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The dynamics of a dilute, monodisperse suspension of nearly spherical particles
that undergo Brownian rotations in an oscillatory simple shear flow is quantified,
as a paradigm for large-amplitude oscillatory shear (LAOS) rheology of complex
fluids. We focus on the ‘strongly nonlinear’ regime of LAOS, defined by β� 1 and
β/α� 1, where β is a dimensionless shear rate (or Weissenberg number) and α is
a dimensionless oscillation frequency (or Deborah number). We derive an asymptotic
solution for the long-time periodic orientation probability density function of the
particles. Our analysis reveals that the orientation dynamics consists of ‘core’ regions
of rapid oscillation (on the time scale of the inverse of the shear-rate amplitude),
separated by comparatively short ‘turning’ regions of slow evolution when the
imposed flow vanishes. Uniformly valid approximations to the shear stress and normal
stress differences (NSDs) of the suspension are then constructed: the non-Newtonian
contribution to the shear stress, first NSD and second NSD, decays as β−3/2, β−1 and
β−1/2, respectively, at large β. These stress scalings originate from the orientation
dynamics at the turning regions. Therefore, it is the occasions when the flow vanishes
that dominate the rheology of this paradigmatic complex fluid under LAOS.

Key words: complex fluids, suspensions, viscoelasticity

1. Introduction

Complex fluids and soft materials are typically viscoelastic: they can exhibit the
mechanical response of a viscous liquid or an elastic solid, depending on the time
scale of an applied deformation (Larson 1999). Small-amplitude oscillatory shear
(SAOS) rheometry is a standard method to characterize viscoelasticity, wherein a
sample is exposed to a weak time-periodic shear deformation at a specified strain
amplitude. The stress in the material is proportional to the strain amplitude and
oscillates with the same waveform as the imposed deformation. The stress contains
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contributions that are in phase and out of phase with the strain, from which the linear
storage (elastic) and loss (viscous) moduli of the material, respectively, are determined.
Nonlinear viscoelastic properties, such as shear thinning or shear thickening, and
normal stress differences, are often characterized via a large-amplitude steady shear
test. In such an experiment, the stress depends nonlinearly on the strain amplitude.

There has been significant recent interest in large-amplitude oscillatory shear
(LAOS) as a rheometric protocol to quantify transient, nonlinear viscoelasticity of
complex fluids (Hyun et al. 2002, 2011). It should be noted, however, that theoretical
(Bird, Warner & Evans 1971) and experimental (Philippoff 1966) investigations of
LAOS rheology are, in fact, decades old. In LAOS, a complex fluid is exposed to
a strong shear deformation whose amplitude typically varies sinusoidally in time.
The measured stress is not proportional to the strain amplitude and is not sinusoidal
(although it is normally periodic), indicating nonlinear mechanical response. The stress
is usually decomposed into a series of temporal Fourier modes, which underlies the
technique of Fourier-transform rheology (Wilhelm 2002). This approach can be used
to fit parameters from nonlinear constitutive models to LAOS data (Gurnon & Wagner
2012). Ewoldt, Hosoi & McKinley (2008) propose an alternative decomposition
using Chebyshev polynomials. Rogers and co-workers interpret LAOS data as a
‘sequence of physical processes,’ which does not require the stress waveform to
be expanded in orthogonal basis functions of time (Rogers et al. 2011; Rogers &
Lettinga 2012). Theoretical studies have computed the LAOS dynamics of popular
constitutive relations, including the Giesekus (Gurnon & Wagner 2012), co-rotational
Maxwell (Giacomin et al. 2011), Doi–Edwards (Pearson & Rochefort 1982), and
fourth-order fluid (Bharadwaj & Ewoldt 2014) models. Only the first few Fourier
modes of the stress are computed in those works. This adequately describes the
material dynamics at small to moderate strain amplitude. However, many harmonic
modes can be excited at large strain amplitude: for instance, experiments on emulsions
have measured overtones up to the 151st order (Hyun et al. 2011). A physical
understanding of the material dynamics encoded in such an experimental data set
is not apparent. Moreover, it is plainly impractical to calculate this many overtones
from Fourier decomposition of a constitutive relation. This motivates the need for an
alternative modelling approach to LAOS at large strain amplitude, which we refer
to as the ‘strongly nonlinear’ regime of LAOS. The central goal of this article is to
take a step in that direction. This will be accomplished through singular asymptotic
analysis of the strongly nonlinear LAOS dynamics of a paradigmatic complex fluid
model; namely, a dilute suspension of nearly spherical particles that undergo rotational
Brownian motion in an oscillatory shear flow.

