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and superpotentials
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ABSTRACT

In this article we study higher preprojective algebras, showing that various known
results for ordinary preprojective algebras generalize to the higher setting. We first
show that the quiver of the higher preprojective algebra is obtained by adding arrows
to the quiver of the original algebra, and these arrows can be read off from the last
term of the bimodule resolution of the original algebra. In the Koszul case, we are
able to obtain the new relations of the higher preprojective algebra by differentiating
a superpotential and we show that when our original algebra is d-hereditary, all the
relations come from the superpotential. We then construct projective resolutions of
all simple modules for the higher preprojective algebra of a d-hereditary algebra. This
allows us to recover various known homological properties of the higher preprojective
algebras and to obtain a large class of almost Koszul dual pairs of algebras. We also
show that when our original algebra is Koszul there is a natural map from the quadratic
dual of the higher preprojective algebra to a graded trivial extension algebra.

1. Introduction

The preprojective algebras of quivers are important algebras that appear in various areas of
mathematics, e.g. Cohen-Macaulay modules [Aus86, GL91], Kleinian singularities [Cra00], clus-
ter algebras [GLS13], quantum groups [KS97, Lus91|, and quiver varieties [Nak94]. They were
first introduced by Gelfand and Ponomarev [GP79] (see also [DR80]) by explicit quivers with
relations: the algebra II of a quiver Q is the path algebra FQ of the double quiver @ of @ modulo
the ideal generated by erQl(acm* — z*x). Baer, Geigle, and Lenzing gave a more conceptual
construction of II based on the representation theory of the quiver @) [BGL87]: their algebra is
the direct sum of spaces Homy (A, 77¢(A)) for the inverse Auslander-Reiten translate 7—, with
an obvious multiplication. The algebras of Gelfand-Ponomarev and Baer—Geigle-Lenzing are
isomorphic, as shown in [Rin98, Cra99].

Preprojective algebras enjoy very nice homological properties. They enjoy a certain
2-Calabi—Yau property [Cra98]: if @ is non-Dynkin, then II is a 2-Calabi—Yau algebra in the
sense of Ginzburg. If @ is Dynkin, then II is a self-injective algebra and its stable category is
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2-Calabi—Yau. They also enjoy a certain Koszul property: If (2 is non-Dynkin, then II is a Koszul
algebra. If @ is Dynkin, then II is twisted periodic of period 3 [RS], and moreover it is an almost
Koszul algebra in the sense of Brenner, Butler, and King [BBK02].

Recently, an analogue of preprojective algebras was studied in cluster theory [Kelll] and
higher-dimensional Auslander—Reiten theory [Iya07]. For a finite-dimensional algebra A of global
dimension d, its preprojective algebra is defined as Homp (A, 7, Y(A)), where 74 and T, are
higher analogues of the Auslander—Reiten translates. This algebra is the zeroth cohomology of
the (d+ 1)-Calabi—Yau completion [Kelll], which is a (d + 1)-Calabi-Yau differential graded
algebra. When A is a so-called d-hereditary algebra, its higher preprojective algebra enjoys nice
homological properties, including the (d + 1)-Calabi-Yau property [AO14, HI11, 1011, 1013,
HIO14]. Higher preprojective algebras also appear in conformal field theory [EP12a, EP12b]
and in commutative and non-commutative algebraic geometry [BH14, BS10, HIMO14, Min12,
MM11] where they are non-commutative analogues of anticanonical bundles.

A natural question arises: can we describe these higher preprojective algebras by quivers and
relations, generalizing the description of Gelfand and Ponomarev? This is important in practice
because having a description by a quiver and relations often makes calculations much easier to
perform. When A has global dimension exactly 2, the higher preprojective algebra is isomorphic
to the Jacobi algebra of a certain quiver with potential [Kelll, HI11], whose relations are given by
taking formal partial differentials of the potential. Quivers with potential appeared in physicists’
study of mirror symmetry, and also played a key role in categorification of Fomin—Zelevinsky
cluster algebras [DWZ08].

