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Abstract. We introduce a refined version of group cohomology and relate it to the
space of polynomials on the group in question. We show that the polynomial cohomology
with trivial coefficients admits a description in terms of ordinary cohomology with polyno-
mial coefficients, and that the degree one polynomial cohomology with trivial coefficients
admits a description directly in terms of polynomials. Lastly, we give a complete descrip-
tion of the polynomials on a connected, simply connected nilpotent Lie group by showing
that these are exactly the maps that pull back to classical polynomials via the exponential
map.
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1. Introduction. Group cohomology is by now a standard tool with a wide range
of applications spanning from finite to locally compact groups and across a variety of dis-
ciplines, including differential geometry, ergodic theory, topology, and operator algebras.
The aim of the present paper is to introduce a refined version of group cohomology, dubbed
polynomial cohomology, which consists of a family of functors Hn

(d)(G,−) for which the
case d = 1 corresponds to the ordinary cohomology Hn(G,−) of the group G in ques-
tion. As the name suggests, this cohomology theory is intimately linked with polynomials
on groups (see Section 4 for definitions), a notion that dates back to (at least) the works
of Passi from the 1960s [17–19]. Passi’s work is primarily concerned with polynomials
on discrete abelian groups, and already in his works the connection to cohomology theory
appears, in that he obtains information about circle-valued 2-cohomology of abelian groups
as a consequence of his results [19, Theorem 4.1]. Polynomial maps also appear in the work
of Buckley [7] regarding nilpotency of wreath products, and later in the work of Leibman
[14] where emphasis is also on the case of nilpotent groups. The setting of the present
paper will be that of locally compact, second countable groups, and in the case of trivial
coefficients the relationship between polynomial cohomology and actual polynomials is
made precise by means of the following theorem.

THEOREM A (see Propositions 3.8 and 4.4). Let G be a locally compact, second count-
able group and denote by Pold(G) the space of polynomials on G of degree at most d. Then
there exists an isomorphism of topological vector spaces
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Hn
(d) (G,R)� Hn (G, Pold−1(G)) , for all n ∈ N0.

Moreover, in degree 1, there exists an isomorphism of topological vector spaces

H1
(d) (G,R)� Pold(G)/Pold−1(G).

In the case where G is a discrete abelian group, Pold(G)/Pold−1(G) was actually stud-
ied from a functorial point of view already by Passi [18], although it was not considered as
a cohomology theory in the sense of the present paper. As a consequence of Theorem A,
we deduce the following:

COROLLARY B (See Corollary 4.5). If G is a cohomologically finite dimensional,
locally compact, second countable group, then Pold(G) is finite dimensional for each
d ∈ N0.

Here G is called cohomologically finite dimensional if its cohomology groups with
coefficients in finite dimensional G-vector spaces are finite dimensional themselves, and we
remark that this for instance includes finitely generated discrete groups whose classifying
space is a finite CW complex as well as connected, simply connected, nilpotent Lie groups.

Often the polynomial cohomology captures no new information about the group (this
is for instance the case if the group has compact abelianization; cf. Remark 3.7), but for
nilpotent groups we show that the situation is quite different:

THEOREM C (see Theorem 6.1 & Remark 6.2). For a connected, simply connected,
nilpotent Lie group G, the polynomials on G are exactly the functions that pull back to
ordinary polynomials on the Lie algebra of G via the exponential map.

In the setting of Theorem C, by considering G as the set of real points of a linear
algebraic group, this shows, in particular, that the space of polynomials in this case is
nothing but the classical set of regular functions on the algebraic group in question (see
also Remark 6.7). Using Theorem C, we also deduce that the space of all polynomials on
a connected, simply connected Lie group G is a Hopf algebra and that this is a complete
invariant of the Lie group in question:

COROLLARY D (See Theorem 6.15). Let G and H be connected, simply connected,
nilpotent Lie groups and suppose that � : Pol(G)→ Pol(H) is a Hopf algebra homomor-
phism. Then there is a unique continuous group homomorphism ϕ : H → G such that � is
induced by ϕ, and ϕ is an isomorphism if and only if � is.

We note that the result in Corollary D is not new, in the sense that Theorem C allows
us to think of Pol(G) as the algebra of regular functions on G when the latter is considered
as the set of real points of an algebraic group, and after adapting this point of view, the
result in Corollary D is then a classical fact in algebraic geometry (cf. [6, Chapter 1]).
Note, however, that the proof of Corollary D provided in Section 6.1 makes no (explicit)
use of algebraic geometry, and it is our hope that this will make the result accessible to a
different audience.

2. Notation and conventions.

Topological vector spaces. Unless explicitly stated otherwise, all generic topological
vector spaces are implicitly assumed to be Hausdorff. Our primary need for treating
non-Hausdorff topological vector spaces stems from the fact that the cohomology of a
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topological group is (generally) a non-Hausdorff topological vector space, but this will
not lead to any confusion, as it will always be clear from the context whether or not the
space in question is (assumed) Hausdorff. A morphism ϕ : E →F between (not neces-
sarily Hausdorff) topological vector spaces E and F is a continuous linear map, and an
isomorphism is a morphism such that there exists an inverse morphism ϕ−1 : F → E .

Topological groups. The term “group” will always mean an abstract group without any
topology, and we will follow the standard convention and abbreviate “locally compact sec-
ond countable by ‘lcsc’.We denote the identity element in a group G by 1G, leaving out the
subscript whenever this does not lead to ambiguity. Lastly, we will denote the inversion map
g �→ g−1 by inv : G → G whenever notationally convenient and the center of G by Z(G).
The product map is occasionally denoted by m : G × G → G and the map (g, h) �→ gh−1

by m̃.

Topological G-modules. Let G be a lcsc group. By a topological (or continuous) G-module,
we shall mean a (Hausdorff) topological vector space E over either R or C together with an
action of G by invertible linear maps such that the action map G × E → E is continuous.
Note that when E is a Hilbert space this, a priori quite strong continuity requirement, coin-
cides with the more familiar notion of a strongly continuous G-action [10, Lemme D8].
A morphism of topological G-modules is a morphism of the underlying topological vector
spaces which intertwines their respective G-actions.

Extended natural numbers. We denote by N0 the set N ∪ {0}, and, following Leibman [14,
3.3], we denote the set {−∞} ∪ N0 by Z∗ and define

x+̇y :=
⎧⎨
⎩ x + y, x, y ∈ N0 ⊆ Z∗

−∞, if either of x, y = −∞
,

x−̇y :=
⎧⎨
⎩ x − y, x � y ∈ N0 ⊆ Z∗

−∞, x = −∞ or x< y ∈ N0

.

We leave x−̇y undefined if y = −∞.

Multi-index notation. Let I = {i1, . . . , il} be a finite set endowed with a fixed total order
such that i1 < i2 < · · ·< il. By a multi-index over a I we mean an element

d = (di)i∈I = (di1 , . . . , dil) ∈ NI
0.

For a Mal’cev group G (see Section 5 for the definition of Mal’cev groups; in particular this
includes connected, simply connected, nilpotent Lie groups), we denote by cl(G) the multi-
index (1, . . . , cl(G)) ∈ N

cl(G)
0 and by rk(G) the multi-index (dimR g[i]/g[i+1])i=1,...,cl(G) ∈

N
cl(G)
0 . For a multi-index k over I we denote by Nk

0 the product set
∏

i∈I N
ki
0 = N

ki1
0 × · · · ×

N
kil
0 , and for a Mal’cev group G we denote by dim(G) the multi-index (where we write

m := rk(G))

dim(G) := ((1)j=1,...,m1 , . . . , (cl(G))j=1,...,mcl(G) ) ∈ Nm
0 .

For any d ∈ N0 and any multi-index k over I , we define

Dd,k :=
{

d ∈ NI
0 |
∑
i∈I

kidi � d
}
,
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and denote by D=
d,k the subset for which equality holds. Finally, we set

Bk :=
⋃̇

i∈I
{1, 2, . . . , ki},

(disjoint union) and consider on this set the lexicographic order.

Product notation For a group G, a finite (totally) ordered set I = {i1, . . . , il} with i1 < · · ·<
il and a map I � i �→ gi ∈ G, we write

∏
i∈I gi for the element gi1 gi2 · · · gil ∈ G.

3. Polynomial cohomology of lcsc groups. In this section, we recall the definition
of continuous cohomology for locally compact groups, and define, more generally, a notion
of polynomial cohomology, for which the “linear” (or degree one) case coincides with the
usual cohomology.

DEFINITION 3.1 (strengthened morphism). A morphism v : E →F between topological
G-modules is said to be strengthened, if there exists a morphism of topological vector
spaces η : F → E such that v ◦ η ◦ v = v.

We emphasize that it is not part of the definition that the map η be G-equivariant.
The definition of a strengthened morphism just given might not be completely standard,
but is easily seen to be equivalent with the one used, for example, in [10, Chapter III &
Appendix D]; in particular, for injective morphisms, being strengthened is the same as
being left invertible in the category of topological vector spaces.

DEFINITION 3.2 (relative injectivity). A continuous G-module E is said to be relatively
injective, if given any diagram

0 �� F1

v

��

u �� F2

∃w
���
�
�
�

E

where u : F1 →F2 is a strengthened injective morphism, there exists a morphism
w : F2 → E such that the augmented diagram commutes.

For G a lcsc group and X a locally compact space on which G acts continuously by
homeomorphisms, the space of continuous functions C(X , E) is a continuous G-module for
every continuous G-module E , when endowed the standard action (g.f )(x)= g.f (g−1.x).
Recall that the topology on C(X , E) is the projective topology generated by the restriction
maps C(X , E)→ C(K, E) over all compact subsets K of X , that is, the topology of uniform
convergence on compact sets. In particular, note that if X is second countable and E is a
Fréchet space (as will often be the case in this paper), then C(X , E) is a Fréchet space as
well.

LEMMA 3.3 ([10, III, Proposition 1.2]). Let G be a lcsc group and E be a continuous
G-module. Then C(G, E) is relatively injective. In particular, the category of continuous
G-modules contains sufficiently many relatively injectives. Further, there is a strengthened,
relatively injective resolution

0 �� E ε �� C(G, E) d0
�� C(G × G, E) d1

�� · · · dn−1
�� C(Gn+1, E) dn

�� · · · ,
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where the coboundary maps are given by ε(ξ)(g) := ξ and

dn( f )(g0, . . . , gn+1) :=
n+1∑
i=0

(−1)if (g0, . . . , ĝi, . . . , gn+1), (3.1)

where the symbol ĝi denotes omission of the element gi.

DEFINITION 3.4 (differential notation and higher order invariants). Let G be a lcsc group
and E be a continuous G-module. For g ∈ G, we denote by ∂g : E → E the continuous, linear
map ξ �→ g.ξ − ξ , and for d ∈ N we define the dth order invariants in E as

EG(d) := {ξ ∈ E | ∀g1, . . . , gd ∈ G : ∂g1 ◦ · · · ◦ ∂gd (ξ)= 0}.
Note that EG(d) is the pre-image under the quotient map E → E/EG(d−1) of the sub-

space
(E/EG(d−1)

)G
—an observation we will be using frequently (without reference) in the

sequel. The relation (g1 − 1) · · · (gd − 1)(gx)= g(g−1g1g − 1) · · · (g−1gdg − 1)x shows
that EG(d) is a (closed) G-invariant subspace in E and hence (−)G(d) defines an endofunctor
on the category of topological G-modules, which recovers the classical invariants functor
when d = 1. Furthermore, it is easy to see that (−)G(d) is left exact, and thus has well-
defined right-derived functors, and these are the object of study in this section. We spell
out this construction by means of the following:

DEFINITION 3.5 (continuous polynomial cohomology). Let G be a lcsc group and let
E be a continuous G-module. For d ∈ N, we define the dth order continuous polynomial
cohomology of G with coefficients in E as

Hn
(d)(G, E) :=

ker
(

dn|EG(d)
n

)
im
(

dn−1|EG(d)
n−1

) , n ∈ N0,

where 0 �� E �� (E•, d•) is any strengthened, relatively injective resolution of
E . The space ker(dn|EG(d)

n
) is denoted by Zn

(d)(G, E) and referred to as the space of
homogeneous (degree d) polynomial n-cocycles and the space im(dn−1|EG(d)

n−1
) is denoted

by Bn
(d)(G, E) and referred to as the space of homogeneous (degree d) polynomial

n-coboundaries.

The left-exactness of (−)G(d) combined with standard arguments in relative homo-
logical algebra (cf. [10, III, Corollaire 1.1]) implies that the polynomial cohomology
Hn
(d)(G, E) is indeed well defined as a (generally non-Hausdorff) topological vector space,

that is, using different relatively injective, strengthened resolutions to compute Hn
(d)(G, E)

yields bijective, bicontinuous, linear maps between the resulting polynomial cohomology
spaces.

