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ON THE BEHAVIOR OF THE FAILURE
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Abstract

In this paper the behaviour of the failure rate and reversed failure rate of an n-component
coherent system is studied, where it is assumed that the lifetimes of the components
are independent and have a common cumulative distribution function F. Sufficient
conditions are provided under which the system failure rate is increasing and the cor-
responding reversed failure rate is decreasing. We also study the stochastic and ageing
properties of doubly truncated random variables for coherent systems.
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1. Introduction

Coherent systems are among the basic and fundamental concepts in reliability engineering.
A system is said to be coherent if its structure is non-decreasing in each component and there is
no irrelevant component; see [1]. A well-known example of n-component coherent structures
which plays a fundamental role in reliability engineering is the k-out-of-n system (sometimes
referred to in the literature as k-out-of-n:G structure). Such a system functions as long as at least
k components function. Assume that X1, X2, . . . , Xn denote the independent and identically
distributed (i.i.d.) lifetimes of components of a coherent system where the Xi follow a common
cumulative distribution function (CDF) F. Usually the states of the system (or its components)
are classified as ‘functioning’ or ‘failed’, and the system state is fully specified by the states
of the components. Recent developments on reliability and ageing specifications of coherent
systems are mainly based on the notion of signature. Assume that X1:n ≤ X2:n ≤ · · · ≤ Xn:n are
the ordered component lifetimes of the system with lifetime T . The system signature is defined
as a vector s = (s1, s2, . . . , sn), where si = P{T = Xi:n}, i = 1, 2, . . . , n. A comprehensive dis-
cussion of different properties of the signature is presented in [18]. Since the signature s is not
influenced by F, the system reliability can be computed as

P{T > t} =
n∑

i=1

siP{Xi:n > t}, t ≥ 0.

Navarro, Ruiz, and Sandoval [17] demonstrated that the same result remains valid for
every coherent structure with components having exchangeable and absolutely continuous
distribution.
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As a generalization of coherent systems, one can consider the class of mixed systems whose
lifetimes are, in fact, stochastic mixtures of those of coherent structures of a certain size (see
[3]). The mixed system may be physically actualized by choosing at random from coherent
systems. As a consequence of this generalization, every vector p = (p1, p2, . . . , pn) of proba-
bilities such that p1 + p2 + · · · + pn = 1 may be considered as the signature of a mixed system.
Then, if the component lifetimes are exchangeable, the reliability of any mixed system can be
expressed as a mixture of the reliabilities of X1:n, X2:n, . . . , Xn:n.

Failure rate (FR) and reversed failure rate (RFR) are two useful concepts both in theory and
in applications of reliability and statistics. Assume that X is a lifetime random variable with an
absolutely continuous CDF F(x). The corresponding reliability function and probability den-
sity function are denoted by F̄(x) = 1 − F(x) and f (x), respectively. Define a = inf{x : F(x) > 0}
and b = sup{x : F(x) < 1}. Further, suppose that F is strictly increasing on [a, b]. The interval
[a, b], 0 ≤ a < b ≤ ∞, is called the interval of support of F. The FR h(t) and the RFR r(t) of X
are defined as

h(t) = f (t)

F̄(t)
, F̄(t) > 0,

and

r(t) = f (t)

F(t)
, F(t) > 0.

Notice that the existence of h(t) (or r(t)) requires the CDF F to be absolutely continuous.
In reliability engineering, the quality of products has been impressed with the shapes of h(t)

and r(t). The behavior of these and other ageing concepts leads us to some classes of lifetime
distributions such as decreasing and increasing FR. These classifications have been found to
be very useful in various fields of applied probability such as survival analysis and reliability
theory. For studying the shape of the FR and RFR, we refer the reader to [1], [9], [11], and
[16].

We now begin by introducing the most important classes of lifetime distributions based on
ageing concepts. A CDF F is said to be an increasing FR (IFR) if F̄ is log concave. Similarly,
F is said to be a decreasing FR (DFR) if F̄ is log convex. It is worth mentioning here that these
definitions do not need the CDF to be absolutely continuous. For an absolutely continuous
CDF F, the IFR (DFR) is equivalent to h(t) being increasing (decreasing) in t ≥ 0. Defining
other classes based on the monotone behavior of the RFR is similar, the difference being that
there does not exist any lifetime distribution having increasing RFR function on the entire
interval of support; see [2]. Thus we only define the class of lifetime distributions whose RFR
is non-increasing. The CDF F is said to be a decreasing RFR (DRFR) if F is log concave. In
the literature, several other classes based on ageing concepts are introduced and implicative
relationships between them are investigated; we refer, among others, to [1], [4], and [9].

