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We consider sound source mechanisms involving the acoustic and instability modes
of dual-stream isothermal supersonic jets with the inner nozzle buried within an
outer shroud-like nozzle. A particular focus is scattering into radiating sound waves
at the shroud lip. For such jets, several families of acoustically coupled instability
waves exist, beyond the regular vortical Kelvin–Helmholtz mode, with different
shapes and propagation characteristics, which can therefore affect the character of the
radiated sound. In our model, the coaxial shear layers are vortex sheets while the
incident acoustic disturbances are the propagating shroud modes. The Wiener–Hopf
method is used to compute their scattering at the sharp shroud edge to obtain the
far-field radiation. The resulting far-field directivity quantifies the acoustic efficiency
of different mechanisms, which is particularly important in the upstream direction,
where the results show that the scattered sound is more intense than that radiated
directly by the shear-layer modes.

Key words: acoustics, aeroacoustics

1. Introduction
The use of buried nozzles (see figure 1) in turbofan engines (e.g. the Rolls Royce

RB211-535), where the outer fan cowling extends beyond the inner convergent
nozzle, is thought to reduce jet noise because of the internal mixing between the hot
core jet and the cooler bypass coflow from the fan before either of them interacts
with the ambient flow (see e.g. Smith 2004). This reduced shear suppresses some
of the acoustic sources, but the shear layer is similarly unstable to a spectrum of
hydrodynamic Kelvin–Helmholtz (K–H)-like disturbances, which provide a reasonable
model for the large-scale turbulence structures that are primary contributors to the
far-field sound (Laufer & Yen 1983; Crighton & Huerre 1990; Tam, Golebiowski &
Seiner 1996). Recent studies have demonstrated striking similarities between measured
pressure fluctuations and those associated with wavepacket-like instabilities of the
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FIGURE 1. (Colour online) Schematic of the buried-nozzle configuration.

free shear-layer K–H mode, when measured just outside the shear layer (Jordan
& Colonius 2013). The rotating turbofan also generates sound, which propagates
upstream and downstream as duct modes. Such propagating modes do not radiate
by themselves, but like the K–H modes can be scattered off the solid surfaces. Our
model computes the acoustic efficiencies of both vortical modes, as a model for these
large-scale structures, and acoustic modes, as a model for fan noise, as these are
scattered off the sharp edge of the outer cowling.

The coflow arrangement suppresses radiation by shielding the ambient flow from
the highest-speed unsteady disturbances of the core jet, which in turn reduces their
acoustic radiation efficiency (see Papamoschou & Debiasi 2003). This effect can be
particularly strong when the shear layers only support subsonic disturbances relative
to the ambient. Low-bypass supersonic turbofans used in military aircraft usually have
an afterburning section (e.g. Pratt and Whitney F100-PW-229, General Electric F110-
GE-129), where the core and bypass flows intermix before they exhaust via a variable-
area nozzle. Although radiated aerodynamic noise is sometimes considered to be of
lesser importance to military engines, it is still a concern because of its role in aural
injury, which can potentially deafen personnel. Likewise, if similar high-specific-thrust
turbofans are ever to be used for commercial flight, it is important to understand
their basic sound source mechanisms. In general, this configuration introduces sound
mechanisms that can entail the scattering from both the solid edges (nozzle and fan
cowling, see figure 1) plus the refraction due to flow non-uniformity. At sufficiently
high speeds, scattering mechanisms might likewise include the additional families of
instabilities as discussed below.

To investigate potential radiation mechanisms, we study the coflowing shrouded
supersonic jet model shown in figure 2. It includes several of the sound mechanisms
available in the configuration shown in figure 1, including the scattering of both
hydrodynamic instability modes and the propagating shroud (duct) modes into acoustic
radiation. Without the inner nozzle directly represented in our model, except as a
source for the incident instability modes, we do not include its role in scattering,
which is expected to be of secondary importance. The upstream-propagating reflected
acoustic waves that could couple with the buried-nozzle lip are finite in number and,
depending upon the core jet and bypass coflow conditions, most of them decay in
the upstream direction (Samanta & Freund 2008). This will be particularly true for
high-speed jets with low-speed coflows, as considered here. We also do not consider
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FIGURE 2. (Colour online) Schematic of the shroud with coflow.

any geometric details of the inner nozzle when calculating the amplitude functions in
§ 4.1, as the focus will be on the efficiencies of the respective scattering mechanisms
by setting the net power of all incident waves to unity (see (4.1)).

The actual jets of interest are, of course, turbulent. However, physics-based
(mostly linear) reduced-order models have provided mechanistic descriptions of key
interactions. The qualitative similarity of the K–H instability waves of the inflectional
free shear layer to the largest wave-like eddies of jet instabilities is well established
(see e.g. Michalke 1972; Liu 1981; Ho & Huerre 1984), which has been utilised in
noise models for turbulent jets (Crighton & Huerre 1990; Jordan & Colonius 2013).

Perfectly expanded free jets at sufficiently high speeds have characteristics without
analogues in their lower-Mach-number counterparts. Supersonic jets, for example,
support additional instabilities beyond K–H modes (e.g. Tam 1995), which suggests
that the turbulent mixing noise can entail additional mechanisms depending upon
the flow parameters. For compressible round jets, a vortex sheet model supports
K–H waves and other types of unstable modes (Tam & Hu 1989), which arise via
acoustic coupling across the jet core (Gill 1965). For given streamwise and azimuthal
wavenumbers, these latter modes are unstable simultaneously with the K–H mode
and are integral to the lip scattering problem that we consider. It is particularly
noteworthy that for large enough Ma1, some of these supersonic instability mode(s)
are predicted to grow faster (spatially) than the corresponding K–H mode (Luo &
Sandham 1997). Thus, these modes, and the corresponding turbulent structures they
model, are potentially important sources of far-field sound, which have not been
studied in detail for the shrouded jet configuration we consider.

When fluctuations propagate with a supersonic convective Mach number, it is
well understood that they can radiate efficiently as Mach waves, which form the
dominant component of sound for supersonic jets. Mach-wave intensity decays
super-algebraically outside a Mach cone, whose half-angle is cos−1(a∞/vj), where
a∞ is the ambient sound speed and vj is the jet convective speed, so such radiation
is effectively confined to aft angles. If (Ma1 − Ma2) & 2 (see (3.1) for the precise
expression), where Ma2 is the coflow Mach number, unstable acoustically coupled
supersonic modes are also unstable and likewise radiate Mach waves (see Tam & Hu
1989), augmenting the aft-angled radiation. Sideline and upstream acoustic radiation
is less intense than downstream radiation, though it is important and has a less
well-defined source mechanism (see e.g. Tam 2009). In addition to the unstable
modes, in free jets there also exists a continuous spectrum of neutral modes with
upstream-propagating subsonic phase speeds (the subsonic waves) (Tam & Hu 1989;
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Nichols & Lele 2011), which scatter into radiating sound as we consider next. The
modes supported by the shrouded jets we consider are classified in § 3.

