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Abstract

This study deals with both a decision model for making decisions under epistemic uncertainty and how to use it for selecting
optimal materials under the same uncertainty. In particular, the proposed decision model employs a set of possibilistic ob-
jective functions defined by fuzzy numbers to handle a set of conflicting criteria. In addition, the model can calculate the
compliance of a piece of decision-relevant (imprecise) information with a given objective function. Moreover, the model is
capable to aggregate the calculated compliances for the sake of ranking a given set of alternatives against the set of con-
flicting criteria. The problem of selecting materials for making the body of a vehicle is considered as an example. In
this problem, the indices for selecting the materials are unknown because the specifications regarding the vehicle body
are not given. In addition, the data relevant to material properties entails a great deal of imprecision. The presented decision
model can quantify the above-mentioned epistemic uncertainty in a lucid manner and generate a list of optimal materials.
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1. INTRODUCTION

The notion of uncertainty has earned a great deal of attention
from researchers belonging to various academic disciplines.
Uncertainty is often understood (semantics) by classifying it
into different categories, for example, aleatory uncertainty, epis-
temic uncertainty, irreducible uncertainty, reducible uncer-
tainty, and inference uncertainty (Booker & Ross, 2011; Ross
et al., 2013). In general, aleatory uncertainty refers to uncer-
tainty due to random variability or stochastic processes. Epis-
temic uncertainty refers to uncertainty due to lack of knowledge
or imprecision associated with the data and information. Irredu-
cible uncertainty refers to uncertainty due to natural variability
that can be quantified but cannot be reduced. Reducible uncer-
tainty refers to uncertainty that can be reduced by acquiring
more information. Inference uncertainty refers to predicting
the future from the past, inferring the population behavior
from a sample, and inferring the system behavior from its sub-
systems. To compute uncertainty in a formal manner (syntax),
numerous theories have been developed, for example (to name
a few), probability theory (Dempster, 1968, 2008), imprecise

probability theory (Walley, 1991, 2000), evidence theory (Sha-
fer, 1976; Klir, 1990), possibility theory (Zadeh, 1978; Dubois
& Prade, 1988), and random interval theory (Joslyn & Booker,
2004). In certain cases, the theories are based on different cate-
gories of uncertainty. For example, the probability theory deals
mainly with the aleatory uncertainty, whereas the possibility
theory deals mainly with the epistemic uncertainty. Certain
theories can deal with multiple categories of uncertainty; for ex-
ample, imprecise probability theory can deal with aleatory
uncertainty and the epistemic uncertainty associated with the
probabilities of events. Nevertheless, the uncertainty of a cate-
gory can be interpreted in terms of the uncertainty of a different
category (Klir, 1999; Dubois et al., 2004; Sharif Ullah & Sham-
suzzaman, 2013). This means that the aleatory uncertainty,
epistemic uncertainty, and any other uncertainty are different
from each other in the sense of semantics, but all these uncer-
tainties are somewhat same in the computational sense, and
thereby, they can be integrated while developing systems for
making decisions under uncertainty regardless of its category.

Similar to numerous academic communities, the engineer-
ing design community has also recognized the above-men-
tioned theorization (syntax) and categorization (semantics)
of uncertainty, and developed numerous models and tools
for making design decisions under uncertainty (Antonsson
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& Otto, 1995; Huang & Jiang, 2002; Nikolaidis et al., 2003,
2004; Youn & Choi, 2004; Gurnani & Lewis, 2005; Ullah,
2005a, 2005b; Ullah & Harib, 2008; Achiche & Ahmed-
Kristensen, 2011; Sharif Ullah & Tamaki, 2011; Sharif Ullah
et al., 2012; Matsumura & Haftka, 2013; Sharif Ullah &
Shamsuzzaman 2013; Jiang et al., 2015; Rezaee et al.,
2015). The methods and tools for dealing with uncertainty
bring benefits for both approaches of engineering design,
namely, solution-based design and problem-based design.
In particular, the aleatory uncertainty-based measures (e.g.,
probability distributions and Bayesian inferences) are useful
for the solution-based design, where the robustness or reli-
ability of a given design solution is enhanced, without mak-
ing any drastic changes in the geometric and material speci-
fications of the given design solution. In the case of
problem-based design, the geometric and material specifica-
tions are not clearly defined or known; rather, numerous prob-
lems are introduced and solved (determining customer needs,
concept selection, and materials selection) by using the epis-
temic uncertainty-based measures (e.g., possibility measures
and fuzzy numbers). The goal here is to transform a problem-
based design to a solution-based design. Some authors have
integrated both aleatory uncertainty and epistemic uncer-
tainty based measures to make the design decision-making
process an even more robust and user-friendly process (e.g.,
see the works of Nikolaidis et al., 2003; Sharif Ullah & Ta-
maki, 2011; Sharif Ullah & Shamsuzzaman, 2013).

However, materials have been considered a key factor for
managing the complexity while designing engineering pro-
ducts (McDowell et al., 2010). In addition, to achieve a sus-
tainable future, the reduction and diversification of material
usages (i.e., materials efficiency) are considered more effec-

tive than other measures (e.g., energy efficiency; Allwood
et al., 2011; Ullah et al., 2013; Sharif Ullah et al., 2014). This
is even more relevant for the products called vehicles.
Mayyas et al. (Mayyas, Mayyas, et al., 2012; Mayyas, Qat-
tawi, et al., 2012) and Poulikidou et al. (2015) have shown
that the environmental impact of a vehicle depends heavily
on the materials used in different parts of a vehicle. Therefore,
if a designer has a clear idea about the appropriateness of a set
of materials for making the parts of a vehicle at the early stage
of the design process, then it would be easy for the designer to
control the complexity of the subsequent design activities
(McDowell et al., 2010; Omar, 2011). While assessing the ap-
propriateness of a set of materials for making the parts of a
vehicle, it is likely to be the case that the designer encounters
a certain degree of epistemic uncertainty, as schematically
illustrated in Figure 1.

