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DETECTING FOR SMOOTH
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GARCH MODELS
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Detecting and modeling structural changes in GARCH processes have attracted in-
creasing attention in time series econometrics. In this paper, we propose a new ap-
proach to testing structural changes in GARCH models. The idea is to compare the
log likelihood of a time-varying parameter GARCH model with that of a constant
parameter GARCH model, where the time-varying GARCH parameters are esti-
mated by a local quasi-maximum likelihood estimator (QMLE) and the constant
GARCH parameters are estimated by a standard QMLE. The test does not require
any prior information about the alternatives of structural changes. It has an asymp-
totic N(0,1) distribution under the null hypothesis of parameter constancy and is
consistent against a vast class of smooth structural changes as well as abrupt struc-
tural breaks with possibly unknown break points. A consistent parametric bootstrap
is employed to provide a reliable inference in finite samples and a simulation study
highlights the merits of our test.

1. INTRODUCTION

Since Engle’s (1982) seminal work, various ARCH and GARCH models have
been used to capture volatility dynamics of macroeconomic and financial time
series. Underlying all these models is the key assumption of stationarity. Given
the changing pace of the underlying economic mechanism and technological
progress, modeling economic processes over a long time horizon under the sta-
tionarity assumption may not be suitable. It is plausible that structural changes
may occur, causing the time series to deviate from stationarity. Indeed, various
economic factors may lead to structural changes in economic time series. For
example, one driving force for structural changes is the “shocks” induced by
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institutional changes, such as the changes of exchange rate systems from a fixed
exchange rate mechanism to a floating exchange rate mechanism, or the introduc-
tion of Euro. The prevalence of structural instability in macroeconomic and finan-
cial time series has been documented by numerous studies. For example, Andreou
and Ghysels (2002) examine the change-point hypothesis in the volatility dynam-
ics of international stock market indices and foreign exchange returns and find
multiple breaks associated with the Asian and Russian financial crises; Mikosch
and Stărică (2004) apply their goodness-of-fit test to Standard & Poor’s 500 re-
turns and detect structural changes related to shifts of the unconditional variance.

Model stability is crucial for statistical inference, forecasts, and policy rec-
ommendations drawn from the model. In particular, ignoring structural changes
in macroeconomic and financial time series may easily lead to spurious persis-
tence in volatility dynamics. Diebold (1986) and Lamoureux and Lastrapes (1990)
are among the first to suggest that structural changes unaccounted for can yield
spurious Integrated GARCH (IGARCH) or long memory effects. More recently,
Mikosch and Stărică (2004) and Hillebrand (2005) provide some theoretical
explanation for this phenomenon. The IGARCH process implies that shocks have
a permanent impact on volatility and so current information remains relevant
when forecasting the conditional variance at long horizons. In contrast, for a
short memory volatility process, shocks to variance decay quickly over time even
when structural changes exist. Moreover, model instability may affect asset allo-
cation or lead to large errors in pricing, hedging, and managing risk. Pettenuzzo
and Timmerman (2005) show that the possibility of future breaks has its largest
effect at long investment horizons, but historical breaks can significantly change
investment decisions even at short horizons through its effect on current parameter
estimates.

Tests have been proposed to detect structural breaks in GARCH models in the
literature. For example, Chu (1995) considers a supremum Lagrange multiplier
(LM) test for a GARCH model. Berkes, Gombay, Horvath, and Kokoszka (2004)
develop a sequential likelihood-ratio (L R) test for parameter constancy of a
GARCH model. The test is more informative than any sequential cumulative sum
(CUSUM) test performed on observed asset returns or residual transformations.
It is, however, computationally intensive as it involves the calculation of quasi-
likelihood scores. Kulperger and Yu (2005) derive the properties of structural
break tests based on the partial sums of squared estimated standardized residu-
als of a GARCH model. These tests all consider one-time shift as the alternative
so they may not have good power against multiple breaks.

Almost all existing change-point tests for GARCH models are constructed for
abrupt changes. To our knowledge, the only exception is Amado and Teräsvirta
(2008), who consider testing for a time-varying smooth transition GARCH model.
Smooth changes may be more realistic because volatility usually evolves over
time in a continuous manner and volatility jumps are rare. Empirical evidence
shows that various economic events, such as liberalization of emerging mar-
kets, integration of world equity markets, changes in exchange rate or interest
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rate regimes, may lead to structural changes in volatility dynamics. The changes
induced by policy switch, preference changes, and technology progress usually
exhibit evolutionary changes in the long term. In general, as Hansen (2001) points
out, “it may seem unlikely that a structural break could be immediate and might
seem more reasonable to allow a structural change to take a period of time to take
effect”. In particular, volatility is a measure of risk and it may take time for the
market to achieve some consensus.

Recently, time-varying parameter ARCH and GARCH models have appeared
as a novel tool to capture the evolutionary behavior of economic time series. For
example, Amado and Teräsvirta (2008) propose both additive and multiplicative
time-varying GARCH models. They introduce a smooth transition function that
allows model parameters to change smoothly over time. Parametric specifica-
tions for time-varying parameters lead to more efficient estimation if the coef-
ficient functions are correctly specified. However, economic theories usually do
not suggest any concrete functional form for time-varying parameters; the choice
of a functional form is somewhat arbitrary. Engle and Rangel (2008) assume that
the variance of the process of interest can be decomposed into stationary and
nonstationary components, where the nonstationary component is modeled us-
ing spline functions of time and the stationary component follows a GARCH
process. Dahlhaus and Subba Rao (2006) and Fryzlewicz, Sapatinas, and Subba
Rao (2008) study a time-varying parameter ARCH process for modeling the evo-
lutionary behavior of volatility. The model is locally stationary in the neighbor-
hood of each point of time but is globally nonstationary. One advantage of this
evolutionary time-varying parameter ARCH model is that little restriction is im-
posed on the functional forms of ARCH coefficients, except for the regularity
condition that they evolve over time smoothly.

Motivated by the flexibility of smooth time-varying parameter ARCH models
and the popularity of GARCH models in practice, we will first generalize the
smooth time-varying parameter ARCH models to a class of smooth time-varying
GARCH models and derive the consistency and asymptotic normality of a local
QMLE for time-varying GARCH parameters in both the interior and boundary
regions of time. We then use a time-varying GARCH(p,q) model as the alterna-
tive to test smooth structural changes and sudden structural breaks for a GARCH
model. We emphasize that unlike the case of a stationary GARCH(p,q) model, a
time-varying GARCH(p,q) model is not included as a special case in the time-
varying ARCH(∞) class and therefore the asymptotic analysis is much more
involved. Thus, while the main focus of this paper is on testing structural changes
of GARCH parameters, our results on local QMLE of time-varying GARCH
parameters may have its own independent interest. Moreover, we study the asymp-
totic properties of the local QMLE of time-varying GARCH parameters in both
the interior and boundary regions of time. We find that the asymptotic biases of
the local QMLE in the interior and boundary regions have different convergence
rates, and a simple boundary-correction will make the bias in the boundary re-
gions vanish to zero at the same rate as in the interior region.
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As the main contribution, this paper proposes a consistent test for smooth struc-
tural changes as well as abrupt structural breaks in GARCH parameters with
either known or unknown change points. The idea is to estimate the smooth time-
varying GARCH parameters by a local QMLE and compare them with the stan-
dard QMLE for constant GARCH parameters. Compared with the existing tests
for structural breaks in GARCH models in the literature, the proposed test has a
number of appealing features:

First, the proposed test is consistent against a large class of smooth time-
varying parameter alternatives. It is also consistent against multiple sudden struc-
tural breaks in GARCH models with known or unknown break points.

Second, no prior information on a structural change GARCH alternative is
needed. In particular, we do not need to know whether the structural changes
are smooth or abrupt, and in the cases of abrupt structural breaks, we do not need
to know the dates or the number of breaks.

Third, unlike most tests for structural breaks in GARCH models in the litera-
ture, which often have nonstandard asymptotic distributions, the proposed test has
a null asymptotic N(0,1) distribution. The only inputs required are the log likeli-
hoods of QMLE and local QMLE. Any standard econometric software can carry
out computational implementation easily.

Fourth, the local QMLE can capture the local behavior of time-varying
GARCH parameters. Because only local information is employed in estimating
parameters at each time point, the proposed test has symmetric power against
structural breaks that occur in either the first or second half of the sample period.
This is different from some existing tests (e.g., CUSUM tests) that have asym-
metric powers against structural breaks that have same break sizes but occur at
different time points.

Fifth, unlike some existing tests for structural breaks in GARCH models, no
trimming procedure is required for the proposed test. Thus, the proposed test is
expected to have nontrivial powers for structural changes near the boundary re-
gions of time, provided that the sample size is large enough. Moreover, the local
QMLE for the time-varying parameters can provide insight into the nature of
volatility dynamics.

In Section 2, we introduce a time-varying GARCH framework and hypotheses
of interest. Section 3 proposes a local QMLE for the smooth time-varying parame-
ters in a GARCH model and establishes its consistency and asymptotic normality
for both the interior and boundary regions of time. Section 4 develops a likeli-
hood ratio test. Section 5 derives its asymptotic null distribution and investigates
its asymptotic power property. In Section 6, a simulation study is conducted to
examine the finite sample performance of the test via a parametric bootstrap,
which is shown to be consistent. Section 7 provides concluding remarks. All
mathematical proofs are collected in the Appendix. A GAUSS code to imple-
ment the proposed test is available from the authors upon request. Throughout the
paper, C denotes a generic bounded constant, ‖·‖d denotes the ld -norm, and |·|abs
denotes the absolute matrix, where (|A|abs)i, j = ∣∣Ai, j

∣∣.
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2. TIME-VARYING GARCH MODEL AND HYPOTHESES OF INTEREST

Consider the following data generating process (DGP)⎧⎪⎨
⎪⎩

Xt =
√

h0
t εt ,

h0
t = α0

0t +∑p
i=1 α0

i t h
0
t−i +∑q

j=1 β0
j t X2

t− j ,

{εt } ∼ i.i.d.(0,1),

(2.1)

where Xt is a stochastic time series process, the α0
j t and β0

j t are possibly time-
varying parameters, t is the index of time, p and q are the orders of the
GARCH process, and {εt } is an i.i.d. sequence of standardized innovations
with mean 0 and variance 1. Let θ0

t be the collection of parameters; namely,
θ0

t = (
α0

0t ,α
0
1t , . . . ,α

0
pt ,β

0
1t , . . . ,β

0
qt

)′
, a (p +q +1)-dimensional vector.

The above setup nests both constant parameter GARCH and time-varying
GARCH processes. For example, if θ0

t is not changing over time, we have a con-
stant parameter GARCH(p,q) process, whose asymptotic properties have been
studied by Berkes, Horvath, and Kokoszka (2003). Francq and Zakoı̈an (2004)
derive the consistency and asymptotic normality under strict stationarity and
Escanciano (2009) extends Francq and Zakoı̈an (2004) to GARCH models with
martingale difference centered squared innovations. Lee and Hansen (1994) and
Lumsdaine (1996) also establish the asymptotic theory of the QMLE for a
GARCH(1,1) model when θ0

t is a constant.
For time-varying parameter GARCH processes, one example is the single break

at time u in a GARCH model. Chu (1995) and Kulperger and Yu (2005) have used
this model as an alternative to study parameter constancy of GARCH models.
Another example of time-varying GARCH processes is the time-varying smooth
transition GARCH models proposed by Amado and Teräsvirta (2008). They con-
sider both additive and multiplicative GARCH models, where the time-varying
components are included in the conventional GARCH models in different forms.

To cover a wide range of possibilities, we do not assume any parametric func-
tional form for θ0

t . Instead, we assume that θ0
t is an unknown smooth function of

time in form of

θ0
t = θ0

(
t

T

)
,

where θ0 : [0,1] → R
(p+q+1) is a vector-valued smooth function. The parameter

θ0
t changes over time but in an evolutionary manner. The DGP in (2.1) becomes

the following time-varying GARCH process, where

h0
t = α0

0

(
t

T

)
+

p∑
i=1

α0
i

(
t

T

)
ht−i +

q∑
j=1

β0
j

(
t

T

)
X2

t− j . (2.2)

This includes time-varying ARCH(q) processes (Dahlhaus and Subba Rao, 2006;
Fryzlewicz et al., 2008) as a special case when α0

i

( t
T

) = 0 for all t, i = 1, . . . , p.
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In this paper, we consider GARCH models in (2.2) because GARCH models are
more flexible and parsimonious than ARCH models in capturing volatility dy-
namics. Parsimonious GARCH models are attractive in estimating and forecasting
volatilities.

The specification that θ0(·) is a function of ratio t/T rather than time t is a
common scaling scheme in the time series literature (see, e.g., Robinson, 1989;
Phillips and Hansen, 1990; Dahlhaus and Subba Rao, 2006; Cai 2007). It might
first appear a bit strange because the time-varying parameter θ0

t depends on the
sample size T . The reason for this requirement is that a nonparametric estima-
tor for θ0

t will not be consistent unless the amount of data on which it depends
increases, and merely increasing the sample size will not necessarily improve
estimation of θ0

t at a fixed point t, even if some smoothness condition is imposed
on θ0

t . The amount of local information must increase suitably if the variance and
bias of a nonparametric estimator of θ0

t are to decrease suitably as the sample size
T increases. A convenient way to achieve this is to regard θ0

t as the ordinates of
the smooth function θ0(·) on an equally spaced grid over [0,1], which becomes
finer and finer as T → ∞, and then consider estimation of θ0(u) at a fixed point
u ∈ [0,1]. See Robinson (1989) for more discussion in a linear regression context.

A keen interest here is whether the parameter θ0
t is changing over time. The

null hypothesis is

H0 : θ0
t = θ0 for some unknown constant vector θ0 ∈ � and for all t,

where � is a (p +q +1)-dimensional parameter space of θt .
Under H0, the DGP in (2.1) is a standard GARCH process with constant

parameter θ0. The unknown constant parameter vector θ0 could be consistently
estimated by the global QMLE

θ̂ = argmax
θ∈�

1

T

T∑
t=1

lt (θ), (2.3)

where lt (θ) is the likelihood function; namely

lt (θ) = −1

2

[
loght (θ)+ X2

t

ht (θ)

]
,

ht (θ) = ξ0(θ)+
∞∑

j=1

ξj (θ)X2
t− j ,

where the functions ξj (θ), 0 ≤ j < ∞, are defined in Berkes et al. (2003).
In practice, we observe only {X1, . . . , XT } of size T and the logarithm of the

likelihood function in (2.3) cannot be computed from the observed data, and so
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the estimator θ̂ is infeasible. Hence, we replace ls(θ) with

l̄t (θ) = −1

2

[
log h̄t (θ)+ X2

t

h̄t (θ)

]
, (2.4)

where

h̄t (θ) = ξ0(θ)+
s−1∑
j=1

ξj (θ)X2
t− j ,

and the feasible global QMLE is given by

θ̄ = argmax
θ∈�

1

T

T∑
t=1

l̄t (θ). (2.5)

Among many others, Berkes et al. (2003) establish the consistency and asymp-
totic normality of both θ̂ and θ̄ under H0, and Lee and Hansen (1994) and
Lumsdaine (1996) derive the asymptotic properties of QMLE for a GARCH(1,1)
model under H0. Heuristically, ξj (θ) decays exponentially so that replacing ls(θ)

with l̄s(θ) has asymptotically negligible impact and both θ̂ and θ̄ have the same
asymptotic distribution.

The alternative hypothesisHA is thatH0 is false. UnderHA, θ0
t is time varying

with an unknown functional form. Examples include GARCH models with a
single break or multiple breaks with possibly unknown break points, Amado and
Teräsvirta’s (2008) time-varying smooth transition GARCH models, Dahlhaus
and Subba Rao’s (2006) time-varying ARCH(q) models, and the more general
time-varying GARCH(p,q) models in (2.2). We allow for smooth changes and
a finite number of abrupt changes under HA, which covers a wide range of
alternatives.

All existing tests for structural changes in GARCH models in the literature
consider a parametric alternative of structural changes. For example, Chu (1995)
considers a supremum LM test to check parameter constancy against a single
break in a GARCH model. Amado and Teräsvirta (2008) use a LM test against
time-varying smooth transition GARCH alternatives. Both tests specify certain
parametric alternatives, and they have best power against the assumed alternatives.
However, usually no prior information about the true alternative is available for
practitioners. A main objective in this paper is to develop a consistent test for H0
against a wide range of alternatives, using a new approach.

In a linear regression framework, Chen and Hong (2012) propose generalized
Chow and generalized Hausman tests for smooth structural changes as well as
abrupt structural breaks in regression models. The idea is to estimate the smooth
time-varying parameters by local linear smoothing and compare it with the con-
stant parameter OLS estimator via sums of squared residuals and fitted values
respectively. These tests are not applicable to test structural changes in GARCH
models, since GARCH models require different estimation methods and use
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different criterion functions. In this paper, we shall compare a constant parameter
GARCH model with a time-varying parameter GARCH model via a quasi-log-
likelihood criterion. Naturally, our test can be applied to check structural changes
in an ARCH model, as it is just a special case. We note that no such a test for
volatility structural changes was available in the previous literature, even for
a smooth time-varying parameter ARCH model, although Dahlhaus and Subba
Rao (2006) point out “from a practical point of view, one could evaluate the sum
of squared deviations between the kernel-QML estimator at each time point and
the global QML estimator. We conjecture that the asymptotic distribution under
the null hypothesis of stationarity is a chi-square”. Our quasi-likelihood ratio test
is rather natural and computationally simple, because log-likelihood values are the
outputs of estimation. And we obtain a convenient asymptotic N(0,1) distribution
after suitable centering and scaling under H0.

To introduce our test, below we first extend Dahlhaus and Subba Rao’s (2006)
results on smooth time-varying ARCH models and discuss how to estimate
smooth time-varying GARCH models by a local QMLE. Asymptotic properties
of the local QMLE of smooth time-varying GARCH(p,q) parameters for both
the interior and boundary regions of time may have independent interests since
no such asymptotic results were available in the literature.