It is a difficult problem to give a description of the higher preprojective algebra of a general
finite-dimensional algebra in terms of a quiver and relations. Here, we impose the restriction that
A should be a Koszul algebra, which ensures its homological algebra is easier to understand. Then
we are able to describe the quivers of the higher preprojective algebras, and to show that the new
relations in the higher preprojective algebra come from taking higher formal partial differentials
of a superpotential (see Theorem 3.13). If we further assume that A is a d-hereditary algebra
[HIO14], then all the relations come from higher differentials of the superpotential, as in the
known cases d = 1, 2.

THEOREM A (Corollary 4.3). If A = FQ/(R) is Koszul and d-hereditary, then

FQ

= om)

I

where the quiver Q is a quiver obtained from @) by adding new arrows, and the relations oW
are obtained by differentiating a certain superpotential W with respect to length d — 1 paths

of Q.

In fact, our Theorem 3.14 is more general because A can be a factor algebra of the tensor alge-
bra Tg (V') for a separable F-algebra S. Higher Jacobi algebras have been considered previously in
representation theory, notably in work of Van den Bergh [Vanl5], and Bocklandt, Schedler, and
Wemyss [BSW10] (see also [Dub07, MS16]). In the d-representation infinite case, which makes up
half of the dichotomy of d-hereditary algebras, we recover the description of Calabi—Yau Koszul
algebras given in [BSW10]. In the case where A is a basic Koszul d-representation-infinite algebra
over an algebraically closed field of characteristic 0, this description was also given by Thibault
[Thi20]. These previous works only deals with the case when A is Morita equivalent to a quotient
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of the path algebra of a quiver, whereas our Theorem 3.14 is much more general because A can be
a factor algebra of the tensor algebra Tg(V') for a separable F-algebra S. We give definitions of
superpotentials in Tg(V') and the associated higher Jacobi algebras that work in this generality,
by using the zeroth Hochschild homology (Definitions 3.4 and 3.5). This requires some technical
machinery prepared in § 3.2. Although other definitions of (ordinary) Jacobi algebras for Tg(V')
were given in [Ngul0, LZ16, BL15], our definition seems to be more convenient.

We also obtain homological information about higher preprojective algebras. Under the
assumption that A is d-hereditary, we are able to describe the projective resolutions of all sim-
ple II-modules using the higher Auslander—Reiten theory of A. In fact, we show that they are
induced from d-almost split sequences (see Theorem 4.12). As applications, we have the following
results.

THEOREM B (Corollaries 4.13 and 4.14 and Theorem 4.21). Let A be a d-hereditary algebra
and II the (d + 1)-preprojective algebra of A.

(a) If A is d-representation finite, then Il is self-injective, and the simple II-modules have
periodic projective resolutions. If, moreover, A is Koszul, then Il is almost Koszul.

(b) If A is d-representation infinite, then II has global dimension d + 1 (cf. the Appendix), and
the Z-graded simple II-modules S satisfy RHomp (S, IT) = S*(1)[—d — 1]. If, moreover, A is
Koszul, then so is II.

As a corollary, we deduce that in the d-representation finite case II is twisted peri-
odic of period d+ 2. This recovers a result of Dugas [Dugl2] and is related to the stably
Calabi-Yau property [IO13]. In the d-representation infinite case, we deduce that II is a gen-
eralized Artin—Schelter regular algebra of dimension d + 1 and Gorenstein parameter 1 in the
sense of [MV98, MS11, MM11, RR18] (see also [AS87]). This recovers a result of Minamoto and
Mori [MM11]. Our results show that higher Auslander—Reiten theory is essential in the study of
Artin—Schelter regular algebras.

