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This paper deals with processes in nonlinear inelastic materials whose constitutive
behaviour is represented by the inclusion

∂

∂t
[ε − B(x) : σ] ∈ ∂ϕ(σ, x);

here we denote by σ the stress tensor, by ε the linearized strain tensor, by B(x) the
compliance tensor and by ∂ϕ(·, x) the subdifferential of a convex function ϕ(·, x).
This relation accounts for elasto-viscoplasticity, including a nonlinear version of the
classical Maxwell model of viscoelasticity and the Prandtl–Reuss model of
elastoplasticity.

The constitutive law is coupled with the equation of continuum dynamics, and
well-posedness is proved for an initial- and boundary-value problem. The function ϕ
and the tensor B are then assumed to oscillate periodically with respect to x and, as
this period vanishes, a two-scale model of the asymptotic behaviour is derived via
Nguetseng’s notion of two-scale convergence. A fully homogenized single-scale model
is also retrieved, and its equivalence with the two-scale problem is proved. This
formulation is non-local in time and is at variance with that based on so-called
analogical models that rest on a mean-field-type hypothesis.

1. Introduction

In this paper we deal with processes in multi-axial spatially distributed inelastic
media. First, we prove the well-posedness of an initial- and boundary-value problem
that accounts for nonlinear viscoelasticity, including the Prandtl–Reuss model of
elastoplasticity as a limit case. We then assume that the material is mesoscopically
inhomogeneous and derive a homogenized (i.e. effective) model. The conclusions
that we attain are at variance with a largely used approach based on analogical
models.

1.1. The basic model

We denote by u the displacement with respect to the initial configuration Ω
(Ω ⊂ R

3), by ε the linearized strain tensor, by σ the stress tensor, by ρ the density
and by f a spatially distributed load. We also couple the equation of continuum
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dynamics

ρ
∂2u

∂t2
− ∇ · σ = f in Ω × ]0, T [ (1.1)

with initial and boundary conditions. We then formulate the constitutive relation,
assuming the hypothesis of infinitesimal displacements and using the language of
convex analysis (see, for example, [39, 50, 52, 72, 84]). More specifically, we fix a
fourth-order compliance tensor B(x) and a lower semicontinuous convex function
ϕ(·, x), denote its subdifferential by ∂ϕ(·, x) and consider the inclusion

∂ε

∂t
− B(x) :

∂σ

∂t
∈ ∂ϕ(σ, x). (1.2)

This relation may represent a large class of elasto-viscoplastic behaviours. For a
quadratic function ϕ(·, x), the inclusion (1.2) is reduced to the classical (linear)
Maxwell model of viscoelasticity of fluid type (see, for example, [42, 47, 62, 63, 82]).
If the support of ϕ is bounded, one retrieves the Prandtl–Reuss model of elasto-
plasticity without strain-hardening. In this case (1.2) also accounts for the possible
occurrence of moving interfaces, i.e. free boundaries, that separate the elastic and
plastic phases, where the strain may concentrate. It is known that in this latter case
the (non-reflexive) Banach space of Radon measures is the most natural functional
framework, rather than any Sobolev space.

In dealing with vibration phenomena and with other rapid processes, it is appro-
priate to use equation (1.1), whereas in several other cases the time-scale of this
equation is much shorter than that of the constitutive law (1.2). By passing to the
limit as ρ → 0 in the system (1.1), (1.2), we then retrieve the problem in which
(1.1) is replaced by the quasi-static equation −∇ · σ = f .

1.2. Generalized (nonlinear) Maxwell model

Rheological models are often represented via finite networks of springs, dashpots
and other either linear or nonlinear elements. In this framework the Maxwell model
may be represented as the series arrangement of an elastic component and a viscous
one. After [63] the parallel combination of a family of Maxwell models is labelled
as a generalized Maxwell model ; the nonlinearity of the viscous element does not
modify this construction, which we now outline.

Let us assume that the tensor B and the function ϕ depend on an index j ∈
{1, . . . , M}, and let us represent the solution of the Cauchy problem associated
to (1.2) in the form σj = Gj(εj), Gj being a hereditary operator (that also depends on
the initial value σ(0) which is omitted here). We thus have a family of M elementary
models, each one characterized by an operator Gj ; somewhat schematically, each of
them may be thought of as representing a grain of a composite material. According
to the assembling rules of analogical models, if the system is univariate and these
elements are arranged in parallel, then their strains are uniform and coincide with
the strain ε of the composed model, whereas the stress of the latter equals the sum
of the stresses σj , that is,

ε = εj for all j, σ =
M∑

j=1

σj =
M∑

j=1

Gj(ε) =: G̃(ε). (1.3)
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Because of the hypothesis of uniformity of the strain, this may be regarded as a
mean-field model.

This formulation may be extended to the multivariate setting, although in this
case the interpretation in terms of parallel arrangement fails. This construction is
also easily extended if a continuous distribution of elements is set at an underlying
finer length-scale, which we represent by means of a variable y ranging through a
reference volume element Y := [0, 1[ 3. In this case it suffices to replace (1.3) by the
conditions

ε is uniform in Y, σ =
∫

Y

σ(y)µ(y) dy =
∫

Y

G(ε, y)µ(y) dy =: Ĝ(ε), (1.4)

where µ is a prescribed weight function.

1.3. Two-scale and single-scale homogenization

The significance of the above analogical model seems to be essentially heuristic.
However, as it is based on the composition of a family of elements, we wonder
whether it may be retrieved from some underlying fine-scale structure via a homog-
enization procedure. We thus deal with the system (1.1), (1.2) assuming that the
tensor B and the function ϕ are (possibly discontinuous) periodic functions of x/η,
with 0 < η � 1; for instance, a composite material may correspond to a piecewise-
constant dependence on x/η. We then let the parameter η vanish and derive a
two-length-scale model via Nguetseng’s notion of two-scale convergence [80]. We
complete the homogenization procedure by proving the equivalence between the
latter two-scale model and a single-scale problem: this is the main result of this
paper. The outcome of this analysis is at variance with the mean-field hypothesis
that underlies the generalized Maxwell model (see (1.4)). The single-scale consti-
tutive relation that we derive is non-local in time, and it is not clear whether it
might be rewritten as a gradient flow like (6.25). This is reminiscent of memory
effects that are known to occur in the homogenization of linear evolution equations
(see [95,96]).

Let us now outline the structure of the paper. In § 2 we illustrate the constitutive
relation (1.2) for a macroscopically non-homogeneous material. In § 3 we formulate
an initial- and boundary-value problem for the system (1.1), (1.2) in the framework
of Sobolev spaces. In § 4 we then prove the well-posedness of this problem and
illustrate how the existence proof may be amended for the limit case of the Prandtl–
Reuss model. In particular, this requires the introduction of a space analogous
to that of functions with bounded deformation, BD(Ω). In § 5 we derive a two-
scale model via two-scale convergence; here some modifications are also needed for
the Prandtl–Reuss material. In § 6 we homogenize the constitutive relation (1.2)
under the restriction that ϕ grows quadratically. In § 7 we retrieve a purely coarse-
scale problem under the same restriction and show its equivalence to the two-scale
formulation. Finally, in § 8 we draw our conclusions and point out some further
questions.

1.4. Literature

Many works deal with the analysis of viscoelasticity and elastoplasticity; here is
just a partial list: [1–3,9,36,42,46–49,57,58,62–64,67–69,72–74,78,79,82,83,86,92,
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97]. In particular, the Prandtl–Reuss model has been dealt with in, for example,
[10, 11, 26, 36, 40, 48, 54–56, 79, 90, 92, 98]. Our proof of existence of a weak solution
rests on classical techniques (see, for example, [36, 48, 79]) and in the limit case of
elastoplastic materials also uses the Banach space BD(Ω) of functions with bounded
deformation (see, for example, [7, 88, 89, 91, 97, 98]). A thorough formulation of
the Prandtl–Reuss model in BD(Ω) has recently been provided in [32]. In [13,
14] existence and uniqueness of the solution in the framework of Hilbert spaces
were proved for a more general constitutive law than (1.2) (see also [61]). The
construction via analogical models is the basis of the Prandtl–Ishlinskĭı models of
stop-type, which extend the Prandtl–Reuss model and have been studied in the
theory of hysteresis (see, for example, [24, 59,60,100]).

As we have already pointed out, convex analysis plays a key role in this paper.
In particular, the Fenchel properties (2.12) and (2.13) are at the basis of our weak
formulation, which may be compared with that of [22, 23]. This approach is also
used here for homogenization.

A large number of works devoted to homogenization have been published since
the seminal articles [34, 87, 94] that were at the origin of the De Giorgi theory
of Γ -convergence [20, 21, 31, 33] and of the Tartar–Murat theory of compensated
compactness [75, 76, 94]. Homogenization was applied to continuum mechanics in,
for example, [5, 12, 27, 30, 51, 53, 71, 76, 85]. The approach based on the notion of
two-scale convergence was first pioneered by Nguetseng [80] and then developed by
Allaire [4]; afterwards it was applied in many works (see, for example, [65] for a
recent review).

The homogenization of plasticity has been studied in, for example, [15–19,35,38,
92,93]. The method of two-scale convergence has recently been applied to this phe-
nomenon. In [28] it was used for the (stationary) Hencky model of elastoplasticity,
namely for a stationary variational inequality. Quasi-stationary processes for a wide
class of inelastic materials were dealt with in [3,78]; this class includes viscoplastic-
ity and the Prandtl–Reuss model, as well as other constitutive laws of engineering
interest that are not representable via variational inequalities. The latter two papers
dealt with homogenization via two-scale homogenization, via an approach that is
at variance with that of the present work. A different formulation of quasi-static
elastoplastic processes with strain-hardening and their two-scale homogenization
were treated [70], via the energetic approach to rate-independent evolution. The
procedure of the present work for the homogenization of the Prandtl–Reuss model
rests on the extension of the notion of two-scale convergence to measures, that
was introduced and studied by Amar in [6]. Different extensions can be found, for
example, in [37,99,108].

In the duality between parallel and series arrangements, the dual model of the
inclusion (1.2) reads

∂ε

∂t
∈ ∂ϕ(σ − B(y)−1 : ε). (1.5)

This is a nonlinear version of the classical Kelvin–Voigt model of viscoelasticity of
solid type; for a suitable selection of the function ϕ, (1.5) also accounts for the
Prager model of rigid plasticity with linear kinematic strain-hardening (see, for
example, [42, 47, 63, 82]). The approach of the present work, based on two- and
single-scale formulations of the homogenized problem, was applied to the latter

https://doi.org/10.1017/S0308210506000709 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210506000709


Homogenization of viscoelasticity 1367

model in [103]. In [43] the homogenization of the Prager model was also studied
for univariate systems via hysteresis operators (in passing we point out that this
analysis might easily be extended to the nonlinear Kelvin–Voigt model).

The present work is part of research on the two-scale homogenization of nonlinear
models of continuum mechanics, electromagnetism and heat conduction (see [102,
103,106,107]).

2. Constitutive law

In this section we outline the rheological models that we deal with in this paper.
We denote by R

9 the linear space of the 3×3-tensors and by R
9
s the linear subspace

of symmetric tensors. We mark the vectors of R
3 in bold, but use no special symbol

for higher-order tensors; we denote the scalar product by ‘·’ and the contraction
over two indices by ‘:’ (i.e. u : v :=

∑3
i,j=1 uijvij for any u, v ∈ R

9). For any tensor
v ∈ R

9 we label its spheric and deviatoric components by the indices ‘(s)’ and ‘(d)’,
respectively. We write L2(Ω)9s in place of L2(Ω; R9

s ), and similar expressions for
other function spaces; we also denote by D9

s the linear space of symmetric 3 × 3
deviatoric tensors.

We denote the displacement field by u and the stress tensor by σ. Under the
assumption of infinitesimal displacements we define the linearized strain tensor by

εij := (∇su)ij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
for i, j = 1, 2, 3. (2.1)

We assume a linear elastic relation between the spheric components of the strain
and stress tensors

ε(s) = βσ(s) for a constant β > 0, (2.2)

and for the deviatoric components we first consider the relation

∂ε(d)

∂t
∈ ∂ϕ̃(σ(d))(⊂ D9

s ), (2.3)

where ϕ̃ : R
9
s → R ∪ {+∞} is a prescribed convex function. This may account for a

number of basic constitutive behaviours, e.g.