3. ESTIMATION OF SMOOTH TIME-VARYING GARCH PARAMETERS

Unrestricted nonstationarity may entail so much arbitrariness in the time depen-
dent behavior of a time series process that it may be impossible to develop a
meaningful asymptotic theory. When a process is changing over time smoothly,
increasing the number of observations over time does not necessarily imply an
increase in information. For example, one cannot expect an ensemble average to
be consistently estimated by the corresponding temporal average. To avoid patho-
logical cases arising from extreme nonstationarity, we impose some restrictions
on the process to control the extent of the deviations from stationarity. A natu-
ral way of doing so is to embed a stationary structure on the process in some
neighborhood of each time point. This is similar to the idea that underlies the
nonparametric technique of fitting a line locally to a nonlinear curve. In this case
a smoothness condition on the curve is required to validate the approach. Like-
wise in the present case, the imposition of local stationarity involves the use of a
smoothness constraint on the evolution of the nonstationary process. A rigorous
definition of local stationarity is introduced by Dahlhaus (1996a, 1996b, 1997)
who imposes a smoothness condition in terms of the components in the spectral
representation of the process. Heuristically, one can say that a time series process
is locally stationary if the law of motion is smoothly time-varying. Thus a locally
stationary process behaves like a stationary process in the neighborhood of each
instant in time but has a global nonstationary behavior.

Here, the smoothness of the parameter function θ0(·) guarantees that the
time-varying GARCH process in (2.2) displays a locally stationary behavior.
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In order to study the asymptotic properties of {Xt } in (2.2), we introduce a sta-
tionary GARCH process {X̃t (u)} that is associated with {Xt } at the fixed point
u ∈ [0,1]:⎧⎪⎪⎨
⎪⎪⎩

X̃t (u) =
√

h̃t
(
u,θ0

u

)
εt ,

h̃t
(
u,θ0

u

)= α0
0(u)+∑p

i=1 α0
i (u)h̃t−i (u)+∑q

j=1 β0
j (u)X̃2

t− j (u) ,

{εt } ∼ i.i.d.(0,1), t = 1, . . . ,T,

(3.1)

where all coefficients depend on the fixed point u but do not depend on time t.
It has been shown in the literature that X2

t admits a time-varying state space
representation and thus can be well approximated by the stationary process X̃2

t (u)
(Subba Rao, 2006). The degree of the approximation depends on the rescaling
factor T and the deviation

∣∣ t
T − u

∣∣. This is formally stated in Lemma A.1 in the
Appendix.

Let � be the compact set

� =
⎧⎨
⎩θ = (α0,α1, . . . ,αp,β1, . . . ,βq )′ ∈ Rp+q+1 :

p∑
i=1

αi +
q∑

j=1

βj ≤(1−η)/μ, for some η>0

ρ ≤min
(
α0,α1, . . . ,αp,β1, . . . ,βq

)≤ max
(
α0,α1, . . . ,αp,β1, . . . ,βq

)≤ ρ̄

⎫⎬
⎭, (3.2)

where μ = (
Eε4

t

)1/2
, 0 < ρ < ρ̄ < ∞, ρq < ρ0, and 0 < ρ0 < 1. For each

u ∈ [0,1], we assume that θ0
u is an interior point in �, where θ0

u = (α0
0 (u) ,α0

1(u),

. . . ,α0
p(u),β0

1 (u), . . . ,β0
q (u))′. The hypothetical process in (3.1) is a stationary

GARCH process at a given point u ∈ [0,1] and thus has a unique representation
(Berkes et al., 2003)

h̃t

(
u,θ0

u

)
= ξ0

(
θ0

u

)
+

∞∑
j=1

ξj

(
θ0

u

)
X̃2

t− j (u) (3.3)

for all t with probability one under certain regularity conditions. The functions{
ξj (θ

0
u )
}

are given in Berkes et al. (2003). UnderHA, the local QMLE to estimate
θ0

t is given by

θ̂t = argmax
θ∈�

Lt (θ) = argmax
θ∈�

1

T

T∑
s=1

kst ls(θ), (3.4)

where ls(θ) and hs(θ) are defined in (2.3), kst = 1
b k
( s−t

T b

)
, the kernel k :

[−1,1] →R
+ is a prespecified symmetric bounded probability density, and

b ≡ b(T ) is a bandwidth such that b → 0 and T b → ∞ as T → ∞. For
notational simplicity, we have suppressed the dependence of kst on the sam-
ple size T and the bandwidth b. Examples of k(·) include the uniform,
Epanechniov, and quartic kernels. The estimator θ̂t in (3.4) is regarded as
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an estimator of θ0
t = (

α0
0

( t
T

)
,α0

1

( t
T

)
, . . . ,α0

p

( t
T

)
,β0

1

( t
T

)
, . . . ,β0

q

( t
T

))′ or θ0
u =

(α0
0(u),α0

1(u), . . . ,α0
p(u),β0

1 (u), . . . ,β0
q (u))′ where

∣∣ t
T −u

∣∣< 1
T .

In the derivation of the asymptotic properties of θ̂t , we rely on the local ap-
proximation of X2

t by the stationary process X̃2
t (u) defined in (3.1) for t/T close

to u. We define the locally weighted likelihood of X̃t (u) as

L̃ (u,θ) = 1

T

T∑
s=1

kst l̃s (u,θ) , (3.5)

where
∣∣ t

T −u
∣∣< 1

T and

l̃s (u,θ) = −1

2

[
log h̃s (u,θ)+ X̃s(u)2

h̃s (u,θ)

]
,

h̃s (u,θ) = ξ0(θ)+
∞∑

j=1

ξj (θ)X̃2
s− j (u) .

It is shown in the Appendix that Lt (θ) in (3.4) and L̃ (u,θ) in (3.5) become arbi-
trarily close to each other, and both converge in probability to

L (u,θ) = DE
[
l̃0 (u,θ)

]
(3.6)

as T → ∞, b → 0, T b → ∞,
∣∣ t

T −u
∣∣< 1

T , where D = 1 when T −�T b� ≥ t ≥
�T b�, where �T b� denotes the integer part of T b; and D = k1c ≡ ∫ 1

−c k(u)du
when t = [cbT ] or T − [cbT ], where 1 ≥ c ≥ 0. It is easy to see that
L(u,θ) is maximized by θ0

u . By applying the extreme estimator lemma
(e.g., Amemiya, 1985, Thm. 4.1.1), we can establish the consistency of the lo-
cal QMLE θ̂t . Specifically, if b → 0 and T b → ∞ as T → ∞, we have

θ̂t →P θ0
u for u ∈ [0,1] and

∣∣∣∣ t

T
−u

∣∣∣∣< 1

T
.

Similar to (2.3), Lt (θ) in (3.4) cannot be computed with the observed sample
{Xt }T

t=1 , so we have to replace Lt (θ) with

L̄ t (θ) = 1

T

T∑
s=1

kst l̄s(θ), (3.7)

where l̄s(θ) and h̄s (θ) are defined in (2.4). Then we define the feasible local
QMLE

θ̄t = argmax
θ∈�

L̄ t (θ) . (3.8)

To derive the asymptotic properties of θ̄t , we impose the following regularity
conditions.
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Assumption A.1. The α0
j (·) and β0

j (·) are continuous on [0,1] except for a
finite number of points in [0,1] . For each continuity point u ∈ [0,1] , there exists
some constant ϕ ∈ (0,1] and some constant C < ∞, such that |α0

j (u)−α0
j (v)| ≤

C |u − v|ϕ and |β0
j (u)−β0

j (v)| ≤ C |u − v|ϕ, where v ∈ Nε(u), a small neighbor-
hood containing u.

Assumption A.2. Let the (p +q +1)-dimensional parameter space � be de-
fined as (3.2). For each u ∈ [0,1], θ0

u ∈ Int(�), where θ0
u = (α0

0(u),α0
1(u), . . . ,

α0
p(u),β0

1 (u), . . . ,β0
q (u))′.

Assumption A.3. The polynomials α0
1(u)x +α0

2(u)x2 +·· ·+α0
p(u)x p and 1−

β0
1 (u)x −β0

2 (u)x2 −·· ·−β0
q (u)xq are coprime on the set of polynomials with real

coefficients for some given u ∈ [0,1].

Assumption A.4. The standardized innovation {εt } is an i.i.d.(0,1) sequence
satisfying limr→0 r−ν P

(
ε2

t ≤ r
)= 0 for some ν > 0, and with (i) E |εt |4(1+δ) < ∞

for some δ > 0 or (ii) E
(
ε12

t

)
< ∞.

Assumption A.5. The kernel k : [−1,1] → R
+ is a symmetric bounded prob-

ability density function.

Assumption A.6. The bandwidth b = cT −λ (0 < c < ∞) with either
(i) 0 < λ < 1 or (ii) 1/13 < λ < 1.

Assumption A.7. Except for a finite number of points on [0,1], the α0
j (u)

and β0
j (u) are three times differentiable with supu∈[0,1]

∣∣ (∂ l/∂ul
)
α0

j (u)
∣∣ ≤ C for

j = 0, . . . , p and supu∈[0,1]

∣∣ (∂ l/∂ul
)
β0

j (u)
∣∣ ≤ C for j = 1, . . . ,q, and

l = 1,2,3, where C is some bounded constant independent of j and l.

Assumption A.8. Let Xt (2,u) = [h̃t
(
u,θ0

u

)
, . . . , h̃t−q+1

(
u,θ0

u

)
, X̃2

t−1(u),

. . . , X̃2
t − p+1(u),dh̃t

(
u, θ0

u

)
/du, . . . , dh̃t −q +1

(
u, θ0

u

)
/du, d X̃2

t−1(u)/du, . . . ,

d X̃2
t−p+1(u)/du]′. Then Xt (2,u) is φ-irreducible.

Assumption A.1 imposes the ϕ-Lipschitz continuity of parameter functions
α0

j (·) and β0
j (·) , but we allow for a set of a finite number of points where α0

j (·)
and β0

j (·) are discontinuous. Assumptions A.1 and A.2 provide sufficient condi-
tions that the stochastic process {Xt } admits a time-varying state space representa-
tion (Subba Rao, 2006). Assumptions A.2 and A.3 guarantee that the time-varying
parameter θ0

t can be uniquely identified. These are standard assumptions imposed
by Berkes et al. (2003, 2004) and Kulperger and Yu (2005), among many others,
for the case of constant parameters. Assumption A.4 imposes mildly strong mo-
ment conditions, which may seem a bit restrictive for some financial applications.
Assumption A.4(i) is used to prove a similar result for sums of martingale arrays
as opposed to sums of martingale differences in the stationary context. Assump-
tion A.4(ii) is imposed to derive the bias of the local QMLE.
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Assumption A.5 implies
∫ 1
−1 k(u)du = 1,

∫ 1
−1 uk(u)du = 0, and

∫ 1
−1 u2k(u)

du < ∞. All examples in Section 2 satisfy this assumption. It is possible to use
kernels with infinite support, such as the Gaussian kernel k(u) = 1√

2π
exp

(− 1
2 u2

)
for −∞ < u < ∞. However, we use kernels with bounded support to simplify
analysis. Assumptions A.4(ii), A.6(ii), and A.7 are used only in Theorems 2 and 3.
Assumptions A.4(ii) and A.6(ii) are used to derive the closed form of the asymp-
totic bias, and Assumption A.7, which implies Assumption A.1, is to guarantee
that the asymptotic bias and variance of the local QMLE are well-defined. Similar
assumptions have been imposed in Dahlhaus and Subba Rao (2006).

As shown in Subba Rao (2006), Xt (2,u) can be represented as a Markov
chain. The φ-irreducibility in Assumption A.8 guarantees that all parts of the
space can be reached by the Markov chain, no matter what the starting point is.
Assumption A.8 is used to derive the strong mixing property of the stationary
derivative process Xt (2,u), which restricts the degree of temporal dependence in
Xt (2,u). Kristensen (2009) and Meitz and Saikkonen (2008) have derived and the
primitive conditions of the φ-irreducibility for a stationary GARCH(1,1) model,
but it seems nontrivial to derive the primitive conditions for a general stationary
GARCH(p,q) model (see Lee, 2003).

We first state the consistency of θ̄t in (3.8).

THEOREM 1. Suppose Assumptions A.1–A.3, A.4(i), A.5, and A.6(i) hold. If∣∣ t
T − u

∣∣ < 1
T where u is a continuity point in [0,1], we have θ̄t − θ̂t →P 0 and

θ̄t →P θ0
u as T → ∞.

Theorem 1 holds even if εt is not i.i.d.N (0,1). This generalizes Dahlhaus and
Subba Rao (2006), who consider time-varying ARCH processes. We note that un-
like the case of stationary GARCH(p,q) models, a time-varying GARCH(p,q)
model is not included as a special case in the time-varying ARCH(∞) class. Fur-
thermore, different from a time-varying ARCH process, the Volterra expansion
of a time-varying GARCH process is rather tedious. Here, we rely on a stochas-
tic recurrence relation (see, e.g., Bougerol and Picard, 1992; Subba Rao 2006) to
show that a time-varying parameter GARCH process can be approximated by a
local stationary GARCH process indexed by u ∈ [0,1].

Next, we derive the asymptotic normality of θ̄t .

THEOREM 2. Suppose Assumptions A.2, A.3, A.4(ii), A.5, A.6(ii), A.7, and
A.8 hold and

∣∣ t
T −u

∣∣< 1
T , where u∈ [0,1] is a continuity point for the coefficient

functions α0
j (·) and β0

j (·).

(i) If t is in the interior region of the sample period in the sense that �T b� ≤
t ≤ T −�T b�, we have

√
T b
(
θ̄t − θ0

u − Bu
)→d N

(
0,−k2

(κ

2
+1
)

H−1(u)
)
,
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as T → ∞, where k2 = ∫ 1
−1 k2(x)dx, κ = E(ε4

t ) − 3, H (u) =
E
[

∂2 L
(
θ0

u ,u
)

∂θ∂θ ′
]
, and

Bu = 1

2
b2 H−1(u)

∂3L
(
θ0

u ,u
)

∂θ∂u2

∫ 1

−1
x2k(x)dx .

(ii) If t is in the left boundary of the sample period in the sense that t = �cTb�
where 0 ≤ c ≤ 1, we have
√

T b
(
θ̄t − θ0

u − Bul

)
→d N

(
0,−k2ck−2

1c

(κ

2
+1
)

H−1(u)
)
,

as T → ∞, where k2c = ∫ 1
−c k2(x)dx, k1c = ∫ 1

−c k (x)dx,

Bul = bk−1
1c H−1(u)

∂2L
(
θ0

u ,u
)

∂θ∂u

∫ 1

−c
xk (x)dx

+ 1

2
b2k−1

1c H−1(u)
∂3L

(
θ0

u ,u
)

∂θ∂u2

∫ 1

−c
x2k(x)dx,

and κ and H(u) are defined in (i).

(iii) If t is in the right boundary of the sample period in the sense that
t = T −�cTb� where 0 ≤ c ≤ 1, we have
√

T b
(
θ̄t − θ0

u − Bur

)
→d N

(
0,−k2ck−2

1c

(κ

2
+1
)

H−1(u)
)
,

as T → ∞, where

Bur = bk−1
1c H−1(u)

∂2L
(
θ0

u ,u
)

∂θ∂u

∫ c

−1
xk (x)dx

+ 1

2
b2k−1

1c H−1(u)
∂3L

(
θ0

u ,u
)

∂θ∂u2

∫ c

−1
x2k(x)dx

and k1c,k2c, κ, and H(u) are defined in (i) and (ii).

Parameter κ is the excess kurtosis of εt , which measures the departure from the
assumed normality in the fourth moment. If Eε4

t = 3 as in the case of a normally
distributed εt , then the asymptotic variance of interior points can be simplified to
−k2 H−1(u). The quantity H(u) can be viewed as the expected value of the local
Hessian matrix at point u ∈ [0,1], and Bu is the asymptotic bias, which is caused
by the time-varying property of GARCH parameters. From Theorem 2, we expect
that for any interior continuity point u ∈ [b,1−b] and all t with | t

T −u| < 1
T , the

asymptotic mean square error (AMSE) is given by

AMSE
(
θ̄t
)= b4

4

[∫ 1

−1
x2k(x)dx

]2 ∥∥∥∥∥H−1(u)
∂3L

(
θ0

u ,u
)

∂θ∂u2

∥∥∥∥∥
2

2

− k2
(

κ
2 +1

)
T b

trace
[
H−1(u)

]
.
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By minimizing the AMSE(θ̄t ), we could obtain the optimal bandwidth b∗, which

is of the order T − 1
5 for all interior continuity points u.

We observe that limc→1
∫ 1
−c k2(x)dx = k2, limc→1

∫ 1
−c k(x)dx = 1, limc→1∫ 1

−c xk (x)dx = 0, and limc→1
∫ 1
−c x2k (x)dx = ∫ 1

−1 x2k (x)dx, and these limits
are exactly the constant factors appearing in the asymptotic bias and variance for
an interior continuity point u. Theorem 2 shows that although the local QMLE is
consistent at both interior and boundary points, the asymptotic bias of the local
QMLE has a slower convergence rate in the boundary regions than in the interior
region. The asymptotic biases for time-varying parameters at interior and bound-
ary points are O

(
b2
)

and O (b) respectively. Therefore, the local QMLE suffers
from the well-known boundary problem. The main reason is that we do not have
symmetric data available in the boundary regions. On the other hand, the asymp-
totic variances at interior and boundary points have the same order of magnitude
and the difference is only a scale factor. Previous works on time-varying ARCH
models mainly focus on interior points although some bias-correction methods
could be used in the boundary regions. We note that the boundary problem of
time-varying linear regression models has been studied by Cai (2007) and Chen
and Hong (2012).

