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Electrodynamic fluidization is a technique to generate suspensions of electrically
conducting particles using electric forces to overcome their weight. An analysis of
electrodynamic fluidization is presented for a monodisperse aerosol of non-coalescing
particles of infinite electrical conductivity and negligible inertia suspended in a gas
in the gap between two horizontal plate electrodes. A DC voltage is applied between
the electrodes that charges the particles initially deposited on the lower electrode
and leads to a vertical electric force that lifts the particles and pushes them upwards
across the gap. The direction of this force reverses when the particles reach the
upper electrode, pushing them downwards until they fall onto the lower electrode and
repeat the cycle. Stationary distributions of particles are computed for given values
of the applied voltage and the number of suspended particles per unit electrode area.
Interparticle collisions play a role when the second of these parameters is of the
order of the inverse of the particle cross-section or larger. The electric field induced
by the charge of the particles opposes the field due to the applied voltage at the
lower electrode and thus sets an upper bound to the number of particles that can be
suspended for a given voltage. This bound is attained in the normal operation of a
fluidization device, in which there is an excess of particles deposited at the lower
electrode, and is computed as a function of the applied voltage. The predictions
are compared to experimental results in the literature. A linear stability analysis for
dilute aerosols with negligible collision effects shows that the stationary solution
becomes unstable when the deposition threshold is approached with a number of
suspended particles per unit electrode area larger than a certain critical value. A
hydrodynamic instability appears near the lower electrode, where the electric force on
a localized accumulation of charged particles leads to an upward gas flow that helps
carrying the particles away from the electrode and increases the amplitude of the
initial particle accumulation. The instability gives rise to electrohydrodynamic plumes
whose dynamics involves collisions, mergers and generation of new plumes.

Key words: electrohydrodynamic effects, multiphase and particle-laden flows

1. Introduction
Electrodynamic fluidization is a technique to generate suspensions of metal or

semiconductor particles in a gas or a dielectric liquid using electric forces instead
of hydrodynamic forces to overcome the weight of the particles. In the simplest
configuration, which is the basis of the devices used by Yu & Colver (1987), Colver
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& Ehlinger (1988), Shoshin & Dreizin (2002) and others, the suspension is formed
in the gap between two horizontal plane parallel electrodes. The particles are initially
deposited at the lower electrode, and they charge when a voltage is applied between
the two electrodes. This leads to a vertical force on the particles that may detach
them from the electrode and push them upwards across the gap. When the particles
hit the upper electrode they tend to get charged to this electrode potential. This
reverses the polarity of their charge and the direction of the electric force which,
together with the weight of the particles, pushes them downwards, until they hit the
lower electrode and repeat the cycle (Pohl 1960; Moore 1968).

The maximum concentration of particles that can be suspended in the gap depends
on the applied voltage. Once a suspension is established between the electrodes, a
spray jet may be generated by blowing a fluid through the suspension to carry the
particles out of the gap with a separately controllable velocity. The existence of two
control variables allows one to separately adjust the concentration and velocity of the
spray, which is the main distinctive feature of this technique. For comparison, in a
fluidized bed the same hydrodynamic force that suspends the particles is responsible
for convecting them out of the chamber, with the consequence that the concentration
and velocity of the spray are closely related and cannot be varied independently.

Additional advantages of electrodynamic fluidization are the possibility of avoiding
turbulence, which is common in fluidized beds owing to instabilities at large particle
concentrations; the possibility of working in an enlarged range of particle sizes, as the
electric force may overcome the settling of large particles without affecting the spray
velocity; and a reduced tendency to particle agglomeration, which is opposed by the
continuous collisions of the particles with the electrodes and among themselves.

The technique has numerous applications that make use of these features, including
surface treatments, deposition of coatings and catalytic layers, powder metallurgy
(Myazdrikov 1980), testing of spark breakdown, ignition, quenching and flammability
characteristics of powder suspensions (Kim 1989; Colver, Kim & Yu 1996; Colver
et al. 2004), powder spray combustion (Shoshin & Dreizin 2002, 2003, 2004, 2006),
and heat transfer (Bologa, Solomyanchuk & Berkov 1998; Estami et al. 2017), among
others.

Gravity retards the upward moving particles and speeds up the downward moving
particles. In stationary conditions with a constant number of particles between the
electrodes, upward moving particles take longer to cross the gap, and are thus more
numerous, than downward particles. This asymmetry leads to a net space charge in
the gap with the polarity of the upward moving particles, which is that of the lower
electrode. In addition, particles with different charges move with different velocities
and undergo collisions that redistribute the charge. Zhebelev (1992) carried out
numerical computations taking these effects into account for a monodisperse aerosol
of particles with high electrical conductivity and negligible inertia moving in a
quiescent gas. These computations revealed non-uniform distributions of the particles
and the electric field in the gap, and accounted for the so-called field mechanism.
According to this mechanism, the maximum number of particles that can be suspended
per unit area of the electrodes is determined by the condition that the electric field
induced by the space charge reduce the field at the lower electrode to the minimum
value needed for the electric force to balance the weight the particles bouncing from
this electrode. This maximum number of suspended particles is an increasing function
of the applied voltage. Noting that many particles in the gap are only weakly charged
when the effect of the collisions between particles is important, Bologa, Grosu &
Kozhukhar (1977), Myazdrikov (1984) and Zhebelev (1992) proposed a different,
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recombination mechanism that limits the number of suspended particles to a value
independent of the applied voltage when the electric force is large compared to the
weight of the particles. Zhebelev (1991, 1993) extended these results to aerosols of
particles of finite electrical conductivity, for which the electric relaxation time is not
small compared with the contact time in collisions with the electrodes or among
particles.

In this paper the problem is revisited focusing on the simple case of a monodisperse
aerosol of particles of infinite electrical conductivity with negligible inertial effects.
The organization of the paper and the new results of the analysis are as follows. A
kinetic equation for the distribution function of the aerosol is proposed in § 2 that
involves self-consistent electric and gas velocity fields, the first of these being induced
by the voltage applied between the electrodes and the charges of the particles, and the
second by the drag of the particles. The effect of the electric field on the redistribution
of charge in particle collisions is taken into account and shown to play an important
role. Stationary solutions for values of the number of suspended particles per unit
electrode area small compared to the inverse of the cross-section of the particles, for
which order-of-magnitude estimations in § 2.1 show that the effect of the collisions
is small, are computed in §§ 3.1 and 3.2, building on the work of Shoshin (2000)
and Shoshin & Dreizin (2002). Stationary solutions for less diluted aerosols, with
important collision effects, are computed numerically and discussed in § 3.3. A
deposition threshold is defined by the minimum voltage required to keep suspended
a given number of particles per unit electrode area. The theoretical predictions are
compared with experimental results in § 3.4. Transient effects are analysed in § 4
for dilute aerosols with negligible collision effects. A linear stability analysis carried
out in § 4.1 shows that the stationary solution becomes unstable when the deposition
threshold is approached with values of the number of suspended particles per unit
electrode area higher than a certain critical value. Two-dimensional simulations
carried out in § 4.2 with a method of particles show that the instability develops into
interacting electrohydrodynamic plumes that rise from the lower electrode. The effects
of the particle inertia and of a finite electrical conductivity are briefly discussed in
§ 4.3 and in appendix B.

2. Formulation
2.1. Order-of-magnitude estimations

An aerosol is formed in the space between two parallel horizontal electrodes spaced
a distance L to which a voltage difference V is applied; see figure 1. In the absence
of charged particles, this voltage induces an electric field V/L, which for definiteness
is taken to point upwards. A forced gas flow is used in actual devices to push the
aerosol out of the interelectrode gap. This flow is expected to have a small effect
on the distribution of particles in the gap away from the inlet and outlet openings.
Here this effect is neglected altogether, focusing on the distribution of particles in the
absence of through flow. The following additional assumptions are made to simplify
the analysis: the aerosol is monodisperse and made of spherical particles of radius a�
L; the particles do not coalesce; the effect of the inertia of the particles is negligible
between collisions (see below); and their electrical conductivity is infinite, so that
upon hitting an electrode they immediately acquire its potential, and upon colliding
with another particle the charge of the couple is immediately redistributed between
the two particles.

The assumption of infinite electrical conductivity is an idealization valid for many
metallic particles. It must be revised for non-metallic particles and also for some
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mg

(a) (b) (c)

FIGURE 1. Definition sketch.

metallic particles covered by a layer of oxide. The resistance of this layer may be
difficult to estimate in some cases; for example, for the aluminium particles used in
some experiments. A finite resistance is known to have an important effect on the
transfer of charge in collisions when the electric relaxation time is not small compared
with the contact time (Zhebelev 1991, 1993). This effect is discussed in appendix B
in conditions when only particle–electrode collisions are important.

Consider first a single spherical particle of radius a and mass m standing on the
lower electrode, as sketched in figure 1(a). The particle modifies the electric field,
which would be vertical and uniform in the absence of the particle. Since the particle
is at the potential of the electrode, its surface has a positive charge whose surface
density is just enough to cancel the electric field inside the particle. The total charge
of the particle, which was computed by Maxwell in his classical treatise using the
method of images (Maxwell 1881), is

q= αε0a2E with α =
2π3

3
≈ 20.67, (2.1)

where ε0 is the electric permittivity of the gas and E is the modulus of the electric
field at the electrode in the absence of the particle. The force exerted by the electric
field on the particle is vertical, of value (Lebedev & Skal’skaya 1962)

F= βε0a2E2 with β ≈ 17.20. (2.2)

This force detaches the particle from the electrode if it is larger than the sum
of the weight mg and the cohesive forces between the particle and the electrode.
Naturally occurring cohesive forces include van der Waals forces, capillary forces
and electrostatic contact forces. There are, in addition, electrically induced dipole
and electrostatic forces. Colver (1980) reviewed these forces and pointed out that
failure of an electric suspension to form is due to naturally occurring cohesive forces,
and that these forces are important for particles below 200 µm in size. A positively
charged particle that detaches from the lower electrode moves upwards across the
interelectrode gap until it hits the upper electrode. There it rapidly loses its charge
and acquires a negative charge −αε0a2E in contact with this negative electrode. (Here
E denotes the electric field at the upper electrode, which need not be equal to the
field at the lower electrode when there are many charged particles in the gap; see
estimations three paragraphs below.) The electric force on the particle changes sign
and, together with its weight, makes the particle fall with a higher velocity than when
it was moving upwards.