(i) linear shear viscosity, if ϕ̃ is quadratic;

(ii) nonlinear shear viscosity: this encompasses the Norton and Bingham materi-
als, which may respectively be represented by

ϕ̃N (v) := c|v|a for some c > 0 and a > 1,

ϕ̃B(v) := d|v|2 + e|v| for some d, e > 0,

}
(2.4)

for any v ∈ R
9
s (see, for example, [2, 36,44,63,64,97]);

(iii) rigid plasticity without strain-hardening, if ϕ̃ = IK is the indicator function
of a closed convex set K ⊂ D9

s that includes the origin: namely IK(v) := 0
if v ∈ K and IK(v) := +∞ otherwise (for instance, K might be either von
Mises’s or Tresca’s yield criteria);

https://doi.org/10.1017/S0308210506000709 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210506000709


1368 A. Visintin

(iv) viscoplasticity, ‘in its classical meaning (see [81]) [namely] rate-dependent be-
haviour with a well-defined yield criterion’ [64, p. 102], if ϕ is linear outside
a closed convex set K ⊂ D9

s as above.

By the definition of the subdifferential, the inclusion (2.3) is equivalent to the
variational inequality

∂ε(d)

∂t
· (σ(d) − v) � ϕ̃(σ(d)) − ϕ̃(v) for all v ∈ R

9; (2.5)

for ϕ̃ = IK this also reads

σ ∈ K,
∂ε(d)

∂t
· (σ(d) − v) � 0 for all v ∈ K.

Let us now fix a constant, fourth-order compliance tensor B, and assume that,
denoting by the Kronecker symbol δij the components of the 3 × 3-identity tensor,

Bijk� = Bjik� = Bk�ij for all i, j, k, � ∈ {1, 2, 3},∑
k=1,2,3

Bijkk = βδij for all i, j ∈ {1, 2, 3}, for some β > 0.

⎫⎪⎬
⎪⎭ (2.6)

Hence,
∑

i=1,2,3 Biik� = βδk� for any k, �. The transformation v �→ B : v then
maps spheric (deviatoric, respectively) tensors to spheric (deviatoric, respectively)
tensors. Let us now assume that

ϕ : R
9
s → R ∪ {+∞} is lower semicontinuous and convex,

ϕ(v) = ϕ(v(d)) for all v ∈ R
9
s ,

}
(2.7)

and deal with the inclusion

∂ε

∂t
− B :

∂σ

∂t
∈ ∂ϕ(σ)

(
here

(
B :

∂σ

∂t

)
ij

:=
∑

k,�=1,2,3

Bijk�
∂σk�

∂t

)
. (2.8)

This accounts for a nonlinear extension of the classical Maxwell model of viscoelas-
ticity, and also for the Prandtl–Reuss model of elastoplasticity if ϕ = IK , for a
convex set K ⊂ D9

s as above.
By (2.6) and (2.7)2 the inclusion (2.8) is equivalent to the system

∂ε(s)

∂t
− β

∂σ(s)

∂t
= 0, (2.9)

∂ε(d)

∂t
− B :

∂σ(d)

∂t
∈ ∂ϕ(σ(d)). (2.10)

Note that (2.9) is equivalent to (2.2), provided that (2.2) itself is satisfied for t = 0.
We shall denote by M the linear subspace of R

34
spanned by the fourth-order

tensors that satisfy (2.6), and assume that B ∈ M and is positive definite.

2.1. Fenchel’s properties

In view of interpreting (2.8) we briefly review a classical construction of convex
analysis (see, for example, [39,50,52,72,84]). For any N ∈ N, let F : R

N → R∪{+∞}
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be any function such that F 	≡ +∞; identify R
N with its dual space and define the

convex conjugate function

F ∗ : R
N → R ∪ {+∞} : w �→ sup{w · v − F (v) : v ∈ R

N}. (2.11)

For instance, for F = IK with K as above, I∗
K(w) = sup{w · v : v ∈ K} for any

w ∈ R
N ; I∗

K is convex and positively homogeneous of degree 1, and is named the
support function of the set K. After [41], for any u, w ∈ R

N ,

F (u) + F ∗(w) � w · u (Fenchel inequality), (2.12)
w ∈ ∂F (u) ⇐⇒ F (u) + F ∗(w) = w · u (Fenchel property I). (2.13)

Because of (2.12) the latter statement also reads

w ∈ ∂F (u) ⇐⇒ F (u) + F ∗(w) � w · u (Fenchel property II). (2.14)

This setting found an interesting application in [22,23] in connection with evolution.

2.2. The power balance

By (2.13) the inclusion (2.8) is equivalent to

ϕ(σ) + ϕ∗
(

∂ε

∂t
− B :

∂σ

∂t

)
= σ :

(
∂ε

∂t
− B :

∂σ

∂t

)
,

that is,

σ :
∂ε

∂t
= ϕ(σ) + ϕ∗

(
∂ε

∂t
− B :

∂σ

∂t

)
+

1
2

∂

∂t
(σ : B : σ). (2.15)

This equality accounts for the pointwise power balance: the power provided by
the stress, σ : ∂ε/∂t, equals the sum of the power dissipated by viscosity, ϕ(σ) +
ϕ∗(∂ε/∂t−B : ∂σ/∂t) and the elastic power, 1

2∂(σ : B : σ)/∂t. Although physically
the dissipation cannot be negative, for our analysis we shall not need this hypothesis:
the inferior boundedness will suffice. Because of (2.14) the equality (2.15) is also
equivalent to the inequality

σ :
∂ε

∂t
� ϕ(σ) + ϕ∗

(
∂ε

∂t
− B :

∂σ

∂t

)
+

1
2

∂

∂t
(σ : B : σ). (2.16)

The energy balance may thus be represented in the form either of an inequality
or of an equality. In this paper we shall encounter several examples of equivalence
between an inequality and the corresponding equality: all of them will stem from
(2.13) and (2.14). Finally, note that (2.16) may also be restated as what could be
named a null minimization problem:

J(σ, ε) = inf J = 0, where

J(σ, ε) :=
∫∫

ΩT

{
ϕ(σ) + ϕ∗

(
∂ε

∂t
− B :

∂σ

∂t

)
+

1
2

∂

∂t
(σ : B : σ) − σ :

∂ε

∂t

}
dxdt.

(2.17)

In [106, 107] a remark like this is used to reformulate other nonlinear models of
continuum mechanics as minimization problems.
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1370 A. Visintin

3. Weak formulation

In this section we provide the weak formulation of an initial- and boundary-value
problem that accounts for processes in an inhomogeneous nonlinear viscoelastic
material represented by the constitutive inclusion (2.8). This also encompasses the
Prandtl–Reuss model of elastoplasticity as a particular case, which requires a sub-
stantial modification of the functional framework that we shall illustrate afterwards.

We consider a material of density ρ = ρ(x) that occupies a bounded domain
Ω ⊂ R

3, fix any T > 0, set At := Ω × ]0, t[ for any set A and any t ∈ ]0, T ]. We fix
a partition {Γ0, Γ1} of the boundary of Ω; we assume that a load f1 and a traction
g are respectively applied to the bulk of Ω and to Γ1, whereas Γ0 is kept fixed, and
that

ρ ∈ L∞(Ω), ρ � const. > 0 almost everywhere (a.e.) in Ω, (3.1)

B ∈ L∞(Ω; M), ∃c̄ > 0 : ∀v ∈ R
9
s , v : B(x) : v � c̄|v|2 for a.e. x ∈ Ω, (3.2)

ϕ : R
9
s × Ω → R ∪ {+∞},

v �→ ϕ(v, x) is convex and lower semicontinuous for a.e. x,

x �→ ϕ(v, x) is measurable for any v,

{v ∈ R
9
s : ϕ(v, x) < +∞} has non-empty interior for a.e. x,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.3)

ϕ(v, x) = ϕ(v(d), x) for all v ∈ R
9
s , for a.e. x. (3.4)

(We shall often omit the arguments x and t in formulae.) We couple the constitutive
law

∂ε

∂t
− B(x) :

∂σ

∂t
∈ ∂ϕ(σ, x) in ΩT (3.5)

with the equation of continuum dynamics

ρ
∂2u

∂t2
− ∇ · σ = f1 in ΩT

(
here (∇ · σ)i :=

3∑
j=1

∂σij

∂xj
for i = 1, 2, 3

)
; (3.6)

we denote by ν the outward-oriented unit normal vector, and prescribe the initial
and boundary conditions

u(·, 0) = u0,
∂u

∂t
(·, 0) = v0 in Ω, (3.7)

u = 0 on Γ0T , (3.8)

σ · ν = g on Γ1T

(
i.e.

3∑
j=1

σijνj = gi for i = 1, 2, 3
)

, (3.9)

for given fields u0, v0, g. Multiplying (3.6) scalarly by v := ∂u/∂t and integrating
over Ω, we get

1
2

d
dt

∫
Ω

ρ|v|2 dx +
∫

Ω

σ :
∂ε

∂t
dx =

∫
Ω

f1 · v dx +
∫

Γ1

g · v dS in ]0, T [. (3.10)
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(We denote the elementary surface area by dS.) We write the constitutive law (3.5)
in the form of the inequality (2.16), which we saw to represent the pointwise power
balance. By (3.10), (2.16) is equivalent to

1
2

d
dt

∫
Ω

(ρ|v|2 + 1
2σ : B(x) : σ) dx +

∫
Ω

[
ϕ(σ, x) + ϕ∗

(
∂ε

∂t
− B(x) :

∂σ

∂t
, x

)]
dx

�
∫

Ω

f1 · v dx +
∫

Γ1

g · v dS in ]0, T [. (3.11)

By (2.12) and (2.13) this inequality is in turn equivalent to the corresponding
equality that represents the global power balance.

3.1. Weak formulation

We assume that the (bounded) domain Ω is of Lipschitz class and that Γ0 is
measurable and has positive bi-dimensional Hausdorff measure. We fix any p ∈
[2, +∞[ and set q := p/(p− 1), so that p−1 + q−1 = 1. Omitting the trace operator,
we also set

V := {v ∈ W 1,q(Ω)3 : v = 0 on Γ0}, ‖v‖V := ‖∇sv‖Lq(Ω)9 .

By the classical Korn and Poincaré inequalities (for the extension of the former
to W 1,q(Ω)3 see, for example, [44, 97]), ‖ · ‖V is equivalent to the usual norm of
W 1,q(Ω)3, so that V is a closed Banach subspace of the Sobolev space W 1,q(Ω)3.
Identifying Lp(Ω)3 with a subspace of V ′ (the dual space of V ), we get

V ⊂ Lq(Ω)3, Lp(Ω)3 ⊂ V ′ with compact, continuous and dense injections.

We also introduce the space

V2 := V ∩ H1(Ω)3 : Hilbert space equipped with the norm ‖v‖V2 := ‖∇sv‖L2(Ω)9 .

We denote by 〈·, ·〉 the duality pairing between V ′ and V , and define the linear and
continuous operator

∇∗· : Lp(Ω)9 → V ′, 〈∇∗ · w,v〉 := −
∫

Ω

w : ∇sv dx ∀w ∈ Lp(Ω)9, ∀v ∈ V.

We assume that (3.1)–(3.4) are satisfied and that

u0 ∈ L2(Ω)3 ∩ V, v0 ∈ L2(Ω)3, σ0 ∈ L2(Ω)9s
such that, setting ε0 := ∇su0, ε0

(s) = βσ0
(s),

}
(3.12)

f := f1 + f2, f1 ∈ Lp(0, T ; L2(Ω)3), f2 ∈ W 1,p(0, T ; V ′), (3.13)

∃a, b, a1, b1 > 0 : for all v ∈ R
9
s , for a.e. x ∈ Ω,

a|v(d)|p − b � ϕ(v, x) � a1|v(d)|p + b1,

}
(3.14)

so that, recalling (3.4),

∃c, d > 0 : for all v ∈ R
9
s , for a.e. x ∈ Ω, ϕ∗(v, x) � c|v|q − d. (3.15)
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Note that (3.4) excludes the possibility that ϕ(·, x) might be coercive with respect
to the spheric component of its argument, and implies that ϕ∗(v, x) is finite only if
v is a deviator.

Now we are able to introduce a weak formulation of the system (3.5)–(3.9).