Imperfectly expanded supersonic jets generate strong screech tones radiating
primarily upstream via interaction between the flow turbulence and the shock cells
(e.g. Powell 1953; Harper-Bourne & Fisher 1973; Tam 1995; Shen & Tam 2002;
Tam, Parrish & Viswanathan 2014). It is now well established that a type of feedback
mechanism is responsible for these tones (Powell 1953), where the upstream-travelling
acoustic waves play the important role of closing the feedback loop (Tam et al. 2014).
The character of these acoustic waves and whether they propagate only in the subsonic
coflow or in the core supersonic jet has yielded the two-screech-tone phenomenon
investigated by Shen & Tam (2002). The upstream-propagating acoustic modes, which
we consider in § 4 for scattering and are classified in § 3, are indeed of the second
type where they propagate along the core supersonic jet. In supersonic jets with shock
cells, these waves perturb the jet shear layer near the nozzle exit, thereby creating
new instabilities of the core jet. In perfectly expanded supersonic jets as we consider
here these waves could be the source of upstream and sideline radiation by allowing
them to scatter at the shroud lip, whose possibility we investigate in this work. It
should be noted that for the screech tones to sustain, the upstream acoustic waves
must radiate fully upstream (∼180◦ to the jet axis) within a narrow band, while we
show that the radiation via scattering is usually over a broader range of upstream but
also at sideline angles, which is where the higher harmonics of screech tones also
radiate (Tam et al. 2014).

The introduction of a solid surface – the semi-infinite shroud (see figure 2) – adds
complexity by coupling all these free jet modes and the confined shroud modes.
It also introduces a second family of K–H modes associated with the outer shear
layer, which we shall see, for typical conditions, have higher growth rates than the
corresponding core jet K–H modes. However, when the coflow is subsonic, as we
consider, their phase speed will be subsonic and hence non-radiating, although they
remain an essential component of the overall scattering mechanism. Since the aft
radiation will be dominated by Mach waves, we can anticipate that it will be less
sensitive to the introduction of the shroud per se, aside from its well-understood
shielding effect (Papamoschou & Debiasi 2003). However, it is much harder to
anticipate the sideline and upstream radiation, which in our model is expected to
arise primarily from interactions with the shroud edge. In short, the shroud can allow
otherwise non-radiating modes to radiate sound to the far field. The scattering of
the unstable K–H and supersonic modes of the core jet is analysed in § 4.1. We
also consider both tonal and multimodal (broadband) modes as incident waves and
study the corresponding radiation in §§ 4.2 and 4.3 respectively. Some comments on
the nature of the acoustic source in all the cases considered are given in § 4.4. The
corresponding far field of each of the incident waves is discussed in § 4.5. For all
cases, we neglect mean swirl, which is known to support both discrete and continuous
spectra hydrodynamic modes (Heaton & Peake 2006), different from the ones we
consider.

Our analysis of cases with supersonic core flows, including the multiple classes of
instability modes and their role in generating far-field sound, shares some features with
configurations considered in the past. The simplest is scattering from an open shroud
without mean flow (Levine & Schwinger 1948). Inclusion of flow and the instability
waves it supports required the development of a Kutta condition to enable vortex
shedding, which eventually facilitated an analysis of subsonic jet scattering in such
configurations (Munt 1977, 1990). Centre bodies were later added to the configuration
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A model supersonic buried-nozzle jet 193

(Taylor, Crighton & Cargill 1993; Gabard & Astley 2006), and the specific buried-
nozzle configuration (figure 1) was first analysed in the low-frequency (plane wave)
asymptotic limit by Taylor et al. (1993). This was extended by Samanta & Freund
(2008) to include finite-frequency acoustic waves and core jet vortical waves, in order
to analyse their role in scattering at the shroud exit, phenomenologically similar to that
considered here. This suggested a stronger and possibly different radiation character
even for subsonic core jets (see Samanta 2009). As in the present study, scattering at
the inner nozzle was neglected, enabling an analytical solution using a scalar Wiener–
Hopf method (see e.g. Noble 1988).

Inclusion of the inner nozzle scattering leads to a matrix Wiener–Hopf problem,
which has been used by Veitch & Peake (2008) to study acoustic scattering from
subsonic turbofan configurations for both buried and protruded nozzles. It was
observed that for large separation L between the buried nozzle and the outer shroud
(see figure 1), particularly when the outer shroud edge lies within a cone-of-influence
of the inner instability wave, the effect of rescattering at the buried nozzle by the
reflected acoustic modes is important, although there is always a minimum frequency
ω below which the inner instability mode ceases to exist (Samanta & Freund 2008).
Besides ω, the existence of reflected modes also depends upon Ma1−Ma2 and Ri/Ro,
and there are fewer reflected acoustic modes when Ma1−Ma2 is large for a given ω
and Ri/Ro combination (Samanta & Freund 2008). Thus, for Ma1> 1 considered here,
it is anticipated that the reflected modes in the bypass stream will not be important
(or even present), unless Ri/Ro is unrealistically small or for very large ω, near the
corresponding cutoff frequency. Hence, we disregard rescattering at the buried nozzle.
This is reaffirmed in § 4.3 in the context of multimode scattering.

For configurations involving flow past a sharp trailing edge, a Kutta condition is
needed to model the essentially viscous fluid mechanics in the neighbourhood of the
singularity. A family of well-posed Kutta conditions are available for subsonic flows.
These range from the full Kutta condition, where the vortex sheet leaves the edge at
zero gradient, to the nominally no Kutta condition, when the same gradient is allowed
to be infinite (see Orszag & Crow 1970). A corresponding vortex-shedding parameter
(see (2.26)) can be used to parameterise the effect of the specific Kutta conditions,
which we do in § 4.6. This provides some idea of how the scattering process might
be modified by changing the local shroud-edge geometry, although we do not consider
any particular modifications in this study. In contrast, there is a unique Kutta condition
available for the supersonic-core inner nozzle lip, described in § 2.3, which has been
shown to be unambiguously matched with the subsonic-coflow solution (Morgan 1974;
Peake 1994). The supersonic Kutta condition will be imposed to fix the amplitudes
of K–H and supersonic instability modes in § 4.1 via scattering of duct modes at the
inner nozzle lip.

2. Problem definition
2.1. Governing equations

The inviscid non-thermal-conductive compressible-fluid flow equations

Dρ
Dt
=−ρ∇ · u, (2.1a)

ρ
Du
Dt
=−∇p, (2.1b)

Ds
Dt
= 0, (2.1c)
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support three types of linear disturbances: acoustic, vortical and entropy waves for
uniform mean (e.g. Chu & Kovasznay 1957), where the entropy s is related to the
pressure p and density ρ as s = cv log(p/ργ ), with cv the specific heat at constant
volume and γ the specific heat ratio. Equation (2.1b) also corresponds to DΩ/Dt= 0,
if the flow is barotropic, for vorticity Ω=∇×u and uniform mean as considered here.
Decomposing q= [u ρ s

]T into a uniform mean and perturbation as q= q̄+ q′(x, t)
for q̄ = [ūz ez ρ̄ s̄

]T yields the linearised perturbation equations(
∂

∂t
+ ūz

∂

∂z

)
ρ ′ =−ρ̄∇ · u′, (2.2a)

ρ̄

(
∂

∂t
+ ūz

∂

∂z

)
u′ =−∇p′, (2.2b)(

∂

∂t
+ ūz

∂

∂z

)
(p′ − c̄2ρ ′)= 0. (2.2c)

In forming (2.2c), we have used s′ = (p′ − c̄2ρ ′), with c̄ = √γ p̄/ρ̄ being the speed
of sound. Equations (2.2a)–(2.2c) are combined to obtain the familiar advected wave
equation (

∂

∂t
+ ūz

∂

∂z

)2

p− c̄2 ∇2p= 0. (2.3)

For the piecewise-uniform flow that we assume, these wave-like disturbances are
unambiguously defined in each of the substreams, but couple only at the boundaries.
We focus on the acoustic and vorticity wave solutions, particularly how they are
linked via the vortex sheet and the sharp edge of the shroud, while neglecting the
role of entropy wave scattering. Entropy waves are generated because of temperature
(entropy) fluctuations, which could be supported for heated core jets, not considered
here. However, unless such temperature fluctuations are comparable to those actually
inside a typical combustion chamber or there is condensation during jet mixing, the
entropy–acoustic and entropy–vorticity interactions are unlikely to result in a source
of radiated sound comparable to the interactions we consider (e.g. Hirschberg &
Hoeijmakers 2014).