As seen from Figure 1, if a designer prefers to select the op-
timal materials for making the body of a vehicle at a very early
stage of the design process, he or she makes this decision
without knowing the exact physical configuration of the
body. As such, the material indices (Ashby, 2005, pp. 509–
512) to be used for comparing the materials are unknown.
It is worth mentioning that the outline of a vehicle body de-
pends on customer requirements (Sharif Ullah et al., 2016),
and the outline is refined to get the final configuration using
numerous engineering analyses where the materials must be
known beforehand (Omar, 2011). In addition, we need to
handle conflicting objectives while selecting materials. For
example, if a designer prefers to maximize the structural in-
tegrity, then it may create a conflict with the environmental
impact, as schematically illustrated in Figure 1. As such,
how to define and manage these conflicting objectives is an

Fig. 1. A scenario of epistemic uncertainty.
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important issue that must be tackled under the above-men-
tioned epistemic uncertainty (i.e., under the situation where
the material indices are unknown). Moreover, the designer
may encounter heterogeneous and imprecise decision-rele-
vant information. For example, the information regarding
some material attributes (or properties) can be given by
some numerical ranges, information regarding some other
materials properties can be given by probability distributions,
and information regarding some other material properties can
be given by fuzzy numbers, as schematically illustrated in
Figure 1. It highly unlikely that all the materials-relevant
information are available as crisp numerical values, as it is
considered in other studies (Mayyas, Mayyas, et al., 2012;
Mayyas, Qattawi, et al., 2012; Poulikidou et al., 2015).

Therefore, the goal of this study is to develop a novel deci-
sion model to select the best alternatives. The proposed model
is designed to handle epistemic uncertainty and conflicting
objectives simultaneously. In order to show the effectiveness
of our model, we present a material selection case study,
where we do not have complete information about alternative
materials and design specifications. We have organized the
remainder of this article as follows: Section 2 describes the
mathematical entities that are needed for performing the re-
quired mathematical operations. Section 3 describes how to
determine the numerical scales for defining the objective
functions using some fuzzy numbers. Section 4 describes a
procedure to induce a triangular fuzzy number from numeri-
cal data as it is useful in making decision when the probability
distribution underlying a set of data is unknown or given.
Section 5 describes the proposed decision model that consists
of four major steps, namely, decision formulation, informa-
tion gathering, compliance calculation, and aggregation. Sec-
tion 6 presents the results and discusses their implications. In
particular, Section 6 presents the results of a material selec-
tion problem using the proposed decision model where a
large number of alloys of aluminum, magnesium, and tita-
nium are evaluated. Finally, Section 7 provides the conclud-
ing remarks of this study and avenues for future research.

2. MATHEMATICAL SETTINGS

As mentioned in the previous section, one of the objectives of
this study is to develop a novel decision model that helps make
a decision under epistemic uncertainty. To achieve this, the de-
cision model must be able to handle heterogeneous forms of
information (Fig. 1). Now, as far as the uncertainty is con-
cerned, there are two broad categories of information, namely,
crisp information and granular information (Zadeh, 2005;
Khozaimy et al., 2011). A piece of crisp information refers
to a sharp numerical value (e.g., density is 10 kg/m3). The
other category of information, granular information, refers to
a set of numerical values and has numerous forms. The sim-
plest form of granular information is called crisp granular in-
formation that refers to a numerical range (e.g., density is
[10, 15] kg/m3). Probability granular information refers to a
piece of information given by a probability distribution (e.g.,

density is normally distributed with mean 12 kg/m3 and stan-
dard deviation 1 kg/m3). Fuzzy granular information refers to
linguistically defined pieces of information that are often mod-
eled by the fuzzy sets or numbers (e.g., density is “low” where
low is defined by a triangular fuzzy number with core 12 kg/m3

and support [8, 20] kg/m3). The terms called triangular fuzzy
number, core, and support will be discussed in a moment.
There are other complex forms of granular information, for ex-
ample, fuzzy-probability granular information (density is most
likely normally distributed with mean 10 kg/m3 and standard
deviation 1 kg/m3). If the probability distribution is unknown,
one can model a piece of information using a fuzzy number or
possibility distribution (Dubois et al., 2004; Sharif Ullah &
Shamsuzzaman, 2013). This means that a fuzzy number is a
general form of granular information that subsumes other
forms of information.

Therefore, the proposed decision model must be able to
model both crisp information and various forms of granular
information. To formally compute the crisp information and
various forms of granular information in an integrated man-
ner, certain mathematical entities are needed. The remainder
of this section describes the needed mathematical entities,
namely, fuzzy numbers, triangular fuzzy numbers, maximi-
zation/minimization fuzzy numbers, and the degree of com-
pliance.

2.1. Fuzzy number

A fuzzy number F is a function F: <! [0, 1], and it must be
normal, compactly supported, convex, and upper semicontin-
uous (Zadeh, 1975; Dubois & Prade, 1978; Dijkman et al.,
1983). It is normal means that there is, at least, one real num-
ber f0 for which F( f0 ) ¼ 1. It is compactly supported means
that the set f f [< j F( f ) . 0g is bounded. It is convex means
that if f1 � f2 � f3, then min(F( f1 ), F( f3 ))� F( f2 ) for all f1, f2,
f3 [ <. It is upper semicontinuous means that the set f f j
F( f ) � ag is closed for each a [ [0, 1]. The points corre-
sponding to F(.) ¼ 1 constitute an interval called core. The
closed interval S¼ [a, b] [< beyond which the fuzzy number
F(.) ¼ 0 is called support. As such, F(a) ¼ 0 ^ F(a þ 1) . 0
and F(b 2 1) . 0 ^ F(b)¼ 0, where 1 is a very small positive
number.