Problem 3.1. Find (u, σ) such that, setting ε := ∇su,

u ∈ W 1,∞(0, T ; L2(Ω)3) ∩ Lq(0, T ; V ), σ ∈ L∞(0, T ; L2(Ω)9s ), (3.16)

σ(d) ∈ Lp(ΩT )9s ,
∂

∂t
(ε − B(x) : σ) ∈ Lq(ΩT )9s , (3.17)

1
2

∫
Ω

(
ρ

∣∣∣∣∂u

∂t
(x, t)

∣∣∣∣
2

+ σ(x, t) : B(x) : σ(x, t) − ρ|v0(x)|2 − σ0(x) : B(x) : σ0(x)
)

dx

+
∫∫

Ωt

[
ϕ(σ, x) + ϕ∗

(
∂

∂τ
(ε − B(x) : σ), x

)]
dxdτ

�
∫∫

Ωt

f1 · ∂u

∂τ
dxdτ + 〈f2(t),u(·, t)〉 − 〈f2(0),u0〉

−
∫ t

0

〈
∂f2

∂τ
,u

〉
dτ for a.e. t ∈ ]0, T ], (3.18)

∫∫
ΩT

{
ρ(u0 − u) · ∂w

∂t
+

∫ t

0
σ(·, τ) dτ : ∇w

}
dxdt

=
∫ T

0

〈 ∫ t

0
f(·, τ) dτ + ρv0,w

〉
dt

for all w ∈ H1(0, T ; V2), w(·, T ) = 0 a.e. in Ω. (3.19)

3.2. Interpretation

As ϕ(·, x) and ϕ∗(·, x) are bounded from below, the integrability of the functions
ϕ(σ, x) and ϕ∗(∂[ε − B(x) : σ]/∂t, x) is implicit in (3.18). By (3.14) and (3.15) this
also implies the regularity (3.17). Equation (3.19) yields

ρ
∂u

∂t
− ∇∗ ·

∫ t

0
σ(·, τ) dτ =

∫ t

0
f(·, τ) dτ + ρv0 in V ′

2 a.e. in ]0, T [.

By comparing the terms of this equality we see that ∂u/∂t ∈ W 1,p(0, T ; V ′
2); this

yields

ρ
∂2u

∂t2
− ∇∗ · σ = f in V ′

2 a.e. in ]0, T [, (3.20)

with the initial conditions (3.7). Equation (3.20) is a weak formulation of (3.6)
and (3.9), provided that

g ∈ W 1,p(0, T ; Lp(Γ1)3), 〈f2,w〉 :=
∫

Γ1

g · w dS for all w ∈ V a.e. in ]0, T [.

(3.21)
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Let us now assume that ∂u/∂t ∈ Lq(0, T ; V2), so that we may multiply (3.20) by
∂u/∂t; this yields

1
2

∫
Ω

ρ

(∣∣∣∣∂u

∂t
(x, t)

∣∣∣∣
2

− |v0(x)|2
)

dx +
∫∫

Ωt

σ :
∂ε

∂t
dxdτ

=
∫∫

Ωt

f1 · ∂u

∂τ
dxdτ + 〈f2(t),u(·, t)〉 − 〈f2(0),u0〉

−
∫ t

0

〈
∂f2

∂τ
,u

〉
dτ for a.e. t ∈ ]0, T ].

By comparing this equality with (3.18) we then get

1
2

∫
Ω

[σ(x, t) : B(x) : σ(x, t) − σ0(x) : B(x) : σ0(x)] dx

+
∫∫

Ωt

ϕ(σ, x) dxdτ +
∫∫

Ωt

ϕ∗
(

∂

∂τ
(ε − B(x) : σ), x

)
dxdτ

�
∫∫

Ωt

σ :
∂ε

∂t
dxdτ for a.e. t ∈ ]0, T ]. (3.22)

If σ ∈ W 1,1(0, T ; L2(Ω)9s ), then∫
Ω

[σ(x, t) : B(x) : σ(x, t) − σ0(x) : B(x) : σ0(x)] dx =
∫∫

Ωt

∂

∂t
(σ : B : σ) dxdτ,

and the inequality (3.22) is equivalent to (2.16) a.e. in ΩT (this is easily checked,
for, by (2.12), the opposite inequality is automatically satisfied). In § 2 we saw that
(2.16) is equivalent to the inclusion (3.5).

In conclusion problem 3.1 is a weak formulation of the initial- and boundary-
value problem (3.5)–(3.9). The extra-regularity on u and σ that we assumed in
this interpretation will be derived under suitable assumptions on the data (see
remark 4.4 below).

3.3. Elastoplasticity without strain-hardening

For ϕ = IK , the indicator function of a closed convex set K ⊂ D9
s (the linear

space of symmetric deviatoric tensors) containing the origin, the classical Prandtl–
Reuss model is retrieved from (3.5). However, this corresponds to p = ∞ and
q = 1, a choice that we have so far excluded. Let us then see which modifications
are needed if ϕ has linear growth at infinity, as in the case of viscoplasticity. (In
order to simplify this setting we assume that the Dirichlet part of the boundary,
Γ0, is empty.)

In this case the functional

r �→
∫∫

ΩT

ϕ∗(r) dxdt

is just coercive over L1(ΩT )9s . As this space has no predual, by a standard procedure
we embed it into the space of the bounded R

9
s -valued Radon measures over ΩT ,
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which we may identify with (C0
0 (ΩT )9s )

′, namely the topological dual of the Banach
space of continuous functions ΩT → R

9
s that vanish at the space–time boundary.

Setting ξ := ε − B(x) : σ, by (3.14) the inequality (3.18) implies that ϕ∗(∂ξ/∂t, x)
is a Radon measure, and (using the integral notation for the total variation)∫∫

ΩT

ϕ∗
(

∂ξ

∂t
, x

)
< +∞, whence

∂ξ

∂t
∈ (C0(ΩT )9)′, (3.23)

provided that ϕ is finite in a neighbourhood of the origin. In view of providing a
more explicit representation of this functional, let us first decompose the measure
Dtξ := ∂ξ/∂t as the sum of its absolutely continuous and singular parts with respect
to the space-time Lebesgue measure: Dtξ = D

(a)
t ξ + D

(s)
t ξ. Let us also denote by

dD
(s)
t ξ/d|D(s)

t ξ| the Radon–Nikodým derivative of D
(s)
t ξ with respect to its variation

|D(s)
t ξ|, and denote by ϕ∗

∞ the asymptotic function of ϕ∗:

ϕ∗
∞(v, x) := lim

t→+∞

ϕ∗(v0 + tv, x) − ϕ∗(v0, x)
t

for all v ∈ D9
s , for a.e. x ∈ Ω, for all v0 ∈ D9

s such that ϕ∗(v0, x) < +∞

⎫⎪⎬
⎪⎭
(3.24)

(this function does not depend on v0). For example, for ϕ = IK , ϕ∗
∞ coincides with

ϕ∗ = I∗
K . Along the lines of a classical theory (see [8,25,45]), we can then represent

the total variation as the sum of two genuine integrals:∫∫
ΩT

ϕ∗(Dtξ, x) =
∫∫

ΩT

ϕ∗(D(a)
t ξ, x) dxdt

+
∫∫

ΩT

ϕ∗
∞

(
D

(s)
t ξ

|D(s)
t ξ|

, x

)
|D(s)

t ξ(dx, dt)|. (3.25)

Here we replace V by the space of functions with bounded deformation,

BD(Ω) := {w ∈ L1(Ω)3 : ∇sw ∈ (C0
0 (Ω̄)9s )

′}, (3.26)

which is a Banach space equipped with the graph norm and has a separable predual
(see, for example, [7,88,89,97,98]). Nevertheless, ε may be singular not only in space
but also in time; we then set

X(ΩT ) := {µ ∈ (C0
0 (ΩT )3)′ : ∇sµ ∈ (C0

0 (ΩT )9s )
′}, (3.27)

which is also a Banach space equipped with the graph norm, and assume that u ∈
W 1,∞(0, T ; L2(Ω)3) ∩ X(ΩT ). Moreover, here we replace the regularity hypothesis
f2 ∈ W 1,p(0, T ; V ′) in (3.13) by f2 ∈ W 1,∞

w∗ (0, T ; BD(Ω)′). (Here the index w∗
indicates that the vector-valued functions of this space are only assumed to be
weakly-∗ measurable from ]0, T [ to BD(Ω)′: this amendment is needed because the
space BD(Ω) is neither reflexive nor separable.)

Finally, we just outline the less simple case in which Γ0 is non-empty. A source
of difficulty arises by the fact that, although the trace on Γ0 is meaningful in
BD(Ω), the Dirichlet condition (3.8) is not stable by weak-∗ convergence in this
space (see [7, 88, 89, 97]). This analytical difficulty has a mechanical counterpart,
as plastic slip may occur on the Dirichlet part of the boundary. This phenomenon
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may be accounted for by assuming that ∇su is a Radon measure over Ω ∪ Γ0, and
then by requiring (instead of the Dirichlet condition) that

εij = − 1
2 (uiνj + ujνi)H2 on Γ0T for i, j = 1, 2, 3, (3.28)

where by H2 we denote the bi-dimensional Hausdorff measure (see [32,97]).

4. Analysis of the weak formulation

In this section we prove the well-posedness of problem 3.1 for the nonlinear Maxwell
model of viscoelasticity, and outline the extension to the Prandtl–Reuss model of
elastoplasticity.

Theorem 4.1 (existence). If (3.1)–(3.4), (3.12)–(3.14) are satisfied, then prob-
lem 3.1 has a solution.

Proof. For p = q = 2 the procedure of [13, 14] might be applied. Here we use a
different argument, which also provides uniform estimates that will be used in the
homogenization procedure.

(i) Approximation. In view of introducing a time-discretized problem, let us fix any
m ∈ N and set

h :=
T

m
, fn

m :=
1
h

∫ nh

(n−1)h
f(τ) dτ ∈ V ′ for n = 1, . . . , m,

u0
m := u0, ε0

m := ε0(:= ∇su0), σ0
m := σ0 a.e. in Ω,

⎫⎪⎬
⎪⎭ (4.1)

ϕm(v, x) := ϕ(v, x) +
1
m

|v|p for all v ∈ R
9
s a.e. in Ω. (4.2)

A condition like (3.14) is thus satisfied with v in place of v(d):

for all m ∈ N, ∃am, bm, ā, b̄ > 0 : for all v ∈ R
9
s for a.e. x ∈ Ω,

am|v|p − bm � ϕm(v, x) � ā|v|p + b̄.

}
(4.3)

Problem 4.2. Find un
m ∈ V2 and σn

m ∈ Lp(Ω)9s for n = 1, . . . , m such that, setting
vn

m := (un
m − un−1

m )/h and εn
m := ∇sun

m,

εn
m − εn−1

m

h
− B(x) :

σn
m − σn−1

m

h
∈ ∂ϕm(σn

m, x) a.e. in Ω, (4.4)

ρ
vn

m − vn−1
m

h
− ∇∗ · σn

m = fn
m in V ′. (4.5)

We prove the existence of a solution of this problem step by step. For any integer
n � 1 and a.e. x ∈ Ω the function

ψn
m(s, x) := hϕm(s, x) + 1

2s : B(x) : s + (εn−1
m − B(x) : σn−1

m ) : s for all s ∈ R
9
s

(4.6)
is lower semicontinuous and convex. We denote its convex conjugate by (ψn

m)∗(·, x).
The inclusion (4.4) also reads ∇sun

m ∈ ∂ψn
m(σn

m, x), namely σn
m ∈ ∂(ψn

m)∗(∇sun
m, x)
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a.e. in Ω. Equation (4.5) is thus the Euler equation for the minimization of a func-
tional of the form

Jn
m(u) :=

∫
Ω

[ 12ρ|u|2 + h2(ψn
m)∗(∇su, x)] dx − 〈ηn

m,u〉 for all u ∈ V2,

with ηn
m dependent on fn

m, u0, v0 and h. The functional Jn
m : V2 → R ∪ {+∞} is

lower semicontinuous and (strictly) convex, and by (4.3) it is coercive over V2. The
system (4.4), (4.5) has then one (and only one) solution, un

m ∈ V2, which determines
εn
m ∈ L2(Ω)9s . Because of (3.2) and (4.3), the mapping σ �→ Bσ+h∂ϕ(σ) is coercive

and injective; hence, it is invertible. By (4.4) εn
m then determines σn

m ∈ Lp(Ω)9s .
By (2.9) and (3.4) the inclusion (4.4) also yields εn

m(s) − εn−1
m(s) = β(σn

m(s) − σn−1
m(s))

a.e. in Ω for any n, whence by (3.12)

εn
m(s) = βσn

m(s) a.e. in Ω for all n. (4.7)

For any family {φn
m}n=0,...,m of functions Ω → R, let us set

φm := piecewise linear time-interpolate of φ0
m, . . . , φm

m a.e. in Ω,

φ̄m(·, t) := φn
m a.e. in Ω for all t ∈ ](n − 1)h, nh[ for n = 1, . . . , m.