The equations governing the LAOS rheology of the model material under
consideration are presented in § 2. In § 3 we perform an asymptotic analysis that
elucidates the physics of the strongly nonlinear regime of LAOS. This article is
concluded with a discussion in § 4.

2. Governing equations

Consider a homogeneous suspension of identical rigid spheroids in an incompressible
Newtonian fluid. The particles are free of external forces and torques but are subject
to rotational Brownian motion. The suspension is dilute; hydrodynamic interactions
between particles can be ignored. An ambient linear flow with velocity gradient
tensor Γ is impressed on the material. The particles are sufficiently small that inertial
effects are negligible. Define p as a unit vector coaxial with the axis of revolution of
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Nearly spherical particles in oscillatory shear

a particle. In the absence of Brownian rotation p evolves deterministically according
to Jeffery’s equation (Jeffery 1922). The effect of Brownian rotation necessitates
a statistical description of the particle orientation. Let ψ(p, t) be an orientation
probability density function, such that ψ(p, t) d$ is the probability that a particle
is oriented within the differential solid angle d$ about $ at time t. The admissible
values of p span the surface of a unit sphere; hence, at all times

∫
$
ψ(p, t) d$ = 1.

The probability density function satisfies the conservation, or Fokker–Planck, equation
(Brenner & Condiff 1974)

∂ψ

∂t
+∇ p · ( ṗψ)= 0, where ṗ= (I − pp) · (Ω +BE) · p−D∇ p lnψ, (2.1)

in which D is the rotational diffusivity, I is the identity tensor, Ω and E are the
vorticity and rate of strain tensors, respectively (anti-symmetric and symmetric parts
of Γ , respectively), and B = (r2 − 1)/(r2 + 1) is the Bretherton constant, with r the
spheroid aspect ratio. The first term of ṗ represents the evolution of the particle’s axis
of rotational symmetry in the imposed flow. The second term is a diffusive flux due to
rotational Brownian motion, which acts to smoothen gradients in probability density.
For nearly spherical particles, r ≈ 1, the probability density is expanded as (Leal &
Hinch 1972, hereafter ‘LH72’)

ψ(p, t)= 1
4π
[1+B pp : C(t)+O(B2)], (2.2)

where B� 1 is the small parameter. The microstructure tensor C, which describes the
non-equilibrium particle orientation, is second rank, symmetric, traceless, and evolves
in time according to

∂C

∂t
+ C ·Ω −Ω · C = 3E − 6DC. (2.3)

The left-hand side of (2.3) is a co-rotational, or Jaumann, derivative. Thus, in a frame
of reference rotating with Ω the microstructure is forced to align along the principal
axes of the straining component of the linear flow (first term on the right-hand side),
and relaxes under Brownian rotation on a time scale τ = 1/(6D) (second term on the
right-hand side). The Jaumann derivative couples the evolution of temporal modes in
C, which drives the complex microstructure dynamics under LAOS. Microstructural
evolution equations similar to (2.3) occur for complex fluids comprising weakly elastic
spheres (Goddard & Miller 1967); weakly charged spherical particles surrounded by
thin electric double layers (Russel 1978); slightly deformed, high-viscosity drops
(Rallison 1980); and spherical, surfactant-coated drops (Vlahovska, Blawzdziewicz, &
Loewenberg 2002). We therefore view (2.3) as a paradigmatic micro-mechanical
model for LAOS, which contains the effects of memory, relaxation, distortion
via strain, and advective coupling of temporal modes. Further, (2.3) bears close
resemblance to the co-rotational Maxwell model.