When d = 1, one sees that we recover the ordinary cohomology of G (see e.g. [10,
III]) which we will denote by Hn(G, E), as is more standard. Moreover, we will denote
by Hn(G, E) the reduced cohomology of G, that is, the maximal Hausdorff quotient of
the topological vector space Hn(G, E). Before we continue our investigation, we record a
definition that will be needed in the sections to follow.

DEFINITION 3.6. We say that a lcsc group G is cohomologically finite dimensional
if Hn(G, E) is finite dimensional for every n ∈ N0 whenever E is a finite dimensional
continuous G-module.
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Note that any finitely generated discrete group whose classifying space is a finite CW
complex is an example of a cohomologically finite dimensional group. So are connected
Lie groups (e.g. by the van Est theorem [10, III, Corollaire 7.2]).

REMARK 3.7. A direct computation shows that, given any topological G-module E and
any ξ ∈ EG(2), the map g �→ ∂g .ξ is a continuous homomorphism from G to E . Thus, if G
has compact abelianization, we conclude that EG(2) = EG for every topological G-module
E , and inductively that EG(d) = EG for all d. Hence, for such G, the continuous polyno-
mial cohomology coincides with the ordinary continuous cohomology in the sense that
Hn
(d)(G, E)= Hn(G, E) for all d ∈ N.

3.1. Polynomial cohomology in terms of ordinary cohomology. Our next aim is
the following proposition which gives a description of polynomial cohomology in terms
of ordinary cohomology. In the statement, we write Pold−1(G) for the space C(G,R)G(d),
where the G(d)-invariants are taken with respect to the right regular representation; see
Section 4 below, for an explanation of this terminology.

PROPOSITION 3.8. Let G be a lcsc group and let d ∈ N. Then:

(i) There are isomorphisms τ • : H•(G, Pold−1(G))
∼−→ H•

(d)(G,R), given on continu-
ous cochains by

(τ nξ)(g0, . . . , gn)= ξ(g0, . . . , gn)(1),

and with inverse defined, also at the level of continuous cochains, by

(τ n)−1(ξ)(g0, . . . , gn)(t)= ξ(t−1g0, . . . , t−1gn).

(ii) More generally, let G1 = G2 = G and let E be a continuous G-module. Considering
C(G, E) as a G1 × G2-module with the action (g1, g2).f (g) := g1.f (g

−1
1 gg2) there

is an isomorphism

χ• : H•(G1,C(G, E)G2(d)
) ∼−→ H•

(d)

(
G2,C(G, E)G1

)= H•
(d)(G, E). (3.2)

Proof. We first prove (ii). For the sake of clarity, denote by X a third copy of G and
write the coefficient module as C(X , E). Now define two complexes (Cn, dn

C)n∈N0 and
(Dn, dn

D)n∈N0 of G1 × G2-modules as follows:

Cn := C(Gn+1
1 ,C(X , E)) and Dn := C(Gn+1

2 ,C(X , E)),

with G1 × G2 actions

((g, h).f )(g0, . . . , gn)(x) := g( f (g−1g0, . . . , g−1gn)(g
−1xh)), f ∈ Cn,

((g, h).f )(h0, . . . , hn)(x) := g( f (h−1h0, . . . , h−1hn)(g
−1xh)), f ∈ Dn.

In both cases, the coboundary maps are the standard inhomogeneous ones, that is,

dn
C( f )(g0, . . . , gn+1)=

n+1∑
i=0

(−1)if (g0, . . . , ĝi, . . . , gn+1),
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and similarly for dn
D. Augmenting (C•, d•

C)with εC : C(X , E)→ C0 given by εC(ξ)(g) := ξ

and similarly for (D•, d•
D), we obtain two complexes of G1 × G2-modules:

0 → C(X , E)→ (C•, d•
C) (3.3)

0 → C(X , E)→ (D•, d•
D) (3.4)

Considering Cn as a G2-module, the action is only from the right in the X -variable, so

(Cn)G2(d) = C
(
Gn+1

1 ,C(X , E)G2(d)
)
.

Thus, as a complex of G1-modules, ((Cn)G2(d), dn
C|) is exactly the standard, relative

injective resolution of the G1-module C(X , E)G2(d), and we have therefore proved:

CLAIM 1. Upon passing to G1-invariants and cohomology, the complex
((Cn)G2(d), dn

C|) computes Hn(G1,C(X , E)G2(d)).

Similarly, passing to G1-invariants in the (3.4), we see that

(Dn)G1 = C(Gn+1
2 ,C(X , E)G1),

and hence, as a complex of G2-modules, ((D•)G, d•
D|) is the standard, relatively injec-

tive resolution of the G2-module C(X , E)G1 . The latter G2-module identifies with E (as
a G-module) via the map α : E → C(X , E)G1 given by α(ξ)(x) := xξ . This proves:

CLAIM 2. Upon passing to G2(d)-invariants and cohomology, the complex
((Dn)G1 , dn

D|) computes Hn
(d)(G, E).

Lastly, we want to relate the two complexes; this is done by means of

CLAIM 3. The map κn : Cn →Dn given by κn( f )(h0, . . . , hn)(x) := f (xh0, . . . , xhn)(x)
is an isomorphism of G1 × G2-complexes.

To see this, we first note that a direct computation shows that κ• is indeed a map of com-
plexes commuting with the G1 × G2-actions, and that the map (κn)−1 : Dn → Cn given by
(κn)−1( f )(g0, . . . , gn)(x)= f (x−1g0, . . . , x−1gn)(x) is its inverse. Thus, by composition,
we get an isomorphism:

τ n : Hn
(
G1,C(X , E)G2(d)

)= Hn
((
(C•)G2(d)

)G1
, d•

C|
)

(Claim 1)

κ•
� Hn

((
(D•)G2(d)

)G1
, d•

D|
)

(Claim 3)

= Hn
((
(C•)G1

)G2(d)
, d•

D|
)

= Hn
(d)(G, E). (Claim 2)

This proves (ii), and to obtain (i) we simply put E = R and note that for an inhomogeneous
cochain

ξ : Gn+1 → Pold−1(G)= C(X ,R)G2(d),

the class τ n([ξ ]) is represented by the cocycle

ev1 ◦κ(ξ)(h0, . . . , hn)= ξ(h0, . . . , hn)(1).
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Conversely, for an inhomogeneous polynomial cocycle ξ : Gn+1 → R = C(X ,R)G2 , the
image under (τ n)−1 is represented by the inhomogeneous cocycle

(κn)−1(ξ) ∈ C
(
Gn+1

1 ,C(X ,R)G2(d)
)= C

(
Gn+1, Pold−1(G)

)
,

given by (κn)−1(ξ)(g0, . . . , gn)(x)= ξ(x−1g0, . . . , x−1gn)(x).

3.2. Inhomogeneous polynomial 1-cocycles. In this section, we give a different
picture of polynomial 1-cohomology, analogous to the picture of ordinary cohomology
in terms of inhomogeneous cocycles. This, in turn, will allow us to describe the first
polynomial cohomology with trivial coefficients concretely in terms of polynomial maps,
which is done in Section 4 below.

Let G be a lcsc group, E a continuous G-module, and consider the standard relatively
injective resolution introduced in Section 3.

0 �� E d−1
�� C(G, E) d0

�� C(G2, E) d1
�� C(G3, E) �� · · · .

For functions ξ : G → E , we define the unitized difference operator (see also Definition 3.4
for notation) by

(∂̄gξ)(h) := (∂g ξ)(h)− (∂g ξ)(1).

LEMMA 3.9. For ξ ∈ C(G, E) and d ∈ N, the following are equivalent:

(i) For all g1, . . . , gd, one has ∂̄g1 ◦ · · · ◦ ∂̄gdξ = 0
(ii) For all g1, . . . , gd, one has that ∂g1 ◦ · · · ◦ ∂gdξ is a constant function into E .

Proof. For d = 1, we have ∂̄g1ξ := ∂g1ξ − ∂g1ξ(1), so if ∂̄g1ξ = 0 then clearly ∂g1ξ is
constant, and, conversely, if ∂g1ξ is constant then it equals ∂g1ξ(1), so ∂̄g1(ξ)= 0. For the
general case, one first observes that

∂g1 ◦ · · · ◦ ∂gd (ξ)= ∂g1 ◦ · · · ◦ ∂gd−1

(
∂gd (ξ)− ∂gd (ξ)(1)+ ∂gd (ξ)(1)

)
= ∂g1 ◦ · · · ◦ ∂gd−1(∂̄gd (ξ))+ ∂g1 ◦ · · · ◦ ∂gd−1(∂gd (ξ)(1))︸ ︷︷ ︸

constant as function into E

,

and by iterating this argument we see that ∂g1 ◦ · · · ∂gn(ξ) and ∂̄g1 ◦ · · · ◦ ∂̄gd (ξ) differ by
a constant function. Thus, if ∂̄g1 ◦ · · · ◦ ∂̄gd (ξ)= 0 then ∂g1 ◦ · · · ∂gn(ξ) is constant and,
conversely, if ∂g1 ◦ · · · ∂gn(ξ) is constant then so is ∂̄g1 ◦ · · · ◦ ∂̄gd (ξ), and since the latter
function is normalized to be 0 at 1, it follows that ∂̄g1 ◦ · · · ◦ ∂̄gd (ξ)= 0.

Note that when the G-action on E is trivial, condition (ii) in Lemma 3.9 is equivalent
to ξ ∈ C(G, E)G(d+1). We will also need a bit of information regarding the kernel of d1. To
this end, note that d1(ξ)(s, t, u) := ξ(t, u)− ξ(s, u)+ ξ(s, t) so d1(ξ)= 0 implies

ξ(s, u)= ξ(s, t)+ ξ(t, u). (3.5)

Using this, it easily follows that for ξ ∈ ker(d1)⊂ C(G2, E), we have

ξ(1, 1)= 0 (3.6)

ξ(g, h)= ξ(g, 1)+ ξ(1, h) (3.7)

ξ(1, g)= −ξ(g, 1). (3.8)
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In order to give an inhomogeneous picture of polynomial cohomology, we need a bit of
notation.

NOTATION 3.10. For ξ ∈ C(G2, E), we denote by ξ̄ ∈ C(G, E) the map ξ̄ (g) := ξ(1, g)
and by β : C(G2, E)→ C(G, E) the map ξ �→ ξ̄ .

The following proposition now generalizes the usual description of cohomology in
terms of inhomogeneous 1-cocycles;

PROPOSITION 3.11. The map β : C(G2, E)→ C(G, E) restricts to a continuous
bijection from Z1

(d)(G, E) := C(G2, E)G(d) ∩ ker(d1) onto

P := {η ∈ C(G, E) | η(1)= 0 and ∂̄g1 ◦ · · · ◦ ∂̄gdη= 0 for all g1, . . . , gd ∈ G}.
Proof. Since the topology on C(G2, E) and C(G, E) is given by uniform convergence

on compact subsets, the continuity of β is clear. It is furthermore injective on ker(d1),
because if d1(ξ)= 0 and ξ̄ = 0 then ξ(1, g)= 0 and, by (3.8), also ξ(g, 1)= 0 for all g ∈ G.
Thus, by (3.7), ξ(g, h)= ξ(g, 1)+ ξ(1, h)= 0. We now need to prove that β takes values
in the prescribed set. So, let ξ ∈ Z1

(d)(G, E) and g1, . . . , gd ∈ G be given. Since ξ(1, 1)= 0,

we have ξ̄ (1)= 0 so we only need to prove that ∂̄g1 ◦ · · · ◦ ∂̄gd ξ̄ = 0. Using the three basic
cocycle properties above, we now get

∂gξ(h) := ∂gξ(1, h)= gξ(g−1, g−1h)− ξ(1, h)=
= g

(
ξ(g−1, 1)+ ξ(1, g−1h)

)
− ξ(1, h)

= gξ(1, g−1h)− ξ(1, h)− gξ(1, g−1)+ ξ(1, 1)

= ∂g ξ̄ (h)− ∂g ξ̄ (1)= ∂̄g(ξ̄ )(h).

Inductively, we therefore get that

∂g1 ◦ · · · ◦ ∂gd (ξ)= ∂̄g1 ◦ · · · ∂̄gd (ξ̄ ), (3.9)

for ξ ∈ ker(d1). Thus, if ξ ∈ Z1
(d)(G, E) then the left-hand side of (3.9) vanishes and hence

so does the right-hand side, that is, ξ̄ ∈P . To prove that β is surjective, let η ∈P be given
and set η̃(g, h) := η(h)− η(g). Then clearly η̃ ∈ C(G2, E) and a direct computation shows
that d1η̃= 0. Since η(1)= 0, it is furthermore clear that ¯̃η= η so all we have to prove is
that η̃ ∈ C(G, E)G(d). Since we have already established that η̃ ∈ ker(d1), we may use (3.9)
to conclude that ∂g1 ◦ · · · ◦ ∂gd (η̃)= 0.However, as η̃ ∈ ker(d1) and ker(d1) is a G-invariant
subspace, also ∂g1 ◦ · · · ◦ ∂gd (η̃) ∈ ker(d1), and since β is injective on ker(d1) we conclude
that ∂g1 ◦ · · · ◦ ∂gd (η̃)= 0 as desired.