}
(4.8)

Equations (4.4) and (4.5) then read

∂εm

∂t
− B(x) :

∂σm

∂t
∈ ∂ϕm(σ̄m, x) a.e. in ΩT , (4.9)

ρ
∂vm

∂t
− ∇∗ · σ̄m = f̄m in V ′, a.e. in ]0, T [ (4.10)

(ii) Energy estimates. Multiplying (4.10) by vm and then integrating over Ω we get

1
2

d
dt

∫
Ω

ρ|vm|2 dx +
∫

Ω

σ̄m :
∂εm

∂t
dx = 〈f̄m,vm〉 a.e. in ]0, T [. (4.11)

By the Fenchel property (2.13), (4.9) is equivalent to

ϕm(σ̄m, x) + ϕ∗
m

(
∂εm

∂τ
− B(x) :

∂σm

∂τ
, x

)

=
∂εm

∂t
: σ̄m − σ̄m : B(x) :

∂σm

∂t
a.e. in ΩT . (4.12)

The two latter equalities yield

1
2

∫
Ω

(ρ|vm|2 + σm : B(x) : σm)(·, t) dx − 1
2

∫
Ω

(ρ|v0|2 + σ0 : B(x) : σ0) dx

+
∫∫

Ωt

[
ϕm(σ̄m, x) + ϕ∗

m

(
∂

∂τ
(εm − B(x) : σm

)
, x)

]
dxdτ

=
∫∫

Ωt

f̄1 · ∂um

∂τ
dxdτ + 〈f̄2(t), ūm(·, t)〉

− 〈f2(0),u0〉 −
∫ t

0

〈
∂f2

∂τ
, ūm

〉
dτ for all t ∈ ]0, T [. (4.13)
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Henceforth, we shall denote by Ci suitable positive constants that may depend
on the data. Recalling (3.1), (3.2), (3.12)–(3.15), the energy equality (4.13) yields
(denoting by |Ω| the volume of Ω)

1
2

∫
Ω

(ρ|vm|2 + c̄|σm|2)(x, t) dx+
∫∫

Ωt

(
a|σm(d)|p + c

∣∣∣∣ ∂

∂τ
(εm −B(x) : σm)

∣∣∣∣
q)

dxdτ

� 1
2

∫
Ω

(ρ|v0|2 + σ0 : B(x) : σ0)(x) dx + ‖f1‖L1(0,t;L2(Ω)3) max
[0,t]

‖vm‖L2(Ω)3

+ C1‖f2‖W 1,p(0,t;V ′)‖um‖Lq(0,t;V ) + (b + d)t|Ω| for all t ∈ ]0, T [. (4.14)

By the Korn inequality and recalling that q � 2,

‖um‖V � C2‖εm‖Lq(Ω)9

� C2‖εm − B(x) : σm‖Lq(Ω)9 + C3‖σm‖L2(Ω)9 for all t ∈ ]0, T [.

By (4.14) a standard computation then yields

‖um‖W 1,∞(0,T ;L2(Ω)3)∩Lq(0,T ;V ), ‖σm‖L∞(0,T ;L2(Ω)9),

‖σm(d)‖Lp(ΩT )9 ,

∥∥∥∥ ∂

∂t
(εm − B(x) : σm)

∥∥∥∥
Lq(ΩT )9

� C4. (4.15)

(iii) Passage to the limit. By the estimates (4.15) there exist u, σ such that, possibly
taking m → ∞ along a subsequence,

um
∗
⇀ u in W 1,∞(0, T ; L2(Ω)3) ∩ Lq(0, T ; V ), (4.16)

σm
∗
⇀ σ in L∞(0, T ; L2(Ω)9), (4.17)

σm(d) ⇀ σ(d) in Lp(ΩT )9, (4.18)
∂

∂t
(εm − B(x) : σm) ⇀

∂

∂t
(ε − B(x) : σ) in Lq(ΩT )9, (4.19)

where by ‘→’, ‘⇀’, ‘ ∗
⇀’ we denote the strong, weak and weak-∗ convergence, respec-

tively.
By passing to the limit in (4.10) and to the inferior limit in (4.13), we then get

(3.18) and (3.19).

Theorem 4.3 (regularity). Let (3.1)–(3.4), (3.12)–(3.14) be satisfied and

v0 ∈ L2(Ω)3 ∩ V, (4.20)

∂ϕ(σ0, x) ∩ L2(Ω)9s 	= ∅, f(0) + ∇∗ · σ0 ∈ L2(Ω)3, (4.21)

f1 ∈ W 1,1(0, T ; L2(Ω)3), f2 ∈ W 2,p(0, T ; V ′). (4.22)

Then problem 3.1 has a solution such that, besides the regularity (3.16) and (3.17),

u ∈ W 2,∞(0, T ; L2(Ω)3) ∩ W 1,q(0, T ; V ), σ ∈ W 1,∞(0, T ; L2(Ω)9). (4.23)

Proof. In view of deriving further a priori estimates, first let us set u−1
m := u0 − hv0

a.e. in Ω, and note that ε−1
m := ∇su−1

m = ∇s(u0 − hv0) in L2(Ω)9s (see (3.12)
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and (4.20)). By (4.21) there exist σ−1
m ∈ L2(Ω)9s and v−1

m ∈ L2(Ω)3 such that (4.4)
and (4.5) are also satisfied for n = 0. Moreover,∥∥∥∥σ0

m − σ−1
m

h

∥∥∥∥
L2(Ω)9

,

∥∥∥∥v0
m − v−1

m

h

∥∥∥∥
L2(Ω)3

� C5. (4.24)

Let us denote the right-hand side of (4.4) by ξn
m and set

en
m :=

εn
m − εn−1

m

h
, sn

m :=
σn

m − σn−1
m

h
, wn

m :=
vn

m − vn−1
m

h
a.e. in Ω for n = 0, . . . , m.

Taking the incremental ratios of (4.4) and (4.5) for n = 1, . . . , m, we obtain

en
m − en−1

m

h
− B(x) :

sn
m − sn−1

m

h
=

ξn
m − ξn−1

m

h
a.e. in Ω,

ρ
wn

m − wn−1
m

h
− ∇∗ · sn

m =
fn

m − fn−1
m

h
in V ′.

Multiplying these equations respectively by sn
m and wn

m, by the monotonicity of
∂ϕm(·, x) we get

1
2

∫
Ω

[(ρ|w̄m|2 + s̄m : B(x) : s̄m)(·, t) − (ρ|w0|2 + s0 : B(x) : s0)] dx

�
∫ t

0

〈
∂fm

∂τ
, w̄m

〉
dτ

� ‖f1‖W 1,1(0,T ;L2(Ω)3) max
[0,t]

‖wm‖L2(Ω)3

+ C6‖f2‖W 2,p(0,T ;V ′)‖vm‖Lq(0,t;V ) for all t ∈ ]0, T [. (4.25)

As above, by the Korn inequality and as q � 2,

‖vm‖V � C7‖em‖Lq(Ω)9

� C7‖em − B(x) : sm‖Lq(Ω)9 + C8‖sm‖L2(Ω)9 for all t ∈ ]0, T [. (4.26)

By (4.15) and (4.24)–(4.26) a standard computation then yields

‖um‖W 2,∞(0,T ;L2(Ω)3), ‖σm‖W 1,∞(0,T ;L2(Ω)9) � C9. (4.27)

As by (4.15) ∂(εm − B(x) : σm)/∂t is uniformly bounded in Lq(ΩT )9, we then get

‖um‖W 1,q(0,T ;V ) � C2‖εm‖W 1,q(0,T ;Lq(Ω)9) � C10. (4.28)

These uniform estimates yield (4.23).

Remark 4.4.

(i) If f2 is of the form (3.21), we infer from (3.20) and (4.23) that ∇ · σ ∈
L2

loc(ΩT )3 and then equation (3.6) is satisfied a.e. in ΩT .

(ii) If, moreover, f2 ≡ 0, then both ∂2u/∂t2 and ∇ · σ are elements of L2(ΩT )3,
so that we may multiply (3.20) by ∂u/∂t ∈ L2(ΩT )3. As we saw in § 3, the
inequality (3.18) is then rigorously equivalent to the inclusion (3.5), so that
in this case problem 3.1 is fully justified and (u, σ) is a strong solution.
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Theorem 4.5 (well-posedness). For i = 1, 2 let (u0i,v0i, σ0i,f i
1) satisfy the hy-

potheses of theorem 4.3 and let f i
2 ≡ 0. Let (ui, σi) be two corresponding solutions

of problem 3.1 that satisfy (4.23). Then there exists a constant L > 0 independent
of the data such that, setting ũ := u1 − u2 and defining σ̃, f̃ and so on similarly,
we obtain∥∥∥∥∂ũ

∂t

∥∥∥∥
W 1,∞(0,T ;L2(Ω)3)

+ ‖σ̃‖L∞(0,T ;L2(Ω)9)

� L(‖ṽ0‖L2(Ω)3 + ‖σ̃0‖L2(Ω)9 + ‖f̃1‖W 1,1(0,T ;L2(Ω)3) + ‖f̃2‖W 2,1(0,T ;V ′)). (4.29)

In particular problem 3.1 has just one solution that satisfies (4.23).

Proof. Let us write (3.5) and (3.20) for i = 1, 2, and multiply them by σ̃ and ∂ũ/∂t
respectively; this is admissible because of the regularity (4.23). By combining these
formulae we get

1
2

∫
Ω

(
ρ

∣∣∣∣∂ũ

∂t

∣∣∣∣
2

+ σ̃ : B(x) : σ̃

)
(·, t) dx − 1

2

∫
Ω

(ρ|ṽ0|2 + σ̃0 : B(x) : σ̃0) dx

� ‖f̃1‖W 1,1(0,T ;L2(Ω)3)

∥∥∥∥∂ũ

∂τ

∥∥∥∥
L∞(0,t;L2(Ω)3)

+ ‖f̃2‖W 2,1(0,T ;V ′)‖ũ‖L∞(0,t;V )

for all t ∈ ]0, T ],

whence (4.29) follows. The final statement is straightforward.

4.1. Limit cases

In several cases the inertia term is so small that it may be neglected. As ρ → 0
in L∞(Ω), a subsequence of solutions of problem 3.1 converges to a solution of the
reduced problem, in which the equation of continuum dynamics (3.20) is replaced
by the quasi-static force-balance equation

−∇∗ · σ = f in V ′ a.e. in ]0, T [. (4.30)

If f ∈ W 1,1(0, T ; V ′), then in place of (3.16) here we merely obtain the regularity

u ∈ Lq(0, T ; V ), σ ∈ L∞(0, T ; L2(Ω)9s ). (4.31)

No difficulty arises in passing to the limit as B → 0, although the regularity
σ ∈ L∞(0, T ; L2(Ω)9s ) is then lost.

As we saw, the Prandtl–Reuss model corresponds to ϕ = IK , K being a closed
convex subset of D9

s that contains the origin, and in this case the Dirichlet bound-
ary condition (3.8) is lost. We may approximate ϕ = IK by a sequence of penal-
ized functions {ϕn} that satisfy the hypotheses of theorem 4.1 (e.g. via Yosida
approximation), so that for any n this problem has a solution (un, σn). If f2 ∈
W 1,∞

w∗ (0, T ; BD(Ω)′), by a compactness and lower semicontinuity argument one can
easily see that a subsequence of solutions converges to a solution of the limit prob-
lem such that

u ∈ W 1,∞(0, T ; L2(Ω)3), σ ∈ L∞(ΩT )9s , ε,
∂

∂t
(ε − B(x) : σ) ∈ (C0(ΩT )9s )

′;

(4.32)
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(see, for example, [11, 98]). At this point one may also pass to the limit as ρ → 0
in L∞(Ω). Some caution is needed in the mechanical interpretation of this setting,
for the hypothesis of small displacements may fail due to perfect plastic flow. In
the absence of a safe load condition, mechanical failure might also occur (see, for
example, [29, 93,97]).

One may also pass to the limit as ϕ(·, x) → 0 locally uniformly in R
9
s , a.e. in Ω,

e.g. if ϕ(0, x) = 0, one may set ϕn(v, x) = ϕ(v/n, x), and then take n → ∞.
One thus retrieves the linear elastic law ε = B(x) : σ, with the reduced regularity
u ∈ W 1,∞(0, T ; L2(Ω)9s ) ∩ L∞(0, T ; V2), σ ∈ L∞(0, T ; L2(Ω)9s ).

More generally the above limit behaviours may occur in different parts of Ω. For
instance, our material may be purely viscous (B(x) = 0) a.e. in Ω̃ and purely elastic
(ϕ(·, x) = 0) a.e. in Ω \ Ω̃.

The regularity theorem (theorem 4.3) is also easily extended to this setting, with
the natural amendments due to the exceptional exponent q = 1. For instance, here
it is in order to assume that f2 ∈ W 2,1

w∗ (0, T ; BD(Ω)′), and the enhanced regularity
for u reads (see (3.27))

u ∈ W 2,∞(0, T ; L2(Ω)3),
∂u

∂t
∈ X(ΩT ). (4.33)

On the other hand, difficulties arise in extending the well-posedness theorem (the-
orem 4.5), for in general the stress field σ may not be expected to be continuous,
and so (3.5) cannot be multiplied by σ.