2.2. Model configuration
The model shroud is a semi-infinite (−∞< z< 0) circular cylinder of radius Ro, as
shown in figure 2. It is rigid, impermeable and of negligible thickness. The three-
stream mean flow ūz is

ūz =


U1 for r< Ri,

U2 for Ri < r< Ro,

U3 for r> Ro,

(2.4)

where Ri is the radius of the core jet. The core jet temperature T1 is typically much
larger than both that of the coflow T2 and that of the ambient flow T3, which for
convenience we set equal, T2 = T3 = To, and define κT = √T1/To. Similarly, the
density of the core jet ρ1 may be independently related through a second independent
parameter κρ = ρ1/ρo to the outer flows, where ρ2 = ρ3 = ρo. In this work, we have
assumed κT = κρ = 1 everywhere, except in figure 3(c), where we briefly highlight
the effect of core jet heating on the modal spectra. Detailed interactions from heated
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FIGURE 3. (Colour online) The zeros (E) and poles (×) of the kernel (2.22) for Ma1=2.5,
Ma2 = 0.2, Ma3 = 0.1, R= 0.75, ω= 8 and m= 0. For (a,b) κT = 1, with the latter being
the region shown within the box in (a), and for (c) κT = 3.16. The specific modes are
f K–H;p supersonic instability n= 1;@ supersonic instability n= 2; ∗ upstream-phase
speed neutral; and + downstream-phase speed neutral (see text). The line – · – · – is the
integration contour of (2.25) and the shaded region shown in (b) satisfies (3.1). The thick
horizontal lines are the branch cuts.

core jets could be a subject for future study, but we have retained κT and κρ in the
formulation for generality. Quantities are non-dimensionalised by Ro, T1, ρ1 and U1,
which yield Mach numbers Maj =Uj/c̄1 for j= 1, 2, 3 and the non-dimensional inner
jet radius R=Ri/Ro, where c̄1 is the core jet acoustic speed. The core jet is assumed
to be supersonic (Ma1 > 1), while the outer flows are subsonic (Ma2,3 < 1). With this
non-dimensionalisation and the introduction of a velocity potential φt(r, θ, z) such
that u=∇φt, (2.3) becomes(

∂

∂t
+Ma1

∂

∂z

)2

φt −1φt = 0, r< R, (2.5a)

κ2
T

(
∂

∂t
+Ma2

∂

∂z

)2

φt −1φt = 0, R< r< 1, (2.5b)

κ2
T

(
∂

∂t
+Ma3

∂

∂z

)2

φt −1φt = 0, r> 1, (2.5c)
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where, for convenience, the non-dimensional lengths and time are expressed by their
corresponding dimensional symbols. In forming (2.5), the pressure in each stream is

pj =−
(
∂φ

∂t
+Maj

∂φ

∂z

)
, (2.6)

for j= 1, 2, 3, per the linearised unsteady Bernoulli equation. The subscript t indicates
the total field, which will be constructed as a linear superposition of the incident and
scattered fields.

2.3. Boundary and matching conditions
The non-penetration condition corresponds to zero normal velocity on the shroud:

∂φt

∂r
(1−, θ, z)= ∂φt

∂r
(1+, θ, z)= 0, z 6 0. (2.7)

Each of the vortex sheets must satisfy the usual kinematic and dynamic conditions.
For the outer vortex sheet, linearised kinematic continuity yields(

∂

∂t
+Ma2

∂

∂z

)
η(θ, z)= ∂φt

∂r
(1−, θ, z), z> 0, (2.8)(

∂

∂t
+Ma3

∂

∂z

)
η(θ, z)= ∂φt

∂r
(1+, θ, z), z> 0, (2.9)

where η(θ, z) is the radial displacement of the vortex sheet. Similarly, dynamic
pressure continuity gives(

∂

∂t
+Ma2

∂

∂z

)
φt(1−, θ, z, t)=

(
∂

∂t
+Ma3

∂

∂z

)
φt(1+, θ, z, t), z> 0. (2.10)

The corresponding kinematic and dynamic boundary conditions on the inner vortex
sheet are respectively(

∂

∂t
+Ma1

∂

∂z

)
ξ(θ, z)= ∂φt

∂r
(R−, θ, z), −∞< z<∞, (2.11)(

∂

∂t
+Ma2

∂

∂z

)
ξ(θ, z)= ∂φt

∂r
(R+, θ, z), −∞< z<∞, (2.12)

where ξ(θ, z) is the radial displacement of the inner sheet from r= R, and

κρ

(
∂

∂t
+Ma1

∂

∂z

)
φt(R−, θ, z, t)=

(
∂

∂t
+Ma2

∂

∂z

)
φt(R+, θ, z, t), −∞< z<∞.

(2.13)
Imposition of the Kutta condition entails setting ∂η/∂z at the shroud edge

(r = 1, z = 0) (Orszag & Crow 1970). There is a family of acceptable asymptotic
behaviours for η(z) that provide this condition. Taking η ∼ z3/2 corresponds to the
full Kutta condition, for which the vortex sheet leaves with ∂η/∂z= 0. At the other
extreme, η ∼ z1/2 implies that the vortex sheet leaves such that ∂η/∂z→∞, which
is the nominal no Kutta condition. Since the particular Kutta condition mediates
the vortex scattering from the lip, we follow Rienstra (1984) and define a complex
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vortex-shedding parameter α (see (2.26)), such that 0 < |α| < 1, to compute the
results of § 4.6. We use α to assess the role of specific shroud-edge conditions on
the scattered noise. Setting α = 0 suppresses vortex shedding, while α = 1 can be
considered to be the full-vortex-shedding case, also ensuring pressure to be finite at
the edge. Supersonic flow requires η∼ z (Peake 1994), which we use to compute the
incident vortical perturbation in § 4.1.

A radiation condition is needed to ensure that all acoustic waves are outgoing and
appropriately decay at large distances. A causality criterion enforces the necessary
radiation condition (Crighton & Leppington 1974; Jones & Morgan 1974). For the
selected harmonic time dependence exp(−iωt), with complex ω = ωr + iωi, causality
requires ωi > 0. Alternatively, for ω = |ω| exp(iδ), the corresponding requirement is
06 δ6π/2. When ωi is largest (i.e. δ→π/2), the radiation condition is thus satisfied
and the integration contour Γ (see (2.25)) is best chosen at this mathematical limit,
with solutions for real ωi → 0 (the physical limit) as δ → 0 obtained via analytic
continuation. Instability modes such as K–H and the supersonic instability modes
need to be handled with care as the deformation of Γ is not possible as these modes
exhibit unbounded maximum temporal growth (e.g. Brambley 2009a). Instead, we
simply factor out these modes following a procedure detailed in Samanta & Freund
(2008), which results in Fourier integrals (see 2.25) that are now convergent, and at
the same time the above causality procedure becomes feasible. The instability modes
are calculated separately using residue theorem (see 2.28) and added to the integral
solutions.