The particle would thus periodically move up and down in the gap, its charge
alternating between a positive and a negative value. The equations of motion of the
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particle at distances from the electrodes large compared to its radius are (see sketch
in figure 1c)

m
dv

dt
= qE+mg− cf v,

dx
dt
= v, (2.3a,b)

where x and v are the position and velocity of the particle; E is the electric field in
which the particle is immersed; g is the acceleration of gravity; the Reynolds number
of the slip flow is taken to be small, so that the hydrodynamic drag is cf v with
cf = 6πµga and µg the viscosity of the gas; and the motion of the gas far from
the particle is temporarily ignored. The characteristic acceleration time of the particle,
obtained from the balance of inertia and hydrodynamic drag, is ts=m/cf . The velocity
of the particle tends to the terminal velocity vs = (qE + mg)/cf in a time of order
ts. This time is to be compared to the residence time of the particle in its journey
across the gap, of order tr = L/vs with vs= |vs|. In the absence of electric field, vs=

mg/cf and the ratio ts/tr is the Stokes number St=m2g/c2
f L. This is typically small.

For the aluminium particles of diameter 2a= 10–30 µm used in the experiments of
Shoshin & Dreizin (2002), it is in the range 1.12×10−3–9.09×10−2. The ratio ts/tr is
somewhat larger than St when the electric field increases the terminal velocity, but in
what follows this ratio is assumed to be also small, so that the inertia of the particle
can be neglected and the momentum equation (2.3) reduces to a balance of forces.

Electrical breakdown limits the voltage that can be applied between the electrodes.
Typical voltages and interelectrode distances are of the order of a few kilovolts and
one centimetre, respectively, leading to electric fields of approximately one tenth of
the breakdown value for air in the absence of particles. Metallic particles carrying
a charge q given by (2.1) intensify the electric field by a factor 3 + α/4π ≈ 4.64.
However, the small size of the region where the field is intensified may increase
the breakdown value by a factor of this same order; for example, by a factor 9.7 if
Rousse’s formula (Cloupeau 1994) is used for particles of 15 µm radius. It seems
thus that, unless cohesive forces are overwhelming and require the applied voltage to
increase very much above the value for which the force (2.2) overcomes the weight
of the particles, electrodynamic fluidization devices may operate without electrical
breakdown in a certain range of voltages, except perhaps close to the electrodes or in
collisions of particles with opposite charges. It was kindly pointed out by a reviewer
that the possibility of electrical breakdown depends also on the presence of a resistive
oxide layer around the particles, which would thus have an additional effect in the
range of operation where discharges may be expected. Electrical breakdown is not
taken into account in what follows.

With many particles present in the gap, there is an upward flux of positive particles
and a downward flow of negative charges. These fluxes are equal to each other in
stationary conditions, as there is no net flux of particles in or out of the gap. However,
owing to their weight, the upward velocity of the positive particles is smaller than
the downward velocity of the negative particles, and therefore the number density of
positive particles is larger than the number density of negative particles. When this
effect is important, gravity leads to a net positive charge in the gap of density ρe ∼

qnc, where q is given by (2.1) and nc is the characteristic number density of particles.
(Here the difference between the number densities of positive and negative particles
is taken to be of order nc, but see § 3 below for more accurate results.) The electric
field induced by this space charge is Esc∼ qncL/ε0, from the Poisson equation ∇2ϕ=
−ρe/ε0, where ϕ is the electric potential (E = −∇ϕ). Using (2.1), the ratio of this
field to the field due to the applied voltage is Esc/E ∼ nca2L. Thus the presence of
charged particles significantly affects the electric field when nc ∼ 1/(a2L).
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Particles with different charges move in the gap with different velocities and
eventually collide, redistributing their charges and leading to new populations with
charges different from the charges acquired by the particles at the lower and
upper electrodes. Leaving out the electrostatic force between colliding particles
(see appendix A), the cross-section for mechanical collisions of any two particles
is σ = 4πa2. Consider a particle from a population i with charge qi and number
density ni, moving with velocity vi across a region with a number density nj

of particles with charge qj and velocity vj. The mean free path of the particle
considered between collisions with particles of population j is λij = 1/(σnj). The
mean number of collisions of this particle per unit time is |vi− vj|/λij, and the mean
number of collisions of the whole population i to which the particle belongs with
particles of population j per unit volume and time is wij = 4πa2

|vi − vj|ninj. For
particles of high electrical conductivity, each of these collisions removes one particle
of population i and one particle of population j, and generates two particles with
charges (qi + qj)/2 ± qE, where qE is the excess or defect of charge induced in the
colliding particles by the electric field at the point where the collision takes place;
see appendix A.

Collisions significantly change the number density of each population during their
journey across the gap when the mean free path for collisions with particles of
any other population is of order L. In terms of the characteristic number density of
particles in the gap, this condition reads 1/(σnc) ∼ L, or nc ∼ 1/(a2L). Thus, in the
coarse approximation used here, the condition for collisions to matter coincides with
the condition above for the electric field induced by the charge of the particles to be
of the order of the field due to the applied voltage. When this condition is satisfied,
the mean distance between particles is 1/n1/3

c ∼ a(L/a)1/3 � a. The suspension is
still dilute, which justifies neglecting correlations between particles and three-body
collisions.

At small Stokes numbers, in the absence of particle inertia, the electric and gravity
forces acting on each particle are balanced by its hydrodynamic drag. These forces
are thus transmitted to the gas and set it in motion. Assuming that the gravity force
is representative of the total force acting on a particle, the force of the particles on the
gas is of order ncmg per unit volume, where nc denotes again the characteristic number
density of particles in the gap. An order-of-magnitude balance of this force and the
inertia of the gas reads ρgv

2
g/L∼ ncmg, where ρg is the density of the gas and vg is

its characteristic velocity. Using the settling velocity vs = mg/cf , this balance gives
vg/vs ∼ 6π(nca2L)1/2(µ2

g/ρgmg)1/2, which is large when nca2L=O(1), of the order of
16–30 in the experiments of Shoshin & Dreizin (2002). This result overestimates the
velocity of the gas in cases when the force of the particles can be balanced by a
hydrostatic pressure or when there is much cancellation of the forces of positive and
negative particles (see § 3 below), but it shows the potential of the induced gas flow to
affect the dynamics of the aerosol. The Reynolds number of the gas flow, ρgvgL/µg,
is in the range 380–470 in the conditions of the experiments of Shoshin & Dreizin
when nca2L=O(1).

2.2. Governing equations
In the absence of particle inertia, a monodisperse aerosol may be characterized by its
one-particle distribution function f (x, q, t), such that the mean number of particles in
the volume between x and x+ dx with charge between q and q+ dq is f (x, q, t) dx dq
at time t. Leaving out collisions and neglecting correlations between particles, this
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function would satisfy a Vlasov equation (Landau & Lifshitz 1981; Clemmow &
Dougherty 1990) involving self-consistent mesoscale electric and gas velocity fields,
E and vg. If the collisions responsible for charge redistribution are instantaneous
events, they can be added to this equation to give

∂f
∂t
+∇ · (vf )= C with v = vg +

qE+mg
cf

, (2.4)

where the collision term C can be decomposed into the negative contribution of
collisions that remove particles with charge q and the positive contribution of
collisions that generate particles with charge q; C = C− + C+. The first of these
contributions is (with E= |E|)

C−(x, q) = −4πa2f (x, q)
∫
∞

−∞

|v − v′|f (x, q′) dq′

= −
4πa2E

cf
f (x, q)

∫
∞

−∞

|q− q′|f (x, q′) dq′, (2.5)

where 4πa2
|v− v′| is the volume swept per unit time by a particle with charge q in a

reference frame in which particles with charge q′ are at rest. The dependence of f , C
and other variables on time is not indicated explicitly hereafter. The integral accounts
for collisions in which the particle with charge q overtakes that with charge q′ (when
q > q′) and those in which the opposite occurs (when q′ > q). The contribution of
collisions that generate particles with charge q is

C+ =
∫ 2a

0

∫
∞

−∞

f (x, q+ q′ + 2qE)f (x, q− q′)
2|q′ + qE|E

cf
2πe de dq′

+

∫ 2a

0

∫
∞

−∞

f (x, q+ q′)f (x, q− q′ − 2qE)
2|q′ + qE|E

cf
2πe de dq′. (2.6)

Here the first integral accounts for collisions of particles with charges q+ q′+ 2qE and
q− q′, with qE given by (A 2). The relative velocity between these particles is 2|q′+
qE|E/cf . As explained in appendix A, each of these collisions generates a particle with
charge q + 2qE and another with charge q. The integral over the impact parameter
e must be included explicitly because qE depends on this parameter. Similarly, the
second integral accounts for collisions of particles with charges q+q′ and q−q′−2qE,
whose outcome is a particle with charge q and another with charge q− 2qE.

Equation (2.6) is difficult to use owing to the dependence of qE on the impact
parameter e. Here this equation is simplified by assuming that qE is small compared
to the typical charges of the colliding particles. Then the integrands in (2.6) can be
Taylor expanded and the result, at leading order, can be written in terms of the mean
value of qE given by (A 3) as

C+ ≈
8πa2E

cf

∫
∞

−∞

[ f (x, q+ q′ + 2q̄E)f (x, q− q′)

+ f (x, q+ q′)f (x, q− q′ − 2q̄E)] |q′ + q̄E| dq′. (2.7)

Since the charge of the particles is of order αε0a2Ec where Ec is the characteristic
value of the electric field (cf. (2.1)), while q̄E = O(γ ε0a2Ec) (cf. (A 3)), the
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simplification (2.7) amounts to assuming that α is large compared to γ . This involves
a noticeable error, but (2.7) is expected to retain the main features of the much more
complex collision rate (2.6).