5. Two-scale homogenization

In this section we assume that the function ϕ and the tensor B oscillate in space
periodically, and we derive a two-length-scale model by passing to the limit in
problem 3.1 as the period vanishes, via Nguetseng’s notion of two-scale convergence
[4, 80]. We then illustrate how this result may be extended to the Prandtl–Reuss
model.

5.1. Two-length-scale model

So far we have dealt with a single spatial variable, x. Here we regard x as a
coarse-length-scale variable, and also introduce a fine-length-scale variable y that
we let range through a reference volume element Y := [0, 1[3. We identify Y with
the unit torus Y and note that any Y -periodic function on R

3 may thus be identified
with a function on Y. We assume that

ρ ∈ L∞(Ω), ρ � ρ0 : const. > 0 a.e. in Ω, (5.1)

B ∈ L∞(Y; M), ∃c̄ > 0 : for all v ∈ R
9
s , v : B(y) : v � c̄|v|2 for a.e. y ∈ Y, (5.2)

ϕ : R
9
s × Y → R ∪ {+∞} satisfies (3.3), (3.4), (3.14) with Y in place of Ω. (5.3)

We then set the constitutive law (3.5) in two-scale form:

∂ε

∂t
(x, y, t)−B(y) :

∂σ

∂t
(x, y, t) ∈ ∂ϕ(σ(x, y, t), y) for a.e. (x, y, t) ∈ ΩT ×Y. (5.4)
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5.2. Two-scale weak formulation

Dealing with functions of x and y, we shall denote the gradient operators with
respect to x and y by ∇x and ∇y, respectively, and the corresponding symmetrized
gradients by ∇s

x and ∇s
y. For any function w = w(y) we define the average and

fluctuating components:

ŵ :=
∫

Y
w(y) dy, w̃ := w − ŵ for all w ∈ L1(Y). (5.5)

For technical reasons here we assume that f2 ≡ 0 (i.e. f ≡ f1). We also assume
that we are given the following functions:

u0 ∈ L2(Ω)3 ∩ V, u0
(1) ∈ Lq(Ω; W 1,q(Y)3), v0 ∈ L2(Ω)3, σ0 ∈ L2(Ω × Y)9s ,

(5.6)

f ∈ L1(0, T ; L2(Ω)3). (5.7)

We then set ε0 := ∇su0 +∇s
yu0

(1) (∈ Lq(Ω ×Y)9) and require that ε0
(s) = βσ0

(s) a.e.
in Ω × Y.

Problem 5.1 (two-scale weak formulation). Find (u, ε, σ) such that

u ∈ W 1,∞(0, T ; L2(Ω)3), σ ∈ L∞(0, T ; L2(Ω × Y)9s ),

σ(d) ∈ Lp(ΩT × Y)9s , ε,
∂

∂t
(ε − B(y) : σ) ∈ Lq(ΩT × Y)9s ,

⎫⎬
⎭ (5.8)

∃u(1) ∈ Lq(ΩT ; W 1,q(Y)3) : ε = ∇su + ∇s
yu(1) a.e. in ΩT × Y, (5.9)

1
2

∫
Ω

ρ

(∣∣∣∣∂u

∂t
(x, t)

∣∣∣∣
2

− ρ|v0|2
)

dx

+ 1
2

∫∫
Ω×Y

(σ(x, t) : B(y) : σ(x, t) − σ0 : B(y) : σ0) dxdy

+
∫∫∫

Ωt×Y

[
ϕ(σ, y) + ϕ∗

(
∂

∂τ
(ε − B(y) : σ), y

)]
dxdy dτ

�
∫∫

Ωt

f · ∂u

∂τ
dxdτ for a.e. t ∈ ]0, T ], (5.10)

∫∫
ΩT

(
ρ(u0 − u) · ∂w

∂t
+

∫ t

0
σ̂(·, τ) dτ : ∇w

)
dxdt

=
∫∫

ΩT

( ∫ t

0
f(·, τ) dτ + ρv̂0

)
· w dxdt

for all w ∈ H1(0, T ; V ),w(·, T ) = 0 a.e. in Ω, (5.11)

∇y · σ = 0 in D′(Y)3 a.e. in ΩT . (5.12)

5.3. Interpretation

In § 3 we saw that (5.11) yields equation (3.20) and the initial conditions (3.7).
Next we derive the two-scale constitutive law (5.4) from the inequality (5.10),
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assuming that ∇ · σ ∈ L2(ΩT )3, so that equation (3.20) is satisfied a.e. in ΩT .
Under further assumptions in theorem 5.6 we shall retrieve this regularity, and
thus justify this interpretation. Multiplying (3.20) by ∂u/∂t and integrating over
Ω we get

1
2

∫
Ω

ρ

(∣∣∣∣∂u

∂t
(·, t)

∣∣∣∣
2

− |v0|2
)

dx +
∫∫

Ωt

σ̂ :
∂ε̂

∂τ
dxdτ =

∫∫
Ωt

f · ∂u

∂τ
dxdτ

for a.e. t ∈ ]0, T [. On the other hand, by (5.9) and (5.12) we have∫
Y

σ :
∂ε

∂τ
dy =

∫
Y

σ :
∂ε̂

∂τ
dy +

∫
Y

σ :
∂

∂τ
∇yu(1) dy = σ̂ :

∂ε̂

∂τ
a.e. in Ωt,

so that (5.10) also reads∫∫∫
Ωt×Y

{
σ : B(y) :

∂σ

∂τ
+ϕ(σ, y)+ϕ∗

(
∂

∂τ
(ε−B(y) : σ), y

)
−σ :

∂ε

∂τ

}
dxdy dτ � 0

for any t ∈ ]0, T ]. By the argument at the end of § 2 this inequality is equivalent
to the inclusion (5.4). Thus, problem 5.1 is a weak formulation of an initial- and
boundary-value problem for the system (3.20) and (5.4).

5.4. Derivation of the two-scale problem

Let us first denote the ratio between the two length-scales by η, so that y =
x/η (y ∈ R

3). However, in order to enforce the Y -periodicity with respect to the
variable y we shall let y range through the three-dimensional unit torus, Y. We
thus replace the above relation by the condition

y =
x

η
mod Y ; (5.13)

that is, y ∈ Y and for i = 1, . . . , 3 there exists ki ∈ Z such that xi = kiη + yi. The
constitutive relation (5.4) thus also reads

∂ε

∂t
(x, t) − B

(
x

η

)
:

∂σ

∂t
(x, t) ∈ ∂ϕ

(
σ(x, t),

x

η

)
for a.e. (x, t) ∈ ΩT for all η > 0.

(5.14)
We couple this inclusion with the equation of continuum dynamics

ρ(x)
∂2u

∂t2
(x, t) − ∇ · σ(x, t) = f(x, t) for a.e. (x, t) ∈ ΩT for all η > 0, (5.15)

and formulate an initial- and boundary-value problem analogous to problem 3.1
that we then label problem 3.1η. By theorem 4.1, under suitable hypotheses for any
η > 0, this problem has a solution (uη, ση), and by (4.15) we may assume that

‖uη‖W 1,∞(0,T ;L2(Ω)3)∩Lq(0,T ;V ), ‖ση‖L∞(0,T ;L2(Ω)9), ‖ση(d)‖Lp(ΩT )9 ,∥∥∥∥ ∂

∂τ

(
εη − B

(
x

η

)
: ση

)∥∥∥∥
Lq(ΩT )9

� const. (independent of η). (5.16)
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5.5. Two-scale convergence

In view of studying the asymptotic behaviour of (uη, ση) as η vanishes, we briefly
review the definition of two-scale convergence along the lines of the fundamental
works [4, 80].

For any r ∈ [1, +∞] we say that a bounded sequence {uη} of Lr(Ω) weakly
(weakly-∗ if r = ∞) two-scale converges to u ∈ Lr(Ω × Y), and write uη ⇀

2
u

(uη ⇀
2

∗ u if r = ∞) whenever∫
Ω

uη(x)v
(

x,
x

η

)
dx →

∫∫
Ω×Y

u(x, y)v(x, y) dxdy for all v ∈ D(Ω × Y). (5.17)

This is extended to time-dependent functions as follows. Let r, s ∈ ]1, +∞], let {uη}
be a bounded sequence of Ls(0, T ; Lr(Ω)) and let u ∈ Ls(0, T ; Lr(Ω × Y)). (It is
known that for r = ∞ difficulties arise in defining these spaces, for L∞(Ω) and
L∞(Ω × Y) are not separable. This drawback may be removed by assuming that
in this case these vector-valued functions are weakly-∗ measurable.) We say that
uη ⇀

2
u (uη ⇀

2

∗ u if either r = ∞ or s = ∞) whenever

∫∫
ΩT

uη(x, t)v
(

x,
x

η
, t

)
dxdt →

∫∫∫
ΩT ×Y

u(x, y, t)v(x, y, t) dxdy dt

for all v ∈ D(ΩT × Y). (5.18)

(A different formulation of two-scale convergence, that we do not use in this work,
assumes the occurrence of a fine-scale in time, too; see, for example, [77].) The
extension to either vector-valued or tensor-valued functions is fairly obvious. The
next two lemmata respectively state the relative weak two-scale compactness of
bounded subsets of Lp, and extend a fundamental property of [4, 80] about the
two-scale convergence of derivatives. We remind the reader that we have assumed
that Ω is a (bounded) domain of Lipschitz class.

Lemma 5.2 (Allaire [4]; Nguetseng [80]). Let 1 < p � +∞. Then, for any bounded
sequence {uη} of Lp(Ω), there exists u ∈ Lp(Ω × Y) such that, possibly extracting
a subsequence,

uη ⇀
2

u in Lp(Ω × Y) (uη ⇀
2

∗ u if p = ∞). (5.19)

Lemma 5.3 (Visintin [101,104]). Let q ∈ ]1, +∞[ and a sequence {uη} of Lq(Ω)3

be such that uη ⇀ u in W 1,q(Ω)3. Then there exists u(1) ∈ Lq(Ω; W 1,q(Y)3) such
that

∫
Y u(1)(·, y) dy = 0 a.e. in Ω, and, as η → 0 along a suitable subsequence,

∇suη ⇀
2

∇su + ∇s
yu(1) in Lq(Ω × Y)9. (5.20)

Lemma 5.4 (Allaire [4]; Nguetseng [80]). Let p ∈ 1, +∞ and let a bounded se-
quence {wη} of Lp(Ω)9s be such that {η∇ · wη} is bounded in Lp(Ω)3. Then there
exists w ∈ Lp(Ω × Y)9s such that ∇y · w ∈ Lp(Ω × Y)3, and, as η → 0 along a
suitable subsequence,

wη ⇀
2

w ∈ Lp(Ω × Y)9s , η∇ · wη ⇀
2

∇y · w ∈ Lp(Ω × Y)3. (5.21)

https://doi.org/10.1017/S0308210506000709 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210506000709


1384 A. Visintin

These results may trivially be extended to time-dependent functions.
We are now able to show the two-scale convergence of the solutions of prob-

lem 3.1η to a solution of problem 5.1 as η vanishes (along a subsequence).

Theorem 5.5. Assume that the hypotheses (5.1)–(5.3), (5.6), (5.7) are satisfied.
For any η let (uη, ση) be a solution of problem 3.1η that satisfies the estimates
(5.16). Then there exist u, ε, σ such that, as η → 0 along a suitable subsequence,

uη
∗
⇀ u in W 1,∞(0, T ; L2(Ω)3) ∩ Lq(0, T ; V ), (5.22)

εη ⇀
2

ε in Lq(ΩT × Y)9, (5.23)

ση ⇀
2

∗ σ in L∞(0, T ; L2(Ω × Y)9), (5.24)

ση(d) ⇀
2

σ(d) in Lp(ΩT × Y)9, (5.25)

∂

∂τ

(
εη − B

(
x

η

)
: ση

)
⇀
2

∂

∂τ
(ε − B(y) : σ) in Lq(ΩT × Y)9. (5.26)

This implies that (u, ε, σ) is a solution of problem 5.1.

Proof. By lemma 5.2 the convergences (5.22)–(5.26) follow from the uniform esti-
mates (5.16). The properties (5.8) are thus established. By lemma 5.3 the first of
the estimates (5.16) also yields (5.9).

As the semicontinuity properties of weak single-scale convergence are extended
to weak two-scale convergence (see [105, proposition 1.3(iii)]), we have

lim inf
η→0

∫
Ω

ση(x, t) : B

(
x

η

)
: ση(x, t) dx �

∫∫
Ω×Y

σ(x, y, t) : B(y) : σ(x, y, t) dxdy,

(5.27)

lim inf
η→0

∫∫
Ωt

[
ϕ

(
ση,

x

η

)
+ ϕ∗

(
∂

∂τ

(
εη − B

(
x

η

)
: ση

)
,
x

η

)]
dxdτ

�
∫∫∫

Ωt×Y

[
ϕ(σ, y) + ϕ∗

(
∂

∂τ
(ε − B(y) : σ), y

)]
dxdy dτ for a.e. t ∈ ]0, T ].