2.4. Solution overview
The corresponding analysis for subsonic Ma1 < 1 flow with κT = κρ = 1 is reported
elsewhere (see Samanta & Freund 2008; Samanta 2009) and follows in many ways
the approaches of Munt (1977), Rienstra (1984), Munt (1990), Taylor et al. (1993)
and Gabard & Astley (2006). Therefore, we focus here on the necessary changes for
the new supersonic flow configurations.

2.4.1. Near-field Wiener–Hopf solutions
Equations (2.5)–(2.13) are transformed using

q̂±(r, ζ ) exp{i(mθ −ωt)} =
∫ +∞
−∞

q(r, θ, z, t)H(±z) exp(−iωζ z) dz

= exp{i(mθ −ωt)}
∫ +∞
−∞

q̃(r, z)H(±z) exp(−iωζ z) dz,

(2.14)

where q is φt, η or ξ , while ζ is the Fourier transform of z in the frequency space.
This operation is a half-range Fourier transform of q, with H(z) being the Heaviside
step function. The corresponding inverse transform is

q̃(r, z)= ω

2π

∫ +∞
−∞

q̂(r, ζ ) exp(iωζ z) dζ . (2.15)

The total potential φ̃t is decomposed as

φ̃t = φ̃i + φ̃, (2.16)
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where the incident disturbance

φ̃i(r, z)=
∞∑

m=−∞

∞∑
n=1

B+mnΨmn(r) exp(iµ+mnωz) (2.17)

is composed of right ‘+’ running waves, with m and n being the azimuthal and radial
wavenumber indices respectively. The mode shape Ψmn(r) and the axial wavenumber
µ+mn correspond to the shroud mode acoustic and jet vorticity solutions (Samanta
& Freund 2008), with the amplitude B+mn chosen for convenience such that the net
incident acoustic wave power is unity. Single tone variants of (2.17) will also be
considered.

Applying (2.14) to (2.5a)–(2.5c) yields three Bessel equations for the scattered φ̂:

1
r
∂

∂r

(
r
∂φ̂

∂r

)
+
(
ω2λ2

1 −
m2

r2

)
φ̂ = 0 for r< R, (2.18a)

1
r
∂

∂r

(
r
∂φ̂

∂r

)
+
(
ω2λ2

2 −
m2

r2

)
φ̂ = 0 for R< r< 1, (2.18b)

1
r
∂

∂r

(
r
∂φ̂

∂r

)
+
(
ω2λ2

3 −
m2

r2

)
φ̂ = 0 for r> 1, (2.18c)

where the radial wavenumbers are λp = λ+p λ−p , with

λ±1 = [1− ζ (Ma1 ± 1)]1/2, (2.19a)
λ±p = [κT − ζ (κTMap ± 1)]1/2 for p= 2, 3. (2.19b)

The principal branch cuts must satisfy Im [λp] > 0 as ζ → ∞ per the causality
condition discussed in § 2.3. This is ensured by the finite branch points at

ζ±1 = 1/(Ma1 ± 1), (2.20a)
ζ±p = κT/(κTMap ± 1) for p= 2, 3. (2.20b)

The domain of regularity of the transformed functions, which is a key step of
the Wiener–Hopf analysis and is discussed for the corresponding subsonic flow by
Samanta & Freund (2008), is a strip S formed by the intersection of three substrips
where each of the Im[λp]> 0.

The transformed governing equations and boundary conditions are manipulated to
form the Wiener–Hopf equation,

K(ζ )η̂+(ζ )− p̂+o (ζ )= p̂−o (ζ ), (2.21)

where p̂+o (ζ ) is the transformed (scattered) pressure jump across the outer vortex sheet,
p̂−o (ζ ) is the corresponding jump across the shroud wall and K(ζ ) is the Wiener–Hopf
kernel

K(ζ )=ω
{
(1− ζMa2)

2

λ2

[
H(1)

m (λ2ω)+ V(ζ )Jm(λ2ω)

H(1)′
m (λ2ω)+ V(ζ )J′m(λ2ω)

]
− (1− ζMa3)

2

λ3

H(1)
m (λ3ω)

H(1)′
m (λ3ω)

}
,

(2.22)
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where

V(ζ )= λ(ζ )Jm(λ1ωh)H(1)′
m (λ2ωh)−H(1)

m (λ2ωh)J′m(λ1ωh)
Jm(λ2ωh)J′m(λ1ωh)− λ(ζ )Jm(λ1ωh)J′m(λ2ωh)

(2.23)

and

λ(ζ )= κρ λ2

λ1

(1− ζMa1)
2

(1− ζMa2)2
. (2.24)

These lead to the scattered pressure p̃(r, z) in the three streams:

p̃(r, z)=



ω2

2π

∫
Γ

(1− ζMa2)
2

λ2
T1(r, ζ ) η̂+(ζ ) exp(iωζ z) dζ , r< R,

ω2

2π

∫
Γ

(1− ζMa2)
2

λ2
T2(r, ζ ) η̂+(ζ ) exp(iωζ z) dζ , R< r< 1,

ω2

2π

∫
Γ

(1− ζMa3)
2

λ3
T3(r, ζ ) η̂+(ζ ) exp(iωζ z) dζ , r> 1,

(2.25)

where Γ is a suitable inverse transform contour through the strip S, the transformed
vortex sheet displacement is

η̂+(ζ )= B+mnΨ̄mn
1−µ+mnMa2

(µ+mn − ζz1)K̂ −(µ+mn)K̂ +(ζ )U(ζ )

(
ζ − ζz1

µ+mn − ζ
+ α

)
(2.26)

and

T1(r, ζ )= Jm(λ1ωr)
Jm(λ1ωh)

H(1)
m (λ2ωh)+ V(ζ )Jm(λ2ωh)

H(1)′
m (λ2ω)+ V(ζ )J′m(λ2ω)

, (2.27a)

T2(r, ζ )= H(1)
m (λ2ωr)+ V(ζ )Jm(λ2ωr)

H(1)′
m (λ2ω)+ V(ζ )J′m(λ2ω)

, (2.27b)

T3(r, ζ )= H(1)
m (λ3ωr)

H(1)′
m (λ3ω)

, (2.27c)

with Ψ̄mn =Ψmn(r= 1).
The kernel split functions K̂ + and K̂ − of (2.26) are obtained following an

established procedure for scalar Wiener–Hopf kernels, discussed in our previous
work (Samanta & Freund 2008). Contributions from a specific zero ζ ′ of (2.22),
especially those corresponding to the instability waves, are introduced to (2.25) via
residue theorem:

p̃res(r, z) = iω2
∑
ζ ′

exp(iωζ ′z) lim
ζ→ζ ′
[η̂+(ζ )]

×H(z)


(1− ζ ′Ma2)

2 lim
ζ→ζ ′
[T1(r, ζ )/λ2], r< R,

(1− ζ ′Ma2)
2 lim
ζ→ζ ′
[T2(r, ζ )/λ2], R< r< 1,

(1− ζ ′Ma3)
2 lim
ζ→ζ ′
[T3(r, ζ )/λ3], r> 1,

(2.28)

where

lim
ζ→ζ ′
ζzi 6=ζ ′
[η̂+(ζ )] = B+mnΨ̄mn

(1−µ+mnMa2)
∑

j

(ζ ′ − ζpj)

(µ+mn − ζ ′)K̂ −(µ+mn)K̂ +(ζ ′)
∑

i

(ζ ′ − ζzi)
. (2.29)
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Here, ζzi and ζpj are respectively the ith zero and jth pole of K(ζ ). The total pressure
p̃t is obtained by addition of the incident field p̃i. It should be noted that (2.25) yields
the scattered pressure from a single incident mode of wavenumber µ+mn. For general
multimode incident waves such single-mode solutions are summed per (2.17).