Conservation of the number of particles and the charge in collisions requires∫
C(x, q) dq= 0 and

∫
qC(x, q) dq= 0. Using these conditions, the first moments of

the kinetic equation (2.4) give the mass and charge conservation equations

∂n
∂t
+∇ · p= 0 and

∂ρe

∂t
+∇ · j= 0 with

n=
∫

f dq, ρe =

∫
qf dq, p=

∫
vf dq, j=

∫
qvf dq.

 (2.8)

The self-consistent electric field in the kinetic equation (2.4) is E = −∇ϕ, where
the mesoscale electric potential ϕ satisfies the Poisson equation (see e.g. Clemmow &
Dougherty 1990)

∇
2ϕ =−

ρe

ε0
, (2.9)

Equations for the mesoscale flow of the gas may be derived from the principles
of conservation of mass and momentum applied to the gas in an elementary control
volume of size large compared to the mean distance between particles but small
compared to L (Williams 1985). This volume contains many particles exchanging
momentum with the gas, whose effect appears as a distributed force in the gas
momentum equation. The mesoscale gas velocity and pressure, vg and pg, thus satisfy
the conservation equations (Williams 1985)

∇ · vg = 0, ρg
Dvg

Dt
=−∇pg +µg∇

2vg +F

with F(x)=
∫

cf (v − vg)f (x, q) dq,

 (2.10)

with Dvg/Dt= ∂vg/∂t+ vg · ∇vg.
In the operation of an electrodynamic fluidization device an excess of particles is

often deposited at the lower electrode. The electric force continuously detaches these
particles until the space charge due to the particles in suspension reduces the electric
field at the electrode to the threshold value below which the electric force could no
longer overcome the weight of the particles that bounce off the electrode. In this
stationary state, the particles that fall onto the electrode are replaced by particles that
detach from it with the equilibrium charge q+ = αε0a2E, where E is the threshold
field satisfying q+E = mg. Here, rather than directly trying to compute this state, it
will be assumed that there are no particles deposited at the lower electrode and that
the number of suspended particles in the interelectrode space is a given constant,∫

f (x, q) dx dq=NA, (2.11)

where A is the area of the electrodes, the integral extends to the whole interelectrode
volume, and N is the number of suspended particles per unit electrode area. A
stationary solution satisfying this condition exists only when the applied voltage is
higher than a certain value for which the electric field at the lower electrode equals
the threshold value mentioned above. This minimum voltage is found in the following
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section as a function of N and the parameters of the problem. Upon inverting this
function, the value of N in the normal stationary operation of the device can be
found as a function of the applied voltage.

Cartesian coordinates will be used, with the distance x measured upwards from the
lower electrode, so that g=−gı̂ with ı̂ a unit vector pointing upwards.

Equations (2.4), (2.5), (2.7), (2.9) and (2.10) must be solved with the boundary
conditions

f = f+δ(q− q+) for vx > 0 with q+ = αε0a2E, f+
q+E−mg

cf
= φ+

ϕ = 0, vg = 0

 (2.12)

at the lower electrode, x= 0, where the first equation expresses the condition that the
particles impinging on this electrode, whose flux is φ+ =−

∫
vx<0 vxf dq, immediately

acquire a charge q+ and are reinjected into the gap, and, similarly,

f = f−δ(q− q−) for vx < 0 with q− =−αε0a2E, f−
q−E−mg

cf
=−φ−

ϕ =−V, vg = 0

 (2.13)

at the upper electrode, x=L, where φ−=
∫
vx>0 vxf dq is the flux of particles impinging

on this electrode. In addition, conditions of periodicity are used in the directions
parallel to the electrodes to approximately simulate a region of the interelectrode gap.

In what follows, distances are scaled with the interelectrode distance L, velocities
with the settling velocity in the absence of electric field, mg/cf , and time with cf L/mg.
The electric field and the electric charge are scaled with Em and qm=αε0a2Em, where
Em =

√
mg/αε0a2 is the solution of q+Em = mg. The electric potential ϕ is scaled

with EmL and the distribution function with 1/(αLa2qm). Accordingly, the number and
charge densities and the momentum (per unit mass) and current density that appear
in (2.8) are scaled with [1/(αLa2), qm/(αLa2), mg/(αLa2cf ), qmmg/(αLa2)], and the
voltage V and N with EmL and 1/(αa2). Here Em is the electric field that would be
required at the lower electrode for the electric force on a bouncing particle to exactly
balance its weight. As explained above, this is the minimum value that the electric
field may have in stationary conditions; smaller values would not suffice to pull the
bouncing particles upwards.

Using the same symbols to denote the dimensionless variables and their dimensional
counterparts, which will no longer appear, equations (2.4), (2.5), (2.7), (2.9)–(2.11)
become

∂f
∂t
+∇ · (vf )=

C
α

with v = vg + qE− ı̂ and

C =−4πEf (x, q)
∫
|q− q′|f (x, q′) dq′

+ 8πE
∫
[ f (x, q+ q′ + 2q̄E)f (x, q− q′)

+ f (x, q+ q′)f (x, q− q′ − 2q̄E)] |q′ + q̄E| dq′,


(2.14)

∇
2ϕ =−ρe with ρe =

∫
qf (x, q) dq and E=−∇ϕ, (2.15a,b)
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∇ · vg = 0, R
Dvg

Dt
=−∇pg +∇

2vg +F

with F(x)=
1
αã

∫
(qE− ı̂)f (x, q) dq,

 (2.16)

1

Ã

∫
f dx dq=N, (2.17)

and the boundary conditions (2.12) and (2.13) become

f = f+δ(q− q+) for qE− 1> 0 with q+ = E, f+(q+E− 1)=−
∫
vx<0

vxf dq

ϕ = 0, vg = 0


(2.18)

at x= 0 and

f = f−δ(q− q−) for qE− 1< 0 with q− =−E, f−(q−E− 1)=−
∫
vx>0

vxf dq

ϕ =−V, vg = 0


(2.19)

at x= 1. The solution depends on the five dimensionless parameters

N, V, R=
ρgmgL
6πµ2

ga
, ã=

a/L
6π

and Ã=
A
L2

(2.20a−c)

and the constant α = 2π3/3. Here N is the number of suspended particles per unit
electrode area scaled with 1/(αa2), V is the voltage applied between the electrodes
scaled with

√
mg/αε0a2L, R is a Reynolds number of the mesoscale gas flow, ã is

the radius of the particles scaled with 6πL, where the factor 6π is introduced for
convenience, and Ã is the electrode area scaled with the square of the interelectrode
distance.

3. Stationary solutions
Stationary solutions for unbounded electrodes depend only on the vertical distance

x and have vertical velocities and electric field, which will be denoted vi(x) and
E(x). The electric current carried by the particles across the unit area of any
horizontal section of the gap is a constant, I = jx, from the stationary form of
the charge conservation equation in (2.8). The condition of zero particle flux across
any horizontal section of the gap reads 0=

∫
vf dq= n(x)vg +

∫
(qE − 1)f dq, where

n(x) =
∫

f dq is the total number density of particles. The mesoscale force of the
particles on the gas reduces thus to F=−nvg ı̂, for which the stationary solution of
(2.16) is vg = 0. Individual particles drag the gas in their motion across the gap, but
the forces of the positive and negative particles on the gas balance each other as
advanced before, and do not induce a mesoscale flow.

Owing to the effect of the electric field on the redistribution of charge in collisions,
the range of electric charges of the particles extends from a certain value smaller than
the charge q−=−E(1) with which the particles detach from the upper electrode to a
certain value larger than the charge q+=E(0) with which they detach from the lower
electrode. For the analysis of the kinetic equation (2.14), this range is split into a
number p of bins centred at charges q1 < · · ·< q− < · · ·< q+ < · · ·< qp with q1 < q−
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and qp > q+ determined by numerical tests. In terms of the number densities ni =∫
1qi

f dq, where the integral extends to the range of q in bin i, the kinetic equation
(2.14) is replaced by the p equations

d
dx
(nivi)=

wi

α
with vi = qiE− 1 and

wi =−4π

p∑
j=1

|vi − vj|ninj + 4π
∑

j,k|qj+qk=2qi±2q̄E

|vj − vk|njnk,

 (3.1)

for i= 1, . . . , p, with
∑p

1 wi = 0. Equations (2.15) and (2.17) become

d2ϕ

dx2
=−

p∑
i=1

niqi with E=−
dϕ
dx

(3.2)

and ∫ p∑
i=1

ni dx=N, (3.3)

and the boundary conditions at the electrodes are

x= 0 :


ni = 0 if vi > 0 for i= 1, . . . , p, i 6= i+

qi+ = q+ = E, ni+vi+ =−

p∑
i=1|vi<0

nivi, ϕ = 0, (3.4)

where i+ is the bin centred at q+, and

x= 1 :


ni = 0 if vi < 0 for i= 1, . . . , p, i 6= i−

qi− = q− =−E, ni−vi− =−

p∑
i=1|vi>0

nivi, ϕ =−V, (3.5)

where i− is the bin centred at q−. Apart from the artificial parameter p, the solution
of (3.1)–(3.5) depends only on N and V .