Consider a two-dimensional oscillatory shear flow γ̇ cos(ωt)yex, where x, y, z are
Cartesian coordinates, ex is a unit vector along the x axis, γ̇ is the strain-rate
amplitude, and ω is the angular oscillation frequency. The assumption that the flow
around the particle evolves instantaneously requires that the time scale of momentum
diffusion at the particle scale, l2/ν, is much smaller than the oscillation time, 1/ω;
that is, ωl2/ν � 1. Here l is the characteristic linear dimension of the particle, and
ν is the kinematic viscosity of the fluid. The particle orientation is isotropic initially,
C = 0 at t= 0. Under these conditions, the microstructure tensor takes the form

C = A(t)(exex − eyey)+ B(t)(exey + eyex), (2.4)
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where ey is a unit vector along the y axis. The particle contribution to the shear stress,
σxy, first normal stress difference, N1, and second normal stress difference, N2 of the
suspension are (LH72)

σxy = ηcγ̇
[(

5
2
+ 26

147
ε2

)
cos(ωt)+ 2ε2

5β
B(t)

]
, (2.5)

N1 = σxx − σyy = 4ε2ηcγ̇
5β

A(t), (2.6)

N2 = σyy − σzz = 2ε2ηcγ̇
[

cos(ωt)
B(t)

7
− A(t)

5β

]
, (2.7)

where η is the solvent viscosity, c is the (small) particle volume fraction, ε = r − 1,
and β = γ̇ τ is a Weissenberg number. Note that β is often termed a rotary Péclet
number, e.g. Brenner & Condiff (1974). Evidently, the non-equilibrium microstructure
components A(t) and B(t) directly relate to observable rheological quantities. The
expressions (2.5)–(2.7) are correct to first order in c; presumably, the next contribution
in c is O(c2), arising from two-particle hydrodynamic interactions. The O(B2)

orientation microstructure perturbation for a single particle (2.2), which contains a
fourth rank tensor contribution, would result in an o(ε2) contribution to the stress.
(Note that B = ε(r + 1)/(r2 + 1).) Since r ≈ 1 by definition (and thus ε � 1 and
B � 1), the O(B2) orientation microstructure yields a stress contribution that is
smaller than that arising from the O(B) microstructure calculated here.

Substitution of the above forms of the shear flow and microstructure tensor into
(2.3) returns two first-order differential equations for A(t) and B(t),

dA
dt
+ A
τ
= γ̇ cos(ωt)B, and

dB
dt
+ B
τ
+ γ̇ cos(ωt)A= 3

2
γ̇ cos(ωt), (2.8a,b)

in which the coupling of shear stress (B) and normal stresses (A) arises solely through
the co-rotational derivative. Equation (2.8) is subject to the initial conditions A=B= 0
at t= 0. From (2.8) the following second-order equation for B(t̄) is obtained,

d2B
dt̄2
+
[

1
β2

(
1+ α tan

(
αt̄
β

))
+ cos2

(
αt̄
β

)]
B

+ 1
β

[
2+ α tan

(
αt̄
β

)]
dB
dt̄
= 3

2β
cos
(
αt̄
β

)
, (2.9)

where t̄ = γ̇ t is a dimensionless time and α = ωτ is a dimensionless frequency,
or Deborah number. Note that γ̇ is the frequency of the free oscillations in B(t)
under steady shear, arising from the time-periodic orientation, or (degenerate) Jeffery
orbit, of a nearly spherical particle spinning with the ambient angular velocity.
Equation (2.9) describes the oscillations of B, and hence shear stress, which are
forced by the periodic flow and damped by Brownian rotation.