To overcome the boundary problem of the local QMLE, we consider a reflec-
tion method, following Hall and Wehrly (1991). Specifically, we reflect the data
in the boundary regions, obtaining pseudo data Xt = X−t for −�T b� ≤ t ≤ −2
and Xt = X2T −t for T + 1 ≤ t ≤ T + �T b�. We then use the augmented data
(i.e., the union of the original data and the pseudo data) to estimate θ0

t in the
boundary regions. By construction, symmetric data become available in the origi-
nal boundary regions [1,T b]∪ [T − T b,T ]. This method has also been described
as “reflection about the boundaries” or “boundary folding” by Schuster (1985),
Silverman (1986), and Cline and Hart (1991) in nonparametric density estimation
and by Chen and Hong (2012) in nonparametric regression estimation. The bias
reduction is achieved by considering the expectation of the bias, which is equiva-
lent to using the boundary kernel

[
k
( t+s

T b

)+ k
( t−s

T b

)]
/2 in the boundary regions.

Our reflection method has advantages over some alternative solutions to the
boundary problem. One popular solution is to simply ignore the data in the bound-
ary regions and use only the data in the interior region. Such trimming is simple,
but it may lead to the loss of a significant amount of information, even for fairly

large sample sizes. For example, if b = (
1/

√
12
)
T − 1

5 , where 1/
√

12 is the stan-
dard deviation of U (0,1), which could be viewed as the limiting distribution of
the grid points t

T , t = 1, . . . ,T, as T → ∞, then about 23%, 19%, and 17% of
the sample observations will fall into the boundary regions when T = 100,250,
and 500 respectively. In the context of estimating a time-varying ARCH model,
Dahlhaus and Subba Rao (2007) suggest running recursive estimation concur-
rently and taking a linear combination of these estimators to reduce bias. However,
this method is rather computationally intensive as it involves recursive estimation
with two different step sizes. The reflection method we employ is simpler.
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We now define the boundary-corrected local QMLE

θ̄c
t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

argmax
θ∈�

1
T

t+�T b�∑
s=−�T b�

kst l̄s(θ) if t = �cT b�, 0 ≤ c ≤ 1,

θ̄t if �T b� ≤ t ≤ T −�T b�,

argmax
θ∈�

1
T

T +�T b�∑
s=t−�T b�

kst l̄s (θ) if t = T −�cT b�, 0 ≤ c ≤ 1,

(3.9)

where l̄s(θ) and θ̄t are defined in (3.7) and (3.8) respectively. Note that the pseudo
data are only used to estimate θ0

t in the boundary regions.
Now we derive the asymptotic distribution of θ̄c

t in the boundary regions.

THEOREM 3. Suppose Assumptions A.2, A.3, A.4(ii), A.5, A.6(ii), A.7, and
A.8 hold, and

∣∣ t
T −u

∣∣< 1
T , where u∈ [0,1] is a continuity point for the α0

j (·) and

β0
j (·). If t is in the left boundary or the right boundary in the sense that t = �cT b�

or T −�cT b�, where 0 ≤ c ≤ 1, we have
√

T b
(
θ̄c

t − θ0
u − Bu

)
→d N

(
0,−kb

(κ

2
+1
)

H−1(u)
)
,

as T → ∞, where kb = k2 + ∫ 1
−1 k(x)k (x +2c)dx, k2,κ, H(u), and Bu are de-

fined in Theorem 2(i).

Theorem 3 shows that the reflection method reduces the asymptotic bias of
the local QMLE at the boundary regions of time. Now, the asymptotic biases
at both interior and boundary points are the same order of magnitude; namely,
O
(
b2
)
. That is because symmetric data are now available in the boundary regions

[1,T b]∪ [T − T b,T ] and the bias term related to the first order Taylor expansion
can be approximated by an integral of uk(u) from −1 to 1, which vanishes to
0. On the other hand, the asymptotic variance of θ̄c

t at boundary points is larger
than that at interior points since by construction, the pseudo data and the original
data are correlated with each other. Note that the reflection method has no impact
on the interior region [T b,T − T b]. Heuristically, this method can be viewed as
using the boundary kernel

[
k
( s−t

T b

)+ k
( s+t

T b

)]
/2 in the boundary regions and the

standard kernel 1
b k
( s−t

T b

)
in the interior region respectively.

We note that the local QMLE in the regions near any fixed discontinuity point
does not suffer from the boundary problem for T sufficiently large. Suppose u0 is
a fixed continuity point. Then for any arbitrary t > 0, we can always find a δ > 0,
such that for all u0 −δ < u < u0 +δ, |αi (u)−αi (u0)| < t and |βj (u)−βj (u0)| < t
for i = 0, . . . , p and j = 1, . . . ,q. Since b = b(T ) → 0 as T → ∞ and δ does not
depend on the sample size T, b will eventually become smaller than δ for all
T sufficiently large so that u0 becomes an interior point. This is different from
the boundary problem in the boundary regions, which is due to the asymmetric
coverage of observations in the boundary regions.
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4. NONPARAMETRIC TESTING

We now propose a consistent test for smooth structural changes in GARCH
models, which will complement the existing tests for sudden structural breaks
and avoid the difficulty associated with the possibility of multiple breaks and/or
unknown break dates. We note that the facts that the convergence rate of the
asymptotic bias of the local QMLE in the boundary regions is slower than that
in the interior region and the asymptotic variance of the local QMLE in the
boundary regions tends to be larger would complicate the form of test statistic
to be constructed. The finite sample performance of the test may be affected as
well. Hence, we apply the reflection method. We use the augmented data (i.e., the
union of the original data and the pseudo data) to construct the boundary-corrected
local QMLE θ̄c

t in (3.8). We note that under H0, θ0
t is constant, so no bias exists

even in the boundary regions. However, under HA, θ0
t is time-varying and cor-

recting the boundary problem is expected to help improve power. With the global
QMLE θ̄ and the boundary-corrected local QMLE θ̄c

t at hand, we can construct a
likelihood ratio test. The idea is to compare the log likelihood of the unrestricted
time-varying parameter GARCH model with that of the restricted constant pa-
rameter GARCH model. Intuitively, under H0, two likelihoods are close to each
other. UnderHA, the nonparametric likelihood is larger than the parametric likeli-
hood when the sample size T is sufficiently large, giving the test its power against
a wide range of alternatives. Let lU denote the averaged log likelihood of the
(unrestricted) time-varying parameter GARCH model, that is,

lU = 1

T

T∑
t=1

l̄t
(
θ̄c

t

)
, (4.1)

where θ̄c
t is the boundary-corrected local QMLE in (3.8). Let lR denote the aver-

aged log likelihood of the (restricted) constant parameter GARCH model, that is,

lR = 1

T

T∑
t=1

l̄t
(
θ̄
)
, (4.2)

where θ̄ is the global QMLE in (2.5). It is important to note that lU and lR

are averages of log likelihoods of the observed sample {Xt }T
t=1, rather than the

augmented sample. The pseudo data augmented by the reflection method are
only used in estimating θ0

t via θ̄c
t in the boundary regions. Hence it will not

affect the asymptotic distribution of our test statistic. Intuitively, the use of the
pseudo data only has impact on the boundary regions [1,T b] ∪ [T − T b,T ] and
its cumulative effect over the boundary regions is asymptotically negligible as
T → ∞. However, it improves the finite sample performance of the proposed
test. Meanwhile, we define the score function

St (θ) ≡ ∂lt
∂θ

= 1

2

(
ε2

t −1
) ∂ lnht (θ)

∂θ
. (4.3)
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We note that under H0, St
(
θ0
)

is a martingale difference sequence (MDS) no
matter whether the distribution of εt is correctly specified or not. However,
with possible distributional misspecification of {εt }, the local QMLE remains
consistent but not efficient (see Theorems 1–3). And the information matrix
equality does not hold generally even at θ = θ0. In particular,

E
[

St

(
θ0
)

S′
t

(
θ0
)]

= −var
(
ε2

t

)
2

H0 ≡ −
(κ

2
+1
)

H0, (4.4)

where H0 = E
[

∂2lt (θ0)
∂θ∂θ ′

]
is the expected value of the Hessian matrix, and κ =

E
(
ε4

t

)−3 is the excess kurtosis of εt . It measures the departure from normality.
Our robust L R test statistic for H0 versus HA is based on the comparison of lU

and lR :

L R =
2T

√
b(lU − lR)/

(
κ̂
2 +1

)
− Â√

B̂
, (4.5)

where the centering factor

Â = b−1/2(p +q +1)

⎧⎨
⎩2k(0)− 1

T b

�T b�∑
j=−�T b�

(
1− | j |

T

)
k2
(

j

T b

)

+b

⎡
⎣1− 1

T b

�T b�∑
j=−�T b�

(
1− | j |

T

)
k

(
j

T b

)∫ 1

−1
k

(
j

T b
+2u

)
du

⎤
⎦
⎫⎬
⎭

= b−1/2 (p +q +1)

[
2k(0)−

∫ 1

−1
k2(u)du

]
[1+o(1)] ,

the scaling factor

B̂ = 4(p +q +1)
1

T b

T −1∑
j=1

(
1− j

T

)[
2k

(
j

T b

)
−
∫ 1

−1
k (u)k

(
u + j

T b

)
du

]

= 4(p +q +1)

∫ 1

0

[
2k(v)−

∫ 1

−1
k(u)k(u + v)du

]2

dv +o (1) ,

and κ̂ = 1
T

∑T
t=1

(
ε̂4

t −3
)

is a consistent estimator for excess kurtosis κ. Both Â

and B̂ do not depend on the DGP and are nonstochastic, so they are convenient to
compute. The log likelihoods lU and lR are outputs of estimation. Many statistical
programs provide values of lU and lR automatically. Hence, it is straightforward
to compute the L R test statistic. In fact, as will be seen below, a consistent boot-
strap is even simpler: one only needs to compare the value of log-likelihood ratio
lU − lR based on the observed data with those based on bootstrap samples. There
is no need to compute Â and B̂.
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We note that although our focus is to test whether θ0
t = θ0 for some unknown

constant vector θ0 ∈ � and for all t, our approach could be extended to test
whether a subset of parameters is constant; namely θ0

1t = θ0
1 for some unknown

constant vector θ0
1 ∈ �1 and for all t, where � = �1 ×�2 and θ0

t = (θ0′
1t ,θ

0′
2t

)′
. An

example is that we are only interested in whether ARCH coefficients are constant.
There are two possibilities. We now discuss the first case. If prior information
restricts θ0

2t to be some constant, it would be analogous to the “partial structural
change” problem for the linear regression models where part of regression co-
efficients may not be subject to structural changes and the interest is to test the
constancy of the other part of regression coefficients (see, e.g., Andrews, Lee, and
Ploberger, 1996; Bai and Perron 1998). In this case, the null hypothesis is

H0 : θ0
t = θ0 for some unknown constant vector θ0 ∈ � and for all t,

where � is a parameter space of θt , and the alternative hypothesis is

HA : θ0
1t is time varying and θ0

2t = θ0
2 for some unknown constant vector

θ0
2 ∈ �2 for some t,

where � = �1 × �2. As a subset of parameters may be time-varying, we can
adopt the local profile QMLE method. Under HA, we first fix θ2t = θ2 and esti-
mate θ1t by

θ̄1t = θ̄1t (θ2) = arg max
θ1∈�1

1

T

T∑
s=1

kst l̄s (θ1|θ2) , (4.6)

where l̄s (θ1|θ2) has the same functional form as l̄s(θ) defined in (2.4), but with θ2
fixed and θ = (θ

′
1,θ

′
2)

′.
Next, we obtain an estimator θ̂2 of the constant component θ0

2 by substituting
the local QMLE θ̄1t into the likelihood function; namely

θ̂2 = arg max
θ2∈�2

1

T

T∑
t=1

l̄t
(
θ2|θ̄1t

)
, (4.7)

where l̄s
(
θ2|θ̄1t

)
has the same functional form as l̄s(θ) defined in (2.4), but with

θ replaced by
(
θ̄

′
1t ,θ

′
2

)′ and θ̄1t is defined in (4.6).
Iterations between these two steps have to be employed until a certain con-

vergence criterion is met (see, e.g., Speckman, 1988; Carroll, Fan, Gijbels, and
Wand 1997; Fan and Huang 2005 for details on the profile likelihood or pro-
file least-squares method). With proper estimators θ̄ and

(
θ̂1t , θ̂

′
2

)′ at hand, where

θ̂1t = θ̄1t
(
θ̂2
)
, we can compare two models via likelihood ratio.

The second case of the partial structural change is that no restriction is imposed
on θ0

2t . Hence the null hypothesis is

H0 : θ0
1t = θ0

1 for some unknown constant vector θ0
1 ∈ �1 for all t,
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where � = �1 ×�2, and the alternative hypothesis is

HA : θ0
t is time varying for some t.

An example of this case has been studied by Ang and Kristensen (2012) in a linear
regression framework. They test whether the conditional alphas of CAPM models
are constant over time while allowing the conditional betas to be time-varying.
This second case of the partial structural change can be dealt with in a similar
way to the first case, except that the local profile QMLE and local QMLE have to
be applied under H0 and HA respectively. In subsequent sections, we shall focus
on hypotheses of interest introduced in Section 2.

5. ASYMPTOTIC PROPERTIES

We now state the asymptotic distribution of L R in (4.5) under H0.

THEOREM 4. Suppose Assumptions A.2, A.3, A.4(i), A.5, A.6(i), and A.8 hold.

(i) UnderH0, L R
d→ N (0,1) as T → ∞. (ii) If in addition εt ∼ N (0,1), then the

L R test statistic can be simplified as L R = [2T
√

b(lU − lR)− Â]/
√

B̂.

The L R test has a convenient null asymptotic N(0,1) distribution. This is quite
appealing in light of the facts that most existing tests for structural breaks in
GARCH models have nonstandard distributions, which may depend on the DGP.
The proposed test does not require formulation of an alternative and is appli-
cable when one has no prior information of the alternative. Moreover, the new
test does not require trimming data (i.e., we test all points u ∈ [0,1] rather than
restrict u to be a strict subset of [0,1] , as usually done in existing tests). When
the standardized innovation εt ∼ N (0,1), we have κ = E

(
ε4

t

)−3 = 0 and hence
the well-known information matrix equality E

[
St
(
θ0
)

S′
t

(
θ0
)]+ H0 = 0 holds.

Consequently, we can simplify the robust L R test statistic to L R = [2T
√

b(lU −
lR)− Â]/

√
B̂.

We require that b → 0 and T b → ∞ as implied by Assumption A.6(i). This is

a standard condition for bandwidth b and it covers the optimal rate b∗ ∝ T − 1
5 for

estimation. As an important feature of L R, the use of the global QMLE in place
of the true parameter θ0 under H0 has no impact on the limit distribution of L R.
Intuitively, the global QMLE θ̄ converges to θ0 at a

√
T -rate, which is faster than

the nonparametric local QMLE θ̄ c
t . Consequently, the asymptotic distribution of

L R is solely determined by θ̄c
t and thus is nuisance parameter free.

In small samples, the distribution of L R may not be well approximated by
the asymptotic N(0,1) distribution. Accurate finite sample critical values can be
obtained by using a bootstrap procedure, which we shall discuss and justify in
Section 6.

To investigate the asymptotic power property of L R under HA, we impose the
following assumption.

https://doi.org/10.1017/S0266466614000942 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466614000942


SMOOTH STRUCTURAL CHANGES IN GARCH MODELS 759

Assumption A.9. θ∗ = argmaxθ∈�

∫ 1
0 E[l̃0(u,θ)]du is the unique maximizer

over �.

Assumption A.9 assumes that θ∗ maximizes the time integrated probability
limit of the expected log-likelihood function, which is a highly nonlinear function
of θ in the present context. Therefore, it is not obvious how to find an explicit
closed form expression for θ∗ (if any) and we conjecture that θ∗ may not coincide
with the integrated parameter

∫ 1
0 θ0(u)du.

THEOREM 5. Suppose Assumptions A.1–A.3, A.4(i), A.5, A.6(i), A.8, and A.9
hold. Then for any nonstochastic sequence {MT = o(T

√
b)}, we have Pr(L R >

MT ) → 1 under HA as T → ∞.

Assumption A.1 allows for both smooth structural changes and abrupt struc-
tural breaks with known or unknown break points. We permit θ0(·) to have a finite
number of discontinuities. Hence, single structural break and multiple breaks with
known or unknown break points, which are often considered in this literature, are
included as special cases of (2.2). For example, suppose θ0(·) is a jump function,
namely,

θ0(u) =
⎧⎨
⎩
(
α1

0,α1
1, . . . ,α1

p,β
1
1 , . . . ,β1

q

)′
, if u ≤ u0,(

α2
0,α2

1, . . . ,α2
p,β

2
1 , . . . ,β2

q

)′
, if u > u0.

Then we obtain the single break GARCH alternative considered in Chu (1995).
Theorem 5 suggests that the L R test is consistent against all alternatives to

H0, subject to a set of regularity conditions (i.e., Assumption A.1). Thus, the
proposed test will be able to detect any structural changes in GARCH models as
long as the sample size T is sufficiently large. This is appealing in light of the
fact that usually no prior information about the alternative of structural changes is
available in practice. It avoids the blindness of searching for possible alternatives
of structural changes. Moreover, as we do not use any trimming procedure, that
is, we test all points u in the interval [0,1] rather than a strict subset of it, our
test can detect structural changes that occur near the boundary of [0,1], provided
that T is sufficiently large and the bandwidth b is sufficiently small. And, unlike
some existing tests in the literature (e.g., the CUSUM test), our test has symmetric
asymptotic power against structural breaks that occur either in the first or second
half of the sample period.