The condition of zero particle flux,

p∑
i=1

nivi = 0 (3.6)

at any horizontal section of the gap, follows from the sum of the p equations (3.1),
d(
∑p

1 nivi)/dx =
∑p

1 wi = 0, and the boundary conditions (3.4) or (3.5). Using this
condition together with the expressions of the velocities vi in (3.1), the Poisson
equation (3.2) can be written in the form

dE
dx
=

(
p∑

i=1

ni

)
1
E
. (3.7)

The minimum number of bins required to resolve the distribution function depends
on its shape. Numerical tests show that p = 77 suffices for the solutions computed
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in § 3.3 below. For the numerical treatment, the differential equations (3.1) and (3.2)
of the algebraic–differential system (3.1)–(3.5) are discretized using second-order finite
differences in a non-uniform grid chosen to resolve the rapid variation that may appear
around the lower electrode. The system is solved by pseudotransient iteration, which
amounts to adding artificial time derivatives to (3.1) and to the equations giving q± in
(3.4) and (3.5), and marching in this artificial time until the solution becomes time-
independent. Grid independence of the results has been checked by numerical tests
with different grids. The results discussed in § 3.3 have been computed with a grid of
360 points.

3.1. Solution for (N, V)=O(1)
The solution of (3.1)–(3.5) can be simplified by taking advantage of the relatively
large value of α. The collision terms in (3.1) are small when N and V , and thus (ni, qi,
E), are of order unity. Leaving collisions out, these equations reduce to d(nivi)/dx= 0.
But, since particles with charges different from q+ and q− are generated only through
collisions, they will be absent from the gap and only the populations with charges
q+ and q− and velocities v+ = q+E − 1 and v− = q−E − 1 need to be computed.
The number densities of these populations are denoted n+ and n− in what follows.
At leading order in α the problem reduces to

d
dx
(n±v±)= 0 with v± = q±E− 1,

d2ϕ

dx2
=−(n+q+ + n−q−), E=−

dϕ
dx∫ 1

0
(n+ + n−) dx=N, q+ = E(0), q− =−E(1)

x= 0 : n+v+ =−n−v−, ϕ = 0; x= 1 : n−v− =−n+v+, ϕ =−V.

 (3.8)

This problem has been analysed by Shoshin & Dreizin (2002) using additional
simplifications intended for cases with an excess of particles deposited at the lower
electrode and large electric forces away from this electrode (E(0)= 1 and moderately
large N and V in the present variables). The solution of (3.8) can be written in
closed form without these simplifications. Briefly summarized, the first equations
(3.8) with the first boundary condition at x = 0 give the condition of zero flux
n+v+ = −n−v− = φ, where φ is a constant. The Poisson equation in the form (3.7)
reduces to dE/dx = (n+ + n−)/E = φ[(q+E − 1)−1

− (q−E − 1)−1
]/E. Integrating this

equation with E(0)= q+ and E(1)=−q− gives E and φ in the implicit form

−
q+q−

3
(E3
− q3

+
)+

q+ + q−
2

(E2
− q2

+
)− E+ q+ = φ(q+ − q−)x,

φ =
q+ + q−
q+ − q−

[
q+q−

3
(q2
+
+ q2

−
− q+q−)−

q2
+
− q2

−

2
+ 1
]
,

 (3.9)

while the conditions
∫ 1

0 E dx= V and
∫ 1

0 (n+ + n−) dx=N take the forms

V =
∫
−q−

q+

E
dE/dx

dE

=
1

φ(q+ − q−)

[
q+q−

4
(q4
+
− q4

−
)−

q+ + q−
3

(q3
+
+ q3

−
)+

q2
+
− q2

−

2

]
q2
−
− q2

+
= 2N


(3.10)

and determine q+ and q−.
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FIGURE 2. (a) Dimensionless charges with which the particles detach from the lower (q+,
solid curves) and upper (q−, dashed curves) electrodes as functions of the dimensionless
voltage for values of the dimensionless number of particles per unit electrode area N = 0,
1, 2, 4 and 6, increasing as indicated by the arrows. (b) Dimensionless electric current as
a function of the dimensionless voltage for N = 1, 2, 4 and 6.

The values of q+ and q− are shown in figure 2(a) as functions of the voltage V for
several values of N. The dimensionless electric current transported by the particles
per unit electrode area, I = n+q+v+ + n−q−v−, is shown in figure 2(b). The charges
and the current increase with V and tend to ±V and NV3, respectively, for large
values of V . The scaling factors by which V , I and N must be multiplied to find the
dimensional voltage, the electric current and the number of particles per unit electrode
area are

√
mg/αε0a2L,

√
ε0m3g3/α/Lacf and 1/αa2, respectively, whose values are

329.73–404.32 V, 0.66–1.80 µA m−2 and 1905–860 mm−2 for particles of diameter
2a = 10–15 µm in the conditions of the experiments of Shoshin & Dreizin (2002)
(aluminium particles in air, L= 6 mm).

For a given N, a solution exists only when the force acting on a particle that
bounces off the lower electrode points upwards, i.e. when E(0) > 1. This condition
determines a minimum voltage of the form V =Vmin(N). Upon inversion, this relation
determines the stationary number of suspended particles per unit electrode area as a
function of the applied voltage for a device with an excess of particles deposited at
the lower electrode. The result is shown in figure 3(a) (solid curve), together with
the electric current in the gap (dashed curve). Figure 3(b) shows the corresponding
distributions of n± and E across the gap for various values of V . The number density
of positive particles tends to infinity at the lower electrode because v+ tends to zero
there.

The condition for a particle initially standing on the lower electrode to detach from
it is that the electric force acting on the particle be larger than the sum of its weight
and the cohesive forces. For a smooth electrode surface, the electric force is (2.2),
which amounts to F = (β/α)E(0)2 in dimensionless variables. If the cohesive forces
can be neglected, this condition reads E(0) > (α/β)1/2 ≈ 1.096.

3.2. Solution for N =O(1), V =O(α1/2)

The analysis of the previous section is extended here to large values of V to see how
the effect of the collisions first comes into play. The Poisson equation in the form (3.7)
shows that the effect of the space charge, on its right-hand side, becomes negligible
when V (and thus E) takes large values keeping N (and thus n±) of order unity. The
electric field in the gap is then uniform at E = V; the charges of the positive and
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FIGURE 3. (a) Maximum dimensionless number of suspended particles per unit electrode
area as a function of the dimensionless voltage (solid curve, left-hand side scale), and
dimensionless electric current in these conditions (dashed curve, right-hand side scale).
The square and circle symbols are experimental results for the maximum number of
suspended particles per unit electrode area from Yu & Colver (1987) and Shoshin &
Dreizin (2002), respectively. (b) Distributions of positive particles (solid, right-hand side
scale), negative particles (dashed) and electric field (dotted) for the maximum value of N.
Results are shown for V = 2, 3 and 4, increasing from bottom to top.

negative particles are opposite, q+=−q−=V , as well as their velocities, v+≈−v−≈
V2
� 1. The condition of zero flux (3.6) gives n+≈ n−. The effect of the collisions in

the conservation equations for these particles remains negligible because the transport
and collision terms increase at the same pace, proportionally to the velocity of the
particles.

Collisions between positive and negative particles generate two other families
of particles with smaller charges, q0± = ±q̄E = ±(γ /α)V , and velocities, v0± =

±(γ /α)V2
− 1. These slow particles contribute little to the total flux. However, their

residence time in the gap is larger than that of the particles detaching from the
electrodes, which allows the collisions to increase their number densities (denoted
n0± in what follows). The conservation equations for the two families of weakly
charged particles are

v0±
dn0±

dx
≈

1
α
[8πV2n+n− − 4πV2(n+ + n−)n0±] =

8πV2

α
n+(n+ − n0±), (3.11)

where the first term on the right-hand side is the rate at which weakly charged
particles are generated by collisions of particles with charges q+ and q−, and the
second term is the rate at which they are depleted by their collisions with particles of
charge q+ or q−. The latter collisions lead to yet other families of particles, but these
move too fast for collisions to increase their number densities to significant values.
The solutions of (3.11) with the boundary conditions n0+ = 0 at x= 0 and n0− = 0 at
x = 1 (assuming that v0+ > 0 and v0− < 0) are n0+ = n+{1 − exp(−8πV2n+x/αv0+)}
and n0−= n+{1− exp[8πV2n+(1− x)/αv0−]}. These solutions give n0± of the order of
n+ when V = O(α1/2), so that the exponents cease to be small. Condition (3.3) then
reads

∫ 1
0 (n+ + n− + n0+ + n0−) dx=N and gives

4n+ −
α

16πV2

{
v0+ exp

(
−

8πV2n+
αv0+

)
− v0− exp

(
8πV2n+
αv0−

)}
=N, (3.12)

which determines n+ and completes the solution of the problem.
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This solution tends to n+ = n− = n0+ = n0− = N/4 (except in a thin layers by
the electrodes) when N becomes large with V = O(α1/2). It may be noticed that the
effect of the space charge remains negligible in these conditions, despite the fact that
each term on the right-hand side of the first equation (3.2) is then large compared to
the left-hand side of this equation, because there is nearly complete cancellation of
positive and negative charges.

3.3. Solution for N =O(α), V =O(α1/2)

The collision terms of (3.1) are quadratic in the number densities nj and become
of the order of the convection terms when N becomes of order α. Collisions then
populate states of charge different from q±. Numerical solutions of (3.1)–(3.5) show
that the number density of particles with charge q+ decreases, and the number
densities of particles with other positive charges increase, when the distance to the
lower electrode increases. Similarly, negative charge is transferred from particles with
charge q− to particles with other negative charges when the distance to the upper
electrode increases. The decrease of n± with distance to the electrodes is faster when
N increases.