EXAMPLE 3.12 (quadratic 1-cocycles). By the Lemma 3.9 and Proposition 3.11, we may
describe the inhomogeneous “quadratic” 1-cocycles ξ : G → E as precisely those unital
maps for which, for all g, h ∈ G, (∂g ◦ ∂h)ξ is constant. Computing this, we get

(∂g ◦ ∂h)(ξ)(k)= gh.ξ((gh)−1k)− g.ξ(g−1k)− h.ξ(h−1k)+ ξ(k)

= gh.ξ((gh)−1)− g.ξ(g−1)− h.ξ(h−1),

where the second equality follows by letting k = 1. This can be rewritten as

ξ(ghk)= ξ(gh)+ g.ξ(hk)+ ghg−1.ξ(gk)− ghg−1.ξ(g)− g.ξ(h)− gh.ξ(k), g, h, k ∈ G.
(3.10)
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4. Polynomial maps on groups. In this section, we study the space of polynomials
on a group, which was already ad hoc introduced in the previous section, and show that
H1
(d)(G,R) can be described directly in terms of the polynomials on G. As already men-

tioned in the introduction, the (abstract) notion of polynomial maps on groups goes back
(at least) to the work of Passi [17–19] and has since then appeared in a number of different
contexts; see for example, [1, 7, 14, 21] and references therein. We now formally define
the space of polynomial maps:

DEFINITION 4.1 (polynomial maps). Let G be a lcsc group and let ξ ∈ C(G,R) \ {0}.
We say that ξ is a polynomial of degree at most d ∈ N0 if for all g1, . . . , gd+1 ∈ G, we have

(∂g1 ◦ · · · ◦ ∂gd+1)(ξ)= 0, (4.1)

where C(G,R) is considered a G-module for the left regular action. The degree deg ξ of a
polynomial map ξ is the smallest number d such that ξ satisfies (4.1) for all g1, . . . , gd+1 ∈
G. Moreover, the zero map is formally included in the set of polynomials and assigned
the degree −∞. We denote the set of polynomials of degree at most d by Pold(G) :=
C(G,R)G(d+1) and by Pol(G) the set ∪d∈Z∗ Pold(G). Lastly, a polynomial ξ is said to be
unital if ξ(1)= 0; we denote the set of unital polynomials by Pol0(G) and those of degree
at most d by Pol0d(G).

REMARK 4.2. One could of course also define polynomials by means of right dif-
ferences instead of left differences, that is, for a function ξ : G → R, consider the right
difference operator defined by

( ∂g ξ)(h) := ξ(hg)− ξ(h),

and introduce right polynomials accordingly. However, by [14, Corollary 2.13],
ξ ∈ C(G,R) is a left polynomial map of degree d if and only if it is a right polynomial
of degree d.

REMARK 4.3. We record the following basic facts concerning polynomials:

(1) When G is equal to R (or more generally Rn), the above definition recovers the
classical notion of polynomials and their degrees; we leave the argument as an
exercise.

(2) The set Pol0(G) consists of the constant functions on G and the set Pol1(G)
consists of functions of the type ξ = ϕ + r where ϕ : G → R is a (continuous)
homomorphism and r ∈ R is a constant.

(3) When G is compact, the only polynomials are the constant functions. For polyno-
mials of degree 1 this is clear from the description just given, since the image of G
under a continuous homomorphism is a compact, additive subgroup of R and hence
equal to {0}. The general case now follows by induction on the degree. Note that
this is a special case of the situation treated in Remark 3.7.

In the language just introduced, Lemma 3.9 and Proposition 3.11 simply say, that (with
trivial coefficients) the space of homogeneous 1-cocycles of polynomial degree d in the
standard resolution is isomorphic to the space of unital polynomial maps of degree at most
d. The following proposition now describes (again for trivial coefficients) the space of
polynomial 1-coboundaries:

PROPOSITION 4.4. Let G be a lcsc group and let d ∈ N. Under the map β : ξ �→
ξ̄ defined in Notation 3.10, the set of polynomial 1-coboundaries B1

(d)(G,R) :=
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d0(C(G,R)G(d)) maps bijectively onto the space of (continuous) unital polynomial maps
of degree at most d − 1, that is, we obtain an isomorphism

H1
(d)(G,R)∼= Pold(G)/ Pold−1(G).

In particular, H1
(d)(G,R) is Hausdorff and the natural G-action on Z1

(d)(G,R) induces the

trivial action on H1
(d)(G,R).

We remark that all statements in Proposition 4.4 are trivial when d = 1, since
H1(G,R)� Hom(G,R) and since the induced action is trivial already at the level of
inhomogeneous cocycles (i.e. G-invariant functions).

Proof. Since B1
(d)(G,R) := d0

(
C(G,R)G(d)

)
is a subset of Z1

(d)(G,R), on which we

know that the map β is already injective and takes values in Pol0d(G), we have to prove that
β restricted to the coboundaries takes values in Pol0d−1(G) and is surjective onto this set.
Recall that d0(η)(g, h) := η(h)− η(g), so if ξ = d0(η) for η ∈ C(G,R)G(d) then we have

β(ξ)(g)= β(d0η)(g)= d0(η)(1, g)= η(g)− η(1). (4.2)

Thus,

∂g1 ◦ · · · ∂gd (β(ξ))= ∂g1 ◦ · · · ∂gd (η− η(1))= ∂g1 ◦ · · · ∂gd (η)= 0,

and hence deg(β(ξ))� d − 1. On the other hand, given η ∈ Pol0d−1(G)⊂ C(G,R)G(d), the
computation (4.2) shows that β(d0η)= η, and hence β is surjective from B1

(d)(G,R) onto

Pol0d−1(G). Moreover, since β : Z1
(d)(G,R)→ Pold(G) is continuous, it follows from this

that B1
(d)(G,R)= β−1(Pol0d−1(G)) is closed in Z1

(d)(G,R) since Pol0d−1(G) is closed in

Pol0d(G), and hence that H1
(d)(G,R) is Hausdorff. Moreover, β induces an isomorphism

of topological vector spaces

H1
(d)(G,R)� Pol0d(G)/Pol0d−1(G)� Pold(G)/Pold−1(G),

as claimed, where the latter isomorphism is induced by the (split) inclusion ι : Pol0(G)→
Pol(G). The induced action on the right-hand side is trivial, since for ξ ∈ Pold(G) and
g ∈ G we have ∂gξ ∈ Pold−1(G). However, ι ◦ β is not quite a G-equivariant map at the
level of cocycles, but we now show that the induced map H1

(d)(G,R)→ Pold(G)/Pold−1(G)
is. More precisely, we show that ι ◦ β(g.f )− g.(ι ◦ β( f )) differ by a constant map—in
particular, the difference is in Pold−1(G). This follows from (3.8), (3.7), and (3.5), since
for f ∈ ker(d1) we have

(ι◦β(g.f )−g.(ι◦β( f ))(x)= f (g−1,g−1x)− f (1,g−1x)= f (g−1,g−1x)+ f (g−1x,1)= f (g−1,1).

COROLLARY 4.5. Let G be a cohomologically finite dimensional lcsc group. Then
Pold(G) is finite dimensional for all d ∈ N0.

Proof. By induction on d. For d = 0 this is trivial, and for d = 1 we observe that

dimR Pol1(G)= 1 + dimR H1(G,R) <∞.

The inductive step follows from part (i) of Proposition 3.8.
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REMARK 4.6. We now return to the isomorphism τ 1 : H1(G, Pold−1(G))→ H1
(d)(G,R)

given by part (i) of Proposition 3.8, with the aim of providing a more explicit description
of this map in terms of the description of H1

(d)(G,R) by means of polynomials on G.
For notational convenience, we denote (τ 1)−1 by τ ′. We first describe τ 1 at the level of
inhomogeneous cocycles, that is, from Z1(G, Pold−1(G)) to Pold(G). Given an inhomo-
geneous 1-cocycle c : G → Pold−1(G), then the standard map back to the homogeneous
picture sends c to c̃ : G × G → Pold−1(G) given by c̃(g0, g1) := g0c(g−1

0 g1) (see e.g. [10, I,
n◦ 3.2 & III, n◦ 1.3 ]) and thus

τ 1(c̃)(g0, g1)= (g0c(g−1
0 g1))(1)= c(g−1

0 g1)(g
−1
0 ).

This is then a homogeneous polynomial 1-cocycle, and to get back to the inhomoge-
neous picture (i.e. the description using polynomials) we need to apply the “bar-map”
β defined in Notation 3.10. That is, we fix the first variable g0 = 1 and obtain the
map g �→ c(g)(1), and this is then the polynomial in Pold(G) representing τ 1([c]) in
H1
(d)(G,R)= Pold(G)/Pold−1(G). To get an explicit description of the inverse map τ ′, con-

sider a polynomial ξ ∈ Pold(G). The corresponding homogeneous polynomial 1-cocycle is
given by ξ̂ (g0, g1) := ξ(g1)− ξ(g0) (cf. the proof of Proposition 3.11) and therefore

τ ′(ξ̂ )(g0, g1)(t)= ξ̂ (t−1g0, t−1g1)= ξ(t−1g1)− ξ(t−1g0).

The inhomogeneous 1-cocycle corresponding to τ ′([ξ̂ ]) is then obtained by fixing the
variable g0 = 1, and hence τ ′([ξ ]) is represented the 1-cocycle c : G → Pold−1(G) given by

c(g)(t)= ξ(t−1g)− ξ(t−1)= ∂g(ξ̃ )(t),

where ξ̃ (g) := ξ(g−1). That is, c(g)= ∂g ξ̃ .

COROLLARY 4.7. The map π∗ : H1(G, Pold(G))→ H1(G,H1
(d)(G,R)), induced by

the quotient map π : Pold(G)→ H1
(d)(G,R), is injective

Proof. Considering the short exact sequence

0 → Pold−1(G)→ Pold(G)→ H1
(d)(G,R)→ 0,

and the corresponding long exact sequence in cohomology, the statement is seen to be
equivalent to showing that ι : Pold−1(G)→ Pold(G) induces the zero map in 1-cohomology.
To this end, we first prove that the following diagram commutes

H1(G, Pold−1(G))
ι∗ ��

τ 1�
��

H1(G, Pold(G))

τ 1�
��

H1
(d)(G,R)

(⊂)∗
�� H1

(d+1)(G,R),

where (⊂)∗ is the map induced by the inclusion Pold(G)⊂ Pold+1(G) and τ 1 is the iso-
morphism given by Proposition 3.8. For this, we will use the explicit description of τ 1 and
τ ′ := (τ 1)−1 at the level of cocycles discussed in Remark 4.6. Let η ∈ Pold(G) be given.
Since everything depends only on the class [η] ∈ H1

(d)(G,R), by subtracting a constant
polynomial we may assume that η(1)= 0. Now consider the cocycle g �→ ∂gη̃ representing
τ ′([η]) ∈ H1(G, Pold−1(G)), where η̃(g) := η(g−1). Composing with ι just gives the same
cocycle now considered as taking values in Pold(G), and applying τ 1 amounts to evaluating
at 1, that is, τ 1 ◦ ι∗ ◦ τ ′([η]) ∈ H1

(d+1)(G,R) is represented by the polynomial:
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g �→ (∂gη̃)(1)= η̃(g−1)− η̃(1)= η(g)− η(1)= η(g).

Hence, the map τ 1 ◦ ι∗ ◦ τ ′ agrees with (⊂)∗ : H1
(d)(G,R)→ H1

(d+1)(G,R), and the latter
map is clearly zero.

REMARK 4.8. As follows from Remark 4.6, the map ∂ : C(G,R)→ C(G,C(G,R))

given by f �→ (g �→ ∂g f ), when pre-composed with inv∗ : C(G,R)→ C(G,R) : f �→
(g �→ f (g−1)), induces an isomorphism ∂ ◦ inv∗ : Pold(G)/ Pold−1(G)

∼=−→ H1(G, Pold−1

(G)). However, observe that since inv∗ induces a degree-preserving linear automorphism
of Pol(G), it follows that the map ∂̄ : Pold(G)/ Pold−1(G)→ H1(G, Pold−1(G)), mapping
ξ ∈ Pold(G) to the equivalence class of the cocycle g �→ ∂g ξ , is an isomorphism as well.

The remainder of this section is devoted to a more detailed analysis of the degree
function and its interplay with the differentiation operators, and for this we will use the
extended addition and subtraction on Z∗ := N0 ∪ {−∞} defined in the Section 2.