In the literature, the initial and final behaviors of the FR have also been investigated. We
refer, among others, to Finkelstein and Cha [5], who considered an FR that is initially decreas-
ing or eventually increasing, and Mi [12], who discussed the optimal burn-in time under the
condition that the FR function is eventually increasing.

Throughout the article we shall use the following concepts.

Definition 1.1. (Karlin [6].) A bivariate function k(x, y) is sign-regular of order 2 (SR2) if
ε1k(x, y) ≥ 0 and ε2[k(x1, y1)k(x2, y2) − k(x1, y2)k(x2, y1)] ≥ 0 whenever x1 < x2 and y1 < y2,
for ε1 and ε2 equal to +1 or −1; k(x, y) is said to be totally positive of order 2 (TP2) if the
above relations hold with ε1 = ε2 = +1; k(x, y) is said to be reverse regular of order 2 (RR2) if
they hold with ε1 = +1 and ε2 = −1.
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When studying the reliability properties of distributions, the next lemma due to Karlin [6]
constitutes a key result.

Lemma 1.1. Let A, B and C be subsets of the real line, and let L(x, z) be SR2 for x ∈ A,
z ∈ B, and M(z,y) be SR2 for z ∈ B, y ∈ C. Then, for any σ -finite measure μ, K(x, y) =∫

B L(x, z)M(z, y) dμ(z) is also SR2 for x ∈ A and y ∈ C, and εi(K) = εi(L)εi(M) for i = 1, 2,
where εi(K) = εi denotes the constant sign of the ith-order determinants.

A basic question in which we are interested in this paper is how the behavior of the FR and
RFR of the coherent system relates to those of components. The question will be answered in
Section 2. We also relate in this section the initial or final behavior of the component probability
density function to the FR and the RFR of the system. Finally, in Section 3, some stochastic
comparisons of coherent systems based on doubly truncated random variables are provided.

In the article, the terms decreasing and increasing stand for non-increasing and non-
decreasing, respectively.

2. The FR and RFR for coherent systems

In the present section, some results on the behavior of the FR and the RFR functions of
coherent systems are provided. In a k-out-of-n system, it is known that if the component life-
times are i.i.d. according to an IFR distribution, then the system’s lifetime is also IFR (see [1]).
Samaniego [18] proved the result for a mixed system under a condition on the structure of the
system. Navarro et al. [15] studied conditions for the preservation of the IFR (and other relia-
bility classes) under the formation of coherent systems based on the domination function. We
now begin by establishing a theorem in this regard. The result gives a simpler sufficient condi-
tion for a coherent (or mixed) system with IFR (DFR) component lifetimes to be IFR (DFR).
An analogous result determining the behavior of the RFR function of a coherent structure can
also be obtained; see Theorem 2.2 below.

Theorem 2.1. Let s = (s1, s2, . . . , sn) be the signature vector of a coherent (or mixed) system.
If the common CDF F of components is IFR (DFR) and ai := (n − i)si+1/

∑n
j=i+1 sj (when

defined) is non-decreasing (non-increasing) in i, then the system’s lifetime is also IFR (DFR).

Proof. The FR of a mixed system can be rephrased as [18]

hT (t) =
∑n−1

i=0 (n − i)si+1
(n

i

)
ui

t∑n−1
i=0 (

∑n
j=i+1 sj)

(n
i

)
ui

t

h(t),

where ut = F(t)/F̄(t) represents the odds of failure versus survival. To prove the result, we need
to show that the function ξ , given by

ξ (x, k) =
n−1∑
i=0

ci,k

(
n

i

)
xi,

is TP2 (RR2) in (x, k) ∈ [0, ∞) × {0, 1}, where

ci,k =
{∑n

j=i+1 sj k = 0,

(n − i)si+1 k = 1.
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It can be easily observed that xi is TP2 in (x, i) ∈ [0, ∞) × {0, 1, . . . , n − 1}. Under the
assumption of the theorem, ci,k is TP2 (RR2) in (i, k) ∈ {0, 1, . . . , n − 1} × {0, 1}. The required
result then follows from Lemma 1.1. �
Remark 2.1. It follows from the proof of Theorem 2.1 that if F is initially IFR and (n −
i)si+1/

∑n
j=i+1 sj is non-decreasing in i, then the system’s lifetime is also initially IFR. Also,

it can be easily deduced that in the case where F is DFR and s is a DFR discrete probability
vector (i.e. si+1/

∑n
j=i+1 sj is non-increasing in i), then the system’s lifetime is DFR.