The left- and right-hand sides of (3.7) are of orders V and N/V . For a given N� 1,
the dimensionless voltage V must be at least of order N1/2 in order for the electric
field due to the applied voltage to overcome the field of the space charge. Away from
the deposition threshold, the electric field is of order V everywhere in the gap, leading
to q± =O(V). Particles with charges of this order move very fast, with velocities of
O(V2), and lead to an electric current of order NV3. The velocity of these particles is
little affected by gravity. Gravity is still responsible for the space charge density of
order N/V left in the gap, but this is small compared to the density of order NV that
could exist if (3.6) were not satisfied. The right-hand side of (3.7) would be zero in
the absence of gravity, and the stationary state would then be symmetric about the
centreplane of the gap. This symmetric state is approached when V � N1/2, while
the asymmetry becomes more pronounced when the voltage is decreased towards the
deposition threshold for a given N. Then the density of charge increases in the lower
part of the gap, reducing the electric field at the lower electrode and the charge and
velocity of the bouncing particles.

Figure 4 shows some results from the numerical solution of (3.1)–(3.5) with p= 77.
In agreement with the previous estimations, q+ and q− in figure 4(a) increase as V
for large values of this variable, while q+ decreases towards unity at the deposition
threshold (the minimum value of V for which a solution with a given N exists).
Despite the similarity of figures 2(a) and 4(a), the underlying distributions of charge
are very different in the two cases. Figure 4(b) shows I/N as a function of V .
The collapse of the curves when N increases shows that the electric current scales
with N for large values of this variable and values of V well above the deposition
threshold. The inset of figure 4(b) shows that the electric current scales with V3 in
these conditions. Curves for different values of V branch off a common behaviour
when the deposition threshold marking the end point of each curve is approached.

Near this end point, q+ = E(0) = O(1) while −q− = E(1) = O(V). Particles with
positive charges of O(V) are generated by collisions in the part of the gap where
E = O(V) and move upwards from the point where they are generated. However, a
region of low electric field (E(x)� V) and high number density exists around the
lower electrode where collisions have no time to affect the distribution of charge (see
estimates at the end of this paragraph). In this region, particles with positive charge
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FIGURE 4. (a) Charges of the particles detaching from the lower (q+, solid curves)
and upper (q−, dashed curves) electrodes, from the numerical solution of (3.1)–(3.5), as
functions of the voltage for values of the number of particles per unit electrode area N=0,
2.07, 8.27, 16.54 and 24.80, increasing as indicated by the arrows. (b) Electric current
scaled with N as a function of the voltage for the same values of N. The inset shows
the current scaled with V3 as a function of N for V = 4.55, 6.82 and 9.09, increasing as
indicated by the arrow.

come from the electrode and move upwards with velocity v+= q+E− 1=O(E), while
particles with negative charge of O(V) enter from above moving downwards with
velocities of order VE. The charge distribution of these particles depends on their
dynamics in the bulk of the gap. Let nc− denote their characteristic number density
in the region of interest. Condition (3.6) of zero particle flux then gives n+v+ ∼
nc−VE, whence nc−/n+∼ 1/V� 1. The contributions of positive and negative particles
to the electric current are I+ = q+n+v+ ∼ n+E and I− =

∑
qi<0 qinivi ∼ nc−V2E ∼

n+VE � I+. Thus most of the particles in this region are slowly moving positive
particles, but the electric current is dominated by the less numerous but faster negative
particles. Since I ≈ I− is a constant independent of x, the last balance gives n+ ∼
I/(VE). Carrying this to the Poisson equation (3.7), dE/dx = (

∑
ni)/E ≈ n+/E ∼

I/(VE2), which gives E(x)3−E(0)3∼ (I/V)x and thus determines the orders of n+, v+
and nc− as functions of x near the lower electrode. Finally, the orders of magnitude
of the collision and convection terms for positive particles in this region are w+/α∼
VEn+nc−/α and d(n+v+)/dx∼ n+E/x, so that the collision–convection ratio is of order
Vnc−x/α ∼ n+x/α ∼ E2/α � 1 when N = O(α), because E � V ∼ N1/2. The same
estimate holds for negative particles because

∑
wi =

∑
nivi = 0. Collisions are thus

negligible near the lower electrode, as was advanced above.
The redistribution of charge in particle collisions due to the electric field in the gap

has an important effect on these results. In each collision, the electric field induces
equal and opposite charges in the two colliding particles, additional to the mean
charge of the pair, and by this means makes for a wide distribution of charge. In
the absence of this effect, particles would emerge from collisions with charges equal
to the mean charge of the colliding pair, which in the long term leads to a large
population of neutral or quasineutral particles.

It has been argued (Myazdrikov 1984; Zhebelev 1992) that a stationary solution
ceases to exist above a certain value of N in the region of decreasing electric current
in the inset of figure 4(b) when E(0) is still larger than unity. The numerical results
of this section, which account for the effect of the electric field on the collisions to
oppose the concentration of the distribution function about q = 0, do not hint at a
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maximum N in these conditions. In fact some of the stationary solutions in figure 4
are for values of N higher than the upper bounds proposed by Zhebelev (1992), which
are between α/4π and α/π in the present dimensionless variables.

The numerical results suggest that a collision-dominated regime develops when N
becomes large compared to α, with V = O(N1/2) or larger. In this regime, positive
and negative contributions to wi/α, each of which is large compared to the convection
term in (3.1), nearly balance each other, except in thin layers by the electrodes. This
asymptotic regime will not be further discussed here because the results of § 4 suggest
that the stationary solution becomes unstable already at smaller values of N when the
threshold of particle deposition (E(0)= 1) is approached.

3.4. Comparison with experiments
To determine the maximum number of suspended particles (max(N)) as a function of
the applied voltage, Colver and coworkers (Colver 1983; Yu & Colver 1987; Xu 2008)
carried out experiments in which the number of particles enclosed in a fluidization
cell is sequentially increased keeping the voltage constant. These authors measured the
number of particles in suspension (by optical means) or the electric current collected
at the electrodes, and observed that both magnitudes first increase with the number
of particles enclosed and then stabilize at nearly constant values when this number
reaches a certain threshold at which a deposit begins forming at the lower electrode.
They therefore identified this condition with the sought-for max(N). Yu & Colver
(1987) show a sample result from their experiments in which a mean number density
of suspended particles of 8–9×103 cm−3 was measured at the deposition threshold for
96 µm copper particles enclosed between disk electrodes 2.63 cm in diameter, spaced
a distance L = 1.1 cm and subjected to a voltage of 10 kV. The result is recast in
dimensionless variables and represented by the square in figure 3(a). It is in good
agreement with the theoretical prediction in § 3.1.

Shoshin & Dreizin (2002) used their analytical model to relate the mean number
density of suspended particles to the number density at the upper electrode, which
they measured by letting some particles escape through a small orifice at this
electrode. These authors present results for 10–14 µm aluminium particles in a
cell of height L = 6 mm and voltages of 1.5 and 3 kV. The result for the lower
voltage is represented by the circle in figure 3(a). The result for the higher voltage
does not fit in the scale of this figure. It gives N = 47 for V = 7.68, to be compared
with the theoretical prediction N = 50.1 at this dimensionless voltage. The fact that
the agreement with theoretical results is nearly as good for aluminium as for copper
particles suggests that the effect of the electrical resistance of the oxide layer is not
important in the experiments of Shoshin & Dreizin (2002).

In principle, the experiments of Colver and coworkers offer a possibility of testing
the theoretical predictions also in the absence of deposition, as they give results
for cases when all the enclosed particles are in suspension. However, the idealized
unidimensional state hypothesized above is not realized in these experiments. The
electrodes used were disks of reduced size, either open at the edge or closed by
a dielectric cylindrical wall, and perhaps more importantly, the cell was of the
guard-ring capacitor type, with a central orifice at the upper disk. For these reasons,
the density of electric current was not uniform on the electrodes, and comparison
with theoretical unidimensional predictions requires introducing an effective electrode
area smaller than the area of the disks by a certain unknown factor. Figure 2 of
Yu & Colver (1987) shows the measured current as a function of the mean number
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FIGURE 5. Dimensionless electric current as a function of the dimensionless number of
suspended particles per unit electrode area for a constant voltage. The circles show the
current measured by Yu & Colver (1987), scaled with an effective electrode area, for
copper particles of 96 µm enclosed between two horizontal electrode disks of 2.63 cm
diameter spaced 1.1 cm and subjected to a voltage difference of 10 kV (V = 2.93 in
dimensionless variables). Deposition at the lower electrode occurs only when the current
levels off. The dashed curve is the theoretical prediction for this case. The rightmost point
of this curve marks the deposition threshold.

density for the conditions mentioned at the beginning of this section. The results are
recast in dimensionless variables and shown in figure 5 together with the theoretical
prediction in § 3.1 (dashed curve). The good agreement between experimental and
theoretical results has been obtained by multiplying the area of the electrode disks
by an arbitrary factor of 0.7 and adjusting the mean number density accordingly.
However, the shapes of the experimental and theoretical curves at the left of the
maximum of the latter agree irrespective of this factor.

Similar experiments were performed by Xu (2008) with particles and cells of
various materials, using different techniques to measure the number of particles in
suspension and the electric current. The results agree with the theoretical prediction
up to the uncertainty introduced by the arbitrary surface scale factor.

A noteworthy feature of the theoretical prediction is the decrease of the electric
current with increasing N in a range of values of this variable near the deposition
threshold E(0)= 1 (the end point of the dashed curve in figure 5); see also the inset
of figure 4(b). The increase of the number of charged particles is outweighed in this
region by the decrease of their charge accompanying the decrease of the electric field
at the lower electrode. The decrease of the current was noted by Xu (2008) in some
of his experiments, though it does not seem to have been taken into account in the
determination of the deposition threshold. This author also notes that the suspension
may become unstable before deposition occurs. This observation is in line with the
results of the stability analysis of the following section.