2.2. Triangular fuzzy number

A triangular fuzzy number T is a fuzzy number that has a trian-
gularly shaped membership function represented as follows:

T(x) ¼ max 0, min

  
x� a

c� a

!
,

 
b� x

b� c

!!( )
: (1)

In Eq. (1), x [ <, a , c , b [ <. As such, the support of
the triangular fuzzy number T is [a, b]. The core of T is c be-
cause T(x ¼ c) ¼ 1. The function (x2a)/(c2a) is called the
left function and the function (b2x)/(b2c) is called the right
function. The alpha-cuts of a triangular fuzzy number are the
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intervals [a þ (c2a)a, b 2 (b2c)a], 8a [ (0, 1). The con-
cept of alpha-cut is useful when one needs an interval or a set
of intervals from a given triangular fuzzy number. In this
sense, all alpha-cuts belong to the support [a, b]; that is, the
support is the largest alpha-cut. Figure 2a shows, for example,
a triangular fuzzy number T where a¼10, b¼ 50, and c¼ 20.

2.3. Maximization fuzzy number

A maximization fuzzy number denoted as MX is also a fuzzy
number. It defines a possibilistic objective function for max-
imizing a quantity. The expression of MX is as follows:

MX(x) ¼ max 0,
x� a

b� a

n o
x � b

0 otherwise

(
: (2)

As such, the core of MX is equal to b and the support is
equal to [a, b]. MX linearly increases with the increase in x
in the interval of its support. Figure 2b shows, for example,
an MX where a ¼ 10 and b ¼ 30. As MX is for maximizing

a quantity, setting its support [a, b] is a critical issue. This is-
sue is described in Section 3.

2.4. Minimization fuzzy number

A minimization fuzzy number denoted as MI is also a fuzzy
number. It defines a possibilistic objective function for mini-
mizing a quantity. The expression of MI is as follows:

MX(x) ¼ max 0,
b� x

b� a

� �
x � a

0 otherwise

8<
: : (3)

As such, the core of MI is equal to a and the support is
equal to [a, b]. MI linearly decreases with the increase in x
in the interval of its support. Figure 2c shows, for example,
an MI where a ¼ 10 and b ¼ 40. As MI is for minimizing a
quantity, setting its support [a, b] is a critical issue, similar to
MX. This issue is also described in Section 3.

2.5. Degree of compliance of a crisp value

Let d be a point in the support of MX or MI; that is, d [ [a, b].
Its degree of compliance with MX or MI, denoted as CCMX or
CCMI , respectively, is its membership value or degree of
belief (DOB). Thus, Eqs. (4) and (5) can be used to express
them:

CCMX ¼ MX(d) ¼ d � a

b� a
, (4)

CCMI ¼ MI(d) ¼ b� d

b� a
: (5)

For example, consider that [a, b] ¼ [10, 30] for both MX
and MI. As such, if d ¼ 15, then CCMX ¼ 0.25 and CCMI

¼ 0.75. Needless to say, the nature of CCMX or CCMI resem-
bles the nature of MX or MI, respectively. The higher the
value of CCMX or CCMI , the better the d from the viewpoint
of maximization or minimization, respectively.

2.6. Degree of compliance of a crisp granular
information

Let P¼ [ p, q] be an interval in the support [a, b] of MX or MI;
that is, p � a ^ q � b, as schematically illustrated in
Figure 3a–b. The compliance of P with respect to MX or
MI denoted as RCMX or RCMI , respectively, is the average
membership value of P with respect to MX or MI (Ullah,
2008; Rashid et al., 2011; Shamasuzzaman et al., 2013).
Therefore, Eqs. (6) and (7) can be used to express them:

RCMX ¼

Ð
p
MX(x)dx

jq� pj ¼
MX(p)þMX(q)

2
¼ ( pþ q)� 2a

2(b� a)
, (6)

Fig. 2. Examples of triangular, maximization, and minimization fuzzy
numbers.
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RCMI ¼

Ð
p
MI(x)dx

jq� pj ¼
MI(p)þMI(q)

2
¼ 2b� (pþ q)

2(b� a)
: (7)

As such, RCMX and RCMI take a value in the interval [0, 1].
The plot shown in Figure 3c for two arbitrary cases shows the
typical nature of RCMX . Case 1 corresponds to p¼ 12þ s, q¼
15þ s, s¼ 0, 0.5, . . . , 15. The other case corresponds to p¼
12þ u, q¼ 20þ u, u¼ 0, 0.5, . . . , 10. The range correspond-
ing to the first case is relatively slim, whereas the other is
relatively fat. In both cases, RCMX linearly increases when
it approaches the upper limit of maximization (i.e., b ¼ 30).
RCMX becomes unit if it is a point equal to the core of MX
(i.e., p ¼ q ¼ b). RCMX becomes zero if it is a point equal
to a, (i.e., p ¼ q ¼ a). Otherwise, RCMX , 1 (see Fig. 3c).
The higher the value of RCMX , the better the P from the view-
point of maximization.

In contrast, the plot shown in Figure 3d for two arbitrary
cases shows the typical nature of RCMI . Case 1 corresponds
to p ¼ 12 þ s, q ¼ 15 þ s, s ¼ 0, 0.5, . . . , 15. The
other case corresponds to p ¼ 12 þ u, q ¼ 20 þ u, u ¼
0, 0.5, . . . , 10. The range that corresponds to the first case
is relatively slim, whereas the other is relatively fat, similar to
that in RCMX . In both cases, RCMI linearly decreases when it
approaches the lower limit of minimization (i.e., a ¼ 10).
RCMI is unit if it is a point equal to the core of MI (i.e., p ¼
q ¼ a). RCMI is zero if it is a point equal to b, (i.e., p ¼ q ¼
b). Otherwise, RCMI , 1 (see Fig. 3d). The higher the value
of RCMI , the better the P from the viewpoint of minimization.