An analog of Theorem 2.1 about the preservation of DRFR class under the formation of
coherent systems is as follows.

Theorem 2.2. If the common CDF F of components is DRFR and bi := isi/
∑i

j=1 sj (whenever
defined) is non-increasing in i, then the system’s lifetime is DRFR.

Proof. One can show that the RFR of the system can be expressed as

rT (t) =
∑n

i=1 isi
(n

i

)
ui

t∑n
i=1

(∑i
j=1 sj

)(n
i

)
ui

t

r(t),

where ut = F(t)/F̄(t) and r(t) denotes the common RFR of component lifetimes. Define the
function ξ̃ (x, k) = ∑n

i=1 c̃i,k
(n

i

)
xi, where

c̃i,k =
{∑i

j=1 sj k = 0,

isi k = 1.

The result then follows from Lemma 1.1 on noting that under the assumption of the theorem,
xi is TP2 in (x, i) ∈ [0, ∞) × {1, 2, . . . , n} and c̃i,k is RR2 in (i, k) ∈ {1, 2, . . . , n} × {0, 1}. �

Some important facts regarding Theorems 2.1 and 2.2 are demonstrated in the following
examples. In the first example, it is seen that the conditions of the cited theorems on the system
signature are not necessary for the results to hold.

Example 2.1. Consider the bridge system pictured in Figure 1. Suppose the component life-
times follow a Weibull distribution W(α, β) with reliability function F̄(t) = exp{−(t/β)α},
t ≥ 0, where α, β > 0. Figure 2 depicts the system FR for different values of α and β. It can
be shown that the system signature s = (0, 0.2, 0.6, 0.2, 0) satisfies neither the condition of
Theorem 2.1 nor that of Theorem 2.2. However, as seen in Figure 2, the FR of the system with
IFR (DFR) Weibull components may be increasing (decreasing). Moreover, one can observe in
Figure 3 that the RFR of the system with such components is decreasing. Note that for the case
where the component lifetimes are distributed as W(0.8, 0.9), the system has an upside-down
bathtub-shaped FR.

Example 2.2. It can be shown that the signature of a k-out-of-n structure is the n-dimensional
unit vector (0, . . . , 0, 1, 0, . . . , 0) with 1 as the vector’s (n − k + 1)th element, and that it
fulfills the conditions of Theorems 2.1 and 2.2. This implies that k-out-of-n systems are
IFR (DRFR) when the corresponding component lifetimes are independent according to an
IFR (DRFR) distribution. The fact that the formation of k-out-of-n systems preserves the IFR
property had been already proved in Theorem 5.8 of [1].

Remark 2.2. As mentioned above, the preservation of IFR/DFR classes under the formation
of coherent systems was studied by Navarro et al. [15]. They considered coherent systems
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FIGURE 1: The bridge system.
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FIGURE 2: The FR of the bridge system with different Weibull component lifetimes.
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FIGURE 3: The RFR of the bridge system with different Weibull component lifetimes.

with identically distributed components or with arbitrarily distributed components, includ-
ing the case of possibly dependent components. However, while their study is based on the
representation of the system reliability function in terms of its domination function, we fol-
low a different approach (see Theorems 2.1 and 2.2) based on the system signature, which is
sometimes simpler.

For all coherent structures with 1–4 components, the signature vectors of order 4 are pro-
vided by Navarro and Rubio [13]. They are given in Table 1, in which we have determined
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TABLE 1. Signature vectors of order 4 for all coherent systems with 1–4 components