The SAOS rheology is calculated from (2.8) via a regular perturbation expansion of
B(t) in β, yielding

B(t)= 3β
2(1+ α2)

[cos(ωt)+ α sin(ωt)] +O(β3), (2.10)
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where we have used αt̄/β = ωt. To leading order, B(t) is proportional to the flow
strength (β) and oscillates at the frequency of the shear, with an amplitude and phase
shift that are determined by the value of α. The component of B(t) in phase (out of
phase) with the strain rate is the viscous (elastic) contribution to the shear stress. The
O(β3) correction contains a frequency-tripled overtone (3ω) and a fundamental mode
(ω). Using (2.10) with (2.8) yields

A(t)= 3β2

4(1+ α2)

[
1+ 1− 2α2

1+ 4α2
cos(2ωt)+ 3α

1+ 4α2
sin(2ωt)

]
+O(β4). (2.11)

For weak shear A(t) is O(β2) to leading order and contains a frequency-doubled
overtone (2ω) and a steady contribution. Thus, the normal stress differences oscillate
about a non-zero mean at twice the frequency of the shear flow. The O(β4) correction
is comprised of a frequency-quadrupled overtone (4ω), a frequency-doubled overtone,
and a steady contribution. The leading term of the normal stress differences, and the
ratio of the first correction to the leading term of the shear stress are both O(β2); this
scaling regime has been termed medium-amplitude oscillatory shear (MAOS) rheology
(Onogi, Masuda & Matsumoto 1970; Pearson & Rochefort 1982; Hyun & Wilhelm
2009; Swan, Furst & Wagner 2014). Note that expressions akin to (2.10) and (2.11)
are given in LH72.

3. Strongly nonlinear LAOS: asymptotic analysis

We now analyse strongly nonlinear LAOS, where the strain-rate amplitude β � 1,
and the strain amplitude β/α � 1. A formal solution for B(t) (and A(t)), valid
at arbitrary α and β, can be cast in integral form (LH72; Vlahovska et al. 2002).
However, this integral must be evaluated numerically, in general. Here, we derive
an asymptotic solution that yields considerable physical insight into the strongly
nonlinear regime. This asymptotic solution for β � 1 and β/α � 1 is the main
original contribution of the present work; recall that LH72 considered weak oscillatory
shear, β� 1. A naive expansion,

B(t̄)= B0(t̄)+ B1(t̄)β−1 +O(β−2), (3.1)

fails because B1 contains a secular term that grows in time, in contrast to the bounded
oscillation obtained from numerical solution of the problem. This regular expansion
assumes that relaxation of the microstructure (via rotational Brownian motion) is
always subdominant to shear-driven orientation at β � 1. However, the cumulative
action of weak instantaneous relaxation will have a leading-order effect at sufficiently
long times, t̄∼O(β). The usual method to overcome this difficulty is a multiple-scale,
or two-timing, expansion, with a fast time t̄ and a slow time T = t̄/β = t/τ . That is,
we expand B as

B(t̄, T)= B0(t̄, T)+ B1(t̄, T)β−1 +O(β−2). (3.2)

However, this expansion also fails as the solvability condition to remove secularity
in B1(t̄, T) contains the fast time t̄. This occurs because the frequency of undamped
oscillations, i.e. the strain rate cos(αT), varies on the slow time T . The impasse is
resolved using WKBJ theory (Hinch 1991), whence the following new fast time is
introduced

s= β
∫ T

cos(αT ′) dT ′ = γ̇
ω

sin(ωt). (3.3)
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Notice that s is the instantaneous strain, which appears as the natural ‘time scale’ in
strongly nonlinear LAOS. Thus, we pose the expansion

B(s, T)= B0(s, T)+ B1(s, T)β−1 +O(β−2). (3.4)

From (2.9), the leading term satisfies

∂2B0

∂s2
+ B0 = 0, B0 = 0 and

∂B0

∂s
= 3

2
at s= 0. (3.5a,b)

The solution is B0=R(T)eis+ c.c., where c.c. denotes complex conjugate and R(T) is
a slowly varying amplitude. The next term satisfies

