adiabatic no slip, and the open
boundaries, including the nozzle exit, are stress free and isothermal. In this study we
neglect the surface tension at the nozzle exit.
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FIGURE 8. (Colour online) The direct velocity magnitude ū (a) and the adjoint velocity
magnitude λ (b) of the steady flow in the initial printhead channel at Re= 0.066.
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FIGURE 9. (Colour online) The first natural mode of the oscillating flow in the initial
printhead geometry at R̃e = 6000. (a,b) The magnitude of the velocity mode real part
Re(û) in the entire domain (a) and near the nozzle (b); (c,d) the magnitude of the velocity
mode imaginary part Im(û); (e) pressure mode P̂; and ( f ) temperature mode T̂ .

Figure 8 shows the steady flow direct ū and adjoint λ velocity magnitude in the
initial geometry. The largest direct velocity magnitude is in the narrow horizontal
channel. The adjoint velocity has highest value near the sharp corners at the channel
entrance and the nozzle. These regions have the greatest influence on the steady flow
viscous dissipation.

The frequency of the first natural mode is Im(s1/2π) = ω/2π = 0.342 MHz, and
the decay rate is Re(s1/2π)= σ/2π= 0.0171 MHz. Figure 9 shows the mode shape,
normalized by (3.12). The pressure and the temperature modes are zero on the stress-
free boundaries and have antinodes in the middle of the channel. Since the walls
are adiabatic, the thermal boundary layer is absent and the pressure and temperature
gradients are tangential to the boundaries. The velocity magnitude is highest near the
nozzle, as shown in figure 9, where the viscous boundary layers overlap. The decay

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

27
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.271


Adjoint-based shape optimization for inkjet printheads 131

0

-5

-10

-15

FIGURE 10. (Colour online) Spatial distribution of the absolute value of the decay rate
production in the initial printhead channel (on a logarithmic scale), ln(−σΩ).
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FIGURE 11. The initial (solid lines) and the optimized (dashed lines) printhead geometry.
The inlet and the outlet boundaries remain fixed. The piezo-electric membrane and nozzle
parts can move up and down but cannot change shape.

rate production is shown in figure 10. It is concentrated in the nozzle region of the
initial printhead configuration, in the viscous boundary layers along the no-slip walls,
and around the corners.

The parametric optimality coefficient for the initial printhead design is αp = 0.017,
which implies that the decay rate and the viscous dissipation gradient vectors are
almost orthogonal. Therefore we expect to be able to obtain a noticeable improvement
in the objective function.

5.2. Optimization
In this section we use the optimization algorithm in § 4.1.3 to update the control
points until the relative improvement falls below the tolerance level of εp 6 0.1. The
optimized domain is shown in figure 11. The channel constricts near the corners
of the top boundary, where the decay rate production had a local maximum.
These constrictions increase the steady flow viscous dissipation there, but the
central part of the channel expands to compensate. The new frequency of the first
natural mode is Im(s1/2π) = ω/2π = 0.264 MHz, and the decay rate increases to
Re(s1/2π) = σ/2π = 0.0257 MHz, which is over 50 % higher than before. The
steady flow viscous dissipation is the same as in the initial printhead. The parametric
optimality coefficient of the optimized shape is αp =−0.94, showing that it is nearly
optimal.

Figure 12 shows the spatial distribution of the decay rate production ln(−σΩ) inside
the optimized domain. The viscous boundary layers overlap in the narrow parts of the
channel, resulting in higher acoustic energy dissipation there. The highest amplitudes
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FIGURE 12. (Colour online) Spatial distribution of the decay rate production absolute
value in the optimized printhead channel (on a logarithmic scale), ln(−σΩ).

of decay rate production are around the nozzle. This shows that changes to the nozzle
geometry are particularly influential.

6. Conclusions
In this paper we perform constrained gradient-based shape optimization of a

microchannel in an inkjet print head. Two Mach numbers are formed: one based on
the steady flow and the other on the oscillating flow. Both Mach numbers are small,
which allows us to separate the flow into (i) a steady flow with no oscillations (2.13)
and (ii) oscillations with no steady flow (2.15). We then seek to control two objective
functions by changing the shape of the boundaries. The objective functions are (i) the
viscous dissipation of the first flow and (ii) a complex number that encapsulates the
growth/decay rate and frequency of the second flow. We obtain expressions for the
derivatives of the above objective functions with respect to boundary deformations in
Hadamard form by deriving the adjoint equations for both flows.

These equations are general and could be used in many ways. We start by showing
how they can be combined with an optimization algorithm in order to increase the
viscous and thermal dissipation of oscillations in a channel without changing the
viscous dissipation of the steady flow in the channel. This works by constricting
the channel where the acoustic velocity is largest and enlarging the channel where
the acoustic velocity is smallest. This result is straightforward and could have been
obtained using physical intuition.