4. Time-dependent flow

The transient evolution of the aerosol is analysed for low particle densities, for
which the effect of interparticle collisions is negligible and each particle conserves its
charge in its journey across the gap, equal to the charge with which it last detached
from an electrode. This charge is determined by the field at the electrode at the
moment of detachment, which is no longer a constant but depends on position on the
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electrode and time. The Eulerian formulation of § 3.1 can be extended to describe a
transient. The governing equations are

∂n±
∂t
+∇ · (n±v±)= 0,

∂q±
∂t
+ v± · ∇q± = 0, v± = vg + q±E− ı̂, (4.1a−c)

∇
2ϕ =−(n+q+ + n−q−), E=−∇ϕ, (4.2a,b)

∇ · vg = 0, R
Dvg

Dt
=−∇pg +∇

2vg +
1
αã
[n+(q+E− ı̂)+ n−(q−E− ı̂)], (4.3a,b)

with the boundary conditions (E= |E|)

x= 0 : n+v+ =−n−v−, q+ = E, ϕ = 0, vg = 0,
x= 1 : n−v− =−n+v+, q− =−E, ϕ =−V, vg = 0.

}
(4.4)

The conservation equations for n± in (4.1) together with the first boundary condition
at each electrode in (4.4) imply that the number of suspended particles is conserved:∫

(n+ + n−) dx=NÃ, (4.5)

where the number of suspended particles per unit electrode area, N, is determined
by the initial condition. This need not be the case for non-stationary systems with an
excess of particles deposited at the lower electrode. A modified boundary condition at
the lower electrode that allows for a variable number of suspended particles will be
introduced in the linear stability analysis of § 4.1. Extension of this condition to more
general cases would require a model of the rate of particle deposition/resuspension
that is beyond the scope of this work.

4.1. Linear stability
Linearizing (4.1)–(4.4) for small perturbations of the form

δn+ =Re{n̂+(x) exp[i(kyy+ kzz)+ st]}, (4.6)

and similarly for other variables, an eigenvalue problem is obtained whose eigenvalues
are of the form s= s(k;N, V, R, ã) with k= (k2

y + k2
z )

1/2. The eigenvalue with largest
real part is shown in figure 6 as a function of k for N= 2.067, R= 12.92, ã= 8.84×
10−5 (particles of 20 µm in the experiments of Shoshin & Dreizin), and various values
of V .

As can be seen, the stationary state becomes unstable when the voltage V decreases
below a certain value. This instability is oscillatory (Im(s) 6= 0) and extends to a
range of wavenumbers that increases with decreasing V . A second range of unstable
wavenumbers appears around k = 0 when V is further decreased. The first of these
instabilities is hydrodynamic; it disappears when the motion of the gas induced by
the drag of the particles is ignored (formally, in the limit α → ∞). The second
instability remains in this limit. It is an instability of the stationary distribution of
charge associated to the large concentration of positive particles that appears around
the lower electrode when V decreases.

Inspection of the eigenmodes shows that the perturbations with largest growth
rate develop near the lower electrode, where various excesses and defects of positive
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FIGURE 6. Growth rate (solid curves) and oscillation frequency (dashed curves, right-hand
side scale) for the eigenvalue with largest real part as functions of the wavenumber for
N = 2.067, R= 12.92, ã= 8.84× 10−5 and four values of the dimensionless voltage, V =
2.05, 2.11, 2.18 and 2.25, increasing as indicated by the arrows.
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FIGURE 7. Stability limit in the (N, V) plane for R= 12.92, ã= 8.84× 10−5 (lower solid
curve) and R= 29.07, ã= 1.33× 10−4 (upper solid curve). The dashed curve shows the
deposition threshold E(0)= 1 (the solid curve in figure 3a). In each case, the stationary
state is linearly stable below the solid curve and particle deposition on the lower electrode
occurs above the dashed curve.

particles stack vertically. Apparently, in a certain range of wavenumbers, a perturbation
that increases the density of positive charge around a point of the lower electrode
locally increases the force acting on the gas and induces a vertical flow that helps
carrying the excess of charge away from the electrode. This increases the amplitude
of the perturbation by initiating an electrohydrodynamic plume.

In the absence of gas motion, the excess of charge would stay longer near the
electrode, and the perturbation of the electric field that it induces at the electrode
would decrease the charge of the particles that detach later. In these conditions,
repetition of this process with alternating excesses and defects of charge may cause
the stacks mentioned above, which only become unstable when the voltage is further
decreased.

Figure 7 shows the stability limit in the (N, V) plane for R = 12.92, ã = 8.84 ×
10−5 (lower solid curve), and R= 29.07, ã= 1.33× 10−4 (upper solid curve), which

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

63
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.637


Analysis of electrodynamic fluidization 281

correspond to particles of size 20 µm and 30 µm, respectively, in the conditions of
the experiments of Shoshin & Dreizin (2002). The dashed curve in this figure shows
the deposition threshold E(0)= 1. In each case, the stationary state is unstable in the
wedge between the solid and the dashed curve. The kink of the upper solid curve
reflects a change in the dominant instability. For values of N above 0.9, the first
instability to appear when V is decreased is that with k= 0.

A large number density of particles near the lower electrode is a necessary condition
for instability, and this condition is realized near the dashed curve in figure 7. On
this curve deposition begins to occur and the number density of positive particles
diverges at the lower electrode. The region of instability can be approached either by
decreasing the voltage at constant N or by increasing N at constant voltage, but both
ways amount to approaching the threshold of particle deposition and thus increasing
the maximum number density.

A modified eigenvalue problem has also been considered to mimic the presence
of deposited particles at the lower electrode, which allows for a variable number of
suspended particles during the development of the instability. For this purpose, the
first boundary condition (4.4) at the lower electrode is replaced by the condition
that the electric field be constant at this electrode. Strictly, this field should be equal
to unity, but the value 1 + η with η as small as 10−3 has been used to avoid the
divergence of the stationary number density of positive particles. Numerical tests
show that the effect of a small η on the eigenvalue with largest real part is negligible.
Solution of this eigenvalue problem shows that the modified boundary condition has
only a small effect on the hydrodynamic instability, although it suppresses the second
instability discussed above, which was due to the variation of the electric field at the
lower electrode caused by the perturbation of the space charge above this electrode.
On (essentially) the dashed curve in figure 7, the stationary solution becomes unstable
when N becomes larger than approximately 0.185 (for which V ≈ 1.115; the black
circle in the figure), in agreement with the results of the analysis for a constant
number of suspended particles. It seems thus that particle deposition and resuspension
does not suppress the instability that appeared already above the deposition threshold,
when these processes did not occur.

Similarly, the instability is not expected to disappear when the number of particles
per unit electrode area increases to values of O(α) and interparticle collisions come
into play.

4.2. Nonlinear transients
The dynamics of large-amplitude perturbations in systems without deposited particles
is computed with a combination of an Eulerian, mesoscale description of the gas and
the electric field (Williams 1985) and a Lagrangian, particle-in-cell description of the
particles (Hockney & Eastwood 1988; Birdsall & Langdon 1991). Starting from a
random initial distribution, the positions of the particles change according to

dxi

dt
= vgi + qiEi − ı̂ for i= 1, . . . ,Np, (4.7)

where Np is the number of particles in the gap, equal to NÃ/α(6πã)2 in terms of the
dimensionless variables of § 2, and vgi and Ei are the gas velocity and electric field
at the position xi of particle i.

When a particle hits the lower (respectively upper) electrode, it is replaced by a
particle injected at the same electrode point with charge q+=E (respectively q−=−E),
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where E is the local instantaneous value of the electric field. Therefore the total
number of suspended particles is conserved as far as this process can be carried out;
i.e., when q+E− 1> 0 (respectively q−E− 1< 0).

Only two-dimensional simulations have been done, in which the variables depend
on a single horizontal coordinate (y) in addition to the vertical coordinate x. In
these simulations, each particle can be understood as an array of identical particles
equispaced in the third direction. Periodicity conditions are used in y. The parameter
Ã in (2.20) is here the ratio of the y-period to the interelectrode distance.

The electric potential and the velocity and pressure of the gas are determined by
(2.15) and (2.16) with the relevant boundary conditions in (2.18) and (2.19). The
charge and force densities appearing in these equations are

ρe =
(6πã)2α
δV

∑
qi and F=

(6π)2ã
δV

∑
(qiE− ı̂) (4.8a,b)

in the variables used in this section. Here the sums are over the particles present in a
control volume δV centred at point x at time t, and the factors (6πã)2α and (6π)2ã
are a consequence of the non-dimensionalization.

The numerical treatment of this problem is fairly standard. Equations (2.16) are
rewritten in the equivalent stream function–vorticity formulation. These equations
are discretized together with the Poisson equation (2.15) using second-order
finite differences in x and spectral collocation in y. They are marched in time
along with (4.7) using second-order methods. A Crank–Nicolson method with a
standard preconditioned biconjugate gradient is used for the viscous term, and
an Adams–Bashforth method is used for the rest. Numerical tests show that grid
independence is achieved with a non-uniform x-grid of 120 points, finer around the
lower electrode, and 512 Fourier modes in y (for Ã= 6). A dimensionless time step
of 5× 10−5 has been used.

The hybrid Eulerian/Lagrangian character of the simulation requires that the velocity
of the gas and the electric field be evaluated at the positions of the particles, in (4.7),
and that the charge and force densities in (4.8) be evaluated in terms of the charges
of individual particles and the forces they exert on the gas. For this purpose, the gas
velocity and the electric field are linearly interpolated to the positions of the particles
in each grid cell, and the charges and forces of the particles on the gas are projected
onto the grid using a linear weighting particle-in-cell method (Birdsall & Langdon
1991) to evaluate (4.8). The volumes of the grid cells are used for δV .

To further reduce the numerical burden in cases when the number of particles
in the gap is very large, particles are grouped in superparticles. Each superparticle
obeys the same (4.7) as individual particles, but it counts for as many particles
as it represents in the sums (4.8). The number of particles per superparticle is a
free parameter of the method; see Hockney & Eastwood (1988) and Birdsall &
Langdon (1991). In the computations discussed below, which require Np = 215 820,
this number is 5. Numerical tests consisting of sample runs in which the particles
are treated individually show that this grouping does not degrade the accuracy of the
results.