PROPOSITION 4.9. Let G be a group and ξ : G → R be a polynomial map of degree
d � 1. Then for every s ∈ G, the map ϕξ,s : g �→ (∂g ξ)(s) is a polynomial map of degree d,
and so is g �→ ( ∂g ξ)(s).

Here ∂g denotes the right difference operator introduced in Remark 4.2.

Proof. For any function ξ : G → R, a direct computation verifies that the differential
satisfies

∂gh ξ = (∂g ◦ ∂h)(ξ)+ ∂g ξ + ∂h ξ, g, h ∈ G. (4.3)

Thus for any h ∈ G, we have

( ∂h ϕξ,s)(g)= ϕξ,s(gh)− ϕξ,s(g)

= (∂g ◦ ∂h)(ξ)(s)+ (∂h ξ)(s)

= ϕ∂h ξ,s(g)+ ϕξ,s(h). (4.4)

If d = 1 then ϕ∂h ξ,s = 0 so ( ∂h ϕξ ) is constant equal to ϕξ,s(h), and hence deg(ϕξ,s)� 1.
However, since d = 1, ∂h ξ is constant for every h ∈ G and for some h0 this constant
is nonzero. So, ∂h0 ϕξ,s �= 0 proving that deg(ϕξ,s)= 1. The general case now follows by
induction on d. For the inductive step, assume that the statement is true for d − 1 and that
ξ has degree d � 2. For h ∈ G, ∂hξ has degree at most d − 1, so the induction takes over
and gives deg(ϕ∂h ξ,s)� d − 1 and since ϕξ,s(h) is constant in the variable g, deg(ϕξ,s)� d
by the computation (4.4). But for some h0, ∂h0ξ has degree equal to d − 1 � 1 and hence,
by the induction, so does ϕ∂h0 ξ,s

(−)+ ϕξ,s(h0)= ∂h0 ϕξ,s; thus, deg(ϕξ,s)= d.

Let G be a lcsc group and let ξ, η : G → R be polynomial maps on G. Then it is
easy to see that the pointwise product ξ · η : g �→ ξ(g)η(g) is again a polynomial map with
deg(ξ · η)� deg ξ+̇ deg η; indeed, we have

∂g(ξ · η)(h)= ξ(hg) · ( ∂g η)(h)+ ( ∂g ξ)(h) · η(h) and

∂g(ξ · η)(h)= ξ(g−1h) · (∂g η)(h)+ (∂g ξ)(h) · η(h), (4.5)

from (either of) which the inequality follows by induction on deg ξ+̇ deg η (we shall actu-
ally show below that equality holds for connected, simply connected, nilpotent Lie groups).
In particular, the multiplication map induces a linear map

H1
(d)(G,R)⊗ H1

(d′)(G,R)→ H1
(d+d′)(G,R),
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for each pair (d, d′) ∈ N2. Note also, that equation (4.5) implies that we have the following
version of the Leibniz rule for the differentials:

∂g(ξη)= ∂g(ξ) ∂g(η)+ ∂g(ξ)η+ ξ ∂g(η), (4.6)

and similarly for ∂ .
The last goal in this section is to give a sharper estimate on the degree of ∂g ξ for a

polynomial map ξ . To this end, recall first that a central series G = (Gi)i∈N in a (topologi-
cal) group G is a decreasing sequence of (closed) normal subgroups Gi � G, with G = G1

and such that [Gi,G] ⊆ Gi+1 for all i ∈ N. The lower central series of a group G is the
(decreasing) sequence Gmin = (G[i])i∈N of subgroups of G defined recursively by G[1] := G
and G[i+1] := [G,G[i]], where the latter denotes the group generated by commutators of
elements from G and G[i]. In case G is endowed with a topology, the lower central series is
defined by closing up the algebraically defined ditto. Observe that each G[i] is a character-
istic subgroup of G, that is, globally preserved by any automorphism of G. Further, for any
central series G = (Gi)i∈N in G we have, by construction, G[i] � Gi and moreover one may
prove that [G[i],G[j]]� G[i+j] for all i, j ∈ N (see e.g. [3, Corollary 0.31]).

DEFINITION 4.10 (degree wrt. a central series). Let G be a (lcsc) group and G a central
series in G of finite length. For every g ∈ G, we define the degree degG g of g with respect
to the central series G by

degG g := max{i | g ∈ Gi, g /∈ Gi+1}.
The following result now gives an improved bound on the degree of ∂g ξ in the

situation where one knows where g is located in the lower central series.

LEMMA 4.11. Let G be a group and let ξ ∈ Pol(G). Then for g ∈ G[k], we have
deg( ∂g ξ)� deg ξ−̇k. Hence, deg( ∂g ξ)� deg ξ−̇ deg g, when deg(g) is taken with respect
to the lower central series.

REMARK 4.12. In the statement of Lemma 4.11, the group G is not a priori assumed
to carry a topology and the lower central series is therefore to be understood in the purely
algebraic sense. Note, however, that if G is a csc Lie group, then the algebraically defined
lower central series automatically consists of closed subgroups [11, XII, Theorem 3.1] and
hence, in this case, there is no difference between the topological and algebraic lower cen-
tral series. More generally, if G is a lcsc group (possibly not of Lie type) and ξ ∈ Pold(G),
then Lemma 4.11 shows that ∂g ξ ∈ Pold−̇k(G) for all g ∈ G[k] (the algebraically defined
lower central series). Moreover, the map g �→ ∂g ξ is continuous into C(G,R) (endowed
with the Fréchet topology of uniform convergence on compacts), and since Pold−̇k(G) is a
closed subspace in C(G,R), this shows that ∂g ξ ∈ Pold−̇k(G) also for g in the closure G[k],
that is, the statement of Lemma 4.11 holds true in the topological context as well.

Proof of Lemma 4.11. We prove the statement by induction on k. If k = 1, then the
statement is true by the definition of a polynomial map. Assume now that the statement is
true for k − 1 � 1 and let x ∈ G[k] be given. Assume first that x = g−1h−1gh with g ∈ G[k−1]
and h ∈ G. Then, as G[k−1] is normal in G, by computing modulo Pold−̇k(G) (symbolically
represented by “≡”) we get

∂x ξ = ∂g−1(h−1gh)(ξ)

= ∂g−1 ◦ ∂h−1gh ξ + ∂g−1(ξ)+ ∂h−1gh(ξ) (by (4.3))

≡ ∂g−1(ξ)+ ∂h−1gh(ξ)
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≡ ∂g−1(ξ)+ ∂h−1 ◦ ∂gh(ξ)+ ∂h−1(ξ)+ ∂gh(ξ)

= ∂g−1(ξ)+ ∂h−1

(
∂g ◦ ∂h(ξ)+ ∂g(ξ)+ ∂h(ξ)

)
+ ∂h−1(ξ)+ ∂g ◦ ∂h(ξ)+ ∂g(ξ)+ ∂h(ξ)

≡ ∂g−1(ξ)+ ∂h−1 ◦ ∂h(ξ)+ ∂h−1(ξ)+ ∂g(ξ)+ ∂h(ξ)

= ∂g−1(ξ)+ ∂hh−1(ξ)+ ∂g(ξ)

= ∂gg−1(ξ)− ∂g ◦ ∂g−1(ξ)

= − ∂g ◦ ∂g−1(ξ)≡ 0.

A completely analogous computation shows that also ∂x−1 ξ ≡ 0 and from (4.3) if follows
that ∂x ξ ≡ ∂y(ξ)≡ 0 implies that ∂xy ξ ≡ 0. Hence, ∂z(ξ)≡ 0 for all z ∈ G[k] as desired.

As a consequence of Lemma 4.11, we also record the following result due to Leibman:

COROLLARY 4.13 ([14, Lemma 2.12 & 2.14]). If ξ ∈ Pol0d(G), then ξ vanishes on
G[d+1].

Proof. For g ∈ G[d+1], we have deg( ∂g ξ)� d−̇(d + 1)= −∞ so ∂g ξ = 0. Thus,

0 = ∂g(ξ)(1)= ξ(g)− ξ(1)= ξ(g).

We end this section with a small lemma to be used in the section to follow.

LEMMA 4.14. Let G be a lcsc group and let Z � G be a normal subgroup isomorphic
to R. If z0 ∈ Z \ {1G} and ξ ∈ Pol(G) satisfies ∂z0 ξ = 0, then ξ descends to a polynomial ξ̄
on G/Z of the same degree.

Proof. To see that ξ̄ is well defined, we need to show that ξ is constant on the
cosets of Z. For g ∈ G, the left translate g−1.ξ is again a polynomial and hence so is the
restriction η := (g−1.ξ )|Z . By assumption, we have ξ(hz0)= ξ(h) for all h ∈ G and hence
ξ(gz2

0)= ξ(gz0)= ξ(g) and, recursively, ξ(gzn
0)= ξ(g) for all n ∈ N. The map η is therefore

a polynomial on Z � R which is constant on an infinite set, and since the polynomials on R

are exactly the classical polynomials, this can only happen if η= 0. That is, ξ(gz)= ξ(g)
for all z ∈ Z and therefore ξ̄ : G/Z → R is well defined. We furthermore have

∂z0 ◦ ∂g(ξ)= ∂g ◦ ∂z0(ξ)= 0 for all g ∈ G,

and hence ∂gξ is well defined as well, and a direct computation verifies that

∂ḡ1 ◦ · · · ◦ ∂ḡd ξ̄ = ∂g1 ◦ · · · ◦ ∂gdξ,

from which it follows that ξ̄ is a polynomial of degree deg(ξ).

REMARK 4.15. The proof of Lemma 4.14 also shows the following general fact: if G
is a group and H � G is a normal subgroup, then any ξ ∈ Pol0(G) with the property that
∂h ξ = 0 for all h ∈ H descends to a polynomial ξ̄ ∈ Pol0(G/H) of the same degree.

5. Nilpotent groups and their cohomology. In this section, we collect the nec-
essary prerequisites concerning nilpotent groups and their cohomology. For general
background on nilpotent groups, we refer to [8, 13].

Recall first that a group G is called nilpotent if G[d] = {1} for some d ∈ N, where
G[d] denotes the dth group in the lower central series (see e.g. the remarks preceding
Definition 4.10 for more details); in this case, the (nilpotency) class of G is defined as
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the number cl(G) := min{d | G[d] = {1}} − 1. Note that in the special case where G is a
connected, simply connected, nilpotent Lie group, the algebraically defined lower central
series automatically consists of closed subgroups [11, XII, Theorem 3.1].

Secondly, recall that for any (real) Lie algebra g, the lower central series is defined
(analogously to the definition for groups) by g[i+1] = spanR[g, g[i]]. Let G be a connected,
simply connected (henceforth abbreviated “csc”), nilpotent Lie group, and denote its Lie
algebra g. Then for each i, one has that G[i] is a Lie subgroup of G with Lie algebra g[i].
Moreover, for such G, the exponential map exp : g→ G is a global diffeomorphism onto
G, and it therefore also induces a diffeomorphism g[i]/g[i+1] → G[i]/G[i+1] for each each
i. A (strong) Mal’cev basis for g (with respect to the lower central series) is a linear basis
(Xi, j)(i, j)∈Brk(G) of g, such that for each i, Xi, j ∈ g[i] for all j, and the set {Xi, j}j projects to a
linear basis of g[i]/g[i+1] (see Section 2 for a definition of the multi-index Brk(G)). Such a
basis always exists [8, Section 1.1] and once a Mal’cev basis is chosen, the map

g �
∑

(i, j)∈Brk(G)

ti, jXi, j �−→
∏

(i, j)∈Brk(G)

exp(ti, jXi, j) ∈ G, (5.1)

is a diffeomorphism as well [8, Section 1.2], and the induced global coordinate system
on G is called (the system of) Mal’cev coordinates relative to the chosen Mal’cev basis.
Abusing terminology slightly, we will therefore also refer to the family {gi, j := exp(Xi, j) |
(i, j) ∈ Brk(G)} as a Mal’cev basis of G and denote exp(tXij) by gt

ij so that each element
g ∈ G can be uniquely written as

g =
∏

(i, j)∈Brk(G)

g
ti, j

ij , tij ∈ R.

Here, and above, we use the ordered product notation introduced in the Section 2. Given
any Mal’cev basis (Xi, j)(i, j)∈Brk(G) of g, for all (i, j), (s, t) ∈ Brk(G) the ci, j,s,t

k,l ∈ R such that

[Xi, j, Xs,t] =
∑

(k,l)∈Brk(G)

ci, j,s,t
k,l Xk,l,

are called the structure constants of g (with respect to the chosen basis), and in his
groundbreaking paper [15], Mal’cev proved the following result:

THEOREM 5.1 (Mal’cev). A csc nilpotent Lie group G has a lattice if and only if it
has a Mal’cev basis with rational structure constants. Furthermore, every lattice � in G is
cocompact and there exists a Mal’cev basis (Xij)(i, j)∈Brk(G) which is based in �, in the sense
that

� =
⎧⎨
⎩ ∏
(i, j)∈Brk(G)

g
mij

ij

∣∣∣ mij ∈ Z

⎫⎬
⎭.