6. FINITE SAMPLE PERFORMANCE

6.1. Parametric Bootstrap

Theorem 4 provides the null asymptotic N (0,1) distribution of the L R test. Thus,
one can implement our test forH0 by comparing L R with a N (0,1) critical value,
which is rather convenient in practice. However, like many other nonparamet-
ric tests in the literature, the sizes of L R in finite samples based on asymptotic
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approximation may differ significantly from the prespecified significance level.
Therefore, we shall consider the following bootstrap procedure:

• Step (i): Estimate the null GARCH model and compute the estimated stan-
dardized residual sample {ε̂t }T

t=1;• Step (ii): Obtain a bootstrap standardized residual ε∗
t from the centered em-

pirical distribution of {ε̂t }T
t=1 and then a bootstrap sample X ∗ ≡ {X∗

t }T
t=1

from the estimated null GARCH model and {ε∗
t }T

t=1;
• Step (iii): Estimate the null GARCH model using the bootstrap sample X ∗,

and compute the bootstrap test statistic L R∗ in the same way as we compute
L R, with X ∗ replacing the original sample X ={Xt }T

t=1;
• Step (iv): Repeat steps (ii) and (iii) B times to obtain B bootstrap test statis-

tics {L R∗
l }B

l=1, where B is sufficiently large;

• Step (v): Compute the bootstrap p-value p∗ ≡ B−1∑B
l=1 1(L R∗

l > L R).

The excess kurtosis κ̂ estimated from the original sample X will be very close
to the one estimated from the bootstrap sample X ∗ under H0, so the L R statistic
applies to both normally and nonnormally distributed innovations. The parametric
bootstrap has been widely used to improve the finite sample performance of non-
parametric tests. For example, Fan, Li, and Min (2006) and Li and Tkacz (2006)
apply it to test the correct specification of parametric conditional distribution and
conditional density in different contexts respectively.

We first show the consistency of the bootstrap in the following theorem.

THEOREM 6. Suppose Assumptions A.1–A.3, A.4(i), A.5, A.6(i), and A.8 hold.
Then conditional on X , LR∗ →d N (0,1) as T → ∞.

The proof is similar to that of Theorem 4 and we need to use the fact that the
parametric bootstrap ensures that in the bootstrap world, H0 always holds. When
the null hypothesis H0 is true, the bootstrap procedure will lead to asymptotically
correct size of the test, because L R∗ converges in distribution to N (0,1). On
the other hand, when the null hypothesis is false, the bootstrap procedure has
asymptotic unit power. This follows because the test statistic L R will converge to
infinity in probability, whereas the bootstrap test statistic L R∗ still converges in
distribution to N (0,1).

In fact, when the same kernel k(·) and the same bandwidth b are used for both
L R and L R∗, the parametric bootstrap described above can be greatly simplified
by replacing L R and L R∗ with lU − lR and l∗U − l∗R respectively, where l∗U and l∗R
are the average log-likelihood values of the local QMLE and global QMLE based
on the bootstrap sample X ∗. This procedure is rather convenient because there is
no need to compute factors Â, B̂ and to estimate κ. It is also applicable no matter
whether εt is normal or nonnormal.

The consistency of the parametric bootstrap does not indicate the degree of
improvement of the parametric bootstrap upon the asymptotic approximation.
Since L R is asymptotically pivotal, it is possible that L R∗ can achieve reasonable
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accuracy in finite samples. We shall examine the performance of the parametric
bootstrap via simulation study.

6.2. Simulation Study

To examine the size of our test under H0, we consider the following DGP:
DGP S1 [Standard GARCH(1,1)]:⎧⎪⎨
⎪⎩

Xt =
√

h0
t εt

h0
t = 0.1+0.2X2

t−1 +0.7h0
t−1

εt ∼ i.i.d.N (0,1) .

(6.1)

The standard GARCH(1,1) model is the most popular GARCH model and has
been widely used in modeling volatilities in financial econometrics. We generate
500 data sets of a random sample {Xt }T

t=1 for T = 250 and 500 respectively,
using the Matlab Windows Version 7 Random Number Generator. We generate
an initial value X0 from its unconditional density N (0,1) and discard the first
5000 realizations to eliminate the impact of the initial value.

To investigate the power of our test in detecting structural changes in GARCH
models, we consider the following four alternatives:
DGP P1 [Single Break in a GARCH]:⎧⎪⎪⎨
⎪⎪⎩

Xt =
√

h0
t εt

h0
t =

{
0.1+0.2X2

t−1 +0.4h0
t−1, if t ≤ 0.5T,

0.3+0.4X2
t−1 +0.55h0

t−1, otherwise;

(6.2)

DGP P2 [Multiple Breaks in a GARCH]:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Xt =
√

h0
t εt

h0
t =

⎧⎨
⎩

0.1+0.2X2
t−1 +0.3h0

t−1, if t ≤ 0.3T,

0.3+0.3X2
t−1 +0.4h0

t−1, if 0.3T < t ≤ 0.6T,

0.5+0.4X2
t−1 +0.55h0

t−1, otherwise;

(6.3)

DGP P3 [Smooth Transition GARCH]:⎧⎪⎪⎨
⎪⎪⎩

Xt =
√

h0
t εt

h0
t = (

0.1+0.2X2
t−1 +0.4h0

t−1

)
[1+0.5G (t)]

G (t) = {1+ exp[−5(t/T −0.5)]}−1 ;
(6.4)

where εt ∼ i.i.d.N (0,1) .
The single break has been a structural change with classical importance. Under

DGP P1, an abrupt break occurs in a GARCH(1) model at some unknown time t.
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This alternative has been considered by Chu (1995) and Berkes et al. (2004).
DGP P2 admits monotonic multiple breaks. DGP P3 is the time-varying
smooth transition multiplicative GARCH(1,1) model proposed by Amado and
Teräsvirta (2008).

For the proposed L R test, we use the quartic kernel k(u) = 15
16 (1−u2)21(|u| ≤

1), where 1(·) is the indicator function taking value 1 if |u| ≤ 1 and 0 otherwise.
In fact, our simulation evidence (not reported here) suggests that the choice of
k(·) has little impact on the performance of the test. For simplicity, we choose the

bandwidth b = (
1/

√
12
)
T − 1

5 , where 1/
√

12 is the standard deviation of U (0,1),
which could be viewed as the limiting distribution of the grid points t

T , t = 1, . . . ,
T, as T → ∞. We use the parametric bootstrap described above with the num-
ber of bootstrap iterations B = 100. Both 10% and 5% significance levels are
considered.

The simulated results are summarized in Table 1. Under DGP S1, the L R test
has good size. For example, the rejection rate is 5.8% at the 5% level when T =
250 and decreases to 5.4% when T = 500. DGP P1 has a single sudden break
with unknown break date. The L R test has reasonable power. The rejection rate
is 43.6% at the 5% level even when the sample size T is as small as 250, and
increases to 68.6% when T = 500. DGP P2 has multiple breaks. As expected, the
rejection rate is higher than that under DGP P1. Under DGP P3, the coefficients
of the GARCH model are changing over time smoothly. The rejection rate is a bit
low when T = 250, but increases with the sample size T .

To sum up, the L R test has good sizes in finite samples when the parametric
bootstrap is used. It has reasonable powers against both sudden structural breaks
and smooth structural changes in GARCH models.

TABLE 1. Size and power of L R

T = 250 T = 500

10% 5% 10% 5%

Size

DGP S0 .128 .058 .112 .054

Power

DGP P1 .620 .436 .814 .686
DGP P2 .844 .722 .956 .912
DGP P3 .242 .154 .480 .346

Notes: (1) DGP S0 is a classical GARCH(1,1) model, given in (6.2); DGP P1 is
a GARCH model with a single break, given in (6.3); DGP P2 is a GARCH
model with multiple breaks, given in (6.4); DGP P3 is a smooth transition
GARCH model, given in (6.5); (2) The parametric bootstrap procedure is used
and the bootstrap iteration number B = 100; (3) The empirical rejection rates
are based on the results of 500 iterations.
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7. CONCLUSION

Modeling and detecting structural changes in GARCH processes have attracted
increasing attention in time series econometrics. We have contributed to this lit-
erature by establishing the asymptotic properties of a local QMLE for a class of
smooth time-varying parameter GARCH models in both the interior and bound-
ary regions of the sample period, and more importantly, proposing a new consis-
tent test against smooth structural changes as well as abrupt structural breaks in
GARCH models. Existing works mainly focus on the estimation of time-varying
ARCH models, which are special cases of our time-varying GARCH models, and
asymptotic properties of the local QMLE were only available for interior points in
the previous literature. Moreover, no test on parameter constancy was available for
time-varying ARCH models. On the other hand, our L R test is intuitively appeal-
ing and straightforward to compute. It has a convenient null asymptotic N(0,1)
distribution, does not require trimming data, does not require prior information
on the alternative, and is consistent against all smooth structural changes as well
as multiple abrupt structural breaks in GARCH or ARCH models. To improve
the size, we use a parametric bootstrap procedure, which provides reasonable size
and power for the proposed test in small and finite samples.
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MATHEMATICAL APPENDIX

Throughout the appendix, C, C1, and C2 denote generic bounded constants that may
differ in different places. We will use ‖·‖d for the ld -norm and |·|abs for the abso-
lute matrix, where (|A|abs)i, j = ∣∣Ai, j

∣∣. We say A ≤ B if Ai, j ≤ Bi, j for all i and j,
where A and B are two matrices with the same dimension. All convergences are taken as
T → ∞.

Proof of Theorem 1. Our proof follows Dahlhaus and Subba Rao (2006) and Berkes,
Horvath, and Kokoszka (2003, BHK) closely. First we state two lemmas.

Following Subba Rao (2006), we introduce some notations. Define X ᵀt = (
h0

t ,. . . ,

h0
t−q+1, X2

t−1, . . . , X2
t−p+1

)
and X̃ ᵀt (u) =

(
h̃t

(
u,θ0

u

)
, . . . , h̃t−q+1

(
u,θ0

u

)
, X̃2

t−1 (u) ,

. . . , X̃2
t−p+1(u)

)
. By Assumption A.1, there exists a constant C such that for all continuity

points u, |α0
j (u)−α0

j (v)| ≤ C |u −v|ϕ and |β0
j (u)−β0

j (v)| ≤ C |u −v|ϕ, where v ∈ Nε(u).

Define an integer M such that M ≥ {η/[2C(p +q)]}−1/ϕ . For each r = 1, . . . , M, define

At (r) =

⎡
⎢⎢⎣

τ̃t (r) bq (r) a(r) ap(r)
Iq−1 0 0 0

ε2
t−1 0 0 0
0 0 Ip−2 0

⎤
⎥⎥⎦ ,

where τ̃t (r) = [b1(r) + a1(r)ε2
t−1,b2(r), . . . ,bq−1(r)], a(r) = [a2(r), . . . ,ap−1(r)],

ε2
t−1 = [ε2

t−1,0, . . . ,0], ai (r) = α0
i ((r − 1)/M) + C M−ϕ for i = 1, . . . , p, bj (r) =

β0
j ((r − 1)/M) + C M−ϕ for j = 1, . . . ,q, and Id is a d × d identity matrix. Let b̃

′
t =

(supu α0
0(u),0, . . . ,0) ∈ Rp+q−2, Yt =∑∞

k=1
k �=t−ηt

∑M
r=1

∏k−1
j=0At− j (r)b̃t−k , where ηt is

the location of discontinuity points less than t, and At = (1 + ε2
t−1)I(p+q+1), where Id

is an d ×d matrix with all entries being 1.
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LEMMA A.1. Under the conditions of Theorem 1, we have∣∣∣Xt − X̃t (
t
T )
∣∣∣
abs

≤ 1
T ϕ Vt +Ut ,

∣∣∣X̃t (u)− X̃t (v)
∣∣∣
abs

≤ |u − v|ϕ Wt + Rt ,

where

Vt = C
∞∑

k=1
k �=t−ηt

k
k−1∏
j=0

At− j (i1)
[
At−k

∣∣Xt−k−1
∣∣
abs + b̃t−k

]
,

Wt = C
∞∑

k=1
k �=t−ηt

M∑
r=1

k−1∏
j=0

At− j (r)
(
At−kYt−k−1 + b̃t−k

)
,

Ut = C
∑

k=t−ηt

k−1∏
j=0

At− j (i1)
[∣∣Xt−k−1

∣∣
abs +C

]
,

Rt = C
∑

k=t−ηt

M∑
r=1

k−1∏
j=0

At− j (r)(Yt−k−1 +C),

where ηt is the location of discontinuity points less than t, and i1 is such that (i1 −1)/M ≤
t/T < i1/M. Moreover, for some n ∈ [1,∞),

supt,T E ‖Xt‖n
n < ∞, supu E

∥∥∥X̃t (u)
∥∥∥n

n
< ∞,

supt,T E ‖Vt‖n
n < ∞, E ‖Wt‖n

n < ∞,

E ‖Ut‖n
n → 0, E ‖Rt‖n

n → 0.

Proof of Lemma A.1. The proof of Lemma A.1 is rather similar to the proof of
Theorem 2.1 of Subba Rao (2006) with a finite number of discontinuities. Therefore,
we follow her proof with some modification. Note that Xt = At (

t
T )Xt−1 + bt (

t
T ) and

X̃t (u) = At (u)X̃t−1(u)+bt (u), where bt (u)′ = (α0
0(u),0, . . . ,0) ∈ Rp+q−2,

At (u) =

⎡
⎢⎢⎢⎣

τt (u) β0
q (u) α0(u) α0

p(u)

Iq−1 0 0 0

ε2
t−1 0 0 0
0 0 Ip−2 0

⎤
⎥⎥⎥⎦ ,

τt (u) = [β0
1 (u)+α0

1(u)ε2
t−1,β0

2 (u), . . . ,β0
q−1(u)], α0(u) = [α0

2(u), . . . ,α0
p−1(u)].

By iteratively expanding Xt and X̃t (
t
T ), we have∣∣∣∣Xt − X̃t (

t

T
)

∣∣∣∣
abs

=
∣∣∣∣At

(
t

T

)[
At−1

(
t −1

T

)
− At−1

(
t

T

)]
Xt−2 + At−1

(
t

T

)[
Xt−2 − X̃t−2

(
t

T

)]

+At

(
t

T

)[
bt−1

(
t −1

T

)
−bt−1

(
t

T

)]∣∣∣∣
abs

≤ 1

T ϕ
At (i1)At−1 |Xt−2|abs +At−1(i1)

∣∣∣∣Xt−2 − X̃t−2

(
t

T

)∣∣∣∣
abs

+ 1

T ϕ
At (i1)b̃t−1

≤ 1

T ϕ
Vt +Ut ,
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where we obtain the first inequality by using the facts that
∣∣∣At−1

(
t−1
T

)
− At−1

( t
T

) ∣∣∣
abs

≤
C
T ϕAt−1 and

∣∣∣bt−1

(
t−1
T

)
−bt−1

( t
T

) ∣∣∣
abs

≤ C
T ϕ b̃t−1 as shown in Subba Rao (2006) and

obtain the second inequality by continuing the iteration and separating continuous and

discontinuous points. We note that E ‖Ut‖n
n ≤

(∑
k=t−ηt

ρk
)n ≤ CρT bn = o(1), where

0 < ρ < 1 and supt,T E ‖Vt‖n
n < ∞, as shown in Subba Rao (2006). Using a similar argu-

ment, we can show that
∣∣∣X̃t (u)− X̃t (v)

∣∣∣
abs

≤ |u − v|ϕ Wt + Rt , where E ‖Wt‖n
n < ∞ and

E ‖Rt‖n
n → 0. n

LEMMA A.2. Under the conditions of Theorem 1, we have

h̃t

(
u,θ0

u

)
= ξ0

(
θ0

u

)
+

∞∑
j=1

ξj

(
θ0

u

)
X̃2

t− j (u)

for all t with probability one, where the functions {ξj (θ)} are given in BHK (2003). More-
over the representation is unique.

Proof of Lemma A.2. This is shown in BHK (2003). n

In the derivation of the asymptotic properties of θ̄t , we make use of the local approxi-
mation of X2

t by the stationary process X̃2
t (u) for all t with

∣∣ t
T − u

∣∣ < 1
T , where u is a

continuity point in [0,1]. As the parameter space � is a compact set, the proof of
Theorem 1 consists of the proofs of Theorems A.1–A.4. Then from the compactness

of � and the continuity of L(u, ·) in (3.6), we conclude θ̄t
P→ θ0

u by Theorem 4.1.1 of
Amemiya (1985). n

THEOREM A.1. Under the conditions of Theorem 1, supθ∈�

∣∣∣L̃ (u,θ)− L (u,θ)
∣∣∣ P→ 0,

where L̃ (u,θ) and L (u,θ) are defined in (3.5) and (3.6) respectively.

Proof of Theorem A.1. To prove uniform convergence, it is sufficient to show pointwise
convergence and stochastic equicontinuity of L̃ (u, ·) . Theorem A.1 follows from the two
propositions below.

PROPOSITION A.1. Under the conditions of Theorem 1, for any θ ∈ �,

1

T

T∑
s=1

kst ln h̃s (u,θ)
P→ E

[
ln h̃0 (u,θ)

]
(A.1)

and

1

T

T∑
s=1

kst
X̃s(u)2

h̃s (u,θ)

P→ E

[
X̃0(u)2

h̃0 (u,θ)

]
. (A.2)

Proof of Proposition A.1. Note that X̃2
t (u) is a stationary process indexed by u. By

Lemmas 3.1 and 5.1 of BHK (2003), we have
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0 < C1 ≤ h̃s (u,θ) ≤ C2

⎛
⎝1+

∞∑
j=1

ρ
j/q
0 X̃2

t− j (u)

⎞
⎠ ,

E
∣∣∣ln h̃0 (u,θ)

∣∣∣≤ E

⎡
⎣C2

⎛
⎝1+

∞∑
j=1

ρ
j/q
0 X̃2

t− j (u)

⎞
⎠
⎤
⎦< ∞,

E

[
X̃2

0(u)

h̃0 (u,θ)

]
= E

(
ε2

0

)
E

⎡
⎣ h̃0

(
u,θ0

u

)
h̃0 (u,θ)

⎤
⎦< ∞,

where ρ0 = qρ
−
. X̃2

t (u) is a measurable function of {εt } for each u, so it is stationary and

ergodic at a given u by Theorem 3.5.8 of Stout (1974). Both (A.1) and (A.2) follow from
Lemma A.2 of Dahlhaus and Subba Rao (2006). n

PROPOSITION A.2. Under the conditions of Theorem 1, L̃ (u, ·) is equicontinuous
over � in probability.