The form of (2.25) is checked following procedures we have used previously
(Samanta 2009). In particular, this includes confirming that in the limit of Ma2→Ma1,
the present analytical solutions degenerate to that of Munt (1977). Furthermore,
numerical evaluations of (2.25) are substituted back into a finite-difference approxima-
tion of (2.5) and (2.7)–(2.13) to ensure that they are indeed solutions of these
equations to the known accuracy of the corresponding finite-difference approximation
and up to the specified tolerance of the corresponding numerical integration.

Numerical evaluation of (2.25) requires significant care. To ensure analytic
continuity, the kernel split function contour C to evaluate the split functions of (2.22)
and the inverse transform contour Γ of (2.25) need to be chosen after inspection of
the spectrum of zeros and poles for a particular kernel. The kernel split functions are
computed via a standard formula for scalar kernels (e.g. Noble 1988), which needs to
be evaluated once for the entire flow field and a given set of parameters. However, on
numerical refinement it was observed that the scattered pressure (2.25) is sensitive to
its numerical accuracy and limit. Since the integrands have relatively localised regions
with high gradients, it is efficient to use an adaptive quadrature scheme, for which we
selected a target tolerance of 10−5, which was confirmed to be more than adequate
(see Samanta 2009). The numerical limits of the kernel integral are taken to be 103

times the corresponding inverse transform contour Γ limits of (2.25). The inversion
contour needs to be computed for each (r, z) pair but for a given set of contour points,
which is done via a trapezoidal algorithm, with the results confirmed to be insensitive
to the number of quadrature points, typically approximately 1000. Asymptotic forms
of the functions in (2.22) are used as appropriate during the numerical evaluation to
achieve faster and accurate convergence of the respective integrands.

2.4.2. Far-field solutions
For the acoustic far field, we seek large-r solutions in spherical coordinates (R̄, Φ)

centred at r = 0 on the z = 0 shroud exit plane, with z = R̄ cos Φ and r = R̄ sin Φ.
Specifically, this amounts to evaluating (2.25) for r> 1 in the ωR̄→∞ limit.

Transforming (2.25) to spherical coordinates using (2.27c) yields

p̃(R̄, Φ)= ω
2

2π

∫
Γ

(1− ζMa3)
2

λ3

H(1)
m (λ3ωR̄ sinΦ)

H(1)′
m (λ3ω)

η̂+(ζ ) exp(iωζ R̄ cosΦ) dζ . (2.30)

Here, Φ ∈ (0, π) and λ3(ζ ) 6= 0, since Γ does not intersect the branch points ζ±3
defined in (2.20). As ωR̄→∞, the asymptotic form of the Hankel function (see e.g.
Abramowitz & Stegun 1964) allows (2.30) to be approximated as

p̃=
∫
Γ

G(ζ ) exp{ωR̄ g(ζ )} dζ , (2.31)
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where

G(ζ )≡ ω
2

2π
exp

[
−
(

m
2
+ 1

4

)
iπ
]
(1− ζMa3)

2

λ3(ζ )

η̂+(ζ )
H(1)′

m (λ3ω)

(
2
π

1
λ3ωR̄ sinΦ

)1/2

,

(2.32a)
g(ζ )≡ i[λ3(ζ ) sinΦ + ζ cosΦ]. (2.32b)

It should be noted that these are analytic in the region containing Γ . As formulated,
the asymptotic form of (2.31) can be found using the method of steepest descents.
The saddle point(s) of g(ζ ) are

ζo = κT cosΘ − κ2
TMa3

1− κ2
TMa2

3
, (2.33)

where
Θ = tan−1

(√
1− κ2

TMa2
3 tanΦ

)
. (2.34)

An identical saddle point was also obtained by Munt (1977) and Gabard & Astley
(2006) for different configurations, which is not surprising since the exponential
variation of acoustic pressure outside the shroud is the same in those corresponding
cases. The steepest descent directions are

θ0 =π/4 and θ1 =−3π/4. (2.35a,b)

With this approach, the asymptotic form of (2.31) is

p̃asm(R̄, Φ) = ω(1− ζoMa3)
2 η̂+(ζo)

πR̄ H(1)′
m [κTω sinΦ/(1− κ2

TMa2
3 sin2 Φ)1/2]κT sinΦ

× exp
[
iωR̄Γ (Φ)− im

π

2

]
as ωR̄→∞, (2.36)

with

Γ (Φ)= κT

√
1− κ2

TMa2
3 sin2 Φ − κ2

TMa3 cosΦ
1− κ2

TMa2
3

. (2.37)

It should be noted that (2.36) only includes the radiating part of the acoustic
modes. The spatially growing modes, which include the shear-layer vorticity modes
and the supersonic instability modes, continue to grow downstream, but are not our
primary interest. In actual jets these growing modes eventually show finite-amplitude
nonlinear effects, become decorrelated and decay amongst the ever larger turbulent
scales downstream. It is therefore justified to ignore their influence on the far-field
asymptotic solutions by closing the respective integration contours (of (2.36)) such
that the spatially growing modes are excluded. Still, it is important to ascertain at
what directivity angles these growing modes can be expected to be dominant. Towards
this, the same coordinate transformations are applied to the r > 1 solution of (2.28)
to yield a condition that ensures the decay of these waves in any Φ direction:

Im[λ3(ζ
′) sinΦ + ζ ′ cosΦ]> 0. (2.38)

On using (2.19), we see that the smallest Φ at which pres starts to decay exponentially
is

Φ∗ = tan−1

[
− Im(ζ ′)

Im[κ2
T(1− ζ ′Ma3)2 − ζ ′2]1/2

]
, (2.39)
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where ζ ′ is the zero of the corresponding spatially growing modes as classified in § 3.
We use Φ∗ in § 4.5 to identify where the pressure perturbations associated with the
shear-layer vorticity mode are expected to dominate.

Defining the directivity of mode (m, n) to be Dmn(Φ) in

p̃asm(R̄, Φ)= Dmn(Φ)

R̄
exp

[
iωR̄Γ (Φ)− im

π

2

]
(2.40)

yields

Dmn(Φ)= ω(1− ζoMa3)
2 η̂+(ζo)

π H(1)′
m [κTω sinΦ/(1− κ2

TMa2
3 sin2 Φ)1/2]κT sinΦ

. (2.41)

This will be used in § 4.5 to calculate the far-field directivity of the scattering
mechanisms we evaluate.

Equation (2.40) is identical to corresponding expressions in Munt (1977) and
Gabard & Astley (2006), aside from the η̂+ term defined in (2.26) that accounts for
the different configurations of the respective problems. Moreover, it is easily shown
that as Ma2 → Ma1, the η̂+ factor of the present work approaches that of Munt
(1977). Veitch & Peake (2008) obtain far-field sound from a similar configuration
for subsonic core jets, at relatively higher ω = 15, when the buried nozzle, which
was explicitly considered in their model, starts to show a significant effect. The
frequencies we consider are lower when the rescattering at the buried nozzle could
be safely neglected, as required in our model.

