
Broadcasting but not receiving: density
dependence considerations for SETI signals

Reginald D. Smith
Bouchet-Franklin Institute, P.O. Box 10051, Rochester, NY 14610, USA
e-mail:rsmith@bouchet-franklin.org

Abstract : This paper develops a detailed quantitative model which uses the Drake equation and an
assumption of an average maximum radio broadcasting distance by an communicative civilization.
Using this basis, it estimates the minimum civilization density for contact between two civilizations to

be probable in a given volume of space under certain conditions, the amount of time it would take for a
first contact, and the question of whether reciprocal contact is possible.
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1 Introduction

The question of the existence of extraterrestrial life has long

been one of the most important questions facing mankind. It

has inspired countless books, movies, subcultures, cults, and

scientific (or pseudoscientific) investigations to probe its val-

idity. The most well-funded and scientifically credible of these

efforts is the ongoing Search for Extraterrestrial Intelligence

(SETI). This program involves the use of both radio and op-

tical telescopes to search the cosmos for anomalous signals

that could herald the first confirmed contact with another

intelligence.

Whether this will happen in our lifetimes, if ever, will con-

tinue to be an uncertain question. How do we know anyone is

out there? The famous question posed by Enrico Fermi [1],

otherwise known as the Fermi Paradox, still begs for an an-

swer. Given our current technology and reach, the highest

level of certainty can only be obtained by educated conjec-

ture. Frank Drake, in a lecture at the first SETI symposium in

1961, came up with the well-known Drake Equation [2]. This

equation was not really meant to be an exact mathematical

certainty but rather a starting point on an agenda on the topic

how to make an educated guess about the current number of

intelligent, radio-wave communicating species in the galaxy.

The standard Drake Equation is expressed as

N=R* * fs * L (1)

where R* is the average production rate for stars ‘suitable ’

for planets and eventually intelligent life, fs is the probability

of the emergence of an intelligent and communicating civi-

lization around one such star, and L is the average lifetime

of such a communicating civilization (hereafter known as

CC). In many representations of the Drake equation, fs is ex-

panded to several terms to represent the various probabilities

in the emergence of intelligent, communicating life so for

example, in Shklovskii and Sagan [3], fs is expressed as

fs=fp * ne * fL * fi * fc (2)

where fp is the fraction of suitable stars with planets, ne is

the average number of habitable (usually assumed to be

Earth-like) planets around each star, fL is the probability of

life developing on such a planet, fi is the probability of intel-

ligent life, and fc is the probability of intelligent life develop-

ing a technological CC. It should also be noted that the

Drake equation is in fact, an example of a form of the com-

mon equation Little’s Law, an insight first remarked on by

Brian Tung of the Astronomy Corner (private communi-

cation). Little’s Law is represented by the equation N=rt

where N is the average number of items in a system, r is the

average arrival rate, and t is the average time in the system.

For Drake’s equation r=R* * fs and t=L. The Drake

equation, which assumes fixed values for its parameters, has

been adjusted in several works [4, 5] to take into account

possible statistical distributions for its parameters to allow

greater flexibility.

The Drake equation is well-known, but not without its

valid criticisms. In its most common and basic form, it as-

sumes isotropic conditions across space for stellar formation

and habitable planets where inhomogeneity is the rule and

not the exception. The only quantity which we can currently

measure with any certainty is the star formation rate, R*.

Finally, widely varying and over optimistic or pessimistic es-

timates of the key parameters can lead to wildly high or low

probabilities for life in our galactic neighborhood [6, 7].

However, the Drake equation assumes that if intelligent

and technologically advanced life does coexist in our galactic

‘neighborhood’ we should look and expect to find its tell-tale

signature in the galactic radio noise. However, how should

‘neighborhood’ be defined? In addition, even if CCs coexist,
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what if their signals are faint due to power constraints or

distance to the point that their neighbors cannot properly

distinguish them from background noise? In fact, given a

universe following Drake’s Law for the emergence of intelli-

gent life, how likely is it for a CC given constraints of survival

time and distance where the signals can reasonably be re-

ceived, detects a signal from another CC?

The purpose of this paper is to pose basic questions that

should, given appropriate limits, estimate how likely contact

is for any given CC given its mean lifetime L and the mean

maximum distanceD a CC’s signals can clearly be received. A

common assumption is if Drake’s Equation, N, is greater

than one, or perhaps in the range of millions for our galaxy

[3], then we should expect to eventually receive signals from

another CC (or vice versa). Assuming that signals can be de-

tected irrespective of their distance from their origin, this is a

reasonable estimate. However, what if there is a reasonable

horizon for the detection of a signal from another CC?