We then apply this technique to the same problem in a 2-D generic inkjet
printhead. The printhead manufacturer would like to increase the decay rate of
residual oscillations after a drop has been ejected, without changing the pressure
drop required to continually flush ink through the head. Starting from a generic
design and incorporating constraints such as the sizes of the nozzle and piezo-electric
actuator, the algorithm converges to a design with a 50 % larger decay rate, but the
same pressure drop, which we show to be nearly optimal. The final shape is not
straightforward and would have been difficult to achieve through physical insight or
trial and error. It could be improved further by adapting the parameters that describe
the shape, but in this case the improvement would be small.

In this paper we derive and demonstrate a new way to optimize the shapes of
channels that contain thermoviscous oscillating flows with (or without) steady flow.
The main novelty is the cheap and accurate calculation of the shape gradients, using
adjoint methods, which allows optimization with gradient-based algorithms. This
is useful in two complementary ways. Firstly, these algorithms quickly converge
to shapes that a human designer, using physical insight and trial and error, would
probably not consider. Secondly, the adjoint methods provide physical insight into
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the mechanisms that influence the objective functions. It can be then used to alter
the choice of shape parameters if it becomes apparent that the algorithm is missing
a good shape due to a bad choice of shape parameters. The method in this paper
is general and could be applied to many different applications in microfluidics. Its
main requirements are that the steady flow Mach number and oscillating flow Mach
number are small, and that dissipation is dominated by thermoviscous mechanisms.

Now that the technique has been proven on a 2-D geometry, the desirable next
step is to apply it to 3-D geometries. For the adjoint methods and optimization
algorithms, the extension from two to three dimensions is straightforward. For
the shape parametrization, this extension is usually harder. In this case, however,
the manufacturable 3-D shapes of inkjet print heads are severely constrained
because they are etched into silicon wafers. Similar constraints apply to many
microfluidic applications. These constraints, which require geometries to be close to
two-dimensional, both render the 2-D analysis more relevant and make the 3-D shape
parametrization more simple. Another extension, which is particularly relevant to
inkjet printing, is to consider non-Newtonian fluids. Although these are challenging
to model, it should be relatively straightforward to develop adjoints of these models.
Another extension, which is the subject of our current work, is to use adjoint
methods to optimize the droplet formation stage by varying the signal applied to the
piezo-electric actuator.
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Appendix A
A.1. Derivation of the thermoviscous acoustic adjoint equations

The thermoviscous acoustic eigenvalue problem (2.20) can be written in terms of
the velocity, pressure and temperature q̂T

= (ûi, P̂, T̂) eigenvector and the complex
eigenvalue s in matrix form sAq̂+ Bq̂= 0:

s


1 0 0
0 γ −1

0 −1
1

γ − 1

 q̂+


−R̃e

−1
∇jτ̂ij ∇i 0
∇i 0 0

0 0 −
1

(γ − 1)P̃e
∆

 q̂= 0, (A 1)

where τ̂ij denotes the viscous stress tensor differential operator, τ̂ijû ≡ τ̂ij. The direct
boundary conditions N q̂= 0 satisfy the following equations:

Z(s, x)ûi = (−P̂δij + R̃e
−1
τ̂ij)nj, (A 2a)

T̂ =−αw(s, x)
∂T̂
∂n
. (A 2b)

There exists a corresponding adjoint state vector q+ = (u+i , P+, T+). We define the
following volume and surface inner products:

〈a, b〉 =
∫
Ω

a∗b dx, (A 3a)
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{a, b} =
∫
∂Ω

a∗b ds. (A 3b)

A Lagrangian functional of the system (A 1) with a objective function J is defined
as

L=J − 〈q+, sAq̂+ Bq̂〉. (A 4)
The system’s eigenvalue sensitivity can be determined by setting J = s.

The optimality condition yields that the total variation of the Lagrangian with
respect to the direct q̂, s, and the adjoint q+ variables must be zero. The variation
with respect to the adjoint variables gives the direct state equations. To determine the
adjoint set of equations, we take the variation with respect to the direct variables and
integrate the volume term in (A 4) by parts:

∂L
∂ q̂
δq̂= 0=

∂J
∂ q̂
δq̂− 〈s∗A+q+ + B+q+, δq̂〉 − {N+q+, δq̂}. (A 5)

The volume terms define the adjoint state equations, which in matrix form are:

s∗


1 0 0
0 γ −1

0 −1
1

γ − 1

 q+ +


−R̃e

−1
∇jτ̂ij −∇i 0

−∇i 0 0

0 0 −
1

(γ − 1)P̃e
∆

 q+ = 0, (A 6)

where τ̂ijq+= τ+ij ≡∇ju+i +∇iu+j − 2/3δij div u+ is the adjoint viscous stress tensor. The
surface terms determine the adjoint boundary conditions N+q+ = 0:

Z∗(s, x)u+i = (P
+δij + R̃e

−1
τ+ij )nj, (A 7a)

T+ =−αw(s, x)
∂T+

∂n
. (A 7b)

Consideration of the direct (A 1) and adjoint (A 6) state equations, and the
corresponding boundary conditions (A 2), (A 7) yields that the adjoint state can
be expressed in terms of the direct state variables:

q+ = (−û∗i , P̂∗, T̂∗). (A 8)

The variation of the Lagrangian with respect to the eigenvalue δs gives the
normalization condition:

∂L
∂s
δs= 0= δs− 〈q+, Aq̂〉δs−

{
q+,

∂N
∂s

q̂
}
δs. (A 9)

Taking into account the adjoint state representation in terms of the direct variables,
the normalization condition is:

1 = −〈û∗i , ûi〉 + 〈P̂∗, γ P̂− T̂〉 +

〈
T̂∗,

T̂
γ − 1

− P̂

〉

+

{
û∗i ,

∂Z
∂s

ûi

}
−

{
∂T̂∗

∂n
,
(∂αw/∂s)

(γ − 1)P̃e

∂T̂
∂n

}
. (A 10)

If the boundaries’ impedance and thermal accommodation coefficient are frequency
independent, the surface terms in (A 10) vanish and the normalization condition is
given by

〈q+, Aq̂〉 = 1. (A 11)
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A.2. Oscillating flow shape sensitivity
We want to construct the eigenvalue shape sensitivity G(q̂, q+) of the thermoviscous
acoustic problem for a given shape displacement field V . We take the variation of the
Lagrangian (A 4) with respect to a shape perturbation L′[V], and, due to the choice
of the adjoint state (A 8), only the boundary terms do not vanish. This gives us the
shape gradient

L′[V] = −{N+q+, q̂′[V]} = {u+i , (−P̂′[V]δij + R̃e
−1
τ̂ ′ij[V])nj}

− {(P+δij + R̃e
−1
τ+ij )nj, û′i[V]}

+

{
T+,

1
(γ − 1)P̃e

∂T̂ ′[V]
∂n

}
−

{
∂T+

∂n
,

1
(γ − 1)P̃e

T̂ ′[V]
}
. (A 12)

For simplicity, we introduce the direct σ̂ij =−P̂δij + R̃e
−1
τ̂ij and the adjoint σ+ij =

−P+δij+ R̃e
−1
τ+ij force tensors. Also, we define the direct q̂i= (1/(γ − 1)P̃e)∇iT̂ and

adjoint q+i = (1/(γ − 1)P̃e)∇iT+ heat fluxes, and their normal components q̂ini ≡ q̂n,
q+i ni ≡ q+n .

On boundaries, the conditions (A 2) hold, resulting in the compliant and thermal
boundary shape derivatives:

0= d(Zûi − σ̂ijnj)[V] = dZ[V]ûi + Z dûi[V] − dσ̂ij[V]nj − σ̂ij dnj[V], (A 13a)

0= d

(
T̂ + αw

∂T̂
∂n

)
[V] = dT̂[V] + dαw[V]

∂T̂
∂n
+ αw dnj[V]∇jT̂ + αw

∂ dT̂[V]
∂n

.

(A 13b)

As discussed in § 3.1, the total and the local shape derivatives of the Dirichlet and
Neumann boundaries, satisfy:

dûi[V] = û′i[V] + (V · ∇)ûi, (A 14a)
dσ̂ij[V] = σ̂ ′ij[V] + (V · ∇)σ̂ij, (A 14b)

dT̂[V] = T̂ ′[V] + (V · ∇)T̂, (A 14c)
d(∇jT̂)[V] = ∇jT̂ ′[V] + (V · ∇)∇jT̂. (A 14d)

Assuming the boundary properties (impedance and thermal accommodation) to be
constant in the displacement direction, the material derivative results in dZ[V] = 0,
dαw[V] = 0.

The displacement vector field V can be presented as a sum of its normal
and tangential components, V = (V · n)n +

∑d−1
i=1 (V · τi)τi, where τi spans the

(d− 1)-dimensional space tangent to the surface. As shown in Sokolowski & Zolesio
(1992), a shape derivative vanishes in the tangential direction, since any boundary
deformation in the tangential direction does not change the domain boundary.
Therefore, for a domain boundary of sufficient smoothness the shape derivatives
in the direction of the displacement field are equivalent to the shape derivatives in
its normal projection. Therefore V can be replaced with (V · n)n and (V · ∇) with
(V · n)∂/∂n. By introducing the tangential gradient ∇Γi = ∇i − ninj∇j, the shape
derivative of the boundary normal is (Sonntag, Schmidt & Gauger 2016)

dni[V] =−∇Γi (V · n). (A 15)
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Combining (A 13)–(A 15), the shape derivatives of the compliant boundary condition
and the thermal boundary condition result in