2.7. Degree of compliance of a triangular fuzzy
number

This subsection employs the notion of triangular fuzzy num-
ber as defined in Eq. (1) but expresses it using a different set
of notations so that one can differentiate it from other triangu-
lar fuzzy numbers.

Let t1, t2, and t3 be three points in the ascending order
on the real-line; that is, t1 � t2 � t3 [ <. Let the interval
[t1, t3] and the point t2 be the support and core, respectively,
of a triangular fuzzy number denoted as D. As such, the
following expression holds:

D(x) ¼ max 0, min
x� t1
t2 � t1

� �
,

t3 � x

t3 � t2

� �� �� �
: (8)

Recall the maximization fuzzy number MX defined in
Equation (2) and its support [a, b]. Assume that the support
of D belongs to the support of MX; that is, a � t1 and b � t3.
This assumption is illustrated in Figure 4a, where the
points of intersections of D and MX are VMX(VMXx,VMXy) and
WMX(WMXx,WMXy), and are given as

VMXx ¼
bt1 � at2

(b� a)� (t2 � t1)
,

VMXy ¼
t1 � a

(b� a)� (t2 � t1)
, (9)

Fig. 3. Compliances of a range with respect to maximization and minimization fuzzy numbers.
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WMXx ¼
bt3 � at2

(b� a)þ (t3 � t2)
,

WMXy ¼
t3 � a

(b� a)þ (t3 � t2)
: (10)

Let the area under the function min(D(x), MX(x)) be AMX .
As a result, the following expression holds:

AMX ¼
ðt3
t1

minðDðxÞ, MXðxÞÞdx

¼ VMXyðWMXx � t1Þ þWMXyðt3 � VMXxÞ
2

: (11)

The maximum possible AMX is 1
2 (t3 � t1), which occurs if

t1 ¼ a and t2 ¼ t3 ¼ b, that is, if D takes the shape of MX.
Therefore, if AMX is normalized by the abovementioned max-
imum possible area, then the resulting quantity denoted as
TCMX measures the degree of compliance of D with respect
to MX in the interval [0, 1]. Equation (12) is used to express
this relationship:

TCMX ¼
AMX

1
2
ðt3 � t1Þ

¼ VMXyðWMXx � t1Þ þWMXyðt3 � VMXxÞ
ðt3 � t1Þ

:

(12)

A typical nature of TCMX is shown in Figure 4b for two ar-
bitrary cases. Case 1 corresponds to t1 ¼ 10þ s, t2 ¼ 12þ s,

t3 ¼ 15þ s, s¼ 0, 0.5, . . . , 15. The other case corresponds to
t1 ¼ 10þ u, t2 ¼ 15þ u, t3 ¼ 20þ u, u¼ 0, 0.5, . . . , 10. The
triangular fuzzy number corresponding to the first case is rel-
atively slim, whereas the other one is relatively fat. In both
cases, an exponential increase in the value of TCMX is ob-
served, if the triangular fuzzy numbers approach the upper
limit of maximization (i.e., b ¼ 30). TCMX becomes unit if
D takes the shape of MX (i.e., t1 ¼ a, t2 ¼ t3 ¼ b). Otherwise,
TCMX , 1 (see Fig. 4b). The more the D resembles MX, the
higher is the value of TCMX . In other words, the higher the
value of TCMX is, the better is the D from the viewpoint of
maximization.

Recall the minimization fuzzy number MI defined by Eq.
(3) and its support [a, b]. We assume that the support of D be-
longs to the support of MI; that is, a � t1 and b � t3. This as-
sumption is illustrated in Figure 5a, where the points of inter-
sections between D and MI are VMI(VMIx, VMIy) and
WMI(WMIx,WMIy), and are given, as follows:

VMIx ¼
bt2 � at1

ðb� aÞ þ ðt2 � t1Þ
,

VMIy ¼
b� t1

ðb� aÞ þ ðt2 � t1Þ
, (13)

WMIx ¼
bt2 � at3

ðb� aÞ � ðt3 � t2Þ
,

WMIy ¼
b� t3

ðb� aÞ � ðt3 � t2Þ
: (14)

Fig. 4. Compliance of a triangular fuzzy number with respect to a maximi-
zation fuzzy number.

Fig. 5. Compliance of a triangular fuzzy number with respect to a minimiza-
tion fuzzy number.
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Let the area under the function min(D(x), MI(x)) be AMI .
As a result, the following expression holds:

AMI ¼
ðt3
t1

minðDðxÞ, MIðxÞÞdx

¼ VMIyðWMIx � t1Þ þWMIyðt3 � VMIxÞ
2

: (15)

The maximum possible AMI is 1
2 (t3 � t1), which occurs

when t1 ¼ t2 ¼ a and t3 ¼ b, that is, when D takes the shape
of MI. Therefore, if AMI is normalized by the abovementioned
maximum possible area, then the resulting quantity denoted
as TCMI measures the degree of compliance of D with respect
to MI in the interval [0, 1]. The expression of TCMI can be
expressed as follows:

TCMI ¼
AMI

1
2
ðt3 � t1Þ

¼ VMIyðWMIx � t1Þ þWMIyðt3 � VMIxÞ
ðt3 � t1Þ

: (16)

The typical nature of TCMI is shown in Figure 5b for two dif-
ferent cases. Case 1 corresponds to t1 ¼ 10 þ s, t2 ¼ 12 þ s,
t3 ¼ 15þ s, s¼ 0, 0.5, . . . , 15. The other case corresponds to
t1 ¼ 10þ u, t2 ¼ 15þ u, t3 ¼ 20þ u, u¼ 0, 0.5, . . . , 10. The
triangular fuzzy number corresponding to the first case is rela-
tively slim compared to that of the other case. In both cases,
TCMI linearly increases if the triangular fuzzy number ap-
proaches the upper limit of maximization (i.e., b ¼ 30). It is
worth mentioning that TCMI becomes unit if D takes the shape
of MI (i.e., t1 ¼ a, t2 ¼ t3 ¼ b). Otherwise, TCMI , 1 (see
Fig. 5b). The higher the value of TCMI , the better the D from
the viewpoint of minimization.