(5.28)

By writing (3.18) and (3.19) for any η and passing to the inferior limit as η → 0,
we then get (5.10) and (5.11). Writing (3.20) for any η and comparing the terms
of this equation, we see that ∇ · ση is uniformly bounded in H−1(0, T ; L2(Ω)3);
lemma 5.4 then yields (5.12).

Theorem 5.6 (regularity and uniqueness). Let (5.1)–(5.3), (5.6) be satisfied and

u0,v0 ∈ L2(Ω)3 ∩ V, f ∈ W 1,1(0, T ; L2(Ω)3),

∂ϕ(σ0, y) ∩ L2(Ω × Y)9s 	= ∅, f(0) + ∇∗ · σ̂0 ∈ L2(Ω)3.

}
(5.29)

Then problem 5.1 has one and only one solution (u, ε, σ) such that

u ∈ W 2,∞(0, T ; L2(Ω)3) ∩ W 1,∞(0, T ; V ),

σ ∈ W 1,∞(0, T ; L2(Ω × Y)9s ), ∇ · σ̂ ∈ L2(ΩT )3.

}
(5.30)

(Equation (3.20) is thus satisfied a.e. in ΩT ; namely, (u, ε, σ) is a strong solution.)
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Proof. By theorem 4.3 for any η > 0, problem 3.1η has a solution (uη, ση) with the
regularity (4.23) that satisfies the uniform estimates (4.27) and (4.28) (with the
index η in place of m). This yields the first two inclusions of (5.30) for the two-scale
limit of these sequences. The third inclusion follows from comparing the terms of
equation (3.20). The uniqueness of the solution may be checked by mimicking the
argument of theorem 4.5.

A property of continuous dependence on the data analogous to (4.29) may be
proved for problem 5.1, too.

5.6. Limit cases

Theorem 5.5 may easily be extended to the quasi-static problem, either directly
or by letting the density ρ vanish in the dynamical problem.

In a univariate system ∇s and ∇· are both replaced by the single derivative Dx

and, similarly, ∇s
y and ∇y· are replaced by Dy. Equation (5.12) then just reads

Dyσ = 0 in D′(ΩT ×Y), so that σ is independent of y (i.e. σ̂ = σ), at variance with
the multi-axial problem. On the other hand, in general, ε should be expected to
depend on y, since no uniform estimate on Dεη seems available. Finally, note that
in uniaxial systems the quasi-static equation is reduced to −Dσ = f , which can be
integrated directly.

5.7. Elastoplasticity without strain-hardening

As we saw, the classical Prandtl–Reuss model of elastoplasticity without strain-
hardening corresponds to ϕ = IK , K being a closed convex subset of D9

s with
0 ∈ K. Here we illustrate the associated two-scale model.

First we extend the notion of two-scale convergence to measures along the lines
of [6]. Let us denote by C0

0 (Ω̄ × Y) the space of continuous functions Ω̄ × Y → R

that vanish on (∂Ω) × Y (namely the boundary of Ω × Y, for Y has no bound-
ary); this is a Banach space equipped with the maximum norm. We say that a
bounded sequence of Radon measures {µη} ⊂ C0

0 (Ω̄)′ weakly-∗ two-scale converges
to a measure µ ∈ C0

0 (Ω̄ × Y)′, and write µη ⇀
2

∗ µ in C0
0 (Ω̄ × Y)′, if∫

Ω

v

(
x,

x

η

)
µη(dx) →

∫∫
Ω×Y

v(x, y)µ(dxdy) for all v ∈ C0
0 (Ω̄ × Y). (5.31)

This definition might easily be extended to measures of C0
0 (ΩT )′, assuming either

a single fine-scale (space) variable, y, or two fine-scale (space and time) variables, y
and τ . However, consistently with the above developments, here we just deal with
the former case. We thus say that {µη} ⊂ C0

0 (ΩT )′ weakly-∗ two-scale converges to
µ ∈ C0

0 (ΩT × Y)′ if∫∫
ΩT

v

(
x,

x

η
, t

)
µη(dxdt) →

∫∫∫
ΩT ×Y

v(x, y, t)µ(dxdy dt)

for all v ∈ C0
0 (ΩT × Y). (5.32)

The further extension to either vector-valued or tensor-valued measures is obvi-
ous. The next two statements may be compared with lemmata 5.2 and 5.3.
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Lemma 5.7 (Amar [6]). For any bounded sequence {µη} of C0
0 (ΩT )′ there exists

µ ∈ C0
0 (ΩT × Y)′ such that, possibly extracting a subsequence,

µη ⇀
2

∗ µ in C0
0 (ΩT × Y)′. (5.33)

This statement is trivially extended to either vector-valued or tensor-valued mea-
sures.

Lemma 5.8 (Amar [6]). Let a sequence {µη} of X(ΩT ) (see (3.27)) be bounded
in this space, and such that µη

∗
⇀ µ in (C0

0 (ΩT )3)′. Then there exists µ(1) ∈
(C0

0 (ΩT × Y)3)′ such that∫
Y

µ(1)(·, y) = 0 in (C0
0 (ΩT )3)′, ∇s

yµ(1) ∈ (C0
0 (ΩT × Y)9)′,

and, as η → 0 along a suitable subsequence,

∇sµη ⇀
2

∇sµ + ∇s
yµ(1) in (C0

0 (ΩT × Y)9)′. (5.34)

Next we assume that the Dirichlet part of the boundary, Γ0, is empty, and refor-
mulate problem 5.1 with the following amendments. The data u0 and u0

(1) of (5.6)
are here replaced by two measures µ0 and µ0

(1) such that

µ0 ∈ (C0
0 (ΩT )3)′, ∇sµ0 ∈ (C0

0 (ΩT )9)′,

µ0
(1) ∈ (C0

0 (ΩT × Y)3)′, ∇s
yµ0

(1) ∈ (C0
0 (ΩT × Y)9)′.

The final inclusion of (5.8) and the hypothesis (5.9) are then replaced by

ε,
∂

∂t
(ε − B(y) : σ) ∈ (C0

0 (ΩT × Y)9)′, (5.35)

∃µ(1) ∈ (C0
0 (ΩT × Y)3)′ : ε = ∇sµ + ∇yµ(1) in (C0

0 (ΩT × Y)9)′. (5.36)

Setting ξ = ε − B(y) : σ, the term of (5.10) containing ϕ∗ is then replaced by∫∫∫
Ωt×Y

ϕ∗(Dtξ, y) =
∫∫∫

Ωt×Y
ϕ∗

(
Dtξ

|Dtξ|
, y

)
|Dtξ(dxdy dt)|. (5.37)

The existence and regularity results (theorems 5.5 and 5.6) then are extended to
this setting with obvious amendments, whereas for the well-posedness one faces the
difficulties that we mentioned at the end of § 4.

Remark 5.9. As B and ϕ explicitly depend on y but not on x, the relation (5.4)
may be interpreted as the constitutive behaviour of a macroscopically homogeneous
and mesoscopically non-homogeneous viscoelastic material. The developments of
this paper may easily be extended to a material that is both macroscopically and
mesoscopically non-homogeneous, by allowing B and ϕ to depend explicitly on both
x and y.

6. Homogenization of the constitutive law

In the remainder of this paper we confine ourselves to the (nonlinear) Maxwell
model for p = q = 2, as some technical difficulties seem to arise in the more
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general setting. In this section we derive a purely coarse-scale constitutive relation
by eliminating any dependence on the fine-scale variable y ∈ Y in the two-scale
system

∂ε

∂t
(x, y, t) − B(y) :

∂σ

∂t
(x, y, t) ∈ ∂ϕ(σ(x, y, t), y) for a.e. (x, y, t) ∈ ΩT × Y,

ε(x, y, 0) = B(y) : σ(x, y, 0) for a.e. (x, y) ∈ Ω × Y,

⎫⎬
⎭

(6.1)
in view of applying a similar scale reduction (so-called upscaling) to the whole two-
scale problem 5.1 in the next section. By and large this procedure may be compared
with that of [103, §§ 4 and 5].

Henceforth, we assume that (5.2) and (5.3) are satisfied with p = q = 2. (We
do so because in the weak formulation the deviatoric part of the stress tensor σ is
only known to belong to Lp(ΩT × Y)9s .) As in (6.1), the coarse-scale variable x just
plays the role of a parameter, for the sake of simplicity here we omit it, and just
study a cell problem. We also set

r =
∂ε

∂t
, s =

∂σ

∂t
, (6.2)

and first deal with the stationary inclusion

r(y) − B(y) : s(y) ∈ ∂ϕ(σ(y), y) for a.e. y ∈ Y, (6.3)

assuming that r and s are independent of ε and σ. We shall prescribe the rela-
tions (6.2) only afterwards.

We anticipate a result that we shall use ahead in this section.

Lemma 6.1. Let B1, B2 be real vector spaces, f be a mapping B1×B2 → ]−∞, +∞],
and define the infimal value function

g : B1 → [−∞, +∞] : ξ1 �→ inf{f(ξ1, ξ2) : ξ2 ∈ B2}. (6.4)

Then

(i) if f is convex then g is also convex,

(ii) if B1, B2 are real normed spaces and f is coercive, that is, {(ξ1, ξ2) ∈ B1×B2 :
f(ξ1, ξ2) � M} is bounded for any M > 0, then g is also coercive,

(iii) let B1, B2 be real Banach spaces, B2 be reflexive and f be coercive with respect
to ξ2 locally uniformly with respect to ξ1, in the sense that

for all bounded S ⊂ B1 and for all M > 0,

{ξ2 ∈ B2 : f(ξ1, ξ2) � M for all ξ1 ∈ S} is bounded; (6.5)

under these further assumptions, if f is lower semicontinuous, then g is also
lower semicontinuous.
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Proof.
(i) For any ξ′

1, ξ
′′
1 ∈ B1, any ξ′

2, ξ
′′
2 ∈ B2 and any λ ∈ ]0, 1[, by the convexity of f we

have

g(λξ′
1 + (1 − λ)ξ′′

1 ) � f(λξ′
1 + (1 − λ)ξ′′

1 , λξ′
2 + (1 − λ)ξ′′

2 )
= f(λ(ξ′

1, ξ
′
2) + (1 − λ)(ξ′′

1 , ξ′′
2 ))

� λf(ξ′
1, ξ

′
2) + (1 − λ)f(ξ′′

1 , ξ′′
2 ).

By taking the infimum with respect to ξ′
2, ξ

′′
2 , we then get g(λξ′

1 + (1 − λ)ξ′′
1 ) �

λg(ξ′
1) + (1 − λ)g(ξ′′

1 ).

(ii) The statement concerning the coerciveness is straightforward.

(iii) Let us fix any sequence {ξ1n} in B1 that weakly converges to some ξ1 ∈ B1;
thus, {ξ1n} is bounded. If L := lim infn→∞ g(ξ1n) = +∞, then trivially g(ξ1) � L.
If, instead, L < +∞, then by definition of g there exists a sequence {ξ2n} in B2
such that (at least for sufficiently large n)

f(ξ1n, ξ2n) �

⎧⎨
⎩g(ξ1n) +

1
n

for all n ∈ N if L > −∞,

−n for all n ∈ N if L = −∞.
(6.6)

By (6.5) this sequence is confined to a bounded subset of the reflexive space B2.
Hence, there exists ξ2 ∈ B2 such that, as n diverges along a further subsequence,
ξ2n → ξ2 weakly in B2. Passing to the limit in (6.6) on this subsequence, by the
lower semicontinuity of f we then get

g(ξ1) � f(ξ1, ξ2) � lim inf
n→∞

f(ξ1n, ξ2n) � lim inf
n→∞

g(ξ1n).

Next we address the homogenization of the inclusion (6.3). We split our argument
into several steps, for the reader’s convenience.

Step 1. Using the decomposition (5.5), let us first define the Hilbert spaces

W := {η ∈ L2(Y)9s : η̂ = 0, ∇ · η = 0 in D′(Y)3}, (6.7)

Z := {ζ ∈ L2(Y)9s : ζ̂ = 0, ζ = ∇sv a.e. in Y for some v ∈ H1(Y)3}, (6.8)

and note that ∫
Y

ζ(y) : η(y) dy = 0 for all ζ ∈ Z, for all η ∈ W,∫
Y

ζ̂ : η̃(y) dy = 0 for all ζ, η ∈ L2(Y)9.

⎫⎪⎪⎬
⎪⎪⎭ (6.9)

Step 2. The properties (2.12) and (2.14) respectively yield

ϕ(σ, y) + ϕ∗(r − B(y) : s, y) � σ : (r − B(y) : s) ∀(σ, r, s) ∈ (R9
s )

3 for a.e. y ∈ Y,
(6.10)

(6.3) ⇐⇒ ϕ(σ(y), y) + ϕ∗(r(y) − B(y) : s(y), y)
� σ(y) : (r(y) − B(y) : s(y)) for a.e. y ∈ Y.