Any lattice in a csc nilpotent Lie group is necessarily torsion-free and finitely
generated, and Mal’cev also proved that the converse is true:

THEOREM 5.2 (Mal’cev). Let � be a finitely generated, torsion-free (discrete) nilpo-
tent group. Then there exists a csc nilpotent Lie group G such that � embeds as a lattice
in G. Furthermore, the embedding is unique up to natural isomorphism, that is, given
any two such embeddings i : �→ G and j : �→ H, there is an isomorphism ψ : G → H
intertwining i and j.
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The csc nilpotent Lie group G in Theorem 5.2 is called the Mal’cev completion of �,
and is occasionally denoted �⊗ R. For a proof of the theorem see [15], or for an alternative
approach [3] (which, in turn, is based on [12]). The above motivates the following:

DEFINITION 5.3 (Mal’cev group). Let G be a locally compact, compactly generated
topological group. We will say that G is a Mal’cev group if it satisfies either of the following
two equivalent criteria:

(i) G embeds as a closed, cocompact subgroup in a csc nilpotent Lie group,
(ii) G is a torsion-free, nilpotent Lie group.

If G is a Mal’cev group, then the csc nilpotent Lie group into which it embeds cocompactly
is uniquely determined up to isomorphism and is, in analogy with the discrete case, called
the (real) Mal’cev completion of G and denoted G ⊗ R. If G is a Mal’cev group, then
Gi := G ∩ (G ⊗ R)[i] defines a central series in G which we will refer to as the Mal’cev
central series.

REMARK 5.4. Since csc nilpotent Lie groups are torsion-free, the implication from
(i) to (ii) is clear and the fact that (ii) implies (i) is due to Mal’cev in the case when G
is discrete and Wang in general; see comments right before Proposition 4.6 in [22] or
[16, Theorem 2.20].

We will need the following additional facts about the class of Mal’cev groups.

(1) Reasoning exactly as in the discrete case (see e.g. [8, Chapter 5]), one may prove
that any Mal’cev group G admits a Mal’cev basis for G ⊗ R (strongly) based in G,
that is, there exists a Mal’cev basis (Xij)(i, j)∈Brk(G⊗R)

such that

G =
⎧⎨
⎩ ∏
(i, j)∈Brk(G⊗R)

exp(mijXij)

∣∣∣ mij ∈ Zij

⎫⎬
⎭,

where the sets Zij ⊂ R are equal to either Z or R. Abusing notation slightly, we will
refer to the elements gij := exp(Xij) as a Mal’cev basis for G.

(2) By fixing a Mal’cev basis for G, we also obtain isomorphisms of abelian groups

Gi/Gi+1 � ⊕ni
j=1Zij � Zmi ⊕ Rm′

i ,

where mi,m′
i ∈ N0 sum up to ni := dim(g[i]/g[i+1]); here g denotes the Lie algebra

of G ⊗ R and (Gi)i is the Mal’cev central series defined above.
(3) Since a Mal’cev group G is nilpotent, it always has nontrivial center, and upon

choosing a Mal’cev basis for G, one can always find a central subgroup Z such that
Z is of the form Z := {gm

cl(G), j0
| m ∈ Zcl(G), j0}, where Zcl(G), j0 is either Z or R and

such that G/Z is again a Mal’cev group with Mal’cev basis (ḡij)(i, j)�=(cl(G), j0). In
particular, we get a natural, continuous cross section σ : G/Z → G of the quotient
homomorphism by setting

σ :
∏

(i, j)�=(cl(G), j0)

ḡ
tij
ij �−→

∏
(i, j)�=(cl(G), j0)

g
tij
ij .

This will be of importance in the sequel, as it is a necessary requirement for using
the Hochschild–Serre spectral sequence in group cohomology [10, III, no 5.1].

DEFINITION 5.5 (length and rank). Let G be a Mal’cev group. We denote the length of
the (Mal’cev, equivalently lower) central series by cl(G). We denote by rk(G) the rank of
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G, defined by rk(G) := dimR g/g[2], where g is the Lie algebra of G ⊗ R. That is, we have
G1/G2

∼= Rm1 × Zm′
1 for some uniquely determined m1,m′

1 ∈ N0 and rk(G)= m1 + m′
1.

5.1. Cohomology of Mal’cev groups. In this section, we gather the results needed
about the cohomological properties of Mal’cev groups, which turn out, not surprisingly, to
be very much alike those for csc nilpotent Lie groups.

PROPOSITION 5.6. Mal’cev groups are cohomologically finite dimensional.

Proof. Let G be a Mal’cev group and let G̃ be the csc, nilpotent Lie group in which G
is cocompact. First note that the cohomology of G stops after degree d := dim(G̃); indeed,
for a Fréchet G-module E , the Shapiro lemma [10, III, Proposition 4.1] gives

Hn(G, E)� Hn(G̃, Ind(E)),
and for n> d the right-hand side vanishes (for instance by the van Est theorem [10, III,
Corollaire 7.2]). Let V be a continuous, finite dimensional G-module; we prove the state-
ment by induction on d = dim(G̃). In the case d = 1, we have G � R or G � Z and both
of these are cohomologically finite dimensional. For the inductive step, let G be a Mal’cev
group with d-dimensional ambient Lie group and take a central subgroup Z � G, isomor-
phic to either Z or R, such that G/Z is again a Mal’cev group whose Mal’cev completion
has dimension d − 1. Then, as we just saw, Z is cohomologically finite dimensional and
thus Hq(Z, V) is finite dimensional and, in particular, Hausdorff [10, III, Proposition 2.4],
so the Hochschild–Serre spectral sequence exists [10, III, no 5.1] and has E2-term

Epq
2 = Hp(G/Z,Hq(Z, V)).

So Epq
2 = 0 whenever q> 2 or p> d − 1 and all non-vanishing terms are finite dimensional

by the induction hypothesis; thus also Hn(G, V) is finite dimensional.

We now recall some well-known results concerning the continuous cohomology
of nilpotent groups [2, 9, 20]. In order to have the standard operator theoretic tools at
our disposal and to comply with the standing assumption in [10] that vector spaces are
complex, in the rest of this section the terminology “H is a unitary Hilbert G-module”
will mean that H is a complex Hilbert space with a continuous, unitary G-action. This,
however, is not a serious restriction since in all our applications we will be able to pass
from the setting of real topological vector spaces to the complex ditto via the standard
complexification procedure, as one has Hn

(d)(G, E ⊗R C)∼= Hn
(d)(G, E)⊗R C.

We first recall Shalom’s property HT introduced in [20]. Here, as usual, Hn(G,H)
denotes the reduced cohomology, that is, the maximal Hausdorff quotient of the ordinary
cohomology.

DEFINITION 5.7 (Property HT [20]). A lcsc group G is said to have property HT if for
any continuous unitary G-module H with HG = 0, one has Hn(G,H)= 0 for any n ∈ N.

A well-known result, essentially due to Delorme, concerning the vanishing of coho-
mology for nilpotent (Lie) groups, ensures that such groups have property HT . The classical
form of the statement is the following:

THEOREM 5.8 ([5, Theorem 10.1]). Let G be a csc nilpotent Lie group. For every irre-
ducible, continuous unitary Hilbert G-module H such that HG = 0, we have Hn(G,H)= 0
for all n ∈ N0. In particular, G has property HT .
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Note that the latter statement in the theorem above does indeed follow from the former,
since any unitary representation is a direct integral of irreducible representations, and prop-
erty HT therefore follows from [5, Theorem 7.2]. It will be convenient for us to have the
following alternate form of Theorem 5.8, which at the same time generalizes the statement
to the class of Mal’cev groups.

THEOREM 5.9. If G is a Mal’cev group and H is a unitary G-module, then there exists
an increasing sequence (Hi)i∈N of closed, G-invariant subspaces of H with dense union,
such that HG ⊂Hi for each i ∈ N and such that the inclusion map induces an isomorphism
Hn(G,HG)� Hn(G,Hi) for each n ∈ N.

Note that it is part of the conclusion that Hn(G,Hi) is Hausdorff if HG is finite dimen-
sional, since, in this case, Hn(G,HG) is finite dimensional (and thus Hausdorff [10, III,
Proposition 2.4]) by Proposition 5.6. For the proof of Theorem 5.9, the following lemma is
convenient.

LEMMA 5.10. Let G be lcsc group, H be a unitary G-module and assume that there
exists a central element z ∈ G such that the corresponding unitary u ∈ B(H) satisfies
that T := u − 1 is injective. Then there exists an increasing sequence (Hi)i∈N of closed,
G-invariant subspaces with dense union and such that Hn(G,Hi)= 0 for each i ∈ N and
n ∈ N0.

Proof. Denote the representation by π . Since u := π(z) is unitary, the operator
T := u − 1 is normal and hence the Borel functional calculus may be applied to T . As z
is central, T commutes with π(G) and hence so do its spectral projections. Because T is
assumed to be injective, its spectral projections Pn := χσ(T)\{z||z|�1/n}(T) are increasing and
converging strongly to 1, and since each Pn commutes with π(G), its range Hn := Pn(H)
is a closed G-invariant subspace; we denote the restricted representation of G on Hn by πn.
Since u is unitary, the injectivity of T implies that its range is dense and from this it follows
that the operator πn(z)− 1, which is simply T |Hn , has dense range as well. The operator
πn(z)− 1 is furthermore bounded away from zero, and thus invertible on Hn, and by [10,
III, Proposition 3.1] this implies that Hk(G,Hn) vanishes for each k ∈ N0 and n ∈ N.

We are now ready to give the proof of Theorem 5.9. In the proof, we will several times
use the fact that for a unitary Z-module H, having HZ = {0} is equivalent with u1 − 1
acting injectively (here u1 is the unitary corresponding to 1 ∈ Z), a fact that not true for
unitary R-modules, which accounts for the distinction between discrete and continuous
one-dimensional subgroups present in the proof.

Proof of Theorem 5.9. By splitting H as H=HG ⊕HG⊥, it suffices to treat the case
where HG = {0}. Denote by G̃ the csc, nilpotent Lie group in which G embeds cocom-
pactly; we now prove the statement by induction on d := dim(G̃). For d = 1, the group G
is isomorphic to either R or Z, and in the latter case the statement follows directly from
Lemma 5.10. If G � R, consider the subgroup Z corresponding to Z � R and split H as
HZ ⊕HZ⊥. Since G is abelian, this is a splitting of H as a unitary G-module and by Lemma
5.10 we now get increasing, closed, G-invariant subspaces Ki �HZ⊥ with dense union and
vanishing cohomology. Put Hi :=HZ ⊕Ki. Then we have Hn(G,Hi)= Hn(G,HZ), so our
task is to prove that the later vanishes in all degrees. To this end, note that

Hq
(
Z,HZ

)=
{
HZ if q = 0, 1

{0} otherwise
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and, in particular, Hq(Z,HZ) is Hausdorff for all q ∈ N0. The Hochschild–Serre spectral
sequence therefore exists [10, III, no 5.1] and has E2-term

Epq
2 = Hp(G/Z,Hq(Z,HZ))=

{
Hp(G/Z,HZ) if q = 0, 1

{0} otherwise

However, since G/Z � S1 is compact, we have Hp(G/Z,HZ)= {0} when p> 0 [10, III,
Corollaire 2.1] and in degree zero we have

H0
(
G/Z,HZ

)= (HZ
)G/Z =HG = {0}.

Thus, Epq
2 = {0} for all p, q � 0 and hence Hn(G,HZ)= {0}, as claimed.