Proof of Proposition A.2. We write

sup
θ1,θ2∈�, θ1 �=θ2

1

‖θ1 − θ2‖2
2

∣∣∣L̃ (u,θ1)− L̃ (u,θ2)
∣∣∣2 ≤ C

2T

T∑
s=1

kst τs (u) ,

where

τs(u) = sup
θ1,θ2∈�, θ1 �=θ2

1

‖θ1 − θ2‖2
2

×
⎧⎨
⎩
∣∣∣ln h̃s (u,θ1)− ln h̃s (u,θ2)

∣∣∣2 +
∣∣∣∣∣ X̃2

s (u)

h̃s (u,θ1)
− X̃2

s (u)

h̃s (u,θ2)

∣∣∣∣∣
2
⎫⎬
⎭ .

By Theorem 3.5.8 of Stout (1974), τs(u) is a stationary and ergodic for a given u. By
Lemma A.3, we have E

[
τ0 (u)

]
< ∞. Hence

1

2T

T∑
s=1

kst τs(u) = OP (1)

and

sup
θ1,θ2∈�, θ1 �=θ2

1

‖θ1 − θ2‖2
2

∣∣∣L̃ (u,θ1)− L̃ (u,θ2)
∣∣∣2 = OP (1)

by Lemma A.2 of Dahlhaus and Subba Rao (2006). Therefore, L̃ (u, ·) is equicontinuous
over � in probability. n

LEMMA A.3. Under the conditions of Theorem 1,

E sup
θ1,θ2∈�, θ1 �=θ2

1

‖θ1 − θ2‖2
2

∣∣∣∣∣ X̃2
s (u)

h̃s (u,θ1)
− X̃2

s (u)

h̃s (u,θ2)

∣∣∣∣∣
2

< ∞

and

E sup
θ1,θ2∈�, θ1 �=θ2

1

‖θ1 − θ2‖2
2

∣∣∣ln h̃s (u,θ1)− ln h̃s (u,θ2)
∣∣∣2 < ∞.
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Proof of Lemma A.3. Similar to the proof of Lemma 5.3 of BHK (2003). n

THEOREM A.2. Under the conditions of Theorem 1, supθ∈� |Bt (u,θ)| P→ 0, where
Bt (u,θ) ≡ Lt (θ)− L̃ (u,θ) , and Lt (θ) is defined in (3.4).

Proof of Theorem A.2. We decompose

sup
θ∈�

∣∣∣Lt (θ)− L̃ (u,θ)
∣∣∣

≤ sup
θ∈�

1

T

T∑
s=1

kst

∣∣∣∣∣ X2
s

hs(θ)
− X̃2

s (u)

h̃s (u,θ)

∣∣∣∣∣+ sup
θ∈�

1

T

T∑
s=1

kst

∣∣∣lnhs (θ)− ln h̃s (u,θ)
∣∣∣

≤ sup
θ∈�

1

T

T∑
s=1

kst

hs(θ)

∣∣∣X2
s − X̃2

s (u)
∣∣∣+ sup

θ∈�

1

T

T∑
s=1

kst X̃2
s (u)

hs(θ)h̃s (u,θ)

∣∣∣hs(θ)− h̃s (u,θ)
∣∣∣

+ sup
θ∈�

1

T

T∑
s=1

kst

∣∣∣lnhs(θ)− ln h̃s (u,θ)
∣∣∣ . (A.3)

Theorem A.2 follows from three lemmas below under the conditions of Theorem 1.

LEMMA A.4. supθ∈�
1
T
∑T

s=1
kst

hs (θ)

∣∣∣X2
s − X̃2

s (u)
∣∣∣= oP (1) .

Proof of Lemma A.4.

sup
θ∈�

1

T

T∑
s=1

kst

hs (θ)

∣∣∣X2
s − X̃2

s (u)
∣∣∣

≤ sup
θ∈�

1

T

T∑
s=1

kst

hs(θ)

(∣∣∣ s

T
−u

∣∣∣ϕ Ws+1,q+1 + 1

T ϕ
Vs+1,q+1

)

≤ sup
θ∈�

1

T

T∑
s=1

kst

hs(θ)

(∣∣∣∣ s − t

T

∣∣∣∣ϕ Ws+1,q+1 + ∣∣ t

T
−u

∣∣ϕWs+1,q+1 + 1

T ϕ
Vs+1,q+1

)

= OP
(
bϕ) ,

where Ws,d and Vs,d are the dth element of Ws and Vs , which are defined in Lemma A.1

respectively. We have used the fact that
∣∣ t

T −u
∣∣< 1

T and Lemma A.1. n

LEMMA A.5. supθ∈�
1
T
∑T

s=1
kst X̃2

s (u)

hs (θ)h̃s (u,θ)

∣∣∣hs (θ)− h̃s (u,θ)
∣∣∣= oP (1) .

Proof of Lemma A.5.

sup
θ∈�

1

T

T∑
s=1

kst X̃2
s (u)

hs(θ)h̃s (u,θ)

∣∣∣hs(θ)− h̃s (u,θ)
∣∣∣

≤ C sup
θ∈�

1

T

T∑
s=1

∞∑
j=1

kstξj (θ)
h̃s
(
u,θ0

u

)
ε2

s

h̃s (u,θ)

(∣∣∣∣ s − j

T
−u

∣∣∣∣ϕ Ws− j+1,q+1 + 1

T ϕ
Vs− j+1,q+1

)
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≤ C sup
θ∈�

1

T

T∑
s=1

∞∑
j=1

kstρ
j/q
0

h̃s
(
u,θ0

u

)
ε2

s

h̃s (u,θ)

[∣∣∣∣ s − t

T

∣∣∣∣ϕ Ws− j+1,q+1

+
∣∣∣∣ t

T
−u

∣∣∣∣
ϕ

Ws− j+1,q+1 +
∣∣∣∣ j

T

∣∣∣∣
ϕ

Ws− j+1,q+1 + 1

T ϕ
Vs− j+1,q+1

]
= OP

(
bϕ
)
. (A.4)

We have used the monotone convergence theorem, Lemma A.1, and the fact that∣∣ t
T −u

∣∣< 1
T . n

LEMMA A.6. supθ∈�
1
T
∑T

s=1 kst

∣∣∣lnhs(θ)− ln h̃s (u,θ)
∣∣∣= oP (1) .

Proof of Lemma A.6.

sup
θ∈�

1

T

T∑
s=1

kst

∣∣∣lnhs(θ)− ln h̃s (u,θ)
∣∣∣

≤ sup
θ∈�

1

T

T∑
s=1

kst

∣∣∣∣∣hs(θ)− h̃s (u,θ)

h∗
s (u,θ)

∣∣∣∣∣
≤ sup

θ∈�

1

T

T∑
s=1

∞∑
j=1

Ckst ξj (θ)

[∣∣∣∣ s − j

T
−u

∣∣∣∣ϕ Ws− j+1,q+1 + 1

T ϕ
Vs− j+1,q+1

]

≤ sup
θ∈�

1

T

T∑
s=1

∞∑
j=1

Ckstρ
j/q
0

[∣∣∣∣ s − t

T

∣∣∣∣ϕ Ws− j+1,q+1 + ∣∣ t

T
−u

∣∣ϕWs− j+1,q+1

+
∣∣∣∣ j

T

∣∣∣∣ϕ Ws− j+1,q+1 + 1

T ϕ
Vs− j+1,q+1

]

= OP
(
bϕ) , (A.5)

where h∗ (u,θ) lies between hs (θ) and h̃s (u,θ) . We have used the mean value theorem,
the monotone convergence theorem, Lemma A.1, and the fact that

∣∣ t
T −u

∣∣< 1
T . n

THEOREM A.3. Under the conditions of Theorem 1, L (u,θ) has a unique maximum
at θ0

u .

Proof of Theorem A.3. It follows from Lemma 5.5 of BHK (2003) for the stationary
case. n

From the compactness of � and the continuity of L(u, ·), we can conclude θ̂t
P→ θ0

u by
Theorem 4.1.1 of Amemiya (1985). n

THEOREM A.4. Under the conditions of Theorem 1, supθ∈�

∣∣Lt (θ)− L̄ t (θ)
∣∣ P→ 0,

where L̄t (θ) is defined in (3.7).

Proof of Theorem A.4. We rewrite

sup
θ∈�

∣∣Lt (θ)− L̄ t (θ)
∣∣≤ sup

θ∈�

1

T

T∑
s=1

kst

∣∣∣∣ X2
s

hs(θ)
− X2

s

h̄s(θ)

∣∣∣∣+ sup
θ∈�

1

T

T∑
s=1

kst
∣∣lnhs(θ)− ln h̄s(θ)

∣∣ .
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It suffices to show the following two lemmas.

LEMMA A.7. supθ∈�
1
T
∑T

s=1 kst

∣∣∣∣ X2
s

hs (θ) − X2
s

h̄s (θ)

∣∣∣∣ = oP (1) , where h̄s(θ) is defined

in (3.7).

Proof of Lemma A.7. We have

sup
θ∈�

1

T

T∑
s=1

kst

∣∣∣∣∣ X2
s

hs(θ)
− X2

s

h̄s (θ)

∣∣∣∣∣≤ sup
θ∈�

C

T

T∑
s=1

∞∑
j=0

kstρ
s/q
0

X2
s

hs(θ)
ρ

j/q
0 X2− j = oP (1) ,

where we have used Lemma A.1 and the monotone convergence theorem. n

LEMMA A.8. supθ∈�
1
T
∑T

s=1 kst
∣∣lnhs(θ)− ln h̄s(θ)

∣∣= oP (1) .

Proof of Lemma A.8. We have

sup
θ∈�

1

T

T∑
s=1

kst
∣∣lnhs(θ)− ln h̄s(θ)

∣∣≤ sup
θ∈�

1

T

T∑
s=1

kst

∣∣hs(θ)− h̄s(θ)
∣∣

h∗
s (θ)

≤ sup
θ∈�

C

T

T∑
s=1

∞∑
j=0

kstρ
s/q
0 ρ

j/q
0 X2− j = oP (1) ,

where we have used Lemma A.1, the mean value theorem, and the monotone convergence
theorem. n

Therefore, Theorem A.4 follows. n

Proof of Theorem 2. By a Taylor expansion, we have

∂Lt

(
θ̂t

)
∂θ

−
∂Lt

(
θ0

u

)
∂θ

= ∂2Lt
(
θ∗

t
)

∂θ∂θ ′
(
θ̂t − θ0

u

)
,

where θ∗
t lies between θ̂t and θ0

u . As θ∗
t

P→ θ0
u and supθ∈�

∣∣∣ ∂2 Lt (θ)
∂θ∂θ ′ − ∂2 L(u,θ)

∂θ∂θ ′
∣∣∣ P→ 0 by

Theorems A.5 and A.6, we have ∂2 Lt (θ∗
t )

∂θ∂θ ′
P→ H(u) and

√
bT

⎡
⎣(θ̂t − θ0

u

)
+ H−1 (u)

∂Bt

(
u,θ0

u

)
∂θ

⎤
⎦= −√

bT H−1(u)
∂ L̃
(

u,θ0
u

)
∂θ

+oP (1) ,

whereBt (u,θ) is defined in Theorem A.2. The proof of Theorem 2(i) consists of the proofs
of Theorems A.5–A.8.

THEOREM A.5. Under the conditions of Theorem 2(i), supθ∈�

∣∣∣ ∂2 L̃(u,θ)
∂θ∂θ ′ −

∂2 L(u,θ)
∂θ∂θ ′

∣∣∣ P→ 0.

THEOREM A.6. Under the conditions of Theorem 2(i), supθ∈�

∣∣∣ ∂2Bt (u,θ)
∂θ∂θ ′

∣∣∣ P→ 0.
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The proofs of Theorems A.5 and A.6 are rather similar to the proofs of Theorems A.1
and A.2 respectively. We omit the details here.

THEOREM A.7. Under the conditions of Theorem 2(i),

√
bT

∂ L̃
(

u,θ0
u

)
∂θ

→d N
(

0,−k2

(κ

2
+1
)

H(u)
)
.

Proof of Theorem A.7. By definition, we have

√
bT

∂ L̃
(

u,θ0
u

)
∂θ

= 1√
bT

T∑
s=1

k

(
s − t

T b

) ∂ l̃s
(

u,θ0
u

)
∂θ

,

where

[
∂ l̃s
(
u,θ0

u
)

∂θ

]
is a martingale difference sequence. It is straightforward to verify the

conditional Linderberg and variance conditions. The result follows from the martingale
central limit theorem and the Cramér–Wold device. n

THEOREM A.8. Under the conditions of Theorem 2(i),

E

⎡
⎣∂Bt

(
u,θ0

u

)
∂θ

⎤
⎦= Bu + O

(
b3 + 1

T

)

and

var

⎡
⎣∂Bt

(
u,θ0

u

)
∂θ

⎤
⎦= O

(
b6 + 1

T

)
.

Proof of Theorem A.8. We define

l̃τs
(

u,θ0
u

)
= −1

2

⎡
⎣ln h̃τ

s

(
u,θ0

u

)
+ X̃2

s (u)

h̃τ
s

(
u,θ0

u

)
⎤
⎦ ,

h̃τ
s

(
u,θ0

u

)
= ξ0

(
θ0

u

)
+

τ∑
j=1

ξj

(
θ0

u

)
X̃2

s− j (u),

where τ is some deterministic function of T such that Tρ
τ+1/q
0 = O (1) and bτ = O (1)

as T → ∞.

∂Bt

(
u,θ0

u

)
∂θ

= 1

T

T∑
s=1

kst

⎡
⎣∂ l̃τs

(
s
T ,θ0

u

)
∂θ

−
∂ l̃τs

(
u,θ0

u

)
∂θ

⎤
⎦

+ 1

T

T∑
s=1

kst

⎡
⎣∂ l̃τs

(
u,θ0

u

)
∂θ

−
∂ l̃s
(

u,θ0
u

)
∂θ

⎤
⎦
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+ 1

T

T∑
s=1

kst

⎡
⎣∂ l̃s

(
s
T ,θ0

u

)
∂θ

−
∂ l̃τs

(
s
T ,θ0

u

)
∂θ

⎤
⎦

+ 1

T

T∑
s=1

kst

⎡
⎣∂ls

(
θ0

u

)
∂θ

−
∂ l̃s
(

s
T ,θ0

u

)
∂θ

⎤
⎦

= B0 + R1 + R2 + R3. (A.6)

For the second term of (A.6), we have

E |R1| ≤ 1

T

T∑
s=1

kst E

∣∣∣∣∣∣∣
∂ h̃s

(
u,θ0

u
)

∂θ

[
h̃τ

s

(
u,θ0

u

)
− h̃s

(
u,θ0

u

)]
h̃s

(
u,θ0

u

)
h̃τ

s

(
u,θ0

u

)
∣∣∣∣∣∣∣

+ 1

T

T∑
s=1

kst E

∣∣∣∣∣∣
∂ h̃s

(
u,θ0

u
)

∂θ − ∂ h̃τ
s
(
u,θ0

u
)

∂θ

h̃τ
s

(
u,θ0

u

)
∣∣∣∣∣∣

+ 1

T

T∑
s=1

kst E

∣∣∣∣∣∣∣
X̃2

s (u)
∂ h̃s

(
u,θ0

u
)

∂θ

[
h̃τ2

s

(
u,θ0

u

)
− h̃2

s

(
u,θ0

u

)]
h̃2

s

(
u,θ0

u

)
h̃τ2

s

(
u,θ0

u

)
∣∣∣∣∣∣∣

+ 1

T

T∑
s=1

kst E

∣∣∣∣∣∣∣∣
X̃2

s (u)

[
∂ h̃s

(
u,θ0

u
)

∂θ − ∂ h̃τ
s
(
u,θ0

u
)

∂θ

]

h̃τ2
s

(
u,θ0

u

)
∣∣∣∣∣∣∣∣

≡
4∑

j=1

R1 j , say,

where

R11 ≤ 1

T

T∑
s=1

kst

⎧⎨
⎩C +

∞∑
j=1

C jρ j/q
0

[
E X̃4

s− j (u)
]1/2

⎫⎬
⎭
⎧⎨
⎩

∞∑
j=τ+1

ρ
j/q
0

[
E X̃4

s− j (u)
]1/2

⎫⎬
⎭

= O
(
ρ

τ+1/q
0

)
= O

(
1

T

)
,

and we have used the facts that ξj

(
θ0

u

)
≤ Cρ

j/q
0 and

∣∣∣∂ξj

(
θ0

u

)
/∂θ

∣∣∣ ≤ C jρ j/q
0 by

Lemmas 3.1 and 3.2 of BHK (2003). And

R12 ≤ 1

T

T∑
s=1

kst E

∣∣∣∣∣∣
∑∞

j=τ+1 C jρ j/q
0 X̃2

s− j (u)

h̃τ
s

(
u,θ0

u

)
∣∣∣∣∣∣

≤ 1

T

T∑
s=1

kst

∞∑
j=τ+1

C ρ̃ j E
X̃2

s− j (u)

h̃τ
s

(
u,θ0

u

) = O
(
ρ̃τ+1

)
= O

(
1

T

)
,

where ρ̃ = e
1
e ρ0. The proofs of R13 and R14 are rather similar to those of R11 and R12

respectively. The third term of (A.6) can be shown in a similar way to the second term.
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And for the last term, we have

E |R3| ≤ 1

T

T∑
s=1

kst E

∣∣∣∣∣∣∣
∂hs

(
θ0

u
)

∂θ

[
h̃s

(
s
T ,θ0

u

)
−hs

(
θ0

u

)]
hs

(
θ0

u

)
h̃
(

s
T ,θ0

u

)
∣∣∣∣∣∣∣
⎡
⎣1+ X̃2

s
( s

T

)
h̃
(

s
T ,θ0

u

)
⎤
⎦

+ kst E

∣∣∣∣∣∣
∂hs

(
θ0

u
)

∂θ − ∂ h̃s
( s

T ,θ0
u
)

∂θ

h̃s

(
s
T ,θ0

u

)
∣∣∣∣∣∣
⎡
⎣1+ X̃2

s
( s

T

)
h̃
(

s
T ,θ0

u

)
⎤
⎦

+ kst E

∣∣∣∣∣∣
∂hs

(
θ0

u
)

∂θ

h2
s

(
θ0

u

)
∣∣∣∣∣∣
∣∣∣X2

s − X̃2
s

( s

T

)∣∣∣

+ kst E

∣∣∣∣∣∣
X̃2

s
( s

T

)
hs

(
θ0

u

)
h̃
(

s
T ,θ0

u

)
∣∣∣∣∣∣
∣∣∣hs

(
θ0

u

)
− h̃s

( s

T
,θ0

u

)∣∣∣
= 1

T ϕ
,

where we have repeatedly used Lemma A.1 four times.
Next, we consider the first term of (A.6). A Taylor expansion yields

B0 = 1

T

T∑
s=1

kst

( s

T
−u

) ∂2l̃τs
(

u,θ0
u

)
∂θ∂u

+ 1

2T

T∑
s=1

kst

( s

T
−u

)2 ∂3l̃τs
(

u,θ0
u

)
∂θ∂u2

+ 1

3!T

T∑
s=1

kst

( s

T
−u

)3 ∂4l̃τs
(

ūs ,θ
0
u

)
∂θ∂u3

= B1 + B2 + B3, say,

where ūs lies between s
T and u.