3. DETERMINING THE SUPPORTS

To define the maximization or minimization fuzzy number de-
noted as MX or MI, as described in the previous section, the sup-
port [a, b] must be known beforehand. Despite the remarkable
progress of fuzzy-number-based knowledge-based systems, it
remains true that no unique, best-of-the-world solution exists
for setting a support of a fuzzy number unless it is induced using
a set of numerical data (see Section 4). Keeping this in mind, this
section describes four types of supports, namely, deterministic,
local, semiglobal, and global supports, for defining MX or MI.
These supports are described below using numerical examples.

Consider the support called deterministic support. Determi-
nistic support means a support that is known to all without
any controversy. For example, consider the parameter called re-
cycle fraction. It is customary to express the recycle fraction
using a number taken from the interval [0, 1]. This means that
if one defines MX or MI for maximizing or minimizing the re-
cycle fraction, respectively, then the support [a, b] is equal to
[0, 1]; that is, [a, b] ¼ [0, 1]. The same argument holds for nu-
merous physical quantities. It is worth mentioning that the com-
pliances described in the previous section also underlie a deter-

ministic support that is equal to [0, 1]. If one is interested in
seeing whether the compliances of an alternative for a set of cri-
teria are being maximized, he or she obviously chooses an MX
for compliance maximization. In this case, the MX underlies a
support equal to [0, 1] because the values of the compliances al-
ways lie in the interval [0, 1] no matter the type of compliance
(crisp, range, and fuzzy), as described in the previous section.

However, the local, semiglobal, and global supports are
somewhat subjective and, thereby, depend on the user’s judg-
ment or the available numerical data. For example, consider
the following scenario. Engineering materials are divided into
seven classes, namely, wood and wooden products, foams,
rubbers, polymers, composites, ceramics, and metals and al-
loys. Assume that one is interested in maximizing or mini-
mizing the density of material. According to (Ashby, 2005,
pp. 520–521) the density (Mg/m3) of wood and wooden
products, foams, rubbers, polymers, composites, ceramics,
and metals and alloys lies in the interval [0.6, 1.05], [0.016,
0.47], [0.92, 0.955], [0.89, 1.58], [1.5, 2.9], [1.9, 15.9], and
[1.74, 8.94], respectively.

Now, if one considers a class of materials, for example, met-
als and alloys, as the alternatives, and wants to evaluate the ma-
terials in the class using density as one of the criteria, then an
interval [1.74, 8.94], or even a larger one (e.g., [1, 10]), be-
comes the support of MX or MI because the suggested support
subsumes the intervals representing the density of all materials
belonging to the considered class according to the supplied
data. This kind of support is called the local support in the sense
the support focuses alternatives that belong to a single class.

In contrast, if one considers two classes of materials, for ex-
ample, polymers and ceramics, as the alternatives, and wants
to evaluate the materials of both classes using density as one
of the criteria, then an interval [0.89, 15.9], or even a larger
one (e.g., [0.5, 20]), becomes the support of MX or MI be-
cause the suggested support subsumes [0.89, 1.58] and
[1.9, 15.9], that is, the intervals underlying the two classes
of materials considered in terms of the criterion called density
according to the supplied information. This kind of support is
called the semilocal support.

Moreover, if one considers all materials as alternatives, and
wants to evaluate them using density as one of the criteria,
then an interval [0.016, 15.9], or even a larger one (e.g.,
[0.01, 20]) becomes the support of MX or MI. The reason is
that the suggested support includes all intervals for all the ma-
terials considered in terms of the criterion called density ac-
cording to the supplied information. This kind of support is
called the global support.

4. INDUCTION OF A TRIANGULAR FUZZY
NUMBER FROM NUMERICAL DATA

In certain cases, the uncertainty associated with a set of numer-
ical data can be represented by a possibility distribution of
triangular form, that is, a triangular fuzzy number. To do
this, it is important to develop a transformation mechanism
based on the probability–possibility consistency principle,
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which states that lessening of the possibility of an event tends
to lessen its probability, but not vice versa (Zadeh, 1978). Fig-
ure 6 illustrates a triangular fuzzy number induction process
using an arbitrary set of numerical data X ¼ f(i, x(i)) [ < j i
¼ 0, . . . , 100g. As we have seen in Figure 6, the variability
associated with a variable X is first represented by a point-cloud
that is the plot in ordered pairs f(x(i), x(iþ1)) j i ¼ 0, 1, . . . ,
99g. Using a probability–possibility transformation, the point-
cloud can be transformed into a triangular fuzzy number. See
Sharif Ullah and Shamsuzzaman (2013) for a detailed proce-
dure that transforms a point-cloud to a triangular fuzzy num-
ber. The induced triangular fuzzy number can be used to cal-
culate the degree of compliance of the supplied set of data
on X with respect to MX or MI, as described in Section 2.6.

It is worth mentioning that the set of numerical data must
lie in the support of MX or MI; that is, x(i) [ [a, b], i ¼ 0,
1, . . . , n. Otherwise, the calculation of the degree of compli-
ance cannot be performed. In addition, if a variable X takes
values from a unimodal probability distribution (e.g., from
uniform, normal, or triangular distribution), then its equiva-
lent possibility distribution (a triangular fuzzy number) can
be used while calculating the degree of compliance in accor-
dance with the procedure described in Section 2.6. Sharif Ul-
lah and Shamsuzzaman (2013) shows the equivalent triangu-
lar fuzzy numbers for the uniform and normal distributions.