∂2B1

∂s2
+ B1 = 3

2 cos(αT)
− 2

cos(αT)
∂

∂s

(
∂B0

∂T
+ B0

)
, (3.6)

subject to B1 = ∂B1/∂s = 0 at s = 0. The second term on the right-hand side of
(3.6) must vanish to eliminate the secular forcing, which yields R(T) = ke−T , where
k is a constant. Thus, the leading-order oscillations in B, and hence shear stress, are
exponentially damped on the slow time, due to weak rotary diffusion. It is then readily
found that

B0 = 3
2

e−T sin(s), B1 = 3
2

[
1

cos(αT)
− cos(s)

]
. (3.7a,b)

The expansion (3.7) loses uniformity at t̄≡ t̄0 =πβ/2α; the leading term B0 is finite
whereas the correction B1 diverges. The imposed flow vanishes at this ‘turning point.’
Consequently, there is no vorticity to drive the Jeffery orbit; the microstructure evolves
on a much slower time than 1/γ̇ . Further, the LAOS condition β� 1 is temporarily
invalidated; the system has entered a ‘turning region,’ where relaxation is a leading-
order affect. To analyse the microstructure at the turning point we introduce a local, or
inner, coordinate r= β−δ(t̄− t̄0). Recasting (2.9) in terms of r reveals that δ= 1/2 to
bring relaxation into the leading-order dynamics. Thus, the turning region is of width
t̄ − t̄0 ∼ O(β1/2), or O(

√
τ/γ̇ ) in dimensional terms. This intermediate time scale is

much longer than that of the Jeffery orbit (1/γ̇ ), but much shorter than the oscillation
period (2π/ω). In the turning region, (2.9) reduces to

d2B
dr2
+
(

2
β1/2
− 1

r

)
dB
dr
+
(
α2r2 − 1

β1/2r

)
B=− 3α

2β1/2
r+O(β−1). (3.8)

Here, we expand

B(r)= B̃0(r)+ B̃1/2(r)β−1/2 +O(β−1). (3.9)

Insertion of (3.9) into (3.8) shows that B̃0 satisfies a homogeneous equation, which
matches to B0 from the prior ‘core’ region (3.7). This represents the decay of the
initial microstructure; it cannot contribute to the long-time LAOS dynamics, which is
our primary interest. Thus, we simply set B̃0 = 0; thereby, B̃1/2(r) satisfies

d2B̃1/2

dr2
− 1

r
dB̃1/2

dr
+ α2r2B̃1/2 =−3α

2
r, (3.10)
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which has the solution

B̃1/2(r) =
[

c0 + 3
2

√
π

α
S
(√

α

π
r
)]

cos
(
αr2

2

)
−
[

d0 + 3
2

√
π

α
C
(√

α

π
r
)]

sin
(
αr2

2

)
, (3.11)

in which

S(z)=
∫ z

0
sin
(

πx2

2

)
dx and C(z)=

∫ z

0
cos
(

πx2

2

)
dx (3.12a,b)

are the Fresnel sine and Fresnel cosine integrals, respectively. The constants c0 and
d0 are found by matching B̃1/2β

−1/2 as r→−∞ with (3.7) as T→π/2α. This yields
c0 = d0 =√9π/16α.

Sufficiently beyond the turning point, the reversed flow gains enough strength
that the suspension enters another core region. Here, a new multiple-scale expansion
proceeds as

B(s, T)= B0(s, T)+ β−1/2B1/2(s, T)+ B1(s, T)β−1 +O(β−3/2), (3.13)

where the term β−1/2B1/2 is forced by the O(β−1/2) term from the turning region.
Inserting this expansion into (2.9) shows first that B0 is the same as in (3.7). Second,
B1/2 satisfies the same equation and secularity condition as B0. Third, B1 again satisfies
(3.6). Thus, we find

B1/2 = e−(T−π/2α)[a0 cos(s)+ b0 sin(s)], B1 = 3
2 cos(αT)

. (3.14a,b)

Matching B1/2 as T→ π/2α with B̃1/2 as r→∞ yields a0 =√9π/4αF− and b0 =√
9π/4αF+, where

F± = cos(β/α)± sin(β/α). (3.15)