For the first term, we have

E (B1) = 1

T

T∑
s=1

kst

(
s − t

T

)
E

⎡
⎣∂2l̃τs

(
u,θ0

u

)
∂θ∂u

⎤
⎦+ O

(
1

T

)

= b
∫ 1

−1
k(u)udu + O

(
1

T

)
= O

(
1

T

)

and

var (B1) = 1

T 2

T∑
s=1

T∑
r=1

kst krt

( s

T
−u

)( r

T
−u

)
cov

⎛
⎝∂2l̃τs

(
u,θ0

u

)
∂θ∂u

,
∂2l̃τr

(
u,θ0

u

)
∂θ∂u

⎞
⎠

≤ b2

b2T 2

∑
s

k

(
s − t

T b

)∑
r

k

(
r + s − t

T b

)∣∣∣∣∣∣cov

⎛
⎝∂2l̃τs

(
u,θ0

u

)
∂θ∂u

,
∂2l̃τs+r

(
u,θ0

u

)
∂θ∂u

⎞
⎠
∣∣∣∣∣∣

≤ Cb

T

∑
r

∣∣∣∣∣∣cov

⎛
⎝∂2l̃τs

(
u,θ0

u

)
∂θ∂u

,
∂2l̃τs+r

(
u,θ0

u

)
∂θ∂u

⎞
⎠
∣∣∣∣∣∣= O

(
1

T

)
,
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where we have used the result that b
∑

r

∣∣∣∣cov

(
∂2 l̃τs

(
u,θ0

u
)

∂θ∂u ,
∂2 l̃τs+r

(
u,θ0

u
)

∂θ∂u

)∣∣∣∣= O (1) . We now

verify it below. First note that

∂2l̃τs (u,θ0
u )

∂θ∂u
= −1

2

[
− 1

h̃τ2
s (u,θ0

u )

∂ h̃τ
s (u,θ0

u )

∂θ

∂ h̃τ
s (u,θ0

u )

∂u
+ 1

h̃τ2
s (u,θ0

u )

∂2h̃τ
s (u,θ0

u )

∂θ∂u

− 1

h̃τ2
s (u,θ0

u )

∂ h̃τ
s (u,θ0

u )

∂θ

∂ X̃2
s (u)

∂u
− X̃2

s (u)

h̃τ2
s (u,θ0

u )

∂2h̃τ
s (u,θ0

u )

∂θ∂u

+ 2X̃2
s (u)

h̃τ3
s (u,θ0

u )

∂ h̃τ
s (u,θ0

u )

∂θ

∂ h̃τ
s (u,θ0

u )

∂u

]

=
5∑

j=1

Bsj , say.

It would be sufficient to show that

b
∑

r

∣∣cov
(
Bsi , B(s+r) j

)∣∣= O (1)

for i, j = 1, . . . ,5. We first consider i = j = 1. In this case,

b
∑

r

∣∣cov
(
Bs1, B(s+r)1

)∣∣= b
∑

r≤τ−1

∣∣cov
(
Bs1, B(s+r)1

)∣∣
+b

∑
r>τ−1

∣∣cov
(
Bs1, B(s+r)1

)∣∣= B1
11 + B2

11,

where

B1
11 ≤ Cb

∑
r≤τ−1

E

∣∣∣∣∣∣
τ∑

j,i=1

[
∂ξ0

(
θ0

u

)
∂θ

][
∂ξ0

(
θ0

u

)
∂θ

]′
ξi

(
θ0

u

)
ξj

(
θ0

u

) d X̃2
s−i (u)

du

d X̃2
s+r− j (u)

du

∣∣∣∣∣∣
+ E

∣∣∣∣∣∣
τ∑

k, j,i=1

[
∂ξ0

(
θ0

u

)
∂θ

][
∂ξi
(
θ0

u

)
∂θ

]′
ξj

(
θ0

u

)
ξk

(
θ0

u

)
X̃2

s+r−i (u)
d X̃2

s− j (u)

du

d X̃2
s+r−k(u)

du

∣∣∣∣∣∣
+ E

∣∣∣∣∣∣
τ∑

k, j,i=1

[
∂ξ0

(
θ0

u

)
∂θ

][
∂ξj

(
θ0

u

)
∂θ

]′
ξi

(
θ0

u

)
ξk

(
θ0

u

)
X̃2

s− j (u)
d X̃2

s−i (u)

du

d X̃2
s+r−k(u)

du

∣∣∣∣∣∣
+ E

∣∣∣∣∣∣
τ∑

l,k, j,i=1

[
∂ξj

(
θ0

u

)
∂θ

][
∂ξk

(
θ0

u

)
∂θ

]′
ξi

(
θ0

u

)
ξl

(
θ0

u

)

× X̃2
s− j (u)X̃2

s+r−k(u)
d X̃2

s−i (u)

du

d X̃2
s+r−l (u)

du

∣∣∣∣∣
≤ Cb

∑
r≤τ−1

⎧⎪⎨
⎪⎩

τ∑
j,i=1

ρ
i/q
0 ρ

j/q
0

⎡
⎣E

∣∣∣∣∣d X̃2
s−i (u)

du

∣∣∣∣∣
2
⎤
⎦

1/2⎡
⎣E

∣∣∣∣∣
d X̃2

s+r− j (u)

du

∣∣∣∣∣
2
⎤
⎦

1/2

+
τ∑

k, j,i=1

iρi/q
0 ρ

j/q
0 ρ

k/q
0

[
E
∣∣∣X̃2

s+r−i (u)
∣∣∣2]1/2

⎡
⎣E

∣∣∣∣∣
d X̃2

s− j (u)

du

∣∣∣∣∣
4
⎤
⎦

1/4⎡
⎣E

∣∣∣∣∣d X̃2
s+r−k(u)

du

∣∣∣∣∣
4
⎤
⎦

1/4
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+
τ∑

k, j,i=1

jρ j/q
0 ρ

i/q
0 ρ

k/q
0

[
E
∣∣∣X̃2

s− j (u)
∣∣∣2]1/2

⎡
⎣E

∣∣∣∣∣d X̃2
s−i (u)

du

∣∣∣∣∣
4
⎤
⎦

1/4⎡
⎣E

∣∣∣∣∣d X̃2
s+r−k(u)

du

∣∣∣∣∣
4
⎤
⎦

1/4

+
τ∑

l,k, j,i=1

jρ j/q
0 kρk/q

0 ρ
i/q
0 ρ

l/q
0

[
E
∣∣∣X̃2

s− j (u)
∣∣∣4]1/4 [

E
∣∣∣X̃2

s+r−k(u)
∣∣∣4]1/4

×
⎡
⎣E

∣∣∣∣∣d X̃2
s−i (u)

du

∣∣∣∣∣
4
⎤
⎦

1/4 ⎡
⎣E

∣∣∣∣∣d X̃2
s+r−l (u)

du

∣∣∣∣∣
4
⎤
⎦

1/4
⎫⎪⎬
⎪⎭

= O (bτ) = O (1) .

B2
11 ≤ 1

4

∑
r>τ−1

βδ/δ+1(r − τ)

⎡
⎣E

∣∣∣∣∣ 1

h̃τ2
s

(
u,θ0

u

) ∂ h̃τ
s

(
u,θ0

u

)
∂θ

∂ h̃τ
s

(
u,θ0

u

)
∂u

∣∣∣∣∣
2(1+δ)

⎤
⎦

1
2(1+δ)

×
⎡
⎣E

∣∣∣∣∣ 1

h̃τ2
s+r

(
u,θ0

u

) ∂ h̃τ
s+r

(
u,θ0

u

)
∂θ

∂ h̃τ
s+r

(
u,θ0

u

)
∂u

∣∣∣∣∣
2(1+δ)

⎤
⎦

1
2(1+δ)

≤ C
∑

r>τ−1

αδ/δ+1(r − τ)

⎡
⎢⎣E

∣∣∣∣∣∣
τ∑

j=1

∂ξj
(
θ0

u

)
∂θ

X̃2
s− j (u)

∣∣∣∣∣∣
4(1+δ)

⎤
⎥⎦

1/4(1+δ)

×
⎡
⎢⎣E

∣∣∣∣∣∣
τ∑

j=1

ξj

(
θ0

u

) d X̃2
s− j (u)

du

∣∣∣∣∣∣
4(1+δ)

⎤
⎥⎦

1/4(1+δ)⎡⎢⎣E

∣∣∣∣∣∣
τ∑

j=1

ξj

(
θ0

u

) d X̃2
s+r− j (u)

du

∣∣∣∣∣∣
4(1+δ)

⎤
⎥⎦

1/4(1+δ)

×
⎡
⎢⎣E

∣∣∣∣∣∣
τ∑

j=1

∂ξj
(
θ0

u

)
∂θ

X̃2
s+r− j (u)

∣∣∣∣∣∣
4(1+δ)

⎤
⎥⎦

1/4(1+δ)

= O (1) ,

where α(r) is the mixing coefficient for the process Xt (2,u) and Xt (2,u), which is
defined in Assumption A.8. We note that Subba Rao (2006, Sect. 5) has shown that
Xt (2,u) satisfies Assumption 3.1 of Subba Rao (2006). Therefore the strong mixing prop-
erty of Xt (2,u) with a geometric rate follows by Theorem 4.1 of Subba Rao (2006).
The proofs for other i and j are very similar and hence we omit the details here. Sim-
ilarly, we obtain E(B2) = Bu + O( 1

T ), var(B2) = O( 1
T ) and E(B2

3 ) = O(b6), lead-
ing to the desired result of Theorem 2(i). The proofs of Theorem 2(ii) and (iii) are very
similar. n

Proof of Theorem 3. It follows from the proof of Theorem 2(i) with the augmented
random sample and we omit the details of the proof. The major difference is the calculation
of variance and bias. That is, with the augmented sample, we have
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var

⎛
⎝√

bT
∂ L̃
(

u,θ0
u

)
∂θ

⎞
⎠

= 1

bT

t+�T b�∑
s=1

[
k2
(

s − t

bT

)
+ k2

(
s + t

bT

)
+ k

(
s − t

bT

)
k

(
s − t

bT
+ 2t

bT

)

+k

(
s + t

bT

)
k

(
s + t

bT
− 2t

bT

)]
E

⎡
⎣∂ l̃s

(
u,θ0

u

)
∂θ

∂ l̃s
(

u,θ0
u

)
∂θ ′

⎤
⎦

= −
[∫ 1

−1
k2 (x)dx +

∫ 1

−1
k(x)k (x +2c)dx

](
Eε4

t −1

2

)
H(u)+o (1) ,

and

E (B1) = 1

T

T∑
s=−�T b�

{
kst

(
s − t

T

)
E

[
∂2l̃s(u,θ0

u )

∂θ∂u

]
+ kst

(
t

T
−u

)
E

[
∂2l̃s(u,θ0

u )

∂θ∂u

]}

= b
∫ 1

−1
xk(x)dx E

[
∂2l̃s(u,θ0

u )

∂θ∂u

]
+
∫ 1

−1
k(x)dx E

⎡
⎣∂2l̃s

(
u,θ0

u

)
∂θ∂u

⎤
⎦( 1

T

)
+o

(
1

T

)

= O

(
1

T

)
,

where, in calculating the variance, we have made use of the identity that

E

⎡
⎣∂ l̃s

(
u,θ0

u

)
∂θ

∂ l̃s
(

u,θ0
u

)
∂θ ′

⎤
⎦= −

(
Eε4

t −1

2

)
H(u)

as can be easily verified. n

Proof of Theorem 4. Under H0, we can decompose

2T b1/2 (lU − lR) = b1/2
T∑

t=1

[
2St (θ

0)′ +
(
θ̄c

t − θ0
)′ ∂St (θ

1
t )

∂θ

](
θ̄c

t − θ0
)

−2b1/2
T∑

t=1

St (θ
0)′
(
θ̄ − θ0

)
−b1/2

T∑
t=1

(
θ̄ − θ0

)′ ∂St (θ
1)

∂θ

(
θ̄ − θ0

)
= Q1 + Q2 + Q3, say,

where the score function is defined in (4.3), θ1
t lies between θ̄c

t and θ0, and θ1 lies between
θ̄ and θ0.

The proof of Theorem 4 consists of the proofs of Theorems A.9–A.11. n

THEOREM A.9. Under the conditions of Theorem 4, Q ≡ (Q1 − Ã)/
√

B̃
d→ N (0,1),

where

Ã = b−1/2
var

(
ε2

t

)
2

(1+ p +q)

[
2k(0)−

∫ 1

−1
k2(u)du

]
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and

B̃ =
[
var

(
ε2

t

)]2
(1+ p +q)

∫ 1

0

[
2k(v)−

∫ 1

−1
k(u)k(u + v)du

]2

dv.

Proof of Theorem A.9. To show Q
d→ N (0,1), it suffices to show three propositions

below. n

PROPOSITION A.3. Under the conditions of Theorem 4,

θ̄c
t − θ0 = −H−1

0

⎧⎨
⎩ 1

T

t+�T b�∑
s=t−�T b�

kst Ss(θ
0)

⎫⎬
⎭+ OP

(
T − 1

2 b− 1
2

)
,

where H0 is defined in (4.4).

Proof of Proposition A.3. By the Taylor expansion of the first order condition, we have

1

T

t+�T b�∑
s=t−�T b�

kst Ss(θ
0)+ 1

T

t+�T b�∑
s=t−�T b�

kst

∂Ss

(
θ1

t

)
∂θ

(
θ̄c

t − θ0
)

= 0,

where θ1
t lies between θ̄c

t and θ0. Because
√

b
T
∑t+�T b�

s=t−�T b� kst Ss(θ
0) →d

N
(

0,− k2
2 var(ε2

t )H0

)
, it suffices to show the following lemma. n

LEMMA A.9. Under the conditions of Theorem 4,

1

T

t+�T b�∑
s=t−�T b�

kst

∂Ss

(
θ1

t

)
∂θ

= H0 +oP (1) .

Proof of Lemma A.9. We decompose

1

T

t+�T b�∑
s=t−�T b�

kst
∂Ss(θ

1
t )

∂θ
− H0 =

⎡
⎣ 1

T

t+�T b�∑
s=t−�T b�

kst
∂Ss(θ

1
t )

∂θ
− 1

T

t+�T b�∑
s=t−�T b�

kst
∂Ss(θ

0)

∂θ

⎤
⎦

+
⎡
⎣ 1

T

t+�T b�∑
s=t−�T b�

kst
∂Ss(θ

0)

∂θ
− H0

⎤
⎦ .

For the first term,∥∥∥∥∥∥
1

T

t+�T b�∑
s=t−�T b�

kst
∂Ss, j (θ

1
t )

∂θ
− 1

T

t+�T b�∑
s=t−�T b�

kst
∂Ss, j (θ

0)

∂θ

∥∥∥∥∥∥
2

2

≤ 1

T

t+�T b�∑
s=t−�T b�

kst sup
θ

∥∥∥∥∥ ∂2

∂θ∂θ ′ Ss, j (θ)

∥∥∥∥∥
2

2

∥∥∥θ1
t − θ0

∥∥∥2

2

P→ 0,

where we have used the mean value theorem and Theorem 1.
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For the second term, since
{

∂Ss
(
θ0
)

∂θ

}
is an ergodic process with E

∣∣∣∣ ∂Ss
(
θ0
)

∂θ

∣∣∣∣ < ∞,

we have

1

T

t+�T b�∑
s=t−�T b�

kst
∂Ss(θ

0)

∂θ

P→ H0

by Lemma A.2 of Dahlhaus and Subba Rao (2006). n

PROPOSITION A.4. Under the conditions of Theorem 4,

Q1 = Ã +2Ũ +oP (1) ,

where

Ũ = T −2b1/2
T∑

s=2

s−1∑
t=1

Ss(θ
0)′H−1

0 St (θ
0)

⎛
⎝2T kst −

T∑
r=1

krskrt

⎞
⎠ . (A.7)

Proof of Proposition A.4. We first decompose

Q1 = −T −1b−1/2
T∑

t=1

St (θ
0)′ H−1

0

⎡
⎣2k (0)Id − T −1b

t+�T b�∑
s=t−�T b�

k2
st

∂Ss(θ
0)

∂θ
H−1

0

⎤
⎦ St (θ

0)

− 2T −1b−1/2
T b∑
t=1

St
(
θ0)′H−1

0

⎡
⎣2k

(
2t

T b

)
Id − T −1

t+�T b�∑
s=t−�T b�

kst k

(
s + t

T b

)
∂Ss

(
θ0
)

∂θ
H−1

0

⎤
⎦St

(
θ0)

− 2T −1b−1/2
T∑

t>s=1

St
(
θ0)′ H−1

0

[
2bktsId − T −1b

∑
r

krt krs
∂Sr

(
θ0
)

∂θ
H−1

0

]
Ss
(
θ0)

+ T −2b1/2
T∑

t=1

t+�T b�∑
s=t−�T b�

Ss
(
θ0)′ H−1

0

{
k2

st

[
∂St

(
θ1

t

)
∂θ

− ∂St
(
θ0
)

∂θ

]}
H−1

0 Ss
(
θ0)

+2T −2b−1/2
T b∑
t=1

t+�T b�∑
s=t−�T b�

Ss
(
θ0)′ H−1

0

{
kst k

(
s + t

T b

)[
∂St

(
θ1

t

)
∂θ

− ∂St
(
θ0
)

∂θ

]}
H−1

0 Ss
(
θ0)

+2T −2b1/2
T b∑
t=1

∑
s>r

Ss
(
θ0)′ H−1

0

{
kst krt

[
∂St

(
θ1

t

)
∂θ

− ∂St
(
θ0
)

∂θ

]}
H−1

0 Sr
(
θ0)+oP (1)

= M1 + M2 +U1 + L1 + L2 + L3 +oP (1) , say. (A.8)

We will show that the first two terms jointly determine the asymptotic mean, the third term
determines the asymptotic variance, and the remainders are higher order terms. This is
established by the following four lemmas.