5. PROPOSED DECISION MODEL

This section describes the proposed decision model. The pro-
posed decision model employs the formulations described in
Section 2 to Section 4, and helps users to make a decision un-
der epistemic uncertainty, as described in Section 1. Figure 7

schematically illustrates the proposed decision model and its
relationship with the decision-relevant (analytic and/or em-
pirical) knowledge. As seen from Figure 7, the decision
model consists of four modules, namely, formulation, infor-
mation gathering, compliance calculation, and aggregation.
The formulation and information gathering modules work
in coordination with the decision-relevant knowledge. This
means that the available knowledge regarding a given deci-
sion problem plays a vital role while performing the activities
of formulation and information gathering modules. The out-
put of the formulation module serves as an input for the infor-
mation gathering module. The combined output of the formu-
lation and information gathering modules serves as the input
for the compliance calculation module. The output of the
compliance calculation module is the degrees of compliances
for all alternatives for each criterion. Once the compliance
calculation module completes its function, the aggregation
module makes a trade-off among the compliances of some
of the selected criteria based on the user-defined importance
in order to rank the alternatives. The ranks of the alternatives
thus help make an informed decision. The decision made can
be fed into the existing body of knowledge to enrich it, as
schematically illustrated in Figure 7.

However, the above description of the proposed decision
model is rather informal. A relatively formal description of
the decision model is given, as follows: consider the formula-
tion module. To be more specific, let A¼ fA1, . . . , ANg be the
set of N different alternatives, C¼ fC1, . . . , CMg be the set of
M different criteria, and O ¼ fO1, . . . , OMg be the set of the
states of the members in C so that 8Oj [ fmaximization, mini-
mizationg, j ¼ 1, . . . , M. The purpose of the formulation
module is to define A, C, and O. In doing so, the formulation

Fig. 6. Representing the uncertainty of numerical data using a triangular fuzzy number.

Decision model for making decisions 305

https://doi.org/10.1017/S0890060417000191 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000191


module relies on the analytical and empirical knowledge
underlying the decision problem, as schematically illustrated
in Figure 7. Finally, the formulation module decides the nat-
ures of the objective functions for the criteria in C as follows.
Let OB ¼ fOB1, . . . , OBMg be the set of the objective func-
tions of the criteria defined in C. As such, if Oj ¼ maximiza-
tion, then OBj ¼ MXj; otherwise, OBj ¼ MIj.

Once the formulation module completes its functions, the
second module, called information gathering, gathers all sorts
of data/information needed for determining the degree of
compliances. It gathers the information to define the supports
of the objective functions. Needless to say, there are four
types of supports, namely, deterministic, local, semiglobal,
and global supports, as described in Section 3. However, to
be more specific, let Sj ¼ [aj, bj] be the support of OBj, 8j
[ f1, . . . , Mg. Thus, Sj ¼ [aj, bj], 8j [ f1, . . . , Mg can
be a deterministic, local, semiglobal, or global support. The
other function of the information gathering module is to
gather the decision-relevant information on each alternative
defined in A for all criteria defined in C. Here, a piece of de-
cision-relevant information denoted as DRIi;j can be a set of
numerical values fdk

i;j j k ¼ 1, 2 , . . .g, a set of real intervals
fPl

i;j j l¼ 1, 2, . . .g, a set of triangular fuzzy numbers fDr
i;j j

r¼ 1, 2, . . .g, and any combination of these. This implies that
DRIi;j # fDRIk

i;j, DRIl
i;j, DRIr

i;jg, where DRIk
i;j¼ f dk

i;j j k¼
1, 2 , . . .g, DRIl

i;j ¼ f Pl
i;j j l¼ 1, 2 , . . .g, and DRIr

i;j ¼ fDr
i;j

j r ¼ 1, 2, . . .g.
Using the outcomes of the formulation and information

gathering modules, the subsequent module, that is, the com-
pliance calculation module, calculates the degree of compli-
ance for each combination of alternative and criterion. A de-
gree of compliance denoted as COMi;j [ [0, 1] is calculated
by inputting each member of DRIi;j in to CCMX , CCMI , RCMX ,
RCMI , TCMX , or TCMI , as defined in Section 2. If DRIz

i;j is a
member of DRIi;j, then the corresponding degree of compli-
ance can be represented as COMz

i;j.
Finally, the aggregation module aggregates the compli-

ances of an alternative for some selected criteria in order to
rank the alternatives so that one can make an informed deci-
sion. To be more specific let Yi;j ¼ fCOMz

i;jj z ¼ 1, 2, . . .g

be the set of compliances of the ith alternative with respect
to jth criterion. Using Yi;j [ [0, 1] a triangular fuzzy num-
ber denoted as TAi;j can be induced. The induction process
is described in Section 4. Let the support and core of the
induced triangular fuzzy number TAi;j be [t1ij, t3ij] and t2ij,
respectively. As the values of the compliance lie in the inter-
val [0, 1] and the compliance must be maximized, a special
maximization fuzzy number denoted as COMMX can be con-
sidered where the support and core are [a, b]¼ [0, 1] and b¼
1, respectively. As a result, the compliance of TAi;j with re-
spect to COMMX is the ranking score of the ith alternative
with respect to the jth criterion denoted as RSi;j. Recall the
procedure of determining the compliance of a triangular
fuzzy number with respect to a maximization fuzzy number
described in Section 2 [see Fig. 4 and Eqs. (8)–(12)]. This
procedure is valid for TAi;j and COMMX , too. The interaction
between TAi;j and COMMX is schematically illustrated in
Figure 8, which is a similar case illustrated in Figure 4. In
Figure 8, the points of intersections of TAi;j and COMMX

are VMXij(VMXxij,VMXyij) and WMXij(WMXxij,WMXyij). This yields
the following expression defining RSi;j:

RSij ¼
VMXyijðWMXxij � t1ijÞ þWMXyijðt3ij � VMXxijÞ

ðt3ij � t1ijÞ
: (17)

Fig. 7. Proposed decision model.