N T = φ(X1, X2, X3, X4) s ai bi

1 X1:1 = X1 ( 1
4 , 1

4 , 1
4 , 1

4 ) constant constant

2 X1:2 = min(X1, X2) ( 1
2 , 1

3 , 1
6 , 0) constant decreasing

3 X2:2 = max(X1, X2) (0, 1
6 , 1

3 , 1
2 ) increasing constant

4 X1:3 = min(X1, X2, X3) ( 3
4 , 1

4 , 0, 0) constant decreasing

5 min(X1, max(X2, X3)) ( 1
4 , 5

12 , 1
3 , 0) increasing ×

6 X2:3 (0, 1
2 , 1

2 , 0) increasing decreasing

7 max(X1, min(X2, X3)) (0, 1
3 , 5

12 , 1
4 ) × decreasing

8 X3:3 = max(X1, X2, X3) (0, 0, 1
4 , 3

4 ) increasing constant

9 X1:4 = min(X1, X2, X3, X4) (1, 0, 0, 0) constant decreasing

10 max(X1:3, min(X2, X3, X4)) ( 1
2 , 1

2 , 0, 0) increasing decreasing

11 min(X2:3, X4) ( 1
4 , 3

4 , 0, 0) increasing ×
12 min(X1, max(X2, X3), max(X3, X4)) ( 1

4 , 7
12 , 1

6 , 0) × ×
13 min(X1, max(X2, X3, X4)) ( 1

4 , 1
4 , 1

2 , 0) increasing ×
14 X2:4 (0, 1, 0, 0) increasing decreasing

15 max(X1:4, min(X1, X3, X4), min(X2, X3, X4)) (0, 5
6 , 1

6 , 0) × decreasing

16 max(X1:2, min(X3, X4)) (0, 2
3 , 1

3 , 0) increasing decreasing

17 max(X1:2, min(X1, X3), min(X2, X3, X4)) (0, 2
3 , 1

3 , 0) increasing decreasing

18 max(X1:2, min(X2, X3), min(X3, X4)) (0, 1
2 , 1

2 , 0) increasing decreasing

19 min(X2:2, max(X2, X3), max(X3, X4)) (0, 1
2 , 1

2 , 0) increasing decreasing

20 min(X2:2, max(X1, X3), max(X2, X3, X4)) (0, 1
3 , 2

3 , 0) increasing decreasing

21 min(X2:2, max(X3, X4)) (0, 1
3 , 2

3 , 0) increasing decreasing

22 min(X2:2, max(X1, X3, X4), max(X2, X3, X4)) (0, 1
6 , 5

6 , 0) increasing ×
23 X3:4 (0, 0, 1, 0) increasing decreasing

24 max(X1, min(X2, X3, X4)) (0, 1
2 , 1

4 , 1
4 ) × constant

25 max(X1, min(X2, X3), min(X3, X4)) (0, 1
6 , 7

12 , 1
4 ) × ×

26 max(X2:3, X4) (0, 0, 3
4 , 1

4 ) × decreasing

27 min(X3:3, max(X2, X3, X4)) (0, 0, 1
2 , 1

2 ) increasing decreasing

28 X4:4 = max(X1, X2, X3, X4) (0, 0, 0, 1) increasing constant

whether each system satisfies the assumptions of Theorems 2.1 and 2.2. It can be seen that of
28 coherent systems listed in Table 1, only six systems do not fulfill the stated assumption in
Theorem 2.1. The same is also true for the assumption of Theorem 2.2.

It is well known that there does not exist any lifetime distribution whose RFR function
is strictly increasing on its interval of support (see [2]). In the following theorem, we have
proved a stronger result implying that the RFR of any continuous lifetime distribution must be
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first decreasing at the beginning of the interval of support. In other words, such a distribution
is initially DRFR.

Theorem 2.3. Let [a, b] be the interval of support of an absolutely continuous random variable
X with CDF F(x), where 0 ≤ a < b ≤ ∞. Furthermore, let δ ∈ (0, b − a] be an arbitrary value.
Then the RFR function of X is not increasing on (a, a + δ).

Proof. For δ = b − a, the theorem is essentially a result of Block, Savits, and Singh [2].
Thus, assume that δ < b − a, which implies that δ < ∞.

Let r(t) denote the RFR of X and assume that it is increasing on (a, a + δ). It follows that

∫ a+δ

t
r(x) dx ≤

∫ a+δ

t
r(a + δ) dx = (a + δ − t)r(a + δ)

for all t ∈ (a, a + δ). This, in turn, implies that

F(a + δ) ≤ F(t) e(a+δ−t)r(a+δ).

Taking the limit as t → a+ and using the continuity of F, we have F(a + δ) ≤ 0. Therefore
F(a + δ) = 0, which is a contradiction to the assumption a = inf{x : F(x) > 0}. �

It follows from Theorem 2.3 that there is no distribution (with a non-negative left extremity
of the support) with an upside-down bathtub-shaped RFR.