LEMMA A.10. Let M1 be defined as in (A.8). Then

M1 −b−1/2 (1+ p +q)
var(ε2

t )

2

⎡
⎣2k(0)− 1

T b

�T b�∑
j=−�T b�

(
1− | j |

T

)
k2
(

j

T b

)⎤⎦= oP (1) .
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LEMMA A.11. Let M2 be defined as in (A.8). Then

M2 −b1/2(1+ p +q)
var(ε2

t )

2

⎡
⎣1− 1

T b

�T b�∑
j=−�T b�

(
1− | j |

T

)
k

(
j

T b

)∫ 1

−1
k

(
j

T b
+2u

)
du

⎤
⎦= oP (1).

LEMMA A.12. Let U1 and Ũ be defined as in (A.8) and (A.7) respectively. Then

U1 = Ũ +oP (1) .

LEMMA A.13. Let Li be defined as in (A.8), where i = 1,2,3. Then Li = oP (1) for
i = 1,2,3.

The proofs of Lemmas A.10–A.13 are tedious but straightforward. Therefore we omit
them here. Detailed derivations are available upon request. n

PROPOSITION A.5. Under the conditions of Theorem 4, 2Ũ/
√

B̃
d→ N (0,1).

Proof of Proposition A.5. Let

Rs = −T −2b1/2
s−1∑
t=1

Ss
(
θ0)′H−1

0 St
(
θ0)

⎛
⎝2T kst −

T∑
r=1

krskrt

⎞
⎠ .

We apply Brown’s (1971) martingale limit theorem, which states var(2Ũ )− 1
2 2Ũ

d→ N(0,1)
if

var(2Ũ )−1
T∑

s=1

(2Rs)
21
[
|2Rs | > η ·var(2Ũ )

1
2

]
→ 0 ∀ η > 0, (A.9)

var(2Ũ )−1
T∑

s=1

E[(2Rs)
2|Fs−1]

P→ 1. (A.10)

First,

var
(

2Ũ
)

= 4T −4b
T∑

s=2

s−1∑
t=1

E
[

Ss
(
θ0)′H−1

0 St

(
θ0
)

St
(
θ0)′H−1

0 Ss

(
θ0
)]

×
⎛
⎝2T kst −

T∑
r=1

krskrt

⎞
⎠

2

+4T −4b
T∑

s=1

s−1∑
t1=1

s−1∑
t2=1,t1 �=t2

E
[

Ss(θ
0)′H−1

0 St1(θ
0)St2(θ

0)′H−1
0 Ss(θ

0)
]

×
(

2T kst1 −
∑

r
krt1 krs

)(
2T kst2 −

∑
r

krt2 krs

)

= V1 + V2, say. (A.11)
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For the first term, we have

V1 = 4T −1b−1
T −1∑
j=1

C2 ( j)

(
1− j

T

)[
2k

(
j

T b

)
−
∫ 1

−1
k(u)k

(
u + j

T b

)
du

]2

+o (1)

=
[
var

(
ε2

t

)]2
(1+ p +q)

∫ 1

0

[
2k(v)−

∫ 1

−1
k(u)k(u + v)du

]2

dv

+4T −1b−1
T −1∑
j=1

(
1− j

T

)
tr
[
C̃2 ( j)

]
+o (1) ,

where

C2 ( j) ≡ E
[

St
(
θ0)′H−1

0 St−| j |
(
θ0)St−| j |

(
θ0)′H−1

0 St
(
θ0)]

=
[
var

(
ε2

t

)]2

4
(1+ p +q)+ tr

[
C̃2 ( j)

]
and

C̃2 ( j) = E

⎧⎨
⎩St

(
θ0)St

(
θ0)′H−1

0

⎡
⎣St−| j |

(
θ0)St−| j |

(
θ0
)′ +

var
(
ε2

t

)
2

H0

⎤
⎦H−1

0

⎫⎬
⎭ .

Given the fact that
∑∞

j=−∞
∣∣∣C̃2( j)

∣∣∣≤ C, we have

V1 =
[
var

(
ε2

t

)]2
(1+ p +q)

∫ 1

0

[
2k(v)−

∫ 1

−1
k(u)k(u + v)du

]2

dv +o (1) . (A.12)

For the second term in (A.11), we have

V2 = 4T −4b
T∑

s=1

s−1∑
t1=1

s−1∑
t2=1,t1 �=t2

tr

{
E

[
Ss
(
θ0)Ss

(
θ0
)′

H−1
0 St1

(
θ0)St2

(
θ0)′H−1

0

]}

×
(

2T kst1 −
∑

r
krt1 krs

)(
2T kst2 −

∑
r

krt2 krs

)

= 4T −2b−1
T∑

s=1

s−1∑
t1=1

s−1∑
t2=1,t1 �=t2

tr
[
C22(s − t1,s − t2)

]

×
[
2bkst1 −

∫ 1

−1
k(u)k

(
u + s − t1

T b

)
du

][
2bkst2 −

∫ 1

−1
k(u)k

(
u + s − t2

T b

)
du

]
+o(1)

= o (1) , (A.13)

where the fourth order cumulant function

C22 ( j, l) = E

⎧⎨
⎩
⎡
⎣Ss

(
θ0)Ss

(
θ0)′ + var

(
ε2

s

)
2

H0

⎤
⎦H−1

0 Ss− j
(
θ0)Ss−l

(
θ0)′H−1

0

⎫⎬
⎭ .

We have used the fact that
∑

j
∑

l |C22 ( j, l)| < ∞, which can be obtained by using the
mixing inequality. It follows that
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var
(

2Ũ
)

=
[
var

(
ε2

t

)]2
(1+ p +q)

∫ 1

0

[
2k(v)−

∫ 1

−1
k(u)k(u + v)du

]2

dv +o (1)

from (A.12) and (A.13).
We now verify condition (A.9). Let Wst = 2bkst − T −1b

∑T
r=1 krskrt . Then we have

T∑
s=1

E(R4
s ) = T −4b−2

{
T∑

s=1

s−1∑
t=1

E
[

Ss(θ
0)′ H−1

0 St (θ
0)
]4

W 4
st

+
T∑

s=1

∑
t1 �=t2

E
[

Ss(θ
0)′ H−1

0 St1 (θ
0)
]2 [

Ss(θ
0)′ H−1

0 St2 (θ
0)
]2

W 2
st1 W 2

st2

+
T∑

s=1

∑
t1 �=t2 �=t3

E
[

Ss(θ
0)′ H−1

0 St1 (θ
0)
]2 [

Ss(θ
0)′ H−1

0 St2 (θ
0)St3 (θ

0)′ H−1
0 Ss(θ

0)
]

× W 2
st1 Wst2 Wst3

+
T∑

s=1

∑
t1 �=t2 �=t3 �=t4

E
[

Ss(θ
0)′ H−1

0 St1 (θ
0)St2 (θ

0)′ H−1
0 Ss(θ

0)Ss(θ
0)′ H−1

0 St3 (θ
0)

× St4 (θ
0)′ H−1

0 Ss(θ
0)
]

Wst1 Wst2 Wst3 Wst4

= O(T −2b−1)+ O(T −1)+ O(T −1b−1)+ O(b)

= o(1).

So that [var(2Ũ )]−2∑T
s=1 E(R4

s ) → 0 and Condition (A.9) holds.

Next we verify Condition (A.10). Let Qs = ∑s−1
t=1 St (θ

0)′
(

2T b2ksr −∑t b2ktr kts

)
.

We have

E
(

R2
s |Fs−1

)
= T −4b−3 Qs H−1

0 E
[

Ss
(
θ0)Ss

(
θ0)′|Fs−1

]
H−1

0 Q′
s

= T −4b−3 Qs

⎧⎨
⎩H−1

0 E
[
Ss
(
θ0)Ss

(
θ0)′|Fs−1

]
+

var
(
ε2

s

)
2

Ip+q+1

⎫⎬
⎭H−1

0 Q′
s

−
var

(
ε2

s

)
2

T −4b−3 Qs H−1
0 Q′

s

= V1s + R1s , say, (A.14)

where Ip+q+1 is a (p +q +1)× (p +q +1) identity matrix. We further decompose

R1s = −
var

(
ε2

s

)
2

T −4b−3
{

Qs H−1
0 Q′

s − E
[

Qs H−1
0 Q′

s

]}

−
var

(
ε2

s

)
2

T −4b−3 E
[

Qs H−1
0 Q′

s

]

= R2s +
⎡
⎣var

(
ε2

s

)
2

⎤
⎦

2

T −2b−1
T∑

r=1

(1+ p +q)W 2
sr . (A.15)
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Then we write

R2s = −
var

(
ε2

s

)
2

T −2b−1
s−1∑
r=1

[
Sr
(
θ0)′H−1

0 Sr
(
θ0)− E

(
Sr

(
θ0
)′

H−1
0 Sr

(
θ0))]

× W 2
sr − var

(
ε2

s

)
T −2b−1

s−1∑
r1=1

r1∑
r2=1

Sr1

(
θ0
)′

H−1
0 Sr2 Wsr1 Wsr2

= V2s + V3s , say. (A.16)

It follows from A.11–A.16 that
∑T

s=1{E[(2Rs)
2|Fs−1] − E[(2Rs)

2]} = ∑3
i=1

∑T
s=1

4Vis − V2 + o(1). It suffices to show Lemmas A.14–A.16, which imply
E |∑T

s=1 E[(2Rs)
2|Fs−1] − E[(2Rs)

2]|2 = o(1). Thus, Condition (A.10) holds, and so

2Ũ/
√

B̃
d→ N (0,1) by Brown’s (1971) theorem. n

LEMMA A.14. Let V1s be defined as in (A.14). Then E
(∑T

s=1 V1s

)2 = o (1) .

Proof of Lemma A.14. Let

�(Sr1 , Ss , Sr2 )

= Sr1 (θ
0)′
[

H−1
0 E

[
Ss(θ

0)Ss(θ
0)′|Fs−1

]
+ var(ε2

s )

2
Ip+q+1

]
H−1

0 Sr2 (θ
0)Wsr1 Wsr2

+ Sr2 (θ
0)′
[

H−1
0 E

[
Sr1 (θ

0)Sr1 (θ
0)′|Fr1−1

]
+ var(ε2

r1
)

2
Ip+q+1

]
H−1

0 Ss(θ
0)Wr1r2 Wr1s

+ Ss(θ
0)′
[

H−1
0 E

[
Sr2 (θ

0)Sr2 (θ
0)′|Fr2−1

]
+ var(ε2

r2
)

2
Ip+q+1

]
H−1

0 Sr1 (θ
0)Wr2s Wr2r1 ,

where Ip+q+1 is a (p +q +1)× (p +q +1) identity matrix. Then we have

E

⎛
⎝ T∑

s=1

V1s

⎞
⎠

2

= CT −4b−2 E

⎡
⎣ ∑

s �=r1 �=r2

�
(
Sr1 ,ζs ,ζr2

)⎤⎦
2

= O
(

T −1b−1
)

= o (1) ,

where we have used Lemma A(i) of Hjellvik, Yao, and Tjøstheim (1998). n

LEMMA A.15. Let V2s be defined as in (A.16). Then E
(∑T

s=1 V2s

)2 = o (1) .

Proof of Lemma A.15.

E

(
T∑

s=1

V2s

)2

= T −4b−2

[
var(ε2

s )

2

]2 T∑
s=1

s−1∑
r=1

E
{

Sr (θ
0)′ H−1

0 Sr (θ
0)− E

[
Sr (θ

0)′ H−1
0 Sr (θ

0)
]}2

W 4
sr

https://doi.org/10.1017/S0266466614000942 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466614000942


784 BIN CHEN AND YONGMIAO HONG

+ T −4b−2

[
var(ε2

s )

2

]2

×
T∑

s1=1

s1−1∑
r1=1

T∑
s2=1

s2−1∑
r2=1

E
{{

Sr1 (θ
0)′ H−1

0 Sr1 (θ
0)− E

[
Sr1 (θ

0)′ H−1
0 Sr1 (θ

0)
]}

×
{

Sr2 (θ
0)′ H−1

0 Sr2 (θ
0)− E

[
Sr2 (θ

0)′ H−1
0 Sr2 (θ

0)
]}}

W 2
s1r1

W 2
s2r2

= O
(
T −2b−1)+ O

(
T −1b−1)

= o(1). n

LEMMA A.16. Let V3s be defined as in (A.16). Then E
(∑T

s=1 V3s

)2 = o (1) .

Proof of Lemma A.16.

E

(
T∑

s=1

V3s

)2

= T −4b−2

[
var

(
ε2

s

)
2

]2 T∑
s=1

E

⎡
⎣ s−1∑

r1=1

r1−1∑
r2=1

Sr1

(
θ0)′ H−1

0 Sr2

(
θ0)′Wsr1 Wsr2

⎤
⎦

2

+T −4b−2

[
var(ε2

s )

2

]2 T∑
s1=1

s1−1∑
s2=1

E

⎡
⎣s1−1∑

r1=1

r1−1∑
r2=1

Sr1

(
θ0)′ H−1

0 Sr2

(
θ0)′Ws1r1 Ws1r2

⎤
⎦

×
⎡
⎣s2−1∑

r3=1

r3−1∑
r4=1

Sr3

(
θ0)′ H−1

0 Sr4

(
θ0
)′

Ws2r3 Ws2r4

⎤
⎦

= O
(
T −1b−1)= o (1) . n

THEOREM A.10. Under the conditions of Theorem 4, Q2
P→ 0.

Proof of Theorem A.10.

Q2 = −2b1/2 1√
T

T∑
t=1

St

(
θ0
)′ √

T
(
θ̄ − θ0)= oP (1) ,

where we have used the fact
√

T
(
θ̄ − θ0)= OP (1) and 1√

T

∑T
t=1 St

(
θ0)= Op (1) . n

THEOREM A.11. Under the conditions of Theorem 4, Q3
P→ 0.

Proof of Theorem A.11.

Q3 = −b1/2
√

T
(
θ̄ − θ0)′

⎡
⎣ 1

T

T∑
t=1

∂St

(
θ1
)

∂θ

⎤
⎦√

T
(
θ̄ − θ0)= oP (1) ,

where θ1 lies between θ̄ and θ0, and we have used the facts that
√

T
(
θ̄ − θ0) = OP (1)

and θ1 P→ θ0. n
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Proof of Theorem 5. Under the alternative hypothesis,

2(lU − lR) = 2T −1
T∑

t=1

[l̄t
(
θ0

t

)
− l̄t

(
θ∗)]+ T −1

T∑
t=1

⎡
⎣2St

(
θ0

t

)′ +
(
θ̄c

t − θ0
t

)′ ∂St

(
θ1

t

)
∂θ

⎤
⎦

×
(
θ̄c

t − θ0
t

)
+ T −1

T∑
t=1

⎡
⎣−2St

(
θ∗)′ − (θ̄ − θ∗)′ ∂St

(
θ̃
)

∂θ

⎤
⎦(θ̄ − θ∗)

= Q0 + Q4 + Q5, say,

where θ1
t lies between θ̄c

t and θ0
t , and θ̃ lie between θ̄ and θ∗.

It is straightforward to show that Q4 = oP (1) and Q5 = oP (1) by Theorem A.12.
Moreover, T −1b−1/2 Â = o(1). Hence, T −1b−1/2L R = {4(p +q +1)

∫ 1
0
[
2k(v) −∫ 1

−1 k(u)k(u +v)du
]2dv}−1/2 Q0 +oP (1) , where Q0 converges to a strictly positive con-

stant 2
{∫ 1

0 E[l̃0(u,θ0
u )]du − ∫ 1

0 E[l̃0(u,θ∗)]du
}

by Theorem A.13. It follows that for any

nonstochastic sequence {MT = o(T
√

b)}, we have P(L R2 > MT ) → 1. n

THEOREM A.12. Under the conditions of Theorem 5, θ̄
P→ θ∗.