Fig. 8. Determining the ranking of an alternative based on a criterion.
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We found the following relationships by substituting 0, 1, t1ij,
t2ij, t3ij, VMXxij, VMXyij, WMXxij, and WMXyij for a, b, t1, t2, t3, VMXx,
VMXy, WMXx, and WMXy, respectively, in Eqs. (9) and (10):

VMXxij ¼ VMXyij ¼
t1ij

1� ðt2ij � t1ijÞ
, (18)

WMXxij ¼ WMXyij ¼
t3ij

1þ ðt3ij � t2ijÞ
: (19)

Therefore, the ranking score RSi;j defined in Eq. (17) is cal-
culated after calculating VMXxij, VMXyij, WMXxij, and WMXyij

using Eqs. (18) and (19), respectively. The ranking scores
of an alternative Ai for all criteria can be added using the
weighted importance. This yields a decision score denoted
as DC(Ai), as follows:

DCðAjÞ ¼
XM
j¼1

wjRSij, so that

wj ¼
IMPjPM

j¼1 IMPj

: (20)

In Eq. (20), IMPj is the importance of jth criterion that is an
integer in the scale 0 to 10; that is, IMPj [ f0, 1, . . . , 10g, 8j
[ f1, . . . , Mg. The more the importance of the criterion, the
greater the value of IMPj. Thus, wj represents the normalized
weight of the jth criterion, 8wj [ [0, 1]. Note that each IMPj is
assigned subjectively by the decision maker(s).

6. RESULTS AND DISCUSSIONS

We will use the same material selection problem illustrated in
Figure 1 to show how our proposed model works. Consider
the formulation module. Here, three alternatives are consid-
ered as listed in Table 1 based on the general knowledge re-
garding materials used for making vehicle parts (McDowell
et al., 2010; Omar, 2011; Mayyas, Mayyas, et al., 2012;
Mayyas, Qattawi, et al., 2012; Poulikidou et al., 2015). The
first alternative is a set of aluminum alloys (Al) that consists
of 197 types of aluminum-based alloys. The second alterna-
tive is set of magnesium alloys (Mg) that consists of 30 types
of magnesium-based alloys. The last alternative is set of tita-
nium alloys (Ti) that consists of 45 types of titanium-based
alloys. The number of alloys 197, 30, and 45 of Al, Mg, and
Ti are considered based on the information available in a ma-
terial database (CES Selector, Granta Design Limited, UK).

To select materials for engineering components, there are
material indices (Ashby, 2005, pp. 509–512). The indices de-
pend on the nature of a component (e.g., tie, shaft, beam, col-
umn, plate, and panel) and the objective (e.g., stiffness-lim-
ited design at minimum mass and strength-limited design at
minimum mass). In these indices, such material properties
as density, tensile strength, and Young’s modulus are in-
volved. Therefore, when the nature of the component is un-
known or not given, as it is the case here (Fig. 1), at least, three
material properties, namely, density, tensile strength, and
Young’s modulus, must be considered to ensure the structural
integrity of the component. In addition, according to the ma-
terial indices (Ashby, 2005, pp. 509–512), to achieve a given
objective (e.g., stiffness-limited design at minimum mass and
strength-limited design at minimum mass), the density must
be minimized whereas the tensile strength and Young’s mod-
ulus must be maximized. For example, the environmental im-
pact of a vehicle can be minimized by reducing its weight.
Therefore, minimization of density helps reduce the environ-
mental impact, too. Moreover, to reduce the usages of mate-
rial, that is, to increase the material efficiency (Allwood et al.,
2011; Ullah et al., 2013; Sharif Ullah et al., 2014), the recycle
fraction of materials must be maximized. At the same time,
the primary production of materials must not produce a large
quantity of greenhouse gasses (i.e., consume energy) and
consume resources (e.g., water and land; Rashid et al.,
2011; Ullah et al., 2013; Sharif Ullah et al., 2014). Thus, be-
sides density, water usage, CO2 footprint of primary produc-
tion of materials, and the recycle fraction must be considered
in order to accommodate the issue of sustainability while se-
lecting material for making the body of a vehicle.

Based on the above contemplation, a set of six criteria,
namely, density, tensile strength, Young’s modulus, water
usage, CO2 footprint, recycle fraction, are considered to
evaluate the alternatives called Al, Mg, and Ti. The deci-
sion-relevant information of these six criteria are shown by
the minimum–maximum plots in Figure 9. As the material
properties of an alloy are given by some numerical ranges
or as a crisp granular information (see CES Selector data-
base), the minimum and maximum values of each range
can be plotted on the horizontal and vertical axis, respec-
tively. For example, let the density of an alloy be [2.63,
2.78] Mg/m3 (here “Mg” is mega-gram not magnesium).
This piece of decision-relevant information is thus a point
(2.63, 2.78) on the minimum–maximum plot.

However, based on the decision-relevant information
shown in Figure 9, the supports of the respective criterion
are determined, as summarized in Table 2. As such, all sup-
ports here are local supports except the support of recycle
fraction, which is a global support. The optimization states
of the criteria are also listed in Table 2. As we see from
Table 2, the tensile strength, Young’s modulus, and recycle
fraction must be maximized, whereas the density, water usage,
and CO2 footprint must be minimized, as described above.

The compliances of each alloy are determined using the
procedure described in the previous section and shown by

Table 1. Alternatives (A)

A1 ¼ Aluminum
Alloys (Al)

A2 ¼ Magnesium
Alloys (Mg)

A3 ¼ Titanium
Alloys (Ti)

197 total types of Al
alloys are considered
in A1

30 total types of Mg
alloys are considered
in A2

45 total types of
Ti alloys are
considered
in A3
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Fig. 9. Decision-relevant information for three different categories of metal alloys.