If F̄(t) is strictly concave at any point t0, then the FR h(t) is strictly increasing at t0. Similarly,
the RFR r(t) is strictly decreasing at t0 when F(t) is strictly concave at t0. The following lemma
reveals that, under some conditions, the mixture of distributions is IFR and DRFR. We shall
use this lemma to determine the local behavior of the FR and RFR of a coherent system.

Lemma 2.1. Consider the mixture distribution

F(t) =
∫

A
Fθ (t) dG(θ ),

where {Fθ , θ ∈ A} is a family of sufficiently smooth (continuous, second time-derivatives)
distributions. Let F̄ and F̄θ denote the reliability functions corresponding to F and Fθ ,
respectively.

(a) If each F̄θ is concave in a neighborhood of any point t0, and if at least one of the F̄θ

is strictly concave in this neighborhood, then F̄ is strictly concave in this neighborhood
and the corresponding failure rate is strictly increasing at t0.

(b) If each Fθ is concave in a neighborhood of t0, and if at least one of the Fθ is strictly
concave in this neighborhood, then F is strictly concave in this neighborhood and the
corresponding reversed failure rate is strictly decreasing at t0.

Proof. Part (a) is due to Klutke, Kiessler, and Wortman [7], but for the sake of completeness,
we sketch the proof here. Let hθ and rθ denote the failure rate and the reversed failure rate
functions corresponding to Fθ , respectively. First, for each θ ∈ A, observe that

h′
θ (t0) = h2

θ (t0) − F̄′′
θ (t0)

F̄θ (t0)
.
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If F̄θ is strictly concave at t0, then F̄′′
θ (t0) < 0 and hence h′

θ (t0) > 0. Therefore, under the
assumptions of the lemma, F̄ is strictly concave at t0. Similarly,

r′
θ (t0) = F′′

θ (t0)

Fθ (t0)
− r2

θ (t0),

and if Fθ is strictly concave at t0, then F′′
θ (t0) < 0 and r′

θ (t0) < 0. Therefore, under the stated
assumptions in part (b), F is strictly concave at t0. �

The bathtub-shaped FR appears in many reliability practices such as environmental-stress-
screening to manufactured products or burn-in. In this case the curve has the property that in
the so-called ‘early failure’ period, the FR decreases over time. To be more precise, a bathtub-
shaped FR h(t) is strictly decreasing on (0, t1), constant on (t1, t2), and strictly increasing on
(t2, ∞), where it is assumed that 0 ≤ t1 ≤ t2 ≤ ∞. This means that the FR is strictly decreasing
as the unit becomes stronger in early life, but finally increasing as the unit begins to deteriorate.
In such a situation, h(t) is called a bathtub-shaped FR with two change points t1 and t2. Klutke
et al. [7] noticed some limitations of the bathtub-shaped FR in mixture models, and showed
that a sufficient condition for the mixture of distributions with concave reliability functions in
a neighborhood of 0 to have an IFR at 0 is that at least one of the distributions has a strictly
concave reliability function in a neighborhood of 0; see Lemma 2.1. This means that the mix-
ture of such distributions is initially IFR and thus cannot follow the classical bathtub shape.
The following theorem reveals an application of this result to coherent systems.

Theorem 2.4. Consider a coherent (or mixed) system consisting of n i.i.d. components with a
sufficiently smooth CDF F and signature (s1, s2, . . . , sn). Let k = min{i : si > 0}. If F̄k:n(t) is
strictly concave in a neighborhood of any point t0, then the system FR is strictly increasing in
this neighborhood.

Proof. Under the assumption of the theorem, the system reliability function has the form

F̄T (t) =
n∑

i=k

siF̄i:n(t).

Observe that if F̄k:n(t) is strictly concave in a neighborhood of t0, then f ′
k:n(t) (the derivative of

the corresponding density with respect to t) is strictly increasing in that interval. We conclude
that

f ′
k+1:n(t) = n − k

k
{[1 + φ(t)]h(t)fk:n(t) + φ(t)f ′

k:n(t)},

where φ(t) = F(t)/F̄(t), is positive and hence F̄i:n(t), i = k, k + 1, . . . , n, is strictly concave in
the neighborhood of t0. The proof is completed by using Lemma 2.1(a). �

It can be concluded from the proof of Theorem 2.4 that a sufficient condition for F̄k:n(t) to
be strictly concave on an interval is that F̄n(t) be strictly concave on that interval.