Proof of Theorem A.12. It is assumed that θ∗ = argmaxθ∈� L(θ) ≡ argmaxθ∈�∫ 1
0 E[l̃0(u,θ)]du is the unique maximizer over �. Then we need to show

sup
θ∈�

∣∣∣∣∣∣
1

T

T∑
s=1

ls (θ)− L(θ)

∣∣∣∣∣∣→ 0. (A.17)

To show (A.17), we need to show (a) for any θ ∈ �, 1
T
∑T

s=1 ls(θ)− L(θ) → 0, and (b)
1
T
∑T

s=1 ls(θ) is equicontinuous in probability. For the pointwise law of large numbers in
(a), we decompose

1

T

T∑
s=1

ls(θ)− L (θ)=
[

1

T

T∑
s=1

ls(θ)− 1

T

T∑
s=1

l̃s
( s

T
,θ
)]

+
[

1

T

T∑
s=1

[
l̃s
( s

T
,θ
)

− El̃s
( s

T
,θ
)]]

+
[

1

T

T∑
s=1

El̃s
( s

T
,θ
)

−
∫ 1

0
E[l̃0(u,θ)]du

]

= A1 + A2 + A3,

where

|A1| ≤ 1

2T

∑
s

1

hs (θ)

∣∣∣X2
s − X̃2

s

( s

T

)∣∣∣+ 1

2T

∑
s

X̃2
s
( s

T

)
hs(θ)h̃s

( s
T ,θ

) ∣∣∣hs(θ)− h̃s

( s

T
,θ
)∣∣∣

+ 1

2T

∑
s

∣∣∣∣∣hs(θ)− h̃s
( s

T ,θ
)

h̄s(θ)

∣∣∣∣∣
≤ 1

2T

∑
s

h−1
s (θ)

(
Vs+1,q+1

T ϕ
+Ut+1,q+1

)
+ 1

2T

∑
s

X̃2
s
( s

T

)
hs(θ)h̃s

( s
T ,θ

)
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×
∞∑

j=1

ξj (θ)

(
Vs− j+1,q+1

T ϕ
+Us− j+1,q+1

)

+ 1

2T

∑
s

∣∣∣∣∣∣
∑∞

j=1 ξj (θ)
(

Vs− j+1,q+1
T ϕ +Us− j+1,q+1

)
h̄s(θ)

∣∣∣∣∣∣
≤ 1

2T

∑
s

h−1
s (θ)

(
Vs+1,q+1

T ϕ
+Ut+1,q+1

)
+ C

2T

∑
s

X̃2
s
( s

T

)
hs(θ)h̃s

( s
T ,θ

)

×
∞∑

j=1

ρ
j/q
0

(
Vs− j+1,q+1

T ϕ
+Us− j+1,q+1

)

+ C

2T

∑
s

∣∣∣∣∣∣
∑∞

j=1 ρ
j/q
0

(
Vs− j+1,q+1

T ϕ +Us− j+1,q+1

)
h̄s(θ)

∣∣∣∣∣∣
= oP (1) ,

where Vs,d and Us,d are the dth element of Vs and Us defined in Lemma A.1.
To show A2 = oP (1), we define

l̃τs (u,θ) = −1

2

[
ln h̃τ

s (u,θ)+ X̃2
s (u)

h̃τ
s (u,θ)

]
,

h̃τ
s (u,θ) = ξ0 (θ)+

τ∑
j=1

ξj (θ)X̃2
s− j (u),

where τ is some deterministic function of T . We decompose

A2 =
⎧⎨
⎩ 1

T

T∑
s=1

[
l̃τs
( s

T
,θ
)

− El̃τs
( s

T
,θ
)]⎫⎬
⎭+

⎧⎨
⎩ 1

T

T∑
s=1

[
l̃s
( s

T
,θ
)

− l̃τs
( s

T
,θ
)]⎫⎬
⎭

−
⎧⎨
⎩ 1

T

T∑
s=1

[
El̃s

( s

T
,θ
)

− El̃τs
( s

T
,θ
)]⎫⎬
⎭

= A21 + A22 + A23.

For the first term, we have

var(A21) = 1

T 2

∑
s,r

cov
[
l̃τs
( s

T
,θ
)
, l̃τr
( r

T
,θ
)]

= 1

T 2

∑
|s−r |<2τ

cov
[
l̃τs
( s

T
,θ
)
, l̃τr
( r

T
,θ
)]

+ 1

T 2

∑
|s−r |≥2τ

cov
[
l̃τs
( s

T
,θ
)
, l̃τr
( r

T
,θ
)]

https://doi.org/10.1017/S0266466614000942 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466614000942


SMOOTH STRUCTURAL CHANGES IN GARCH MODELS 787

≤ 1

T 2

∑
|s−r |<2τ

[
El̃τs

( s

T
,θ
)2
]1/2 [

El̃τr
( r

T
,θ
)2
]1/2

+α
1− 1

q (τ )

[
El̃τs

( s

T
,θ
)2q

]1/2q [
El̃τr

( r

T
,θ
)2q

]1/2q

= O
( τ

T

)
+ O(ρ−τ ) = o(1)

as τ/T → 0 and τ → ∞.
For the second term,

E |A22| ≤ 1

T

T∑
s=1

E
∣∣∣ln h̃s

( s

T
,θ
)

− ln h̃τ
s

( s

T
,θ
)∣∣∣+ E

∣∣∣∣∣ X̃2
s
( s

T

)
h̃s
( s

T ,θ
) − X̃2

s
( s

T

)
h̃τ

s
( s

T ,θ
)
∣∣∣∣∣

≤ C

T

T∑
s=1

E
∣∣∣h̃s

( s

T
,θ
)

− h̃τ
s

( s

T
,θ
)∣∣∣

+ C

T

T∑
s=1

sup
u

[E X̃4
s (u)]1/2

∞∑
j=τ+1

ξj (θ)
[

E X̃4
s

( s

T

)]1/2

= O
(
ρ(τ+1)/q

)
= o (1) .

The last term can be shown in a similar way to the second term. Therefore, A2 =
oP (1) .

Finally,

|A3| ≤ 1

T

T∑
s=1

∣∣∣∣El̃s
( s

T
,θ
)

− El̃s−1

(
s −1

T
,θ

)∣∣∣∣

≤ 1

T

T∑
s=1

∣∣∣∣∣∣−
1

2
E ln

⎡
⎣ h̃s

( s
T ,θ

)
h̃s

(
s−1

T ,θ
)
⎤
⎦
∣∣∣∣∣∣+
∣∣∣∣∣∣E
⎡
⎣ X̃2

s
( s

T

)
h̃s
( s

T ,θ
) −

X̃2
s

(
s−1

T

)
h̃s

(
s−1

T ,θ
)
⎤
⎦
∣∣∣∣∣∣

≤ C

T

T∑
s=1

E
∞∑

j=1

ξj (θ)

∣∣∣∣X̃2
s− j

( s

T

)
− X̃2

s− j

(
s −1

T

)∣∣∣∣

+ C

T

T∑
s=1

E

∣∣∣∣∣∣
X̃2

s− j

( s
T

)− X̃2
s

(
s−1

T

)
h̃s
( s

T ,θ
)

∣∣∣∣∣∣+
C

T

T∑
s=1

E

∣∣∣∣∣∣
h̃2

s
( s

T ,θ
)− h̃2

s

(
s−1

T ,θ
)

h̃s
( s

T ,θ
)

∣∣∣∣∣∣
= O

(
1

T

)
,

where we have used the fact that E
∣∣∣X̃2

s
( s

T

)− X̃2
s

(
s−1

T

)∣∣∣= O
(

1
T

)
.
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Now we show the stochastic equicontinuity in (b). For any pair of θ1 and θ2 ∈ � with
θ1 �= θ2, there exist a θ̃ ∈ � that lies between θ1 and θ2, such that

|L(θ1)− L(θ2)|2
‖θ1 − θ2‖2

≤ 1

2T

T∑
s=1

∥∥∥∥∥∥
∂hs (θ̃)

∂θ

hs(θ̃)
− X2

s
∂hs (θ̃)

∂θ

h2
s (θ̃)

∥∥∥∥∥∥
2

≤ 1

2T

T∑
s=1

∞∑
j=1

jρ j−1
[∣∣∣∣X2

s− j − X̃2
s− j

(
s − j

T

)∣∣∣∣+ X̃2
s− j

(
s − j

T

)]

+ 1

2T

T∑
s=1

∞∑
j=1

jρ j−2
{[

X2
s − X̃2

s

( s

T

)][
X2

s− j − X̃2
s− j

(
s − j

T

)]

+X̃2
s

( s

T

)[
X2

s− j − X̃2
s− j

(
s − j

T

)]
+
[
X2

s − X̃2
s

( s

T

)]
X̃2

s− j

(
s − j

T

)

+X̃2
s

( s

T

)
X̃2

s− j

(
s − j

T

)}
= OP (1) . n

THEOREM A.13. Under the conditions of Theorem 5, T −1∑T
t=1 l̄t

(
θ0

t
) =∫ 1

0 E[l̃0(u,θ0
u )]du +oP (1) and T −1∑T

t=1 l̄t
(
θ∗)= ∫ 1

0 E[l̃0(u,θ∗)]du +oP (1).

Proof of Theorem A.13. First we note that replacing l̄t (·) with lt (·) has asymp-
totically negligible impact by a similar proof to that of Theorem A.4. Therefore,
T −1∑T

t=1 l̄t
(
θ∗)= T −1∑T

t=1 lt
(
θ∗)+oP (1) = ∫ 1

0 E[l̃0(u,θ∗)]du +oP (1) by (A.17).
Next, we decompose

T −1
T∑

t=1

lt
(
θ0

t

)
= − 1

2T

T∑
t=1

lnht

(
θ0

t

)
− 1

2T

T∑
t=1

ε2
t = −A4 − A5,

where A5
P→ 1

2 by the law of large numbers. We further decompose

A4 = 1

2

∫ 1

0
E[ln h̃0(u,θ0

u )]du + 1

2T

T∑
t=1

[
lnht

(
θ0

t

)
− ln h̃t

(
t

T
,θ0

t

)]

+ 1

2T

T∑
t=1

[
ln h̃t

(
t

T
,θ0

t

)
− E ln h̃t

(
t

T
,θ0

t

)]

+
⎡
⎣ 1

2T

T∑
t=1

E ln h̃t

(
t

T
,θ0

t

)
− 1

2

∫ 1

0
E[ln h̃0

(
u,θ0

u

)
]du

⎤
⎦

= 1

2

∫ 1

0
E[ln h̃0(u,θ0

u )]du + A41 + A42 + A43

and we shall show that A4 j = oP (1) , j = 1,2,3.
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For the first term, we have

|A41| ≤ 1

2T

T∑
t=1

∣∣∣∣∣∣
ht

(
θ0

t

)
− h̃t

(
t
T ,θ0

t

)
h∗

t

(
t
T ,θ0

t

)
∣∣∣∣∣∣= OP

(
1

T ϕ

)
,

where h∗
t

(
t
T ,θ0

t

)
lies between ht

(
θ0

t

)
and h̃t

(
t
T ,θ0

t

)
. We have used the mean value

theorem and Lemma A.1.
To show A42 = oP (1) , we define

h̃τ
t

(
t

T
,θ0

t

)
= ξ0

(
θ0

t

)
+

τ∑
j=1

ξj

(
θ0

t

)
X̃2

t− j

( u

T

)
,

where τ is some deterministic function of T . We decompose

A42 =
⎧⎨
⎩ 1

2T

T∑
t=1

[
ln h̃τ

t

(
t

T
,θ0

t

)
− E ln h̃τ

t

(
t

T
,θ0

t

)]⎫⎬
⎭

+
⎧⎨
⎩ 1

2T

T∑
t=1

[
ln h̃t

(
t

T
,θ0

t

)
− ln h̃τ

t

(
t

T
,θ0

t

)]⎫⎬
⎭

−
⎧⎨
⎩ 1

2T

T∑
t=1

[
E ln h̃t

(
t

T
,θ0

t

)
− E ln h̃τ

t

(
t

T
,θ0

t

)]⎫⎬
⎭ .

The proof of A42 = oP (1) is rather similar to the above proof of A2 = oP (1) and hence
we omit the details here.

For the last term, we have

|A43| ≤ 1

2T

T∑
t=1

∣∣∣∣E ln h̃t

(
t

T
,θ0

t

)
− E ln h̃t−1

(
t −1

T
,θ0

t−1

)∣∣∣∣
≤ C

T

T∑
t=1

E
∞∑

j=1

ξj

(
θ0

t

)∣∣∣∣X̃2
t− j

(
t

T

)
− X̃2

t− j

(
t −1

T

)∣∣∣∣
+C

T

T∑
t=1

E
∞∑

j=1

∣∣∣ξj

(
θ0

t

)
− ξj

(
θ0

t−1

)∣∣∣ X̃2
t− j

(
t −1

T

)

= O

(
1

T

)
,

where we have used the fact that E
∣∣∣X̃2

s
( s

T

)− X̃2
s

(
s−1

T

)∣∣∣ = O
(

1
T

)
,
∣∣∣θ0

t − θ0
t−1

∣∣∣ =
O
(

1
T

)
when t and t − 1 are continuity points,

∣∣∣θ0
t − θ0

t−1

∣∣∣ = O (1) when t or t − 1 is

a discontinuity point, and the number of discontinuity points is finite and fixed. It follows

that T −1∑T
t=1 l̄t

(
θ0

t

)
= ∫ 1

0 E[l̃0(u,θ0
u )]du +oP (1) . n
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Proof of Theorem 6. First we note that the parametric bootstrap ensures that in the
bootstrap world, H0 always holds with θ = θ̄ , the global QMLE, and conditional on the
random sampleX ={Xt }T

t=1, the bootstrap standardized residual
{
ε∗

t
}

is an i.i.d. sequence.
Define l∗U and l∗R in a similar way to lU and lR in (4.1) and (4.2) respectively with

proper substitutions, namely, replacing Xt , θ̄c
t , and θ̄ with X∗

t , θ̄c∗
t and θ̄∗ respectively.

We decompose

2T b1/2 (l∗U − l∗R
)= b1/2

T∑
t=1

⎡
⎣2S∗

t
(
θ̄
)′ + (θ̄c∗

t − θ̄
)′ ∂S∗

t

(
θ1∗

t

)
∂θ

⎤
⎦(θ̄c∗

t − θ̄
)

−2b1/2
T∑

t=1

S∗
t
(
θ̄
)′ (

θ̄∗ − θ̄
)−b1/2

T∑
t=1

(
θ̄∗ − θ̄

)′ ∂S∗
t

(
θ1∗)

∂θ

(
θ̄∗ − θ̄

)
≡ Q∗

1 + Q∗
2 + Q∗

3,

where θ1∗
t lies between θ̄c∗

t and θ̄ , and θ1∗ lies between θ̄∗ and θ̄ . The first term Q∗
1 comes

from nonparametric estimation based on the bootstrap sample X ∗, which determines the
asymptotic distribution of L R∗ conditional on the observed random sampleX . The second
and third terms come from parametric estimation, whose impact is negligible asymptoti-
cally. The proof of Theorem 6 consists of following three steps:

(1) Noting that conditional on X , θ̄∗ is a
√

T consistent estimator for θ̄ , so we have

Q∗
2 = −2b1/2

⎡
⎣ 1√

T

T∑
t=1

S∗
t
(
θ̄
)′⎤⎦√

T
(
θ̄∗ − θ̄

)= oP (1) and

Q∗
3 = −b1/2

√
T
(
θ̄∗ − θ̄

)′⎡⎣ 1

T

T∑
t=1

∂S∗
t

(
θ1∗)

∂θ

⎤
⎦√

T
(
θ̄∗ − θ̄

)= oP (1) .

(2) Let H̄∗ = E∗
[

∂2l∗t
(
θ̄
)

∂θ∂θ ′ |X
]

. Using a similar decomposition to (A.8), we have

Q∗
1 = −T −1b−1/2

T∑
t=1

S∗
t

(
θ̄
)′

H̄−1∗

×
⎡
⎣2k (0)Id − T −1b

t+�T b�∑
s=t−�T b�

k2
st

∂S∗
s

(
θ̄
)

∂θ
H̄−1∗

⎤
⎦ S∗

t

(
θ̄
)−2T −1b−1/2

×
T b∑
t=1

S∗
t

(
θ̄
)′

H̄−1∗

⎡
⎣2k

(
2t

T b

)
Id − T −1

t+�T b�∑
s=t−�T b�

kst k

(
s + t

T b

)
∂S∗

s

(
θ̄
)

∂θ
H̄−1∗

]
S∗

t

(
θ̄
)

−2T −1b−1/2
T∑

t>s=1

S∗
t

(
θ̄
)′

H̄−1∗

[
2bktsId − T −1b

∑
r

krt krs
∂S∗

r

(
θ̄
)

∂θ
H̄−1∗

]
S∗

s

(
θ̄
)

+oP (1)

= var∗ (ε∗2
t |X ) Â

2
+ Ũ∗ +oP (1) ,
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where Â is defined in (4.3) and Ũ∗ = −T −2b1/2�T
s=2�s−1

t=1 S∗
s
(
θ̄
)′ H̄−1∗ S∗

t
(
θ̄
)(

2T kst −�T
r=1krskrt

)
.

(3) Note that E∗ (ε∗
t |X )= 0, E∗ (ε∗2

t |X
)

= 1 and

var∗ (2Ũ∗|X
)

= 4T −4b
T∑

s=2

s−1∑
t=1

E∗[S∗
s

(
θ̄
)′

H̄−1∗ S∗
t

(
θ̄
)

S∗
t

(
θ̄
)′

H̄−1∗ S∗
s

(
θ̄
) |X](2T kst −�T

r=1krskrt

)2

+4T −4b
T∑

s=1

s−1∑
t1=1

s−1∑
t2=1,t1 �=t2

E∗ [S∗
s

(
θ̄
)′

H̄−1∗ S∗
t1

(
θ̄
)

S∗
t2

(
θ̄
)′

H̄−1∗ S∗
s

(
θ̄
) |X ]

×
(

2T kst1 −�T
r=1krt1 krs

)(
2T kst2 −�T

r=1krt2 krs

)

=
[
var∗ (ε∗2

t |X
)]2

(1+ p +q)

∫ 1

0

[
2k(v)−

∫ 1

−1
k(u)k(u + v)du

]2

dv +o (1) .

Then by verifying the conditions of Brown’s (1971) CLT theorem, we can obtain that con-
ditional on X , the bootstrap test statistic L R∗ →d N (0,1) . Combining Steps 1–3 yields
the desired result. n
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