Table 2. States of criteria and their supports

Criteria (C)

C1 ¼ Density
C2 ¼ Tensile

Strength
C3 ¼ Young’s

Modulus
C4 ¼Water

Usage
C5 ¼ CO2

Footprint
C6 ¼ Recycle

Fraction
Items (�) (mg/m3) (MPa) (GPa) (kg/kg) (kg/kg-CO2) (%)

States Minimize Maximize Maximize Minimize Minimize Maximize
Supports [a, b] [1, 15] [5, 1800] [10, 250] [0.1, 10] [1, 65] [0, 100]
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the plots in Figure 10. As we see from the plots in Figure 10,
the order of preference in terms density is Mg . Al . Ti, ten-
sile strength is Ti . Al . Mg, Young’s modulus is Ti . Al .

Mg, water usage is Al . Ti . Mg, CO2 footprint is Al . Mg
. Ti, and recycle fraction is Al . Mg . Ti.

The ranking scores of the three alternatives for each criter-
ion are also determined using the procedure described in the
previous section and shown in Table 3. This ranking score
also preserves the abovementioned order of preferences, as
indicated in the last row in Table 3. This means that the rank-

ing score is an effective means to aggregating the uncertainty
associated with an alternative for a given criterion.

Once the ranking scores are known, one can determine the
decision score as described in the previous section. In doing
so, the importance of the criteria must be set. For this particu-
lar case, the criteria called density, water usage, CO2 foot-
print, and recycle fraction are useful in assessing the sustain-
ability of material and, thereby, the sustainability of vehicles,
as described in the above. The other two criteria, namely,
Young’s modulus and tensile strength, are useful for ensuring

Fig. 10. Compliances of the alternatives for respective criterion.

Table 3. Ranking scores of the alternatives

Criteria (C )

Alternatives (A) C1 ¼ Density
C2 ¼ Tensile

Strength
C3 ¼ Young’s

Modulus C4 ¼ Water Usage C5 ¼ CO2 Footprint
C6 ¼ Recycle

Fraction

A1 ¼ Al 0.982 0.327 0.470 0.992 0.966 0.426
A2 ¼ Mg 0.995 0.243 0.255 0.872 0.871 0.418
A3 ¼ Ti 0.906 0.741 0.666 0.915 0.780 0.399

Preferential order Mg . Al . Ti Ti . Al . Mg Ti . Al . Mg Al . Ti . Mg Al . Mg . Ti Al . Mg . Ti
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the structural integrity of the body of a vehicle. Therefore,
density, water usage, CO2 footprint, and recycle fraction are
called sustainability criteria, and the other two are called in-
tegrity criteria. One can determine the decision-scores of
the alternatives for different sets of importance as shown in
Table 4. In particular, three sets of importances are chosen
here for determining the decision scores. In the first set,
both sustainability and integrity criteria are considered
equally important. This makes Ti’s decision score the maxi-
mum followed by those of Al and Mg, respectively. Thus,
when both sustainability and integrity criteria have the
same degree of importance, the list of preferences is Ti .

Al . Mg. In the second set, sustainability criteria are consid-
ered relatively more important than the integrity criteria. This
makes Al’s decision score the maximum followed by those of
Ti and Mg, respectively. Thus, when the sustainability criteria
are more important than the integrity criteria, the list of pref-
erences is Al . Ti . Mg. This means that Ti and Al alternate
their positions once the integrity criteria lose their importance
compared to those of sustainability. In the last set, the sustain-
ability criteria are considered very important compared to
those of integrity. This makes Al’s decision score the maxi-
mum followed by those of Mg and Ti, respectively. Thus,
when the integrity criteria are somewhat insignificant com-
pared to those of sustainability, the list of preferences is Al
. Mg . Ti. This means that Al and Mg are the preferred ma-
terials when the sustainability is a key concern.

7. CONCLUDING REMARKS

Selecting appropriate materials at an early stage of a design
process helps manage the complexity in the subsequent steps
of product realization (detailed design, manufacturing, assem-
bly, and operations management). Therefore, material selec-
tion entails a great deal of significance in engineering design.

The early stage of a design process means that the design
specifications and requirements are not known. Therefore,
conventional material selection procedures are not applicable

for selecting materials at an early stage of a design process.
This study sheds some lights on this issue by developing a
novel decision model that helps make a decision even though
the design specifications and requirements are still evolving.

In the presented decision model, the mathematical entities
called triangular fuzzy number, compliance, and decision-
score play a vital role. They are helpful for assessing and man-
aging the heterogeneous decision-relevant information and
conflicting objectives. The participation of a decision maker
is also assured by introducing the user-defined importance in
the calculation process of the decision score.

Although a set of six criteria (density, tensile strength,
Young’s modulus, water usage, CO2 footprint, and recycle
fraction) is used in selecting materials for the body of a vehi-
cle under epistemic uncertainty, one can add other criteria
(e.g., cost, reserve, thermal property) if needed. Adding cri-
teria will enlarge the set of the degrees of compliances with-
out adding any additional information processing steps in the
decision-making process. Therefore, the presented decision
model possesses a great deal of scalabilities.

The advanced outlook on design process states that a de-
sign process is not only a knowledge-using process but also
a knowledge-creation process; the creation of knowledge
takes place if one can handle the epistemic uncertainty in a
systematic manner. As demonstrated in this study, the pre-
sented decision model can handle epistemic uncertainty in
a systematic manner. It is also shown to be useful in creating
new knowledge (e.g., it can create a list of material prefer-
ences even though the required design knowledge is not
available). Thus, the presented decision model can be inte-
grated with a design process when knowledge creation is pre-
ferred over knowledge use. This particularly true when a
problem-based design is transformed into a solution-based
design. Nonetheless, how to integrate the presented decision
model with the multiexpert decision-making scenarios
(Noor-E-Alam et al., 2011) is a future direction of research.
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