Theorem 2.5. Consider a coherent (or mixed) system consisting of n i.i.d. components with a
sufficiently smooth CDF F and signature (s1, s2, . . . , sn). Assume that 
 = max{i : si > 0} and
F
:n(t) is strictly concave at any point t0. Then the system RFR is strictly decreasing at t0.

Proof. By a similar argument to that used in the proof of Theorem 2.4, we conclude that if
F
:n(t) is strictly concave at t0, then so are Fi:n, i = 1, 2, . . . , 
. The result then follows from
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the mixture representation

FT (t) =

∑

i=1

siF̄i:n(t),

and part (b) of Lemma 2.1. �

As a consequence of Theorem 2.4, the next corollary shows that the initial behavior of the
density function of components determines whether the system is initially improving or getting
worse.

Corollary 2.1. Consider an arbitrary coherent structure consisting of n i.i.d. components with
a sufficiently smooth CDF F. Let f(t) be the probability density function of the component
lifetimes. If f (0) = 0 and f ′(0) > 0, then the system’s lifetime is initially IFR.

Proof. By Theorem 2.8, it is sufficient to show, under the assumption of the corollary, that
F̄1:n(t) = F̄n(t) is strictly concave in a neighborhood of 0. Let u(t) denote the second derivative
of F̄1:n(t). It is readily observed that the function

u(t) = nF̄n−2(t)[(n − 1)f (t) − f ′(t)F̄(t)]

is continuous and limt→0 u(t) < 0. This implies that u(t) < 0 for all t in a sufficiently small
neighborhood of 0 and hence F̄1:n(t) is strictly concave in that neighborhood. �
Remark 2.3. Many important lifetime distributions such as the gamma distribution and the
Weibull distribution, both with shape parameters greater than 1, satisfy the assumptions of
Corollary 2.1. We conclude that if the component lifetimes of a coherent structure have such
distributions, then the system’s lifetime is initially IFR.

Example 2.3. Consider a beta distribution with strictly concave reliability function

F̄(t) = 1 − t2, 0 ≤ t ≤ 1.

It is easy to verify that F̄n(t) is strictly concave in the interval [0, 1/
√

2n − 1] and therefore,
using Theorem 2.4, any n-component system with F̄(t) as the component reliability function is
initially IFR.

3. Doubly truncated lifetimes

Let D = {(x, y) : F(x) < F(y)}. Kotlarski [8] and Shanbhag and Rao [21] studied the dou-
bly censored (truncated) mean function m(x, y) =E{X | x < X ≤ y} defined for all (x, y) ∈ D,
which represents the expected lifetime for an item that was operating at time x and failed at or
before time y. The mean residual life of that unit is defined as E{X − x | x < X ≤ y}, which may
be referred to as doubly censored mean residual life. In this section we study the stochastic
properties of doubly truncated lifetimes for coherent structures. The following theorem gives
a comparisons of two systems with different structures in the sense of likelihood ratio order.

Theorem 3.1. Let T1 and T2 be the lifetimes of two coherent (or mixed) systems with com-
ponent lifetimes X1, X2, . . . , Xk, k ≤ n, and X1, X2, . . . , Xm, m ≤ n. If s(1) and s(2) are the
respective signatures of order n such that s(1) ≤lr s(2), then for any (t, y) ∈ D,

(T1 − t | t < T1 ≤ y) ≤lr (T2 − t | t < T2 ≤ y).
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Proof. For m = 1, 2, the reliability function of (Tm − t | t < Tm ≤ y) can be rephrased as

P{Tm − t > x | t < Tm ≤ y} =
n∑

i=1

s(m)
i (t, y)P{Xi:n − t > x | t < Xi:n ≤ y},

where

s(m)
i (t, y) = P{Tm = Xi:n | t < Tm ≤ y} = s(m)

i P{t < Xi:n ≤ y}∑n
j=1 s(m)

j P{t < Xj:n ≤ y}
. (1)

It is obvious that s(1)(t, y) ≤lr s(2)(t, y), where s(m)(t, y) = (s(m)
1 (t, y), . . . , s(m)

n (t, y)), m = 1, 2.
On the other hand, note that

d
dxP{Xi+1:n − t > x | t < Xi+1:n ≤ y}

d
dxP{Xi:n − t > x | t < Xi:n ≤ y} = n − i

i

P{t < Xi:n ≤ y}
P{t < Xi+1:n ≤ y}

F(t + x)

F̄(t + x)
,

which is an increasing function of x in [0, ∞) for all t ≥ 0, and hence

(Xi:n − t | t < Xi:n ≤ y) ≤lr (Xi+1:n − t | t < Xi+1:n ≤ y).