The code developed has been validated on related problems for which results of
Eulerian simulations are available for comparison; see Higuera (2016) and Higuera &
Tejera (2017).
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FIGURE 8. (Colour online) Four snapshots of the number density of positive particles,
from the numerical solution of (2.15), (2.16), (4.7) and (4.8) for N = 2.067, V = 2.14,
R= 12.92 and ã= 8.84× 10−5 at times t= 1.225 (a), 1.825 (b), 2.525 (c), and 4.225 (d).

Figure 8 shows some snapshots of the number density of positive particles,

n+ =
(6πã)2α
δV

∑
1+, (4.9)

computed for N = 2.067, V = 2.14, R = 12.92 and ã = 8.84 × 10−5 in a domain of
width Ã = 6. Here the sum extends to particles with positive charge (coming from
the lower electrode) in δV . To reduce the noise intrinsic to the particle method, the
variable shown in figure 8 is averaged over 1000 time steps, spanning a dimensionless
time 0.05. The most salient events of the history displayed by the simulation from
which this figure is extracted are briefly described here. Some of these events appear
also in other simulations, although the history itself changes from case to case.

In an initial stage, a number of structures with an average spacing of the order
of the wavelength of the most unstable perturbations emerge from the background of
noise and fall back to it, sometimes after two of these structures merge. By t= 1.225
(figure 8a) four plumes are clearly established in the computational domain. The three
at the left-hand side of the figure drift towards the right, and the rightmost plume
drifts towards the left. Counter-rotating vortices are visible at the lee side of some of
these plumes and move with them.

At approximately t = 1.825 (figure 8b), the two plumes at the right of the figure,
which were drifting in opposite directions, collide and merge. The space at the right
of the emerging plume, which due to the periodicity condition extends to the leftmost
plume in the figure, is wider than the spaces between other plumes and contains two
couples of vortices, one at each side of figure 8(b).

A new plume appears in this wide space at approximately t = 2.525 (figure 8c;
plume at the left-hand side). The four plumes now present in the domain drift towards
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the right, together with their vortex structures. However, the two plumes at the left
drift faster than the other two. They distort and overtake the vortices in the intervening
spaces and, one after the other, collide with the plume that was third from the left in
figure 8(c), merging with it. At t = 4.225 (figure 8d) a strong plume has just been
generated by this double merger. The rightmost plume in figure 8(c), which was not
involved in the process, is now at the left-hand side of figure 8(d). Finally, after some
reordering of the vortices at the lee side of the rightmost plume in figure 8(d), the two
plumes drift at approximately the same velocity without further collisions.

The time-averaged electric current collected at the electrodes in this simulation is
46.84 per unit electrode area, with an r.m.s. value of only 3.31. This average current
density is to be compared with the current density of the stationary state for the same
values of N and V , which is 18.32. The transient structures significantly increase the
current causing only small fluctuations in the external circuit. They can go unnoticed
if current fluctuations are used as an indicator. The fluctuations of the number density
of particles at the upper electrode, which could be relevant to characterize the spray
issuing from a small orifice in this electrode, are also small.

An additional computation in a domain twice as wide (Ã = 12) has been carried
out to ascertain if the final state with only two plumes is an effect of the artificial
periodicity condition. In this case, after a number of events, three plumes are left in
the computational domain. It seems therefore that collisions between these structures
cease in the two-dimensional simulations when the mean spacing between them
becomes larger than 3–4 times the depth of the gap. An extensive investigation of
the long-term evolution of the system is beyond the scope of this work.

The through gas flow required to push the suspended particles out of the
interelectrode gap has not been accounted for. Some possible effects of this flow
are briefly commented upon here to close this section. The flow is expected to affect
the suspension when its velocity is of the order of the velocities of the particles
due to the electric forces. A vertical upward gas flow injected through the electrodes
could be a rough model of the mesh electrode configuration of Kim (1989), though
detailed modelling of this device would be far too complex. The vertical flow would
push the particles upwards, increasing the maximum number of particles that can be
suspended for a given voltage. For given values of N and V , the flow would decrease
the number density of particles near the lower electrode, and thus should push the
stability limit in figure 7 to larger values of these parameters. A radially converging
gas flow carrying the suspension towards an outlet orifice at the centre of the upper
electrode (Shoshin & Dreizin 2002) leads to a velocity that increases as the inverse
of the distance to the outlet while this distance is large compared to the interelectrode
distance. In the absence of viscosity, the flow in this region would merely transport
the particles radially. However, vorticity generation at the electrode surfaces can very
much complicate this picture.

4.3. Effect of the particle inertia
The effect of the inertia of the particles has been left out up to this point on the basis
of the estimations of § 2. It can be taken into account replacing (4.7) by

St
dvi

dt
= qiEi − ı̂ − (vi − vgi) and

dxi

dt
= vi for i= 1, . . . ,Np, (4.10a,b)

where St = m2g/c2
f L; replacing v+ = q+E − ı̂ in the boundary condition at x = 0 by

v+ · ı̂=−rv− · ı̂ and v+× ı̂=v−× ı̂, and similarly v− · ı̂=−rv+ · ı̂ and v−× ı̂=v+× ı̂
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at x= 1, where r is a coefficient of restitution in [0, 1]; and evaluating the density of
force in the momentum equation (2.16) as

F=
(6π)2ã
δV

∑
(vi − vgi). (4.11)

Numerical results for St=1.79×10−2, which corresponds to particles of approximately
20 µm in size in the experiments of Shoshin & Dreizin (2002), and values of other
parameters given above, show that the system tends to a stationary unidimensional
state, up to the noise implicit in the simulations. The dimensionless voltage must be
decreased to V = 2.05 before a non-stationary structure similar to that of the previous
section emerges. When it does, the plumes have less tendency than before to orderly
drift, though they still collide, merge and reappear in a seemingly continuous manner.

The stabilizing effect of the inertia of the particles at the small value of St in the
simulation is surprising at first sight. For large values of the coefficient of restitution
r, leading to rebound velocities at the lower electrode larger than q+E − ı̂, the
effect can be understood by noticing that the inertia decreases the number density
of positive particles in the thin layer by the lower electrode where it is highest,
which is where the instability developed in the absence of inertia. For small values
of r, leading to rebound velocities smaller than q+E− ı̂, the stabilizing effect of the
particle inertia may be due to the lag it induces in the transmission of electric forces
from the particles to the gas. This delays the acceleration of the gas in regions near
the lower electrode where a perturbation in the density of positive particles increases
the electric field, and thus hinders the mechanism of growth of the hydrodynamic
instability discussed above.

5. Conclusions

An analysis has been carried out of the electrodynamic fluidization of monodisperse
particles of infinite electrical conductivity in a gas, assuming that the particles do not
coalesce and that the effect of their inertia is negligible (small Stokes number).

Order-of-magnitude estimations show that the effect of the collisions on the
dynamics of electrically charged particles is small when the characteristic number
density of suspended particles is small compared to the inverse of the volume swept
by a particle crossing the interelectrode gap. Stationary distributions of the particles
and the electric field have been computed for given values of the applied voltage (V)
and the number of suspended particles per unit electrode area (N). Analytical results
based on the work of Shoshin & Dreizin (2002) are given for values of N small
compared to the inverse of the cross-section of a particle, and numerical computations
are used for larger values of N. These stationary distributions determine the maximum
value N can take as a function of the applied voltage. This maximum is attained
in the normal operation of an electrodynamic fluidization device, when there are
particles deposited at the lower electrode. It is determined by the field mechanism,
whereby the electric field induced by the charge of the suspended particles, which
opposes the field due to the applied voltage in the lower part of the interelectrode
gap, reduces the field at the lower electrode to the minimum required for electric
forces to resuspend falling particles.

Stationary solutions without collision effects become unstable when the applied
voltage decreases below a certain value that depends on N. Two instabilities may
appear. One is an instability of the stationary distribution of charge associated with
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the large concentration of positive particles near the lower electrode. The other is a
hydrodynamic instability by which an initial perturbation in the form of a localized
accumulation of positive particles near the lower electrode grows and drifts away
from the electrode due to the upward flow induced in the gas by the electric force
on the excess of charge. This instability develops into electrohydrodynamic plumes
whose dynamics is described by means of two-dimensional Lagrangian simulations.
The inertia of the particles has a stabilizing effect, probably due to the delay it
introduces in the response of the gas to the electric force on the particles.
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Appendix A. Collisions
Collisions leading to redistribution of charge require mechanical contact of the

colliding particles. The relevant distance for these collisions is the particle radius a,
and the Stokes number based on this distance is larger than the small Stokes number
considered in § 2 by a factor L/a. The new Stokes number is typically large (except
in the experiments of Shoshin & Dreizin (2002) with 10 µm aluminium particles,
which are unusually small and light). Thus the effect of the inertia of the particles
is large compared to the hydrodynamic drag during collisions, while the opposite is
true between collisions.

The effect of the electric force between colliding particles can be estimated as
follows. In terms of the characteristic electric field in the gap, Ec = V/L, the typical
charge of the particles is qc = αε0a2Ec and their typical velocity is vc = qcEc/cf . The
electrostatic energy of two charged particles whose centres are separated a distance
2a is q2

c/(8πε0a), and the ratio of this energy to the kinetic energy of the particles
(mv2

c ) is

S=
c2

f L2

8πmε0aV2
. (A 1)

This ratio is small, in the range 3.2× 10−3–8× 10−3 in the experiments of Shoshin
and Dreizin, which justifies neglecting electric forces in particle collisions.

Electric forces may be important in other interactions, with impact parameter larger
than 2a. These, however, do not involve mechanical contact or redistribution of charge
between the particles, while the exchanges of momentum and energy are irrelevant
when the effect of the particle inertia is negligible between collisions.