The analysis of subsequent turning regions is practically identical. Let t̄n = (2n + 1)
πβ/2α be the nth turning point, with n = 0, 1, 2, . . . . The expansion of B(s, T) in
the core region between t̄n and t̄n+1 proceeds as before: B0 and B1 remain unchanged,
and B1/2 is

B1/2 = e−(T−t̄n/β)[an cos(s)+ bn sin(s)], (3.16)

where

an = a0

n∑
m=0

(−1)m+ne−mπ/α, bn = b0

n∑
m=0

e−mπ/α. (3.17a,b)

The long-time limit (n→∞) is found via the identities

∞∑
m=0

(−1)me−mπ/α = (1+ e−π/α)−1,

∞∑
m=0

e−mπ/α = (1− e−π/α)−1. (3.18a,b)
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FIGURE 1. Long-time periodic variation of B(t) at β = 50 and α = 1. Solid line is
uniformly valid asymptotic solution, circles are numerical solution, and dashed line is the
SAOS result (2.10). (a) B normalized by its maximum value Bm versus dimensionless time
ωt. Dot-dashed line is strain rate cos(ωt). (b) Lissajous curve of B versus dimensionless
strain rate cos(ωt).

Further, using (3.17) as n→∞, the leading-order microstructure at the turning region
t̄n for long times is (−1)nB̃1/2β

−1/2, where

B̃1/2(r) =
[

cn + 3
2

√
π

α
S
(√

α

π
r
)]

cos
(
αr2

2

)
−
[

dn + 3
2

√
π

α
C
(√

α

π
r
)]

sin
(
αr2

2

)
, (3.19)

in which r= β−1/2(t̄− t̄n), cn = c0G−, dn = d0G+, and

G± = 1+ e2π/α + 2eπ/α[cos(2β/α)± sin(2β/α)]
e2π/α − 1

. (3.20)

A long-time solution for B(t) that is uniformly valid to O(β−1/2) is readily constructed
from (3.16)–(3.20). This asymptotic solution is plotted alongside a numerical solution
in figure 1(a) for β = 50 and α = 1. The numerical scheme integrates the first-order
equations for A and B (2.8). Excellent agreement between the two is observed.
The predicted rapid oscillations in microstructure punctuated by slower evolution
in turning regions is evident. The latter coincide with times when the strain rate
vanishes. The period of B(t) is 2π/ω, as in SAOS (2.10). A Lissajous curve of B(t)
versus strain rate is plotted in figure 1(b). In SAOS, a Lissajous curve is an ellipse.
In LAOS, the turning regions correspond to a distorted ellipse near the origin. The
rapid microstructure oscillations in the core regions are characterized by multiple
self-intersections of the Lissajous curve. Note that a three-dimensional plot of B
against strain rate and strain does not have intersections. The microstructure dynamics
displayed in figure 1(a) are equivalent to the numerical computations of Vlahovska
et al. (2002) for the shear-stress response of a high-viscosity, surfactant-coated drop in
oscillatory shear: see figure 8(b) of that paper. This is expected; the non-equilibrium
surfactant concentration distribution is described to leading order by a co-rotational
Maxwell model for a high-viscosity drop.
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FIGURE 2. Long-time periodic variation of A(t) at β = 50 and α= 1. Line style is same
as in figure 1, except that dashed line is the MAOS result (2.11). (a) [A(t)−Aa]/[Am−Aa]
versus dimensionless time ωt, where Aa and Am are average and maximum values of A,
respectively. (b) Lissajous curve of A versus dimensionless strain rate cos(ωt).
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FIGURE 3. Long-time maximum values Am (squares) and Bm (circles) versus β at α = 1
from numerical solution. Lines are asymptotic scaling predictions at small and large β.

With the asymptotic solution for B in hand, the evolution of A is readily found
from (2.8). A long-time uniformly valid asymptotic solution for A is plotted in
figure 2(a). The period of A is π/ω. Thus, the normal stress differences oscillate at
twice the rate of the shear stress. In MAOS, the Lissajous curve of A versus strain
rate is a bow-tie shape (figure 2b). In LAOS, the turning regions are represented by
a shrunken bow-tie at the origin. The microstructure oscillations in the core regions
result in self-intersections of the Lissajous curve. The Lissajous curve of A(B) is an
even(odd) function of strain rate; hence, a Fourier decomposition of A(B) contains
only even(odd) overtones of the fundamental frequency ω.