3. Linear modes of supersonic shrouded jets

The modes of the shrouded jet configuration of figure 2 are classified here in a
broader framework which includes modes that are also present for equivalent free
jets, but with an emphasis on the particular phenomenology of modes radiating Mach
waves to the far field. This analysis provides a necessary foundation for analysing the
mode coupling and scattering at the shroud lip in § 4, which is the main objective of
this work. Shrouded jets support a subset of the modes of equivalent free jets that do
not strongly interact with the shroud. These modes are principally supported by the
core jet and typically change little when solid-wall boundary conditions are imposed
on the coflow. In the discussions that follow, these free-jet-like modes are classified
along with modes that are unique to the semi-infinite shroud configuration.

For high-Mach-number free jets, the existence of instabilities that do not have
counterparts at low Mach numbers is well documented (see Tam & Hu 1989; Luo
& Sandham 1997; Parras & Dizes 2010; Nichols & Lele 2011). For free jets with
Ma1 > 1, both the branch points ζ±1 are positive (see (2.20a)), which requires the
corresponding branch cut to lie on the positive real axis between ζ+1 and ζ−1 . For
cold jets with κT = 1, the remaining cuts terminate at ±∞.

We designate four major types of modes, of which only the fourth (d) type
corresponds specifically to the semi-infinite shroud configuration.

(a) Kelvin–Helmholtz modes. For a given ω and m, each vortex sheet supports
a K–H mode, which in the present classification are the only modes that
have incompressible analogues, although their growth rates do vary with
compressibility (e.g. Papamoschou & Roshko 1988). For the parameters
considered in § 4, where we discuss the lip scattering, the K–H mode on
the core jet (figure 3b) has a higher growth rate than the compressibility-coupled
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FIGURE 4. The real part of the scattered pressure for incident mode m = 0, µ+0n =−0.847 for (a) the supersonic jet K–H mode and (b) the subsonic shroud K–H mode for
parameters as in figure 3. Grey levels span pressures between ±0.1. Dashed lines show
the free jet vortex sheets.

instabilities (b), discussed subsequently. Once temperature effects are accounted
for, the increased compressibility via heated core jets tends to reduce the growth
rates of these modes, as seen in figure 3(c). The K–H mode on the outer shear
layer has a still higher growth rate (see figure 3a for the outer K–H mode and
compare with the inner one in figure 3b). Moreover, for the case shown, the jet
K–H mode has a supersonic phase speed and thus radiates Mach waves, while
the subsonic shroud K–H mode is non-radiating, which is clear from the near
field of these modes shown in figure 4. The shroud K–H mode (figure 4b), with
its subsonic phase speed, has only evanescent pressure waves. However, close
to the jet shear layer, these decaying fluctuations dominate the overall pressure
fluctuations. In contrast, the jet supersonic K–H mode (e.g. Miles 1957; Ribner
1957) (figure 4a) radiates to the far field. Within the Mach cone, such waves are
anticipated to dominate the sound field, which also includes the acoustic waves
that these waves are scattered into at the shroud lip, considered in § 4.1. The
scattering we consider in § 4 will be an important contributor only outside this
region.

(b) Supersonic instability modes. For a vortex sheet model, these modes are predicted
to exist for (Tam & Hu 1989)

Ma1 −Ma2 >
1+ κT

κT
, (3.1)

which is satisfied when ζ+2 > ζ−1 (see (2.20) and the shaded strip in figure 3b).
Figure 3 shows one such case for κT = 1, where the vertical shaded strip satisfies
ζ+2 > ζ−1 , which is where one supersonic instability mode (figure 3b) is seen.
This mode is unstable, since Im(ζ ) < 0 indicates spatial growth. The analysis to
arrive at (3.1) ignores any azimuthal or radial variation and is thus only valid
for (m, n) = (0, 1) (Tam & Hu 1989). General dispersion relations also include
these radial wavenumbers (e.g. Samanta & Freund 2008), which depending upon
the chosen parameters may result in higher-order modes of successively lower
phase speeds and growth rates. Indeed, a second unstable mode is found with
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supersonic phase speed, but for c < Ma2 + 1, which is inconsistent with the
supersonic convection criterion of (3.1) (figure 3b). The number of supersonic
instability modes increases with the jet Mach number Ma1 and decreases with
the azimuthal mode order m. It should be noted that for heated (κT > 1) jets,
conditions like (3.1) could be satisfied at a lower Mach-number difference. For
a given Ma1 −Ma2, this leads to a widening of the shaded strip of figure 3(b),
as shown in figure 3(c). Like the K–H modes, the growth rates of the supersonic
instability modes also reduce with increased κT , but there are now modes with
subsonic phase speeds which can turn unstable (Im(ζ ) < 0). Figure 5 shows the
near field of the two modes with supersonic phase speeds for the parameters
of figure 3. The supersonic instability mode in figure 5(a) has an acoustic near
field that resembles the Mach-wave-like radiation of K–H waves, such as seen in
figure 4(a). The associated Mach waves are steeper to the jet shear layer when
compared with the K–H mode Mach waves because of their slower phase speed,
typical for these modes, but become indistinguishable from the K–H Mach waves
for sufficiently high-speed core flows. The supersonic n = 2 mode visualised in
figure 5(b) has a still slower phase speed and relatively lower radiation. It will
be seen in § 4.1 that these instability modes scatter into acoustic waves that are
largely confined within the Mach cone, even more so than the scattered acoustic
field of the jet K–H mode.

(c) Neutral modes. Similar modes have been identified in free jets (Tam & Hu 1989;
Nichols & Lele 2011), where they are termed acoustic since they depend upon
finite fluid compressibility, although they have Im(ζ ) = 0 and do not directly
generate sound. These are finite in number and can be seen in figure 3(b). In
the present context, these could provide a model for the disturbances created
by a fan in the outer flow located upstream. We designate the upstream-phase
speed neutral modes as those that have upstream-travelling phase speeds, and
vice versa for the downstream-phase speed neutral modes. However, both of
these have positive group velocities dω/dµmn> 0, so both variants are potentially
incident on the shroud lip from within the shroud, as considered in §§ 4.2
and 4.3.

(d) Decaying acoustic modes. Unlike a free jet, there also exist an infinite number of
decaying acoustic modes, which are seen in the upper half-plane of figure 3 with
Im(ζ ) > 0. These contribute to the upstream and sideline radiation of shrouded
jets, as observed in § 4. Corresponding growing acoustic modes, which would be
seen in the lower half-plane, do not satisfy the radiation condition.