2 A signal through space: volume* times

The basis of this analysis will rely on the assumption of a CC

around a star which broadcasts for its entire lifetime, L. After

time L, the CC goes extinct but its signals carry on through-

out space until a distance, D and a time D/c, where c is the

speed of light, past which its signal is assumed to be so weak

that its signal-to-noise ratio falls below that which is detect-

able under reasonable assumptions.

There are two possible scenarios for the broadcast to play

out. The first is that Lc>D whereby the CC’s lifetime is so

long that its signals reach their maximum distance even while

the CC is still actively broadcasting. Second, is Lc<D where

the maximum distance of the signal is reached sometime after

the CC has already become extinct and ceased actively

broadcasting.

The goal will be to assess the total volume-time filled by the

signal over its broadcasting period and combining this with

the Drake equation to estimate the probability that a signal of

electromagnetic radiation from one CC will be detectable by

another CC. If there is a high probability that a CC should

exist within the volume of space occupied by a broadcasted

signal, then contact is likely. If not, then the signal is con-

sidered unheard. It is also assumed that no other factors such

as colonization or interstellar travel are present. This can be

calculated using only the variables in the Drake equation with

the addition of D. To calculate the volume-time swept by the

signal we integrate the total volume the signal saturates at a

given time by the time it broadcasts

V * t=
Z tf

t0

V(t)dt (3)

In Figure 1 the volumes filled by the signal are shown for

three points in time under the two possible relationships be-

tween Lc and D explained above. Table 1 states V* t under

each situation.

In Table 1 are the equations for V* t for images a–f in

Figure 1. Both sets of equations give the same value in the

case Lc=D.

Now in order to integrate these with the Drake equation,

we modify the equation to calculate the average CC density.

Fig. 1. Areas of coverage for the propagation of an expanding signal. (a)–(c) assumes D<Lc, (d)–(f) assumes D>Lc. The shaded portion

is the relative area being swept by the signal.

R.D. Smith102

https://doi.org/10.1017/S1473550409990097 Published online by Cambridge University Press

https://doi.org/10.1017/S1473550409990097


This is the expected number of CCs per unit space. We do this

by changing the term, R* to become r*, the stellar creation

rate per unit volume. Therefore, we can calculate the expected

communicative civilization density as

n=r*fsL (4)

However, when trying to calculate the number of CCs that

can detect a signal, we replace L with the volume-time to get

N=r*fs
Xtf
0

V * t (5)

where a contact is made with almost certainty if No1.

Volume-time is represented by the following for Lc>D and

Lc<D
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3 Communicative civilization density and contact

Taking equations 4 and 5 into account, the question naturally

arises of how the density of CC affects the probability of

contact. Solving for r*fs in 4, two variables that are otherwise

extremely difficult to estimate, and changing equation 5 we

can see that

N=
n

L

Xtf
0

V * t (10)

We now have a probability of a signal being detected by

another CC only in terms of the average CC density in the

region considered, the average lifetime of a CC, and the vol-

ume-time which implicitly incorporates the maximum dis-

tance, D. For Lc>D and Lc<D, N follows as

N=
4
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In both cases, the number of CCs which are contacted de-

pend on the CC density, average lifetime, and average maxi-

mum detectable distance for signals. Given a threshold of

N=1, we can thus derive any of the variables if two others are

known. In particular, given assumptions on the average life-

time of CCs and the average detectable distance of their sig-

nals, we can estimate the minimum CC density and for a

given volume, the minimum number of CCs necessary to

make communication probable.

Using a basic measure of our galactic neighborhood as a

sphere with a radius of 10 000 light years, Figure 2 shows the

number of CCs necessary for the CC density to be high

enough to make contact likely within this volume. This as-

sumes stars, habitable conditions, and CCs are distributed

isotropically which is unlikely at best but a starting assump-

tion. As expected, for CCs with very short lifetimes or very

short signal horizons, the CC density must be massive to

expect any contact. However, as CCs last longer and have

signals with more durable range, the minimum density de-

creases hyperbolically until for high values of lifetime or sig-

nal horizons, only one other CC is necessary for contact to be

probable.