Our asymptotic analysis revealed that B ∼ β−1/2 and A ∼ 3/2 + O(β−3/2) in the
strongly nonlinear regime, β�1 and β/α�1 (figure 3). The resultant non-Newtonian
shear stress σxy ∼ ε2ηcγ̇ β−3/2. In contrast, σxy ∼ ε2ηcγ̇ β−2 for steady shear at β� 1
(LH72). Thus, there are distinct scalings for the abatement of shear stress for LAOS
versus steady shear. The first normal stress difference N1 ∼ ε2ηcγ̇ β−1 under strongly
nonlinear LAOS; the β−1 scaling persists in steady shear (LH72). The second normal
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stress difference N2 ∼ ε2ηcγ̇ β−1/2 in LAOS, whereas a β−1 scaling is predicted in
steady shear at large β (LH72). This suggests distinct scalings for the decay of the
first and second normal stress differences in LAOS, whereas both decay as β−1 for
steady shear. Our predicted stress scalings originate from the microstructure dynamics
in turning regions, where the strain rate vanishes and the strain is maximal. Thus, it is
the times when the flow vanishes that dictate the LAOS rheology of this paradigmatic
complex fluid.

The rapid variation of stress in a core region is caused by the reorientation of
the microstructure with the ambient vorticity, at a rate γ̇ cos(ωt) (the strain rate)
that is much larger than the oscillation frequency ω. Hence, the oscillatory flow is
not responsible for these rapid stress oscillations; it merely modulates (slowly) the
frequency thereof. The strain rate eventually becomes sufficiently small that the time
scales for microstructure reorientation and relaxation are comparable; the system
enters a turning region. This stress dynamic under LAOS should be exhibited by any
complex fluid comprised of ‘co-rotational’ microstructure, which rotates with (half)
the vorticity of the ambient shear (B� 1): e.g. a nearly spherical Brownian particle,
a slightly elastic sphere (Goddard & Miller 1967), a weakly charged sphere (Russel
1978), a slightly deformed drop (Rallison 1980), or a surfactant-coated spherical
drop (Vlahovska et al. 2002). In contrast, the orientation of a slender microstructure
(B → 1, e.g. a rod) is equally affected by vorticity and strain: the microstructure
spends long periods aligned with the flow, which are periodically interrupted by short
tumbles between flow-aligned states. Hence, the strongly nonlinear LAOS rheology of
materials comprised of slender microstructure will exhibit periods of almost constant
shear stress between turning regions. We have recently analysed the LAOS rheology
of the Giesekus model of entangled polymer solutions, wherein polymer chains are
idealized as rigid dumbbells with anisotropic drag, which does indeed exhibit this
behaviour (Khair 2016). Also note that Leahy, Koch & Cohen (2015) have quantified
the orientation dynamics of a spheroid constrained to rotate in the flow-gradient plane
of a time-dependent shear flow, in the case of weak Brownian rotation. They find
that the effective rotational diffusivity of a slender particle can be greatly enhanced
by the flow.

4. Discussion

We quantified the dynamics of nearly spherical colloidal particles in oscillatory
shear as a paradigm for strongly nonlinear LAOS rheology. A central conclusion is
that the stress evolution is partitioned into core and turning regions, which represent
distinct balances between physical effects. We believe that this will be a feature
of strongly nonlinear LAOS that is exhibited by a host of complex fluids, beyond
the model system studied here. The damped stress oscillation we predict within
a core region is reminiscent of the damped oscillation in conservative dichroism
(1n′′) and orientation angle (χ ) measured via rheo-optical methods for suspensions
of spheroidal particles during start-up of shear (Frattini & Fuller 1986). This is
unsurprising, since a turning region (that precedes a core region) in LAOS is akin to
a transition between cessation and start-up of shear, with a strain rate that (to leading
order) varies linearly in time, i.e. a ramp function. Further, 1n′′ and χ are related to
the suspension microstructure via (Frattini & Fuller 1986)