The flow parameters (see the caption to figure 3) selected for quantifying scattering
at the shroud lip in § 4 are such that both unstable supersonic and K–H modes
are important. The computed maximum spatial growth rates of the axisymmetric
unstable supersonic and K–H modes show comparable magnitudes near approximately
Ma1 = 2.5 for the Ma2, Ma3 and R as specified in the caption to figure 3. We will
particularly focus on a perturbation frequency ω= 8, which corresponds to a Strouhal
number St = fD/U = 0.76 for core jet Mach number Ma1 = 2.5 and axisymmetric
m= 0 modes as our baseline configuration, but will also demonstrate in § 4.3 that the
interactions considered in this work are insensitive to ω. This is because a typical
spectrum for high-speed jets has a larger representation from the upstream-phase
neutral modes, even for lower coflow magnitudes, like those considered here. Any
perturbation frequency ω is therefore more likely to excite a larger fraction of these
upstream-phase neutral modes that cause the sideline and upstream acoustic radiation
described in § 4. At the baseline parameters, the aft Mach-wave radiation is important
and a useful comparison with this sideline and upstream radiation is thus possible.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

35
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.354


A model supersonic buried-nozzle jet 205

4

3

2

1

321

4

3

2

1

–1 0 321–1 0

(a)  (b)

z z

r

FIGURE 5. The same as figure 4 for (a) a core n= 0 supersonic instability mode and (b)
a higher-order n= 1 supersonic instability mode.

4. Near-field scattering and far-field sound

For the purpose of comparison, in all cases the net power of the incident wave(s)
Pinc is taken to be unity at the shroud exit plane z= 0, which from (2.17) requires

Pinc = |B+|2
M∑

m=−M

N∑
n=1

∫ 1

0
|Ψ mn(r)|2 r dr= 1, (4.1)

where for multimodal incident waves, ±M and N are the maximum mode numbers
of the corresponding azimuthal and radial components, with their respective relative
phases being set to zero. In this case, for convenience each of the components is
assumed to have equal amplitude, B+mn = B+.

4.1. Incident instability modes
Because the turbulence in a jet will have larger associated pressure fluctuations
than the acoustic duct modes in the shroud, we first consider the scattering of
the instability modes as a phenomenological model for this potentially important
interaction. Apart from the core K–H mode, the acoustically coupled supersonic
instability mode of the upstream jet is considered for scattering, where the latter has
not been studied before. These instability modes are taken to arise from a single
downstream-propagating acoustic duct mode scattered at the notional upstream nozzle
lip at z = −L (see figure 1) (Samanta & Freund 2008). For the (0, 1) mode with
µ+mn= 0.193, the resulting incident vorticity mode is visualised in figure 6(a), and the
incident supersonic instability mode in figure 7(a) has the form

φ̂i(r, z)= A+mnωΨmn(r) exp[iζp1ω(z− zL)], (4.2)

where ζp1 is a K–H pole of the kernel in (2.22) for the former and a supersonic
instability pole for the latter. Thus, Ψ mn(r) in (4.1) is

|Ψ mn(r)|2 = |A+mnω exp(−iζp1ωzL)Ψmn(r)|2, (4.3)
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FIGURE 6. The real part of the pressure for (a) the incident vortical perturbation of the
core jet shear layer and (b) the total field. The dashed line at r= 1, z> 0 represents the
confinement of the incident modes inside the shroud. Grey levels span pressures between
±0.1. The parameters are m= 0 and as for figure 3.
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FIGURE 7. The real part of the pressure for the parameters of figure 3: (a) the incident
supersonic instability mode of the core jet and (b) the total field. Grey levels span
pressures between ±0.1.

where A+mn is rescaled such that there is unit power at z= 0. It should be noted that
the usual appearance of the K–H mode in figure 6(a) is masked by its relatively long
streamwise wavelength compared with the shroud dimensions.

The net scattered pressure fields for the respective modes are shown in figures 6(b)
and 7(b). For either incident perturbation, the downstream-directed radiation is
dominated, as expected, by the Mach waves arising from the K–H and vorticity-
coupled supersonic instability modes. For the incident supersonic instability mode,
the acoustic efficiency at sideline and upstream angles drops rapidly and is relatively
weak (see also §§ 4.2 and 4.3), while for the incident vorticity mode this is comparable
to the broadband results of § 4.3. In any case, given the anticipated strength of the
hydrodynamically associated pressure perturbations in either of these incidences, this
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FIGURE 8. The real part of the pressure for the parameters of figure 3: (a) the incident
mode with µ+01= 0.248, (b) the scattered acoustic modes, (c) the scattered jet K–H mode,
(d) the scattered n = 1 supersonic instability mode, (e) the scattered n > 1 supersonic
instability mode and (f ) the total field. Grey levels span pressures between ±0.8.

is potentially an important noise source in these directions. The scattering of incident
acoustic modes, which we consider next, will be found to be more efficient, especially
when compared with the supersonic instability mode, in the sideline and upstream
directions, but is not anticipated to necessarily be of comparable incident amplitudes
in most practical configurations unless coupled to a hydrodynamic source mechanism.
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FIGURE 9. The real part of the pressure for the parameters of figure 3: (a) the incident
mode with µ+06 = −0.847, (b) the scattered acoustic modes and (c) the total field. Grey
levels span pressures between ±0.1.

4.2. Incident duct modes
From (2.17), the incident duct modes are

φ̂i(r, z)= B+mnΨmn(r) exp(iµ+mnωz), (4.4)

where µ+mn is the wavenumber of a particular right-running mode with shape Ψmn(r).
The specific expressions match those in the subsonic limit (Samanta & Freund 2008).
In (4.4), B+mn is chosen according to (4.1), so that |Ψ mn(r)|2 = |Ψmn(r)|2.

We consider m = 0 waves, which for the conditions in figure 3 support seven
right-propagating incident modes: n = 1, 2, . . . , 7. Figure 8(a) shows the incident
wave (m, n)= (0, 1), where µ+01= 0.248, and figure 8(b–e) shows the scattered waves.
Figure 8(f ) shows the net scattered pressure including the contribution from the
scattered shroud K–H mode. The sound is predominantly directed aftward (lower Φ)
in a Mach cone.

A very different behaviour is seen in figure 9(b), for the (0, 6) incident mode with
µ+06=−0.847 (figure 9a), which has a negative phase speed but positive group velocity.
In this case, the radiation is mainly upstream. The scattered K–H and supersonic
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FIGURE 10. The real part of the pressure for a multimode case composed of
∑7

1(0, n)=
7 incident duct modes. Grey levels span pressures between ±0.1. The parameters match
those of figure 3: (a) incident; (b) scattered acoustic; (c) total.

instability modes (figures 4 and 5) are qualitatively similar to the (0, 1) incident case
of figure 8 but are of comparable magnitude to the scattered acoustic pressure, which
is also apparent in the total pressure contours of figure 9(c).

4.3. Incident broadband duct modes
The tonal incident acoustic modes considered in § 4.2 can be efficient, but modern
fan designs avoid significant tones. A broadband noise source mechanism is more
representative of the pressure perturbations generated mainly due to the interactions
between the fan blade turbulent wakes and stator surfaces, and between the blade tips
and the casing boundary layer (Peake & Parry 2012). In this case, using (2.17) with
the amplitudes of each of the component modes B+mn equal, such that B+mn=B+, yields
unit incident power via (4.1).