For the inductive step, let G be a Mal’cev group with dim(G̃)= d and choose central sub-
groups Z � Z′ � G such that Z � Z, K := Z′/Z is compact and G/Z′ is again a Mal’cev
group whose ambient csc nilpotent Lie group has dimension d − 1; this is always possible
since Gcl(G) � Zk ⊕ Rl for some k, l ∈ N0 so we have that K is either trivial or S1. Now
decompose H=HZ ⊕HZ⊥ and note that the decomposition respects the G-action since Z
is central. For the restricted action G �HZ⊥ we have, by construction, a central element
such that the corresponding unitary acts without fixed points, so by Lemma 5.10 we get
a sequence of closed G-equivariant subspaces Ki ⊂HZ⊥ with dense union and such that
Hn(G,Ki)= {0} for all n ∈ N0 and i ∈ N. Next split HZ = (HZ)K ⊕ (HZ)K⊥, and since K
is central in G/Z this decomposition respects the natural G/Z-action. On (HZ)K we get
an induced action of (G/Z)/K = G/Z′ without nontrivial fixed points, so the induction
takes over and provides us with an increasing family of closed G/Z′-invariant subspaces
Li � (HZ)K for which Hn(G/Z′,Li)= {0} for all i ∈ N and n ∈ N0. We now define

Hi :=Li ⊕
(HZ

)K⊥ ⊕Ki �
(HZ

)K ⊕ (HZ
)K⊥ ⊕HZ⊥ =H,

and note that, as Hn(G,Ki)= {0}, we have to show that Hn(G,Li ⊕ (HZ)K⊥)= {0} for
all i ∈ N and n ∈ N0. As in the case d = 1, this can be deduced by a spectral sequence
argument: since Li ⊕ (HZ)K⊥ �HZ , we have

Hq
(
Z,Li ⊕ (HZ)K⊥)=

{
Li ⊕ (HZ)K⊥ if q = 0, 1

{0} otherwise

so the Hochschild–Serre spectral sequence exists [10, III, no 5.1] and has E2-term

Epq
2 = Hp

(
G/Z,Hq

(
Z,Li ⊕ (HZ)K⊥))=

{
Hp
(
G/Z,Li ⊕ (HZ)K⊥) if q = 0, 1

{0} otherwise

Since K � G/Z is central and compact another application of the Hochschild–Serre
spectral sequence (similar to the one carried out above in the case d = 1) yields that

Hp
(
G/Z,Li ⊕ (HZ)K⊥)� Hp

(
(G/Z)/K,

(Li ⊕ (HZ)K⊥)K
)

= Hp
(
G/Z′,Li

)= {0}.

Thus Epq
2 = {0} for all p, q � 0 and we conclude that Hn(G,Hi)= {0} for all n ∈ N0 and

i ∈ N, as desired.

COROLLARY 5.11. Mal’cev groups have property HT .

Proof. Let G be a Mal’cev group and let H be a unitary Hilbert G-module without
fixed points, and choose, according to Theorem 5.9, an increasing sequence Hi �H of
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closed, G-invariant subspaces with vanishing cohomology and dense union. Denote by Pi

the orthogonal projection onto Hi; then the sequence (Pi)i∈N converges strongly to 1, and
hence the convergence also holds uniformly (in the Hilbert space norm) on compact subsets
of H. Fix an n ∈ N and a continuous n-cocycle c : Gn →H. Since Hi is G-invariant, the
projection Pi commutes with the G-action, so the map ci := Pic(−) : Gn →Hi is again a
cocycle and hence inner by the defining properties of Hi. Viewing ci as a sequence of
cocycles with values in H, we are therefore done if we can show that (ci)i converges to c
in the standard topology on Zn(G,H) given by uniform convergence on compact subsets.
For a compact set K ⊂ Gn, by continuity of c the subset c(K)⊂H is also compact and thus

sup
g∈K

‖c(g)− ci(g)‖ = sup
ξ∈c(K)

‖(1 − Pi)ξ‖ → 0.

Observe that, in the proof just given, we only used the fact that Mal’cev groups satisfy
the conclusion of Theorem 5.9 to conclude that they have property HT , and for the sake of
generality it is convenient to promote this property to a definition:

DEFINITION 5.12. A lcsc group G is said to have strong property HT if for any con-
tinuous unitary G-module H, there exists an increasing sequence Hi of closed, G-invariant
subspaces with dense union, such that each of them contains HG and such that the inclusion
induces an isomorphism Hn(G,HG)� Hn(G,Hi) for all n ∈ N0.

The following corollary provides a very direct and useful extension of Theorem 5.8.

COROLLARY 5.13. Let G be cohomologically finite dimensional lcsc group with strong
property HT . If H is a continuous, unitary Hilbert G-module with dimR HG <∞, and F
is a continuous, finite dimensional G-module with F =FG(d) for some d ∈ N, then the
natural inclusion map HG ⊗F →H⊗F induces an isomorphism

Hn(G,HG ⊗F) ∼= �� Hn(G,H⊗F) .

Proof. Indeed, denoting (HG)⊥ by K, we have the following decomposition (respect-
ing the topology)

Hn(G,H⊗F)= Hn(G,K ⊗F)⊕ Hn(G,HG ⊗F),
and since dim(HG ⊗F) <∞, Hn(G,HG ⊗F) is also finite dimensional and hence auto-
matically reduced ([10, III, Proposition 2.4]). Thus, we have to show that Hn(G,K ⊗
F)= 0. As G has strong property HT , we obtain an increasing sequence (Ki) of closed,
G-invariant subspaces of K with dense union and vanishing cohomology, and we now
prove, by induction on d, that Hn(G,Ki ⊗F)= {0} for all i. Indeed, if d = 1 then F =FG,
and the action therefore trivial, and since Hn(G,Ki)= 0 and Ki ⊗F is, as a G-module, just
a finite direct sum of copies of Ki, we also have Hn(G,Ki ⊗F)= {0}. For the inductive
step, consider the short exact sequence

0 →FG(d−1) ⊗Ki →FG(d) ⊗Ki →FG(d)/FG(d−1) ⊗Ki → 0.

The induction hypothesis implies that Hn(G,FG(d−1) ⊗Ki)= {0}, and the induced action
on the quotient FG(d)/FG(d−1) is easily seen to be trivial so, as in the case d = 1, we also get
Hn(G,FG(d)/FG(d−1) ⊗Ki)= {0}. Since F is assumed to be equal to FG(d), the long exact
sequence in cohomology now shows that also Hn(G,F ⊗Ki)= {0}. Finally, since K ⊗F
admits a continuous G-equivariant projection PKi ⊗ 1 onto Ki ⊗F for all i, and we have
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that PKi ⊗ 1 converges strongly to 1 ⊗ 1, we conclude, as in the proof of Corollary 5.11,
that Hn(G,K ⊗F)= 0.

6. Polynomials on Mal’cev groups. Building on the general results in the previous
sections, we can now give a complete description of the polynomials on a Mal’cev group.
Let therefore G be a Mal’cev group and let (gi, j) be a Mal’cev basis of G. Then for each
pair (i0, j0) ∈ Brk(G), we consider the map ζgi0 , j0

: G → R given by

ζgi0 , j0
:

∏
(i, j)∈Brk(G)

g
ti, j

i, j �−→ ti0, j0 , (6.1)

where ti, j ranges over the set Zi, j, either equal to Z or R (see Section 5 for this and Section
2 for the definition of the multi-index notation). More generally, we will need the following
notation: for any multi-index d ∈ Dd,dim(G) we define

ζd :=
∏

(i, j)∈Brk(G)

ζgi, j(−)di, j :
∏

(i, j)∈Brk(G)

g
ti, j

i, j �−→
∏

(i, j)∈Brk(G)

t
dij

i, j.

With this notation at our disposal, we can now give the promised description of polynomials
on Mal’cev groups.

THEOREM 6.1. Let G be a Mal’cev group and let (gi, j)i, j be a Mal’cev basis. Then for
all (i0, j0) ∈ Brk(G), the map ζgi0 , j0

defined above is a polynomial map of degree deg ζgi0 , j0
=

i0. Furthermore, the set {ζd | d ∈ Dd,dim(G)} is a linear basis of Pold(G).

Proof. Assume first that G is a csc nilpotent Lie group. We shall then show, by
induction on m := dim(G), that deg(ζgij)= i; the case of m = 1 being trivial. For the
inductive step, we need a bit of notation. We first recall Leibman’s definition of lc-
polynomials from [14]: if G is nilpotent with cl(G)= c and H is any group then ϕ : H →
G is an lc-polynomial of lc-degree at most (1, 2, · · · , c) if for all i = 1, . . . , c and
h1, . . . , hi+1 ∈ H : ∂h1 ◦ · · · · ◦ ∂hi+1(ϕ)(H) ∈ G[i+1], where the differentiation operator is
defined as ∂h(ϕ)(g) := ϕ(g)−1ϕ(gh). In particular, since G[c+1] = {1} this forces ϕ to be
a “polynomial of degree at most c”, that is, to satisfy ∂h1 ◦ · · · ◦ ∂hc+1 ξ = 1G. The main
virtue of the class of lc-polynomials is that they, by [14, Proposition 3.4], form a group
under pointwise multiplication. Now, if (gij) is a Mal’cev basis and ξ : G → R is a polyno-

mial of degree at most i, then the map ϕ : G → G given by ϕ(h)= gξ(h)ij is an lc-polynomial
with lc-degree at most (1, . . . , c). To see this, note that

∂g1 ◦ · · · ◦ ∂gl+1(ϕ)(h)= g
∂g1 ◦···◦ ∂gl+1 (ξ)(h)

ij , (6.2)

and since gR
ij � G[i] we have ∂g1 ◦ · · · ◦ ∂gl+1(ϕ)(h) ∈ G[i] � G[l+1] when l + 1 � i and

∂g1 ◦ · · · ◦ ∂gl+1(ϕ)(h)= 1 ∈ G[l+1] when l + 1> i � deg(ξ). We are now ready to return
to the inductive step. Fix some z := gc, j0 ∈ G[c] � Z(G) and denote G/zR by Ḡ and the quo-
tient map G → Ḡ by π . Note that the gij’s with (i, j) �= (c, j0) project onto a Mal’cev basis
ḡij for Ḡ and hence ζḡij has degree i by the induction hypothesis. But ζgij = ζḡij ◦ π so we
also obtain deg(ζgij)= i. Thus, we only have to prove that deg(ζz)= c. To this end, write

zζz(h) = h ·
⎛
⎝ ∏
(i, j)�=cl(G), j0

g
ζgi, j (h)

i, j

⎞
⎠−1

. (6.3)
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As already mentioned, by [14, Proposition 3.4], the set of lc-polynomials from G to G of
degree at most (1,. . . , c) is a group under pointwise multiplication, so since the identity

map is clearly such an lc-polynomial, if we can prove that each of the factors h �→ g
ζgi, j (h)

i, j

in the product has lc-degree at most (1, . . . , c) we obtain that also ϕ : h �→ zζz(h) has lc-
degree at most (1, . . . , c). However, as we just saw, when (i, j) �= (c, j0), ζgij has degree i

and hence h �→ g
ζgij (h)

ij has lc-degree at most (1, . . . , c) as desired , and from this it follows,
using (6.2), that ζz : G → R has degree at most c. We still need to prove that deg(ζz)= c,
but if deg(ζz)� c − 1 then, by Corollary 4.13, the (unital) polynomial ζz must vanish on
G[c], which cannot be the case as z ∈ G[c] and ζz(z)= 1.

For the second part of the statement, denote again by c = cl(G) the class of G and
define for d � 0

Ad := spanR

{
ζd | d ∈ Dd,dim(G)

}
,

(recall that d = (dij) ∈ Dd,dim(G) iff
∑

ij idij � d) and put A−∞ = {0}. We need to prove
that Pold(G)=Ad . Here the inclusion “⊇” follows from what was already proven and
the general estimate deg(ξη)� deg(ξ)+ deg(η). To see the opposite inclusion, we run an
induction on m = dim(G), in which the base case m = 1 is trivial. For the inductive step,
let ξ ∈ Pold(G) be given and fix z := gc, j0 ∈ G[c] � Z(G); we now run a finite subinduction
on the minimal number n ∈ N such that ∂(n)z (ξ)= 0. If n = 1, then ∂z ξ = 0 and hence, by
Lemma 4.14, induces a polynomial ξ̄ on Ḡ := G/zR which, by the primary induction, can
be written as a linear combination of products of (ζḡi, j)(i, j)�=(c, j0). This means that ξ ∈Ad

as it can be written as a linear combination of the ζd’s even without using ζz. For n = 2, a
direct computation shows that

∂z ( ∂z(ξ)ζz − ξ)= 0.

Thus, by the n = 1 case just covered, this means that ∂z(ξ)ζz − ξ ∈Ad . Moreover, by
Lemma 4.11, deg( ∂z(ξ))� d−̇c and since ∂z( ∂z(ξ))= 0, the n = 1 case gives that ∂z ξ ∈
Ad−̇c. Hence, ∂z(ξ)ζz ∈Ad and thus also ξ ∈Ad . The general case is a bit more involved,
but overall builds on the same idea used for n = 2, and for that we need some more
detailed information about differentiation and integration with respect to z, contained in
the following three claims.

CLAIM 1. We have ∂z(ζ
k
z ) ∈ spanN{ζ l

z | 0 � l � k − 1}.
We stress the fact that the span appearing in Claim 1 is over the naturals, so that, in
particular, the leading coefficient is nonzero.