Collisions occur in the presence of an external electric field additional to the field
induced by the charges of the colliding particles. In the absence of an external field,
the charges q1 and q2 of the particles, assumed to be perfect conductors, would be
equally distributed between then, each emerging with a charge (q1 + q2)/2. However,
the external field leads to an additional redistribution of the charge which can be
computed as follows. Since the effect of the inertia is negligible between collisions,
the velocities of the particles relative to the gas align with the external field, and
collisions occur when the more charged particle overtakes the less charged particle
or the two particles approach head on. Consider first the special case sketched in
figure 9(a), in which the line joining the centres of the particles is parallel to the
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a

e

E E

(a) (b)

FIGURE 9. Sketch of the excess and defect of charge induced by an external electric field
on colliding particles.

external field. The electrostatic problem can be solved by inversion about the point of
contact, which transforms the problem to that of a dipole between two parallel planes,
followed by the method of images (Maxwell 1881). The excess of charge induced by
the external field in the upper sphere of figure 9(a), equal to the defect of charge
induced in the lower sphere, is qE0 = γ0ε0a2E with γ0 = (8 ln 2 − π2/3)2π. In the
more general case of figure 9(b), only the component of the external field parallel
to the line joining the centres contributes to the redistribution of charge between the
spheres, and the excess and defect of charge are

qE = γ0ε0a2E

√
1−

( e
2a

)2
, (A 2)

where e is the impact parameter of the collision. If all the values of e between 0 and
2a are equiprobable, the mean value of the excess and defect of charge is

q̄E =
1

4πa2

∫ 2a

0
qE2πe de= γ ε0a2E with γ =

2
3
γ0 ≈ 9.45. (A 3)

For completeness, collisions with negligible inertial effects, which could be relevant
for suspensions of very small particles with ε0maV2/c2

f L2
� 1, are briefly discussed in

an approximate manner. Using the estimation of qc above, the electric force between
two colliding particles is of order q2

c/(8πε0a2)∼ qcEc, which is the order of the force
due to the characteristic electric field in the gap. The mutual attraction or repulsion
between colliding particles is thus important in this case and affects the value of the
collision cross-section.

Consider a reference frame moving with velocity (vg + mg)/cf , where vg is the
mesoscale velocity of the gas, which can be assumed to be uniform on distances
of order a. The motion of the colliding particles takes place in a plane determined
by their initial positions and the mesoscale field E, which can also be assumed to
be uniform in the collision region. Let x1 and x2 be the positions of the centres
of the particles, and q1 and q2 their charges, with q1 > q2 for definiteness. Writing
x1 = xm + δx and x2 = xm− δx, the mean point xm moves with velocity (q1 − q2)E/cf .
Approximating the electric force between the particles by the force between two point
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(repulsion) (attraction) (strong attraction)

FIGURE 10. Sketch of particle collisions in the absence of inertia.

particles, and scaling distances with a and time with 2cf a/(q1− q2)|E|, δx= a(δx, δy)
satisfy

dδx
dt
= 1+Π

δx
r3
,

dδy
dt
=Π

δy
r3

with r= (δx2
+ δy2)2 and Π =

q1q2

8πε0|q1 − q2||E|a2
,

 (A 4)

where the x-axis points in the direction of E.
The solution of these equations can be written in parametric form as

δx=
Π

|Π |1/2

±f (ξ)− 1
ξ

and δy= |Π |1/2
√
±2f (ξ)− 2− cξ 2

ξ
(A 5a,b)

with f (ξ)=
√

1+ cξ 2 + ξ 4, where ξ is a parameter related to time, c is an integration
constant, and the upper and lower signs in front of f (ξ) apply in different regions of
the trajectory.

The dividing trajectory in the (δx, δy) plane separating collisions with mechanical
contact between the particles from interactions without contact is sketched in figure 10
for different ranges of Π . With reference to this figure, the problem reduces to
determining c(Π) for the dividing trajectory, which in turn determines the limiting
impact parameter ∆(Π) in terms of which the collision cross-section is 4π∆2a2. A
straightforward though somewhat tedious analysis using (A 5) gives

∆=

0 for Π > 1
1−Π for − 1<Π < 1
2(−Π)1/2 for Π <−1.

(A 6)

Appendix B. Effect of a finite electrical conductivity
The assumption of infinite particle conductivity needs to be revised for non-metallic

particles and for metallic particles surrounded by a layer of oxide of reduced
conductivity. This is the case for aluminium particles. The electrical resistance of
the oxide layer depends on its thickness and may also depend on the electric field,
if quantum tunnelling is relevant (Zhebelev 1991), and on the contact pressure
that appears in collisions, if electrical shorting through the layer is to be expected
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(Colver 1976). In addition, surface conductivity may play a role, which brings in
effects of the size, permittivity and relative humidity. In particular, the relative
humidity may depend on the through flow that pushes the particles, which would
thus affect the electrical properties of the particles in addition to the drag force
acting on them. As kindly pointed out by a reviewer, this could partially explain the
observed change of the operation characteristics of the device when a through flow is
imposed. All these factors make it difficult to predict the electrical resistance of the
particles. However, this resistance is known to have important effects, in particular on
the maximum attainable concentration of suspended particles; see Myazdrikov (1984),
Krivtsov & Morozov (1985) and Bologa & Berkov (1989).

Zhebelev (1991, 1993) modelled the effect of a finite electrical resistance on the
redistribution of charge in particle–particle and particle–electrode collisions in terms
of the ratio of the contact time tc to the electric relaxation time te. For an elastic
collision of a spherical particle and a planar electrode of the same material, the first
of these times is (Landau & Lifshitz 1986)

tc = 3.78
(1−µ2

s )
2/5m2/5

E2/5
s a1/5v1/5

, (B 1)

where Es and µs are the elastic modulus and the Poisson modulus of the material, m
and a are the mass and radius of the particle, and v is the velocity with which the
particle impacts on the electrode. The electric relaxation time is te = ε0ε/K, where
ε and K are effective values of the dielectric constant and the electrical conductivity
of the particle. According to Zhebelev (1991), the charge with which a particle with
initial charge q emerges from a collision with the lower (upper) electrode is q′= q±+
(q− q±) exp(−tc/te), where q± are given by (2.12) and (2.13).

In this appendix, the model of Zhebelev is applied to stationary solutions in the
conditions of § 3.1, when the effect of interparticle collisions is negligible. Then the
charge of a particle that rebounds from the lower electrode after ` oscillation cycles,
having collided ` times with each electrode, is q(`+1)

+ = q+ + b(`)+ (q
(`)
− − q+), where

q(`)− is the charge with which the particle last left the upper electrode and b(`)+ =

exp(−t(`)c+/te) with t(`)c+ given by (B 1) for v = [−q(`)− E(0)+mg]/cf . Similarly, q(`+1)
− =

q−+ b(`)− (q
(`)
+ − q−) with b(`)− = exp(−t(`)c−/te) and t(`)c− given by (B 1) for v= [q(`)+ E(L)−

mg]/cf . After a large number of oscillation cycles, in the limit `→∞, the charges
of the particles bouncing off the lower and upper electrodes settle to the values

q∗
+
=

1− b∗
+

1− b∗
+

b∗
−

q+ +
b∗
+
(1− b∗

−
)

1− b∗
+

b∗
−

q− and q∗
−
=

b∗
−
(1− b∗

+
)

1− b∗
+

b∗
−

q+ +
1− b∗

−

1− b∗
+

b∗
−

q−,

(B 2a,b)
where dimensionless variables are used, q+ = E(0), q− =−E(1), and

b∗
+
= exp

{
−

ν

[1− q∗
−

E(0)]1/5

}
and b∗

−
= exp

{
−

ν

[q∗
+

E(1)− 1]1/5

}
with ν =

tc0

te
, tc0 = 3.78

(1−µ2
s )

2/5c1/5
f m1/5

E2/5
s a1/5g1/5

.

 (B 3)
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FIGURE 11. (a) Dimensionless charges with which the particles detach from the lower
(q∗
+

, solid curves) and upper (q∗
−

, dashed curves) electrodes, given by (B 2) as functions
of the dimensionless voltage for N=1 and ν=1.5, 2, 3, 4 and 10, increasing from bottom
to top. (b) Dimensionless electric current as a function of the dimensionless voltage for
N = 1 and ν = 1.5, 2, 3, 4 and 10, increasing from bottom to top. (c) Dimensionless
number of particles per unit electrode area at the threshold of particle deposition on
the lower electrode, determined by the condition q∗

+
E(0) = 1, as a function of the

dimensionless voltage for ν = 1.5, 1.6, 1.7, 2, 2.5 and 10, increasing from bottom to
top. (d) Dimensionless electric current as a function of the dimensionless voltage in the
conditions of (c).

The analysis of § 3.1 can be redone with these modified charges of the particles.
Figure 11(a,b) show the values of the charges and the electric current as functions
of the voltage for N = 1 and various values of ν. As could have been expected, the
charges and the current decrease when the effective conductivity, thus ν, decreases.
Figure 11(c,d) show the dimensionless number of suspended particles N and the
electric current I as functions of the voltage at the threshold of particle deposition,
determined by the condition q∗

+
E(0)= 1, for various values of ν. For a given voltage,

N and I decrease with ν. For any ν <∞, both magnitudes attain maximum values
for a certain voltage and decrease when the voltage is further increased.

The cause of this non-monotonic behaviour can be described as follows. The electric
field at the upper electrode and the value of the negative charge of the particles that
detach from it (−q∗

−
) increase with the applied voltage. The velocity with which these

particles hit the lower electrode also increases. This, however, decreases the contact
time of the particles with the lower electrode (see (B 1)), and the positive charge with
which the particles rebound. The electric field at the lower electrode must increase in
order to satisfy the condition q∗

+
E(0) = 1, and this limits the maximum amount of

space charge (thus N), which tends to reduce this field, to a value that first increases
and then decreases with increasing V . The velocity of the positive particles tends to
zero at any point in the gap when N→ 0 on the rightmost branch of the curves.
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