Zû′i[V] − σ̂
′

ij[V]nj = −Z(V · n)
∂ ûi

∂n
+ (V · n)nj

∂σ̂ij

∂n
− σ̂ij∇

Γ
i (V · n), (A 16a)

T̂ ′[V] + αw
∂T̂ ′[V]
∂n

= −(V · n)
∂T̂
∂n
− αw(V · n)nj

∂∇jT̂
∂n
+ αw∇

Γ
i (V · n)∇iT̂. (A 16b)

Considering the adjoint boundary conditions (A 7) in the primal shape derivative
(A 12) and substituting the above expressions, we obtain

L′[V] = {u+i , σ̂ ′ij[V]nj − Zû′i[V]} −

{
q+n , T̂ ′[V] + αw

∂T̂ ′[V]
∂n

}
(A 17a)

=

{
u+i , (V · n)

(
Z
∂ ûi

∂n
− nj

∂σ̂ij

∂n

)
+ σ̂ij∇

Γ
j (V · n)

}
+

{
q+n , (V · n)

(
∂T̂
∂n
+ αwnj

∂∇jT̂
∂n

)
− αw∇

Γ
i (V · n)∇iT̂

}
. (A 17b)

The shape gradient is represented by stress and thermal contributions. Two terms
are still not in Hadamard form, so we apply the surface tangential Green’s formula
(Delfour & Zolésio 2011). The relation holds for a smooth vector field A and a scalar
field b: ∫

∂Ω

(A,∇Γ )b ds=
∫
∂Ω

κb(A, n)− b divΓA ds. (A 18)

Here κ = divΓ n describes the surface curvature. With Aj = −u+∗i σ̂ij, b = (V · n), the
transformation of the stress contribution (the first surface integral in (A 17b)) to
Hadamard form is given by

u+∗i σ̂ij∇
Γ
j (V · n)= κ(V · n)u

+∗

i σ̂ijnj − (V · n)∇Γj (u
+∗

i σ̂ij), (A 19)

and using the definition of the tangential gradient, the tangential divergence in (A 19)
combines with the following term and we obtain:

∇
Γ
j (u

+∗

i σ̂ij)+ u+∗i nj
∂σ̂ij

∂n
=∇j(u+∗i σ̂ij)−

∂u+∗i

∂n
njσ̂ij. (A 20)

For the thermal contribution (the second surface integral in (A 17b)) Aj =

αw∇jT̂
(
∂T+/∂n

)∗ so the Hadamard form is:

αwq+n∇jT̂∇Γj (V · n)

= κ(V · n)αwq+∗n
∂T̂
∂n
− (V · n)∇Γj (αwq+∗n ∇jT̂)

= (V · n)

(
καwq+∗n

∂T̂
∂n
− αwq+∗n

(
1T̂ − nj

∂∇jT̂
∂n

)
−∇

Γ
j (αwq+∗n )∇

Γ
j T̂

)
. (A 21)
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After rearranging the terms in (A 17), the shape derivative in Hadamard form is
given by the surface integral of the normal displacement and the sum of the stress
and thermal sensitivity functionals, Gstr

s and Gth
s :

s′[V] =L′[V] =
∫
∂Ω

(V · n)(Gstr
s (q̂, q+)+Gth

s (q̂, q+)), (A 22)

where the functionals are defined as

Gstr
s (q̂, q+) =

∂ ûi

∂n
njσ
+∗

ij +
∂u+∗i

∂n
njσ̂ij + κ ûiσ

+∗

ij nj −∇j(u+∗i σ̂ij), (A 23a)

Gth
s (q̂, q+) =

∂T̂
∂n

q+∗n +
∂T+∗

∂n
q̂n + κT̂q+∗n −∇j(T+∗q̂j). (A 23b)

Finally, considering (A 8), the eigenvalue sensitivity functionals can be derived:

Gstr
s =−

(
2
∂ ûi

∂n
njσ̂ij + κ ûiσ̂ijnj −∇j(ûiσ̂ij)

)
,

Gth
s = 2

∂T̂
∂n

q̂n + κT̂q̂n −∇j(T̂q̂j).

 (A 24)

Two special cases, the no-slip and stress-free boundaries, simplify the viscous
sensitivity functional to

Gstr
s,nsl = −

∂ ûi

∂n
njσ̂ij, (A 25a)

Gstr
s,free = ∇j(ûiσ̂ij), (A 25b)

and the thermal sensitivity functional turns into the following expressions on
isothermal and adiabatic boundaries:

Gth
s,iso =

∂T̂
∂n

q̂n, (A 26a)

Gth
s,ad = −∇j(T̂q̂j). (A 26b)
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