The rest of the proof can be established from Theorem 1.C.7 in [20, page 49]. �
Let T be the lifetime of a coherent system consisting of n i.i.d. components with ordered

lifetimes Xi:n. Assume that s(t, y) is the vector whose ith element is

si(t, y) = P{T = Xi:n | t < T ≤ y}, i = 1, 2, . . . , n (2)

(see equation (1)). This probability vector is, in fact, the signature vector of a coherent structure
when we have taken into account some partial information about the system’s lifetime. In
the literature, such kinds of signature vectors are often called the dynamic signature of the
system. Navarro, Balakrishnan, and Samaniego [14], Samaniego, Balakrishnan, and Navarro
[19], Zhang [23], Mahmoudi and Asadi [10], and Tavangar [22] are among the references in
which different types of dynamic signature are defined. In the following theorem, sufficient
conditions are presented for the likelihood ratio ordering of the dynamic signature (2) of two
structures with different component lifetimes.

Theorem 3.2. Assume that T1 and T2 are lifetimes of two coherent systems with i.i.d. compo-
nent lifetimes X1, X2, . . . , Xn and Y1, Y2, . . . , Yn, and signatures s(1) and s(2), respectively. Let
s(1)(t, y) and s(2)(t, y) be the corresponding dynamic signatures of two systems with elements
defined in (2). If Y1 ≤st X1 and s(1) ≤lr s(2), then for any (t, y) ∈ D, s(1)(t, y) ≤lr s(2)(t, y).

Proof. Let F1 and F2 denote the distributions of X1 and Y1, respectively. Note that

P{t < Xi:n ≤ y} = i

(
n

i

) ∫ 1

0
I[F1(t),F1(y)](u)ui−1(1 − u)n−i du

and

P{t < Yi:n ≤ y} = i

(
n

i

) ∫ 1

0
I[F2(t),F2(y)](u)ui−1(1 − u)n−i du,

where I denotes the indicator function. We prove that

Pm(t, y) = i

(
n

i

) ∫ 1

0
I[Fm(t),Fm(y)](u)ui−1(1 − u)n−i du

is TP2 in (i, m) in {1, 2, . . . , n} × {1, 2}.
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One can easily prove that ui−1(1 − u)n−i is TP2 in (i, u) ∈ {1, 2, . . . , n} × [0, 1]. Now we
show that I[Fm(t),Fm(y)](u) is TP2 in (u, m) in [0, 1] × {1, 2}. It follows from Y1 ≤st X1 that
F1(x) ≤ F2(x), for all x, and hence only two cases may arise.

(i) F1(t) ≤ F2(t) ≤ F1(y) ≤ F2(y). In this case it can be shown that

I[F2(t),F2(y)](u)/I[F1(t),F1(y)](u)

is increasing in u ∈ [0, 1] for all (t, y) ∈ D.

(ii) F1(t) ≤ F1(y) ≤ F2(t) ≤ F2(y). In this case it can be easily checked that

I[F1(t),F1(y)](u2)I[F2(t),F2(y)](u1) ≤ I[F1(t),F1(y)](u1)I[F2(t),F2(y)](u2).

Therefore I[Fm(t),Fm(y)](u) is TP2 in (u, m) in [0, 1] × {1, 2}. Then it follows from Lemma
1.1 that Pm(t, y) is TP2 in (i, m) ∈ {1, 2, . . . , n} × {1, 2}.

Now, since the product of two TP2 functions is a TP2 function, we conclude that s(m)
i (t, y)

is TP2 in (i, m) ∈ {1, 2, . . . , n} × {1, 2}. �

4. Conclusions

The classes of distributions based on ageing concepts such as increasing and decreasing FR
have been found very useful in applied probability, reliability theory, and survival analysis. In
this article we considered the behavior of the FR and the RFR functions. We presented a suffi-
cient condition for a coherent system with IFR (DFR) component lifetimes to be IFR (DFR) –
a condition which is simpler than those given earlier in the literature. We also investigated the
initial behavior of the FR of a coherent structure. Finally, we studied the ageing and stochastic
properties of doubly truncated random variables.
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