(6.11)
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The inequality (6.10) also reads

ϕ(σ̄ + σ̃, y)+ϕ∗(r̄+ r̃−B(y) : (s̄+ s̃), y)+(σ̄ + σ̃) : B(y) : (s̄+ s̃) � (σ̄ + σ̃) : (r̄+ r̃)

for all (σ̄, r̄, s̄, σ̃, r̃, s̃) ∈ (R9
s )

6 for a.e. y ∈ Y. (6.12)

Step 3. Let us now set

U(σ, r, s) :=
∫

Y
{ϕ(σ(y), y) + ϕ∗(r(y) − B(y) : s(y), y) + σ(y) : B(y) : s(y)} dy

for all (σ, r, s) ∈ (R9
s + W ) × (R9

s + Z) × (R9
s + W ); (6.13)

by (5.3) this integral either converges or diverges to +∞. By the orthogonality
properties (6.9) the inequality (6.12) yields

U(σ, r, s) �
∫

Y
(σ̂ + σ̃) : (r̂ + r̃) dy

= σ̂ : r̂ for all (σ, r, s) ∈ (R9
s + W ) × (R9

s + Z) × (R9
s + W ). (6.14)

Step 4. The statement (6.11) also reads

(6.3) ⇐⇒ ϕ(σ(y), y) + ϕ∗(r(y) − B(y) : s(y), y) + σ(y) : B(y) : s(y)
� [σ̂ + σ̃(y)] : [r̂ + r̃(y)] for a.e. y ∈ Y.

Moreover, by (6.10) this inequality is also equivalent to the corresponding equality.
Integrating it over Y and using (6.9), we then get

(6.3) ⇐⇒ U(σ, r, s) � σ̂ : r̂ ⇐⇒ U(σ, r, s) = σ̂ : r̂. (6.15)

(Note that the first implication ‘⇐’ is also based on the inequality (6.12).)

Step 5. Next we come to the Cauchy problem (6.1): we shall characterize it just
in terms of the average fields σ̂ and ε̂, independently of the fluctuating components
σ̃ and ε̃. Here we reintroduce the time-dependence (in the remainder of this section
we shall denote the distributional partial differentiation in time by the index t, in
order to simplify the display of formulae), and first set

Σ := {(σ, ε) ∈ (L2(YT )9s )
2 : (σ̃, ε̃) ∈ L2(0, T ; W × Z),

√
T − t[ε − B(y) : σ]t ∈ L2(YT )9, [ε − B(y) : σ](·, 0) = 0 a.e. in Y}, (6.16)

which is a Hilbert space equipped with the graph norm

‖(σ, ε)‖1 := ‖σ‖L2(YT )9 + ‖ε‖L2(YT )9 + ‖
√

T − t[ε − B(y) : σ]t‖L2(YT )9 .

We claim that this norm is equivalent to the reduced norm

‖(σ, ε)‖Σ := ‖σ‖L2(YT )9 + ‖
√

T − t[ε − B(y) : σ]t‖L2(YT )9 . (6.17)

Indeed, for any v ∈ H1(0, T ) and any t ∈ ]0, T [, setting

J(v, t) :=
( ∫ t

0
(T − τ)|v′(τ)|2 dτ

)1/2

,
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by the Cauchy–Schwarz inequality we have

|v(t) − v(0)| =
∣∣∣∣
∫ t

0
v′(τ) dτ

∣∣∣∣ �
( ∫ t

0

dτ

T − τ

)1/2

J(v, t) �
(

log
T

T − t

)1/2

J(v, T ).

Setting C = (
∫ T

0 log(T/(T − t)) dt)1/2, we then get

‖v − v(·, 0)‖L2(0,T ) � CJ(v, T ) = C‖
√

T − tv′(t)‖L2(0,T ). (6.18)

By applying this inequality to v = ε−B(y) : σ and recalling that B ∈ L∞(Y; M),
we infer that

‖(σ, ε)‖Σ → +∞ ⇐⇒ ‖(σ, ε)‖1 → +∞;

these two norms are thus equivalent.

Step 6. Let us now fix any ε0 ∈ R
9
s + Z and any σ0 ∈ R

9
s + W and set

Σ(σ0, ε0) := {(σ, ε) ∈ (L2(YT )9s )
2 : (σ̃, ε̃) ∈ L2(0, T ; W × Z),

√
T − t[ε − B(y) : σ]t ∈ L2(YT )9,

[ε − B(y) : σ](·, 0) = ε0 − B(y) : σ0 a.e. in Y}, (6.19)

Ξ(σ0, ε0) := {(σ, ε) ∈ Σ(σ0, ε0) :
√

T − tε̂t ∈ L2(0, T )9}, (6.20)

A(σ, ε) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫∫
YT

{(T − t)[ϕ(σ(y, t), y) + ϕ∗([ε − B(y) : σ]t(y, t), y)]

+ 1
2σ(y, t) : B(y) : σ(y, t) − 1

2σ0(y) : B(y) : σ0(y)} dy dt

for all (σ, ε) ∈ Σ(σ0, ε0),

+∞ for all (σ, ε) ∈ (L2(YT )9s )
2 \ Σ(σ0, ε0),

(6.21)

Λ(σ̄, ε̄) := inf{A(σ̄ + σ̃, ε̄ + ε̃) : (σ̃, ε̃) ∈ L2(0, T ; W × Z)}
for all (σ̄, ε̄) ∈ (L2(0, T )9s )

2. (6.22)

Note that Σ(σ0, ε0) is an affine space for Σ(σ0, ε0) = Σ + ε0 − B : σ0; it may then
be equipped with the topology induced by Σ.

Step 7. The inequality (6.14) yields

A(σ, ε) �
∫ T

0
(T − t)σ̂ : ε̂t dt for all (σ, ε) ∈ Ξ(σ0, ε0). (6.23)

Setting

P (ε0) := {(σ̄, ε̄) ∈ (L2(0, T )9s )
2 :

√
T − tε̄t ∈ L2(0, T )9, ε̄(0) = ε̂0}, (6.24)

https://doi.org/10.1017/S0308210506000709 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210506000709


Homogenization of viscoelasticity 1391

we then have

Λ(σ̄, ε̄) �
∫ T

0
(T − t)σ̄ : ε̄t dt for all (σ̄, ε̄) ∈ P (ε0).

Moreover, for any (σ, ε) ∈ Ξ(σ0, ε0) by (6.15) the inclusion

[ε − B(y) : σ]t ∈ ∂ϕ(σ, y) a.e. in YT (6.25)

is equivalent to

A(σ, ε) =
∫ T

0
(T − t)σ̂ : ε̂t dt. (6.26)

By (6.23) it then follows that, for any (σ, ε) ∈ Ξ(σ0, ε0),

(6.25) =⇒ Λ(σ̂, ε̂) =
∫ T

0
(T − t)σ̂ : ε̂t dt. (6.27)

Step 8. We claim that, conversely, for any ε0 ∈ R
9
s + Z and any σ0 ∈ R

9
s + W , if

the pair (σ̄, ε̄) ∈ P (ε0) is such that

Λ(σ̄, ε̄) =
∫ T

0
(T − t)σ̄ : ε̄t dt

(
or, equivalently, Λ(σ̄, ε̄) �

∫ T

0
(T − t)σ̄ : ε̄t dt

)
,

(6.28)
then there exists a pair (σ̃, ε̃) ∈ L2(0, T ; W × Z) such that (σ, ε) := (σ̄ + σ̃, ε̄ + ε̃) ∈
Ξ(σ0, ε0) and (6.25) is satisfied.

In view of justifying this claim, let us first note that the functional A is bounded
from below, convex and lower semicontinuous. Let us set

A : (L2(YT )9s )
2 × L2(0, T ; W × Z) → ]−∞, +∞] : (σ̄, ε̄, σ̃, ε̃) �→ A(σ̄ + σ̃, ε̄ + ε̃).

By (5.3) (here with p = q = 2) this functional is coercive in the sense of (6.5) with
ξ1 = (σ̄, ε̄) and ξ2 = (σ̃, ε̃). By lemma 6.1 the functional Λ is then also convex, lower
semicontinuous and coercive. Therefore the infimum of (6.22) is attained; namely,
there exists a pair (σ̃, ε̃) ∈ L2(0, T ; W × Z) such that

A(σ, ε) = Λ(σ̄, ε̄) =
∫ T

0
(T − t)σ̄ : ε̄t dt.

By the definition of A (see (6.21)) and by lemma 6.2 below, this equality also reads∫∫
YT

(T − t){ϕ(σ, y) + ϕ∗([ε − B(y) : σ]t, y) − σ : [ε − B(y) : σ]t} dy dt = 0.

By (2.12)–(2.14) this holds if only if the integrand vanishes a.e. in YT , and this is
equivalent to (6.25).

Finally, note that the minimizing pair (σ̃, ε̃) is unique whenever ϕ and ϕ∗ are
both strictly convex. We have thus proved theorem 6.3 (stated below, after the
lemma).

https://doi.org/10.1017/S0308210506000709 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210506000709


1392 A. Visintin

Lemma 6.2. If σ0 ∈ W + R
9
s , ε0 ∈ Z + R

9
s and (σ, ε) ∈ Ξ(σ0, ε0), then

∫∫
YT

(T − t)σ : [ε − B(y) : σ]t dy dt

=
∫ T

0
(T − t)σ̂ : ε̂t dt

− 1
2

∫∫
YT

[σ(y, t) : B(y) : σ(y, t) − σ0(y) : B(y) : σ0(y)] dy dt. (6.29)

Proof. Via a standard regularization procedure, one may easily construct three
sequences, {σ0

n ∈ W + R
9
s}, {ε0

n ∈ Z + R
9
s} and {(σn, εn) ∈ L2(Y; H1(0, T )2)}, such

that

σn(0) = σ0
n → σ0, εn(0) = ε0

n → ε0 in L2(Y)9,

σn → σ,
√

T − t[εn − B(y) : σn]t →
√

T − t[ε − B(y) : σ]t in L2(YT )9,
√

T − tε̂nt →
√

T − tε̂t in L2(0, T )9.

Obviously,∫∫
Yτ

σn : [εn − B(y) : σn]t dy dt

=
∫∫

Yτ

σn : εnt dy dt − 1
2

∫
Y
[σn(y, τ) : B(y) : σn(y, τ) − σ0(y) : B(y) : σ0(y)] dy

for all τ ∈ ]0, T ] for all n.

As, by (6.9)1, ∫∫
Yτ

σn : εnt dy dt =
∫ τ

0
σ̂n : ε̂nt dt,

by integrating once more in time in ]0, T [ we obtain∫∫
YT

(T − t)σn : [εn − B(y) : σn]t dy dt

=
∫ T

0
(T − t)σ̂n : ε̂nt dt

− 1
2

∫∫
YT

[σn(y, t) : B(y) : σn(y, t) − σ0(y) : B(y) : σ0(y)] dy dt for all n.

By passing to the limit in n we then get (6.29).

Theorem 6.3. Let p = q = 2, assume that (5.2) and (5.3) are satisfied and define
Λ as in (6.22). Let also σ0 ∈ W + R

9
s and ε0 ∈ Z + R

9
s . Then the following hold.

(i) We have

Λ(σ̄, ε̄) �
∫ T

0
(T − t)σ̄ : ε̄t dt for all (σ̄, ε̄) ∈ P (ε0). (6.30)
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(ii) For any (σ, ε) ∈ Ξ(σ0, ε0),

[ε − B(y) : σ]t ∈ ∂ϕ(σ, y) a.e. in YT =⇒ Λ(σ̂, ε̂) =
∫ T

0
(T − t)σ̂ : ε̂t dt.

(6.31)

(iii) Conversely, for any pair (σ̄, ε̄) ∈ P (ε0), if

Λ(σ̄, ε̄) �
∫ T

0
(T − t)σ̄ : ε̄t dt, (6.32)

then there exists (σ̃, ε̃) such that (σ, ε) = (σ̄ + σ̃, ε̄ + ε̃) ∈ Σ(σ0, ε0) and

[ε − B(y) : σ]t ∈ ∂ϕ(σ, y) a.e. in YT . (6.33)

(iv) If both ϕ and ϕ∗ are strictly convex, then (σ̄, ε̄) uniquely determines (σ̃, ε̃).