Figures 10 and 11 show two examples. For the parameters of figure 3, a total
of 103 propagating neutral modes are possible, which on considering azimuthal
symmetry reduces to 55 distinct modes. Figure 10 shows the case where the
multimode incident wave of figure 10(a) is composed of all seven axisymmetric
m= 0 modes. The scattered acoustic pressure has a significant upstream contribution,
as seen in figure 10(b). It is comparable to the downstream Mach radiation, as visible
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FIGURE 11. The same as figure 10, but supporting
∑4
−4

∑
n(m, n)= 47 incident duct

modes: (a) incident; (b) scattered acoustic; (c) total.

in the total field of figure 10(c). In the second example, figure 11 shows the same
when the incident mode of figure 11(a) has a higher modal content: the first 47
modes (up to m = ±4). A broadband source seems to progressively smooth out the
strong directional radiation seen in the tonal sources. The radiation is also increasingly
upstream directed with increased incident modal content, a direct consequence of a
high-speed core jet ejecting into a low subsonic coflow, which supports a relatively
broad spectrum of upstream-phase speed neutral modes supported by the flow. It
should be noted that in both cases the wave field inside the shroud is essentially
unaltered by the scattering, which supports neglect of upstream reflections off the
buried-nozzle lip for our chosen parameters. The periodic cross-hatched patterns seen
inside the core jets (see especially figures 10b, 11b) indicate acoustic waves trapped
inside the jet, repeatedly reflecting off the cylindrical shear layer.

Whether such upstream radiation of figures 10(b) and 11(b) is typical of high-speed
jets as considered here and whether such results are independent of the perturbation
frequency ω is investigated by considering several incident ω cases in figure 12: ω= 4
(figure 12a,b), ω= 6 (figure 12c,d) and ω= 10 (figure 12e,f ). In each case, only the
axisymmetric m = 0 multimode scattering results are shown. The scattered acoustic
pressure in each case has a strong sideline and upstream component similar to the
ω = 8 baseline case and confirming frequency insensitivity for the configuration we
consider.
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FIGURE 12. The real part of the pressure for a multimode incident case composed of
all the m= 0 symmetric incident duct modes at perturbation frequencies of (a,b) ω = 4,
(c,d) ω = 6 and (e,f ) ω = 10 ((a,c,e) incident and (b,d,f ) scattered acoustic). Grey levels
span pressures between ±0.1. The other parameters match those of figure 3.

4.4. Comment on the sound source
An interesting feature of the acoustic scattering observed in the cases considered here
is the apparent extent of the acoustic source several diameters downstream of the
shroud exit, as clearly seen in figures 8(b), 9(b), 10(b) and 11(b). Here, the dominant
radiation directions depend upon the respective phase speeds of the incident mode(s).
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For example, for the case considered in figure 9, the phase speed of the incident
tonal acoustic wave is negative, which results in a predominantly upstream acoustic
radiation with a peak at Φ = 138◦. In figure 10(b), the apparent source of upstream-
propagating sound appears to be at one jet diameter downstream rather than near the
shroud itself. This downstream extent of the acoustic source is related to the relative
magnitudes of the core jet Mach number Ma1 and of the coflows. Specifically, for the
configuration considered here, this extent is inversely proportional to (ζ+1 − ζ−3 ), the
difference between the positive branch point corresponding to Ma1 and the negative
branch point corresponding to Ma3, whose specific forms appear in (2.20). For the
same Ma3 = 0.1 as considered here but with a subsonic core jet, this difference is
larger as ζ+1 is inversely proportional to Ma1. This results in a faster decay and thus
a shorter streamwise extent of the acoustic source (see figure 8b of Samanta & Freund
2008) than observed for the supersonic cases considered here.

4.5. Far-field sound
The far-field directivity for the incident modes is shown in figure 13. For the
single-mode tonal scattering (figure 13a), the respective downstream and upstream
peaks of the (0, 1) and (0, 6) incident modes reflect the most intense radiation
directions of figures 8(b) and 9(b) respectively. The radiated sound from the
multimode incident waves (figure 13a) is sideline and upstream biased, most
closely resembling that for the upstream-phase speed incident mode case. For the
axisymmetric seven-mode incident case, each of the undulations in the flatter sideline
region of the directivity corresponds to the individual tonal peaks, albeit with reduced
magnitudes. The 47-mode scattering essentially results in approximately uniform
directivity for Φ > 70◦. In general, multimode radiation patterns are smoother because
of averaging and mostly sideline and upstream oriented because of a presence of the
upstream-phase speed modal content in the incident wave field. In figure 13(b), the
radiation of the scattered K–H mode is more intense downstream, though comparable
(although not uniformly so) to the 47-mode multimode pressure upstream. The
supersonic instability mode, being acoustically coupled, scatters most efficiently into
acoustic and Mach waves within the Mach cone (figure 13b). The sideline and
upstream radiation is significantly less efficient than the scattered K–H mode and the
broadband acoustic modes.

Figure 13(c) shows that the sideline and upstream radiation of the multimodal
waves is insensitive to the perturbation frequency for the values of ω= 2, 4, 6, 8, 10
considered here. All of the corresponding axisymmetric m = 0 multimode radiations
seem to fall within a band of ±5 dB.

4.6. Sensitivity to the Kutta condition
It is theoretically possible to alter the radiated sound by modifying the geometry of
the shroud edge, which alters the strength of the shroud vortical mode (Bechert 1980).
This is explored here indirectly through variation of α in (2.26), which modifies the
shroud-lip Kutta condition. We consider two cases: α = 1 corresponds to the full-
vortex-shedding case, with all the available vorticity shed from the shroud lip, and α=
0 suppresses vortex shedding, but ignores any phase of α. The role of vortex shedding
has been shown to be significant at lower (ω→0) frequencies and especially for plane
waves (Rienstra 1983, 2007), but for the parameters considered here (ω = 8) and as
seen in figure 13(d), such variations have little influence for tonal and K–H mode
scattering. These results would be similar even for shroud walls coated with compliant
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FIGURE 13. (Colour online) The far-field sound pressure for (a) different incident tonal
and broadband duct modes: – – – (0, 1) downstream-phase speed tonal; — — — (0, 6)
upstream-phase speed tonal; — ·— ∑

n(0, n) seven-mode multimodal; ——
∑4
−4

∑
n(m, n)

47-mode multimodal; and (b) different incident instability modes: — ·— K–H; — — —
supersonic instability; ——

∑4
−4

∑
n(m, n) 47-mode multimodal. (c) The far-field sound

pressure for
∑

n(0, n) multimodal axisymmetric at —— ω= 10; – – – ω= 8; — ·— ω= 6;
— · ·— ω = 4; — — — ω = 2. (d) The effect of vortex shedding per the selected Kutta
condition for (normal lines) (0, 6) upstream-phase speed acoustic; (thinner lines) (0, 1)
downstream-phase speed acoustic; (thicker lines) K–H incidence with —— α = 1 and
– – – α = 0. The shaded grey band (up to Φ = 46◦) represents the zone-of-influence of
the axisymmetric m= 0 instability modes defined in (2.39). The other parameters are the
same as for figure 3.

liners (Brambley 2009b). For the downstream-phase speed (0, 1) mode incidence there
is at most an ∼1 dB change along the forward arc, for the upstream-phase speed
(0, 6) mode there appears to be an ∼0.5 dB difference in the rearward arc, while
for the incident vorticity mode there is an ∼2 dB difference in the forward arc.

5. Conclusions
The main conclusion is that shrouded isothermal supersonic jets, like those we

consider here as a model for buried-nozzle turbofan engines, have the potential
to generate strong sideline and upstream sound radiation via scattering of incident
acoustic and instability modes at the shroud lip. At these angles, this is comparable
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to the sound generated by the Mach waves of the instabilities that are spawned.
Depending upon the mix of hydrodynamic and broadband acoustic modes, such
radiation could constitute the primarily upstream sound over a broad range of sideline
and forward angles. Because of the different coflow speeds and the varying phase
speeds of the underlying modes, some of this radiation appears to originate a full jet
diameter downstream of the shroud lip for the parameters we consider.
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