Proof of Claim 1. For k = 1, ∂z(ζz)= 1 and for k = 2, we have ∂z(ζ
2
z )= 1 + 2ζz. The

general case follows inductively: assuming the result for k − 1 we have, using the Leibniz
rule (4.6), that

∂z(ζ
k
z )= ∂z(ζ

k−1
z ζz)= ∂z(ζ

k−1
z ) · 1 + ∂z(ζ

k−1
z ) · ζz + ζ k−1

z · 1

By the induction hypothesis, ∂z(ζ
k−1
z ) ∈ spanN{ζ l

z | 0 � l � k − 2} and thus ∂z(ζ
k−1
z ) · ζz ∈

spanN{ζ l
z | 0 � l � k − 1} and hence also ∂z(ζ

k
z ) ∈ spanN{ζ l

z | 0 � l � k − 1}.
CLAIM 2. For each k ∈ N0, there exists ϒk ∈ spanR{ζ l

z | 0 � l � k + 1} such that
∂z ϒk = ζ k

z .

Proof of Claim 2. For k = 0 this is clear as ∂z ζz = 1 and for k = 1 we have ∂z(ζ
2
z )=

1 + 2ζz so ϒ1 := 1
2ζ

2
z − 1

2ζz does the job. The general case follows inductively: assume
Claim 2 true for k − 1. By Claim 1, we get a0, . . . , ak ∈ N such that
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∂z(ζ
k+1
z )= a0 + a1ζz + · · · + akζ

k
z ,

and since ak ∈ N, we have

ζ k
z = 1

ak

(
∂z(ζ

k+1
z )−

k−1∑
i=0

aiζ
i
z

)
= 1

ak

(
∂z(ζ

k+1
z )−

k−1∑
i=0

ai ∂z ϒi

)

= ∂z

(
1

ak
ζ k+1

z − 1

ak

k−1∑
i=0

aiϒi

)
︸ ︷︷ ︸

=:ϒk

.

CLAIM 3. For every ξ ∈Ad−̇c, there exists � ∈Ad such that ∂z �= ξ .

Proof of Claim 3. For ξ ∈Ad−̇c, by grouping summands together according to their
power of ζz, we can write it as

ξ =
m∑

k=0

rkηkζ
k
z ,

(for some m ∈ N and rk ∈ R) where ηk ∈Ad−̇c−̇kc and ∂z(ηk)= 0. Putting � :=∑m
k=0 rkηkϒk , where the ϒk’s are as in Claim 2, we get, using the Leibniz rule (4.6),

that ∂z(�)= ξ . Moreover, by Claim 2 we have ϒk ∈ spanR{ζ l
z | 0 � l � k + 1} and since

ηk ∈Ad−̇c−̇kc we conclude that � ∈Ad as desired.

We can now finish the (sub-)induction argument, which is running over the minimal n
such that ∂(n)z (ξ)= 0. Given ξ ∈ Pold(G), ∂z ξ falls under the induction hypothesis and has
degree at most d−̇c by Lemma 4.11. Hence, ∂z(ξ) ∈Ad−̇c, so by Claim 3 there exists � ∈
Ad such that ∂z �= ∂z(ξ). Thus, ∂z(�− ξ)= 0, and by the base case (n = 1) this means
that �− ξ ∈Ad . By construction, � ∈Ad and hence also ξ ∈Ad . This finishes the proof
that that Pold(G)=Ad , and the linear independence of the polynomials {ζd | d ∈ Dd,dim(G)}
is clear, since they pull back to linearly independent polynomials on Rdim g via the Mal’cev
coordinates. This completes the proof in the case where G is a csc nilpotent Lie group.

In the general case, we know that G is cocompactly embedded in its Mal’cev comple-
tion L, and that we may choose a Mal’cev basis for L based in G. Denote the dimension
of L by n. Then the Mal’cev coordinates gives a diffeomorphism L � Rn which identi-
fies G with a (cocompact) subset of the form Zm × Rm′

where m + m′ = n. Moreover, by
what was just proven we know that polynomials on L pull back to polynomials on Rn via
the Mal’cev coordinates, and polynomials on Rn are uniquely determined on the subset
Zm × Rm′

. Thus, polynomials on L are uniquely determined by their values on G, so the
restriction map resd : Pold(L)→ Pold(G) is injective for all d ∈ N0. We now need to prove
that it is also surjective. We first note that this is trivially the case when d = 0, and we now
proceed by induction on d. Assuming this to be true up to d − 1, we have1

C ⊗R (Pold(G)/Pold−1(G))� C ⊗R H1(G, Pold−1(G)) (Proposition 3.8)

� H1(G,C ⊗R Pold−1(G))

� H1(G,C ⊗R Pold−1(L))

� H1
(
L, IndL

G

(
C ⊗R Pold−1(L)

))
([10, III, Proposition 4.6])

1The tensor product with C is included in order to formally conform with the framework in Section 5; see remarks
preceding Definition 5.7.
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� H1
(
L, L2(L/G)⊗C C ⊗R Pold−1(L)

)
([4, Corollary E.2.6 (i)])

� H1(L,C ⊗R Pold−1(L)) (Corollary 5.13)

� C ⊗R (Pold(L)/Pold−1(L)). (Proposition 3.8)

Note that we may indeed apply Corollary 5.13 to obtain the penultimate equality,
because L2(L/G)L = C.1L/G and H1(G, Pold−1(G)), and hence also H1(L, L2(L/G)⊗C

C ⊗R Pold−1(L)), is finite dimensional (by Proposition 5.6 and Corollary 4.5) which
implies that the latter is automatically Hausdorff [10, III, Proposition 2.4]. From this, we
conclude that Pold(G) and Pold(L) have the same (finite) linear dimension and hence the
restriction map resd : Pold(L)→ Pold(G) must be surjective as well. The only thing left to
prove is that deg(ζgij)= i when ζgij is considered as a polynomial on G. However, as we saw
above, the restriction map Pold(L)→ Pold(G) is a linear isomorphism for each d ∈ Z∗ and
this forces deg ◦ resd(ξ)= deg(ξ) and we proved above that when considered a polynomial
on L the degree of ζgij is indeed i.

REMARK 6.2. Theorem 6.1 describes the polynomials on a csc nilpotent Lie group in
terms of a Mal’cev basis, but by [8, Proposition 1.2.7] these may equivalently be described
as those maps that pull back to classical polynomials on the associated Lie algebra via the
exponential map.

COROLLARY 6.3. For a Mal’cev group G and ξ, η ∈ Pol(G), we have deg(ξ · η)=
deg(ξ)+̇ deg(η). In particular, deg(ζd)=∑

i, j idij.

Proof. As we saw above (cf. (4.5) and the remarks preceding it), the inequality “�”
is true for any group G so we only need to prove the opposite. Upon picking a Mal’cev
basis for G, by Theorem 6.1, we therefore have deg(ζd)�

∑
i, j idij =: d for any multi-

index d. However, if deg(ζd) < d, then ζd ∈Ad−1 by Theorem 6.1 which contradicts the
linear independence of the basis also provided by Theorem 6.1.

For the general claim about products, put d := deg(ξ) and d′ := deg(η) and note
that the statement is trivial if either number is −∞, so we may assume that this is not
the case. Write, according to Theorem 6.1, the polynomials as ξ =∑

d∈Dd,dim(G)
rdζd and

η= ∑
c∈Dd′ ,dim(G)

scζc. Due to the linear independence of the ζd’s, the only way that we can
have deg(ξ · η) < d + d′ is if( ∑

d∈D=
d,dim(G)

rdζd

)( ∑
c∈D=

d′ ,dim(G)

scζc

)
=

∑
e∈Dd+d′,dim(G)

( ∑
d∈D=

d,dim(G)
c∈D=

d′ ,dim(G)
d+c=e

rdsc

)
ζe

has degree less than d + d′, and by what was already shown deg(ζc+d)= d + d′ for all
d ∈ D=

d,dim(G) and c ∈ D=
d′,dim(G). This therefore forces the product on the left-hand side

to be zero, and pulling the polynomials back to Rdim(g) via the Mal’cev coordinates we
obtain classical polynomials in dim(G) variables, and since these constitute a domain
one of the two factors needs to be zero, thus contradicting the fact that deg(ξ)= d and
deg(η)= d′.

COROLLARY 6.4. Let G be a Mal’cev group and let ξ ∈ Pol(G). Then for every g ∈ G,
we have deg ∂g ξ � deg ξ−̇ deg g and analogously for ∂g ξ , where deg(g) is the degree with
respect to the Mal’cev central series.
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Proof. The Mal’cev central series is given as Gi = G ∩ (G ⊗ R)[i] and hence deg(g)
is the same whether we compute it with respect to the Mal’cev central series in G or the
lower central series in G ⊗ R. Furthermore, by Theorem 6.1, we know that the restriction
map Pold(G ⊗ R)→ Pold(G) is bijective and degree-preserving, and the result therefore
follows from Corollary 4.11.

We will need also the following uniqueness results for polynomials.

LEMMA 6.5. Let G be a Mal’cev group and let (gi, j)i, j be a Mal’cev basis for G.
Denote n := rk G and let G0 be the (not necessarily closed) subgroup of G generated (alge-
braically) by S := {g1,1, . . . , g1,n}. Finally, denote by S�d the set of words on S of length at
most d ∈ N. Then for d ∈ N and ξ, η ∈ Pold(G), we have

ξ = η⇔ ξ|S�d = η|S�d .

In particular, any polynomial map on G is uniquely determined by its values on G0.

Proof. By Theorem 6.1, the polynomials on G and on its Mal’cev completion are the
same, so by passing to the Mal’cev completion we may assume that G is a csc, nilpotent
Lie group. As in [14, Proposition 1.15], we see that if ξ|S�d = η|S�d then ξ|G0 = η|G0 , so
the lemma will follow if we show that any polynomial vanishes on G if it vanishes on
G0. Denote the closure of G0 by H and note that the quotient map π : G → G/G[2] maps
H onto a cocompact subgroup (e.g. since π(g1,1), . . . , π(g1,n) is a Mal’cev basis for the
(abelian) quotient G/G[2] and all products of the form π(g1,1)

m1 · · · π(g1,n)
mn with mi ∈ Z

are contained in π(H)). By [8, Theorem 5.4.13] (and the generalizing remarks following
it in Section 5.5), this implies that H is cocompact in G. In other words, H is a Mal’cev
group with Mal’cev completion G, and we therefore know that polynomials are uniquely
determined by their values on H and, by continuity, on its dense subgroup G0.

LEMMA 6.6. Let G be a Mal’cev group, (gi, j)i, j a Mal’cev basis and let ξ, η ∈ Pol(G).
If ξ(1)= η(1) and ∂g1, j ξ = ∂g1, j η for all j = 1, . . . , rk(G), then ξ = η.

The statement may be deduced from the previous lemma, by showing that ξ(g)= η(g)
for all g ∈ G0, by induction on word length. Here is an alternative argument:

Proof. For any f ∈ C(G,R), the function g �→ ∂g f satisfies the 1-cocycle identity,
when C(G,R) is considered a G-module for the right regular action. Hence, we con-
clude that ∂g(ξ − η)= 0 for all g ∈ G0, the subgroup of G generated by (g1, j)j. By
Proposition 4.9, the map g �→ ∂g(ξ − η)(1) is itself a polynomial map on G, and since
it vanishes on G0 it vanishes on all of G by the previous lemma. Thus, ξ(g)= η(g) as
desired.

6.1. The Hopf algebra of polynomial maps. The space of polynomial maps
Pold(G)may be seen as containing certain “dth order dual structure”. For instance, Pol1(G),
being essentially (i.e. up to addition of some constant) the space of continuous group homo-
morphisms into R, contains very precise information about the (torsion-free part of the)
abelianization of G. In this section, we elaborate on these considerations and Theorem 6.15
below makes precise in which way Pol(G) should be considered a dual object.

REMARK 6.7. If G is a csc nilpotent Lie group, when thinking of G as the set of real
points on an algebraic group, it follows from Theorem 6.1 that Pol(G) is the set of regular
functions on G, in the sense of algebraic geometry [6]. Many of the results deduced in this
section therefore also follow from well-known results in algebraic geometry (e.g. the fact
that Pol(G) is a Hopf algebra [6, Chapter 1]), but for the sake of completeness, and since
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we wish to keep track of the degree of polynomials, which is not covered by algebraic
geometry, we include the details below.

LEMMA 6.8. Let G and H be Mal’cev groups. The map α : C(G)⊗ C(H)→ C(G × H)
given by α(ξ ⊗ η)(g, h) := ξ(g)η(h) restricts to an algebra-isomorphism Pol(G)⊗
Pol(H)� Pol(G × H) which respects the grading given by the polynomial degree, that is,
deg α(ξ ⊗ η)= deg ξ + deg η.

Here, and in what follows, the symbol “⊗” is used for the algebraic tensor product of
real vector spaces.