1n′′/1n′′max = [〈sin2 θ sin 2φ〉2 + 〈sin2 θ cos 2φ〉2]1/2,
tan(2χ)= 〈sin2 θ sin 2φ〉/〈sin2 θ cos 2φ〉,

}
(4.1)
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where the angular brackets 〈 〉 denote an average over the orientation distribution
ψ ; 1n′′max is the magnitude of the dichroism in the maximally flow-aligned state;
and θ and φ are the polar and azimuthal angles measured from the vorticity and
velocity axes of the ambient shear, respectively. Using (2.2) and (2.4), we find
1n′′/1n′′max = 4B(A(t)2 + B(t)2)1/2/5 and tan(2χ) = B(t)/A(t). From the scalings in
figure 3, we have 1n′′/1n′′max ∼ Bβ at β � 1, and 1n′′/1n′′max ∼ Bβ0 at β � 1,
which represents an increase in dichroism with increasing β, due to flow alignment
of the microstructure. This trend is observed in the measurements of Vermant, Yang
& Fuller (2001) on a dilute suspension of haematite particles under steady shear: see
figure 7 in that paper. Those particles resemble prolate spheroids and were determined
to possess a hydrodynamic aspect ratio of r= 1.75 (B = 0.51) with a polydispersity
of 0.65. (Note that polydispersity itself can lead to temporal damping in 1n′′ and
χ for non-Brownian suspensions, due to ‘phase mixing’ arising from variation in
the period of a Jeffery orbit with aspect ratio (Vermant et al. 2001).) In particular,
their measured 1n′′ appears to approach a plateau at high shear rates, consistent with
our prediction at β � 1. We also predict that χ ∼ π/4 at β � 1, and χ ∼ β−1/2

at β � 1. Again, the decrease in χ with growing β is indicative of flow-driven
alignment. The measurements of χ by Vermant et al. (2001) follow this trend, with
χ approaching zero degrees at large shear rates. In steady shear, B∼ 1/β and A∼ β0

at large β, which gives χ ∼ β−1; a different decay than under LAOS. In contrast,
1n′′/1n′′max ∼Bβ0 in steady and oscillatory shear at large β. Thus, measurement of
χ may be a sensitive indication of differences in microstructure for oscillatory versus
steady shear at large Weissenberg number. A direct comparison of our predictions
against rheo-optical measurements of a dilute suspension under oscillatory shear
would be of clear interest. It is likely that many-body hydrodynamic interactions in
a concentrated suspension could significantly alter the stress signal compared to that
calculated here; nonetheless, the partitioning of stress evolution into core and turning
regions should persist.

For the model system considered here, the stress attains a unique long-time
periodic orbit, or state of ‘alternance’ (Giacomin et al. 2011), which is independent
of the initial orientation configuration, since the microstructure satisfies a linear
evolution equation (2.3). It is unclear if alternance is the sole outcome for nonlinear
microstructural equations or nonlinear constitutive relations. Indeed, chaotic micro-
structure dynamics has been predicted for drops and vesicles in oscillatory and steady
flow, respectively (Young et al. 2008; Aouane et al. 2014). Moreover, experiments on
polymer melts under LAOS reveal quasi-periodic or chaotic response at large strain
(Hatzikiriakos & Dealy 1991; Adrian & Giacomin 1992), which has been attributed to
a nonlinear coupling of viscoelasticity and dynamic wall slip (Graham 1995). What
are the necessary conditions for aperiodic stress dynamics to occur under LAOS?
Does a unique mapping between input parameters (i.e. Weissenberg and Deborah
numbers) and the observed stress waveform always exist? The resolution of these
questions should advance our understanding of LAOS rheology and, more broadly,
the nonlinear dynamics of complex fluids in time-dependent flows.
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