What is most interesting about this analysis is that it dem-

onstrates it can be possible for many CCs in the same galaxy

to never contact one another. For example, even assuming

the average CC has a lifetime of 1000 years, ten times longer

than Earth has been broadcasting, and has a signal horizon of

Table 1. The equations corresponding to the different

expanding coverages of the signals in Figure 1. Note the first

terms in (a) and (d) correspond to the lightcone from the

origin to D and L respectively
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Fig. 2. A graph of the minimum number of civilizations needed in a

volume of radius 10 000 ly to make both contact (green and red

area) and reciprocal contact (red area) likely based on L and D.
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1000 light-years, you need a minimum of 1000 CCs in the

galactic neighborhood to reach a minimum density. For ex-

ample, if there were only 200 CCs in our galactic neighbor-

hood roughly meeting these parameters, probabilistically

they will never be aware of each other. The restriction of D

of 1000 light-years is probably too conservative since under

our current technology, the Arecibo observatory can detect a

signal of its same broadcasting strength at 1000 light-years.

For the same L, increasing D to 2000 reduces the minimum

number to 54 and increasing D to 5000 reduces it down to 4,

though the signals would likely be received after the demise of

the broadcasting CC.

These findings can give pause to both those who predict no

other CCs or those who predict a high number of CCs in our

galactic neighborhood. Arguing that the lack of contact sig-

nifies the lack of CCs may be tempered with the fact that if

there is a signal horizon, even a galaxy replete with life may

have relatively isolated CCs in the absence of interstellar

travel or extremely power signals. On the other hand, high

estimates of CCs in our galactic neighborhood do not

guarantee that there will ever be contact between them, es-

pecially reciprocal.

Reciprocal contact can be estimated. On average, the signal

needs to reach a volume of space of 1/n to reach another CC.

The average distance between CCs and the average time to

reach another CC can be derived from the two equations

1

n
=

4

3
p(r)3 (13)

1

n
=

4

3
p(ct)3 (14)

In [8] Duric and Field also calculate the average density

of civilizations based on a time available for intelligible

contact and come up with an average distance between CCs

quantitatively similar to equation 13 where r � 1
n1=3

. If 2tfL

then reciprocal contact is likely on average assuming a CC

immediately detects a signal on arrival and immediately sends

a response back which arrives before the first CC dies out.

This predicts a broadly social universe where, much like the

old American public television children’s show Mr. Rogers’

Neighborhood, everyone knows their neighbor. However, in

time t both CCs could be aware of each other though they

have not yet communicated.

3.1 Estimating D

Estimations of D are necessarily bound to considerations of

broadcasting and receiver abilities that would dictate an av-

erage distance for intentionally or unintentionally broadcast

signals to be received. A proper estimate of D would necess-

arily depend on the broadcast frequency, bandwidth of the

signal, broadcast power, and both the transmitting and re-

ceiving antenna sizes. In [9], a range equation for a signal is

presented of the form

gTgRd
2
t d

2
r Pt

l2R2
=2r103kDkRT

B

t

� �1=2

(15)

where gT and gR are the aperture efficiencies of the trans-

mitting and receiving antennas with diameters of dt and dr
respectively. Pt is the radiated transmitter broadcast power

(megawatts), l is the broadcast wavelength (meters), R is the

maximum range (light-years), kD and kR are the detection

efficiency and receiver efficiency factors, T is the system noise

(kelvin), B is the bandwidth (hertz), and t is the integration

time needed to detect the signal (seconds). By estimating some

of the constants and realizing the maximum t is L, you can

derive a minimum necessary broadcast power for a given D

or estimate D for an assumed broadcast power. You can also

estimate upper limits for bandwidth and minimum antenna

sizes. For example, using the estimates for the variables in

[9] of gT=gR=0.6, kD=5, kR=2,T=20 K, dr=dt=26 m

and assuming a bandwidth of 1 kHz at a l of 12 cm for D

of 1000 ly and L of 1000 years we would need a minimum

broadcast power of 6.2 MW, assuming integration time is the

full life of the CC, which is probably far too large of an esti-

mate.

4 Conclusion

The Drake Equation, almost five decades after its debut, re-

mains as controversial and inconclusive as it was at its in-

ception. A good viewpoint is raised in [10] that discusses the

problem that the Drake equation should not be viewed as an

exact mathematical equation, especially since it includes both

astronomical variables such as star formation rate and planet

abundance, biological variables such as the probability for

the emergence of life, as well as more socioeconomic variables

such as the probability for the development of civilization

and advanced communication. There is no way to find a

‘right’ value for these variables.

However, the search for extraterrestrial life need not suffer

because of no immediate obvious contact despite high esti-

mates of life in our galaxy and universe. Under appropriate

considerations, if the density of life is lower than a certain

threshold and assuming colonization driven contact is un-

likely, communicating civilizations could remain completely

ignorant of each other. Of course these strict constraints can

be circumvented by interstellar travel or permanent auto-

matic beacons. This paper has attempted to add some ad-

ditional considerations to the Drake equation which will

allow us to more feasibly estimate the conditions under which

we can hope to eventually discover we are not alone.
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