Proposition 6.4 (Euler–Lagrange equations). Let σ0 ∈ W +R
9
s , ε0 ∈ Z +R

9
s and

(σ, ε) ∈ Σ(σ0, ε0). Then Λ(σ̂, ε̂) = A(σ, ε) < +∞ if and only if (denoting by B∗ the
transpose of the tensor B)

(T − t)∂ϕ(σ(y, t), y) + B(y)∗ :
∂

∂t
[(T − t)∂ϕ∗([ε − B(y) : σ]t, y)] + B(y) : σ � 0 in D′(0, T ; W ′),

∂

∂t
[(T − t)∂ϕ∗([ε − B(y) : σ]t, y)] � 0 in D′(0, T ; Z ′).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6.34)

Remark 6.5.

(i) The functional Λ may be compared with the homogenized functional of the
calculus of variations (see, for example, [20, 21, 31, 66]). However, the latter
concerns the stationary setting, whereas Λ applies to processes.

(ii) By theorem 6.3 the pointwise relation (6.25) is equivalent to the global con-
dition

Λ(σ̂, ε̂) =
∫ T

0
(T − t)σ̂ : ε̂t dt(

or, equivalently, by (6.30), Λ(σ̂, ε̂) �
∫ T

0
(T − t)σ̂ : ε̂t dt

)
. (6.35)

It is not clear whether this global-in-time relation may be reformulated as a
gradient flow, like (6.33), or otherwise as a pointwise relation in space-time.
In this respect, note that after [95,96] memory phenomena are known to arise
in the homogenization of linear evolution equations.

(iii) One may show that (6.35) represents a monotone relation between σ̂ and ε̂t.
This issue will be studied separately.
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(iv) If B and ϕ do not depend on y, then by Jensen’s inequality for any (σ̄, ε̄) ∈
P (ε0) the infimum of (6.22) is attained for σ̃ = ε̃ = 0 identically in YT ,
whence Λ(σ̄, ε̄) = A(σ, ε). The inequality (6.35) is then equivalent to the
relation (ε̄ − B : σ̄)t ∈ ∂ϕ(σ̄) a.e. in ]0, T [.

7. Single-scale homogenization

In this section we complete the homogenization procedure by eliminating any
dependence on the fine-scale variable y ∈ Y in the two-scale problem 5.1, and thus
derive a purely coarse-scale formulation (upscaling). Conversely, we also retrieve
problem 5.1 from this single-scale problem.

We still assume that p = q = 2 and that (5.1)–(5.3) are satisfied, so that we can
define Λ as in (6.22). We also assume that

f ∈ L2(ΩT )3, u0 ∈ L2(Ω)3 ∩ V, v0 ∈ L2(Ω)3, σ̄0 ∈ L2(Ω)9s
such that, setting ε̄0 := ∇su0, ε̄0

(s) = βσ0
(s). (7.1)

We can now introduce a single-scale problem in weak form.

Problem 7.1. Find (u, σ̄) such that, setting ε̄ := ∇su and defining Λ as in (6.22)
with σ̄0 in place of σ0, we obtain

u ∈ H1(0, T ; L2(Ω)3) ∩ L2(0, T ; V ), σ̄ ∈ L2(0, T ; L2(Ω)9s ), (7.2)

1
2

∫∫
ΩT

ρ

(∣∣∣∣∂u

∂t
(x, t)

∣∣∣∣
2

− |v0(x)|2
)

dxdt +
∫

Ω

Λ(σ̄, ε̄) dx

�
∫∫

ΩT

(T − t)f · ∂u

∂t
dxdt, (7.3)

∫∫
ΩT

{
ρ(u0 − u) · ∂w

∂t
+

∫ t

0
σ̄(·, τ) dτ : ∇w

}
dxdt

=
∫∫

ΩT

( ∫ t

0
f(·, τ) dτ + ρv0

)
· w dxdt

for all w ∈ H1(0, T ; V ),w(·, T ) = 0 a.e. in Ω. (7.4)

Note that the initial condition on ε̄ is implicit in the definition of the functional Λ
(see (6.21) and (6.22)).

Theorem 7.2 (relation between the two-scale and single-scale problems). Let p =
q = 2 and assume that (5.1)–(5.3) and (7.1) are satisfied. Define Λ as in (6.22).
Then

(i) if (u, ε, σ) is a solution of problem 5.1, then (u, σ̂) solves problem 7.1;

(ii) conversely, for any solution (u, σ̄) of problem 7.1 such that

u ∈ H2(0, T ; L2(Ω)3) ∩ H1(0, T ; V ), σ ∈ W 1,1(0, T ; L2(Ω)3), (7.5)

there exist ε, σ such that (u, ε, σ) solves problem 5.1 and ε̂ = ε̄, σ̂ = σ̄.
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The latter statement is not empty, for by theorem 5.6 and by theorem 7.2(i) there
exists a solution of problem 7.1 with the regularity (7.5), under suitable hypotheses
on the data.

Although upscaling from a two-scale to a single-scale problem may be expected to
entail some loss of information, by theorem 7.2(ii) no spurious solution is introduced
in this way.

Proof.
(i) By the definition (6.22) of Λ,∫

Ω

Λ(σ̂, ε̂) dx

�
∫∫∫

ΩT ×Y

{
(T − t)

[
ϕ

(
σ(x, y, t), y) + ϕ∗

(
∂

∂t
[ε − B((y) : σ](x, y, t), y

)]
+ 1

2σ(x, y, t) : B((y) : σ(x, y, t)

− 1
2σ0(x, y) : B((y) : σ0(x, y)

}
dxdy dt.

Integrating (5.10) in time in ]0, T [ and then inserting this inequality we get (7.3).
The pair (u, σ̂) thus solves problem 7.1.

(ii) By the discussion of § 3 we know that, under the further regularity (7.5), the
equation of continuum dynamics (3.20) (here with σ̄ and f in place of σ and f1)
is satisfied a.e. in ΩT . Multiplying this equation by ∂u/∂t and integrating twice in
time in ]0, T [, we then get∫∫

ΩT

(
ρ

2

∣∣∣∣∂u

∂t
(x, t)

∣∣∣∣
2

− ρ

2
|v0(x)|2 +(T − t)σ̄ :

∂ε̄

∂t

)
dxdt =

∫∫
ΩT

(T − t)f · ∂u

∂t
dxdt,

so that by comparing this equality with (7.3) we infer that∫
Ω

Λ(σ̄, ε̄) dx �
∫∫

ΩT

(T − t)σ̄ :
∂ε̄

∂t
dxdt for a.e. t ∈ ]0, T ]. (7.6)

By (6.30) the inequality (6.32) then holds for a.e. x ∈ Ω. By (7.2) and theo-
rem 6.3(iii) there then exist (σ̃, ε̃) such that (σ, ε) = (σ̄ + σ̃, ε̄ + ε̃) satisfies (6.33)
a.e. in Ω ×YT . In § 5 we saw that this yields (5.10). The triplet (u, ε, σ) thus solves
problem 5.1 and ε̂ = ε̄, σ̂ = σ̄.

By the next statement problem 7.1 may be regarded as the homogenized formu-
lation of problem 3.1η.

Corollary 7.3. Let the hypotheses of theorem 7.2 hold, and for any η > 0 let
(uη, ση) be a solution of problem 3.1η that satisfies the estimates (5.16). Then
there exist u and σ̄ such that, as η → 0 along a suitable sequence,

uη
∗
⇀ u in W 1,∞(0, T ; L2(Ω)3) ∩ L2(0, T ; V ), (7.7)

ση
∗
⇀ σ̄ in L∞(0, T ; L2(Ω)9). (7.8)

This implies that (u, σ̄) is a solution of problem 7.1.
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Proof. Let us recall theorem 5.5, and note that (5.22) and (5.24) yield (7.7) and
(7.8). The final statement follows from theorem 7.2(i).

Remark 7.4.

(i) The limit behaviour of problem 7.1 as ρ → 0 mimics that of § 5.

(ii) By theorem 6.3 and by remark 6.5(iv), if B and ϕ do not depend on y, then
(7.3) is equivalent to the inclusion (3.5). In this case problem 3.1 is thus
equivalent to problem 7.1.

(iii) The above multi-scale homogenization procedure may be adapted to mixtures
of elastic and viscous materials, as we outlined in the limit case (v) at the
end of § 4.

8. Conclusions and further questions

8.1. Is the generalized Maxwell model justifiable?

At the basis of the nonlinear model (1.3) of viscoelasticity of fluid type there is the
mean-field-type hypothesis that the strain should be uniform at a fine length scale.
As we have seen, this also encompasses the Prandtl–Reuss model of elastoplasticity
as a limit case. Our analysis does not show any reason to expect such a uniformity
condition to hold, and clearly one cannot append a further constraint like this
to the model. Analogous conclusions are known to apply to stationary models of
continuum mechanics.

The fine-scale non-uniformity of the strain is essentially due to the lack of a
uniform W s,p(Ω)-type estimate for any s > 0 for the approximating family {εη : η >
0}. The occurrence of high gradients for these fields and the onset of a non-trivial
mesoscopic structure can thus hardly be ruled out. In the Hilbertian framework,
namely, for p = q = 2, a single-scale homogenized model was nevertheless retrieved
via two basic ingredients: the mutual orthogonality of the spaces W and Z (see
(6.7)–(6.9)) and the convexity of the potential ϕ, which we exploited via the Fenchel
properties (2.12) and (2.13).

8.2. Two-scale and single-scale homogenization

In this work we proceeded along the following lines, which can also be applied
to the homogenization of other either stationary or evolutive nonlinear phenomena
(see [102,103,106,107]).

(i) First we constructed a single-scale model, P , for an inhomogeneous material,
assuming that the fields only depend on the coarse-scale variable x (besides
time), and proved the existence and uniqueness of the weak solution.

(ii) We represented a composite by assuming that the constitutive data B and
ϕ depend periodically on a fine-scale variable y := x/η, and formulated a
corresponding single-scale initial- and boundary-value problem, Pη. Existence
and uniqueness of the weak solution followed from the previous step.
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(iii) We showed that as η → 0 a subsequence of solutions of Pη weakly two-scale
converges to a solution of a two-scale problem, P2, in which the fields depend
on both the coarse-scale and fine-scale variables x, y.

(iv) For p = q = 2 we derived a coarse-scale relation from the two-scale constitu-
tive law. We also showed that, conversely, all fields that satisfy that coarse-
scale relation may be retrieved as averages of fields that satisfy the two-scale
constitutive law.

(v) We extended these scale-transformations to our initial- and boundary-value
problem and derived a single-scale problem P1 from the two-scale problem
P2, essentially by averaging the mesoscopic fields over the reference set Y.

(vi) We showed that conversely any solution of P1 can be represented as the Y-
average of a solution of problem P2. Thus, no spurious solution may be intro-
duced by the upscaling procedure.

8.3. Further questions

(i) In §§ 6 and 7 we assumed that p = q = 2, for we do not know whether
σ ∈ Lp(ΩT × Y)9s for p > 2. The extension of the upscaling procedure to
q < 2 < p would of course be interesting; the case of q = 1 and p = ∞
would be especially relevant, as it encompasses elasto-viscoplasticity and, in
particular, the Prandtl–Reuss model.

(ii) The weak formulation of § 3 and its analysis can be extended to the case in
which the prescribed functions B(x) and ϕ(·, x) also depend on time. It may
be of some interest to apply the procedure of two-scale convergence to the
corresponding time homogenization. In view of applications, it may also be
useful to allow for purely viscous and/or purely elastic parts of the body, by
allowing B and/or ϕ to degenerate in subdomains of Ω; a similar issue is
addressed in [106].

(iii) It is known that De Giorgi’s Γ -convergence provides a unifying framework
for the homogenization of stationary problems (see, for example, [20,21,31]).
In [106] this notion is also applied to the homogenization of an evolution
problem; after that, this is reformulated as a minimization principle. That
approach may be applied to the system (1.1), (1.2).

(iv) In § 1 we outlined the Kelvin–Voigt and Maxwell models. A more general
model of elasto-viscoplasticity is represented by an inclusion of the form

dε

dt
−B :

dσ

dt
∈ ∂ϕ(σ−A : ε) (with A, B ∈ R

34
positive semi-definite). (8.1)

For A = 0 (B = 0, respectively) we retrieve the Maxwell (Kelvin–Voigt,
respectively) model. If ϕ = I∗

K is the support function of a closed convex
K ⊂ D9

s that contains the origin, (8.1) accounts for elastoplasticity with kine-
matic strain-hardening. This constitutive relation was coupled with the equa-
tion of continuum dynamics in [13, 14, 61], where well-posedness was proved.
The homogenization procedure that we have illustrated in the present paper
may also be applied to this problem.
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75 F. Murat. Compacité par compensation. Annali Scuola Norm. Sup. Pisa 5 (1978), 489–507.
76 F. Murat and L. Tartar. H-convergence. In Topics in the mathematical modelling of com-

posite materials (ed. A. Cherkaev and R. Kohn), pp. 21–44 (Birkhäuser, 1997).
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