Proof. If (gij) is a Mal’cev basis for G and (hkl) is one for H , then the set
((gij, 1), (1, hkl))i, j,k,l is a Mal’cev basis for G × H and a direct computation verifies that
α(ζgij ⊗ 1)= ζ(gij,1) and α(1 ⊗ ζhkl)= ζ(1,hkl). From this it follows that α, which is eas-
ily seen to be an algebra homomorphism, maps Pol(G)⊗ Pol(H) to Pol(G × H) and as
Pol(G × H) is generated, as an algebra, by (ζ(gij,1), ζ(1,hkl))ijkl (Theorem 6.1) the restriction
of α is surjective. Furthermore, by Theorem 6.1 the elements ζd ⊗ ζc with d ∈ Dd,dim(G)

and c ∈ Dd′,dim(H) constitute a basis for Pold(G)⊗ Pold′(H), and since α(ζd ⊗ ζc) ∈ {ζb |
Dd+d′,dim(G×H)} it follows that α is injective on Pold(G)⊗ Pold′(G) for any d, d′ ∈ N, and
hence globally. That α is degree-preserving can be seen by the same argument used to
prove Corollary 6.3.

The previous lemma, in particular, shows that, given Mal’cev groups G and H , any lin-
ear map� : Pol(G)→ Pol(H) satisfying that deg�(ξ)� deg ξ for all ξ ∈ Pol(G), induces
a map � ⊗� : Pol(G × G)→ Pol(H × H) given by �(ξ ⊗ η)=�(ξ)⊗�(η) such that
deg(� ⊗�)(ζ )� deg ζ for all ζ ∈ Pol(G × G).

DEFINITION 6.9 (degree-preserving maps). Let G and H be lcsc groups. We will say
that a linear map � : Pol(G)→ Pol(H) is degree-preserving if deg�(ξ)� deg ξ for all
ξ ∈ Pol(G), and properly degree-preserving if equality holds.

DEFINITION 6.10 (strongly unital maps). We say that a linear map � : Pol(G)→
Pol(H) is strongly unital if it is unital and if �(ξ)(1)= ξ(1) for all ξ ∈ Pol(G).

PROPOSITION 6.11. Let G be a Mal’cev group with multiplication m : G × G → G
and let ξ ∈ Pol(G). Then m∗(ξ) := ξ ◦ m ∈ Pol(G × G) and deg(m∗(ξ))= deg(ξ). That is,
m∗ : Pol(G)→ Pol(G × G) is properly degree-preserving.

Proof. That m∗ξ is a polynomial for every polynomial map ξ follows from [14]:
Indeed, we claim that multiplication m : G × G → G is a polynomial map of lc-
degree (cf. [14, Section 3]) lc-deg m = (1, . . . , cl(G)). To see this, let πi : G × G →
G, i = 1, 2, denote the projections on the first and second factor, respectively. Then m(g)=
π1(g) · π2(g) is a pointwise product of homomorphisms, so the claim follows by [14,
Theorem 3.2]. Next, we now show that m∗ is properly degree-preserving. To this end, we
first show that if (ξi)

∞
i=1 is basis for Pol(G), chosen such that ξ0 = 1, ξi(1)= 0 for i � 1 and

{ξi | deg(ξi)� d} is a basis for Pold(G) for every d ∈ N0, and m∗(ξ) is written as

m∗(ξ)=
m∑

i=0

ξi ⊗ ηi,

with ηi ∈ Pol(G) then deg(ξi)� deg(ηi)� deg(ξ), from which we obtain deg(m∗(ξ))�
deg(ξ) by Lemma 6.8. When deg(ξ)= 0 this is basic linear algebra, and the general case
now follows by induction on n := deg(ξ): a direct computation shows that
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m∗( ∂g(ξ))=
m∑

i=0

ξi ⊗ ∂g ηi, (6.4)

so the induction hypothesis gives that

deg(ξi)� deg( ∂g ηi)� deg( ∂g ξ)� deg(ξ)− 1 = n − 1, for all g ∈ G. (6.5)

For each nonconstant ηi there exists a g ∈ G such that deg( ∂g ηi)= deg(ηi)− 1 � 0 and
hence

deg(ξi)+̇ deg( ∂g ηi)= deg(ξi)+ deg(ηi)− 1 � n − 1.

Thus, for those i, we have deg(ξi)+̇ deg(ηi)� n and deg(ξi)� n − 1. We may write

ξ(g)= m∗(ξ)(g, 1)=
∑

i:deg(ηi)>0

ξi(g)ηi(1)+
∑

i:deg(η)�0

ξi(g)ηi(1),

and since ξ can be uniquely expressed as a linear combination of the elements {ξi |
deg(ξi)� n}, if deg(ξi) > n for some i, then ηi(1)= 0 and ηi is constant by (6.5); thus in
this case deg(ξi)� deg(ηi)= −∞� n which proves the claim. To obtain that deg(m∗(ξ))=
deg(ξ), we first show that when ξ is a unital polynomial then the pull back takes the form

m∗(ξ)= 1 ⊗ ξ +
∑

i

ξi ⊗ ξ ′
i + ξ ⊗ 1, (6.6)

where ξi, ξ
′
i are unital, nonconstant polynomials with deg(ξi)+ deg(ξ ′

i )� deg(ξ). To see
this, we expand m∗(ξ)=∑

i ξi ⊗ ηi according to the basis (ξi)i chosen above and, by what
was just proven, this means that deg(ξi)+̇ deg(ηi)� deg(ξ). Then write ηi = ξ ′

i + ri1 with
ξ ′

i unital and ri ∈ R, and note that since ξ and (ξi)i>0 are unital and ξ0 = 1, we have

0 = ξ(1)= m∗(ξ)(1, 1)= η0(1)= r0,

ξ(g)= m∗(ξ)(1, g)= η0(g)+
∑
i>0

ξi(1)ηi(g)= η0(g),

ξ(g)= m∗(ξ)(g, 1)= 1 ⊗ η0(1)+
∑
i>0

ξi(g)ξ
′
i (1)+

∑
i>0

ξi(g)ri =
∑
i>0

ξi(g)ri.

Thus,

m∗(ξ)= 1 ⊗ η0 +
∑
i>0

ξi ⊗ ξ ′
i +

∑
i>0

riξi ⊗ 1 = 1 ⊗ ξ +
∑
i>0

ξi ⊗ ξ ′
i + ξ ⊗ 1,

and restricting the last sum to those i for which ξ ′
i �= 0 we get the decomposition (6.6). From

(6.6), we see that m∗(ξ)(g, 1)= ξ(g) and hence that deg(m∗(ξ))� deg(ξ) as desired.

By Proposition 6.11, the multiplication map m : G × G → G dualizes to a degree-
preserving map at the level of polynomial algebras, and hence the following definition
makes sense.

DEFINITION 6.12 (co-multiplicativity). Let G,H be Mal’cev groups. We say that a
linear map � : Pol(G)→ Pol(H) is comultiplicative if the following diagram commutes:
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Pol(G)
m∗

��

�

��

Pol(G2)

�⊗�
��

Pol(H)
m∗

�� Pol(H2)

. (6.7)

REMARK 6.13. By Lemma 6.8 and Proposition 6.11, the multiplication map m : G ×
G → G on a Mal’cev group dualizes to a (degree-preserving) map m∗ : Pol(G)→ Pol(G)⊗
Pol(G) and it is now straight forward to check that Pol(G) is a commutative Hopf algebra
with comultiplication m∗, antipode inv∗, and counit ev1. Note also, that in this terminology
a strongly unital, comultiplicative algebra homomorphism between polynomial algebras
is nothing but a morphism in the category of Hopf algebras. In what follows, we will
therefore stick to the Hopf-algebraic language and use the term “morphism of Hopf alge-
bras” rather than the more ad hoc terminology “strongly unital, co-multiplicative, algebra
homomorphism”.

LEMMA 6.14. Let G and H be Mal’cev groups and let �1, �2 : Pol(G)→ Pol(H) be
Hopf algebra homomorphisms. Let (gi, j) be a Mal’cev basis for G and (hk,l) be a Mal’cev
basis for H and suppose that for all �= 1, . . . , rk(H) and all i, j we have

(�1ζgi, j)(h1,�)= (�2ζgi, j)(h1,�). (6.8)

Then �1 =�2.

Proof. We show that �1(ξ)=�2(ξ) by induction on d := deg ξ . The case d = 0 is
clear and the case d = 1 follows directly from the hypotheses using Theorem 6.1. Let d > 1
be given. Suppose that (�1ξ)(h)= (�2ξ)(h) and (�1ξ)(k)= (�2ξ)(k) for some h, k ∈ H .
Writing m∗(ξ)= 1 ⊗ ξ +∑

i ξi ⊗ ξ ′
i + ξ ⊗ 1 as in (6.6), the induction hypothesis gives:

�1(ξ)(hk)= m∗(�1(ξ))(h, k)

= (�1 ⊗�1)(m
∗(ξ))(h, k)

=
∑

i

�1(ξi)(h) ·�1(ξ
′
i )(k)+�1(ξ)(h)+�1(ξ)(k)

=
∑

i

�2(ξi)(h) ·�2(ξ
′
i )(k)+�2(ξ)(h)+�2(ξ)(k)

= (�2 ⊗�2)(m
∗(ξ))(h, k)

=�2(ξ)(hk).

Using this computation repeatedly, the assumption (6.8) implies that (�1ξ)(h)= (�2ξ)(h)
for all words in h1,�, and by Lemma 6.5 it follows that �1ξ =�2ξ .

Observe that if ϕ : H → G is a homomorphism, then it induces a (degree-preserving)
homomorphism ϕ∗ : Pol(G)→ Pol(H) of Hopf algebras. The next result gives a converse
to this, in the spirit that Pol(G) acts as a “total” dual space of G. As mentioned already,
using the identification of Pol(G) with the algebra of regular functions, the result can also
be deduced from classical results in the theory of algebraic groups [6, Chapter 1].

THEOREM 6.15. Let G and H be csc nilpotent Lie groups and suppose that
� : Pol(G)→ Pol(H) is a Hopf algebra homomorphism. Then there is a unique contin-
uous group homomorphism ϕ : H → G such that � is induced by ϕ. Further, ϕ is an
isomorphism if and only if � is bijective.
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Proof. Fix Mal’cev bases {gi, j} and {hi, j} for G and H , respectively, and let F be
the free csc nilpotent Lie group of class cl(F)= max{cl(G), cl(H)} with rk(H) genera-
tors f1,1, . . . , f1,rk(H). Then there are unique Lie group homomorphisms ϕH : F → H and
ϕG : F → G with closed images, defined on the generators by

ϕH( f1,�) := h1,�

ϕG( f1,�) :=
∏

(i, j)∈Brk(G)

g
(�ζgi, j )(h1,�)

i, j .

Moreover, since ϕH arises as the predual of a surjective map at the level of Lie algebras,
ϕH is also surjective and hence induces an isomorphism F/ ker(ϕH)� H . A direct com-
putation shows that (ϕ∗

H ◦�)(ζgij)( f1l)= ϕ∗
G(ζgij)( f1l) and thus, by Lemma 6.14, we get

ϕ∗
H ◦� = ϕ∗

G. Let f ∈ F be in ker(ϕH). Then for every ζ ∈ Pol0(G) we have, since � is
assumed strongly unital, that

0 =�(ζ)(1)=�(ζ)(ϕH( f ))= (ϕ∗
H ◦�)(ζ )( f )= ϕ∗

G(ζ )( f )= ζ(ϕG( f )),

and since Pol0(G) separates points in G (Theorem 6.1), we conclude that ϕG( f )= 1. Thus
ϕG induces a map ϕ̄G : F/ ker(ϕH)→ G and we therefore obtain a homomorphism

ϕ : H � F/ ker(ϕH)
ϕ̄G−→ G.

Note that, since ϕG has closed image the same is true for ϕ. By construction, we have
ϕ(h1l)= ϕG( f1l) and a direct computations now shows that ϕ∗(ζgij)(h1l)=�(ζgij)(h1l) for
all i, j, and l and by Lemma 6.14 we conclude that ϕ∗ =�. This also proves the uniqueness
of ϕ, because ifψ was another homomorphism predual to� then for every h ∈ H and every
ξ ∈ Pol(G) we have

ξ(ψ(h))=ψ∗(ξ)(h)=�(ξ)(h)= ϕ∗(ξ)(h)= ξ(ϕ(h)),

and since Pol(G) separates points in G we conclude that ϕ(h)=ψ(h). If � is more-
over assumed bijective, then �−1 is also a Hopf algebra homomorphism and is therefore
induced by a unique group homomorphism ψ : H → G. Again by the uniqueness of the
homomorphism, it follows that ψ ◦ ϕ = idG and ψ ◦ ϕ = idH .

REMARK 6.16. If G and H are Mal’cev groups then by Theorem 6.1, the restriction
map Pol(G ⊗ R)→ Pol(G) is a (degree-preserving) Hopf algebra isomorphism. Thus,
if � : Pol(G)→ Pol(H) is a Hopf algebra homomorphism then, by Theorem 6.15, it
is induced by a group homomorphism ψ : H ⊗ R → G ⊗ R at the level of Mal’cev
completions which is an isomorphism exactly when � is bijective.
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