Next we consider quadratic duals. We show that, when A is Koszul, there is a natural map
from the quadratic dual of the preprojective algebra to a graded trivial extension algebra of
the quadratic dual of A. Moreover, we characterize when this map is surjective (respectively, an
isomorphism) (see Theorem 5.2). In particular, we prove the following result.

THEOREM C (Theorems 5.2 and 5.4). Let A = Tg(V)/(R) be a Koszul algebra of global dimen-
sion d over a separable F-algebra S.

(a) There exists a morphism ¢ : II' — Trivg,,(A') of Z-graded F-algebras.
(b) If A is d-hereditary, then ¢ is surjective, and in this case ¢ is an isomorphism if and only if
Trivgy (A is quadratic.

In the d = 1 case where A = FQ for Q any connected acyclic quiver, we show that the map
is an isomorphism whenever the underlying graph of @) is not of type A; or As. We finish
by applying our results to the type A d-hereditary algebras A(%s) [I011] and use Theorem B to
deduce that the type A higher preprojective algebras are almost Koszul algebras with parameters
(s —1,d 4 1), thus obtaining examples of (p, ¢)-Koszul algebras for all p, g > 2.

Note that a special case of Theorem C was independently obtained by Guo [Guo20, Theorem
5.3]. His result corresponds to the ‘if’ part of our Theorem 5.2(c) under the assumption that A'
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is given by a quiver with relations and Trivg,;(A') is Koszul. In addition, Theorem C is closely
related to [Hil95, Section 5].

2. Preliminaries

Let A be a finite-dimensional algebra over a field F. By default, a A-module will mean a finitely
generated left A-module, and we denote the category of such modules by A-mod. The corre-
sponding category of right modules is denoted mod- A. If 2 is a set of left or right modules,
we denote by add 2~ the additive subcategory of modules isomorphic to summands of sums of
elements of 2°. We sometimes write add M for add{M}. We denote by gf the composition of
morphisms f: X =Y andg:Y — Z.

We denote the enveloping algebra A @p A°P of A by A®". We assume that F acts centrally
on all bimodules, and then we can identify the category A®®-mod of left A°*-modules with the
category A-mod- A of A®®-modules. We have a duality (—)* = Homp(—,F) : A-mod = mod- A
which sends left modules to right modules and vice versa. It extends to a duality A®-mod =
A" -mod of bimodules.

2.1 Tensor algebras
Let M be a A°"-module. Recall that the tensor algebra Ty (M) of M is the Z-graded vector
space
TA(M) =P M,
i>0

where M? = M ®p --- ®x M is the tensor product of i copies of M so, in particular, M? = A.
There is an obvious graded multiplication map M? x M7 — M/ which sends the pair (A\; ®
A2 ® - @ Njy Aip1 @ - -+ @ Aiyj) of standard basis vectors to the concatenated vector A\ @ Ay ®
-+ ® Nitj, and so TA(M) is a non-negatively Z-graded algebra. For later use, we prepare the
following basic observations, the proofs of which are left to the reader.

LEMMA 2.1. Let M be a A°®-module, T := Tx(M), and I an ideal of A.

(a) For a A°"-module N, we have Tp(T @5 N @, T) = TaA(M @ N).
(b) For a A®"-submodule L of M, we have TA(M)/(I + L) = Ty, /(M/(IM + MI + L)).

Let A be a basic F-algebra with Jacobson radical J. We assume that S is a semisimple
subalgebra of A such that A = S & J. Then we can write A = Tg(V)/I for an S"-module V" and
an ideal I of Tg(V'). If I is a homogeneous ideal, then A inherits a grading from Tg(V'). Any such
non-negatively Z-graded algebra A has a minimal Z-graded projective A°"-module resolution

5: s 5
-2 P3PS By — 0,

where each projective module P; is generated in degrees greater than or equal to ¢. Immediately,
we have the following property.

LEMMA 2.2. For any i > 0, the Z-graded A°"-module Ext)e. (A, A") is generated in degrees
greater than or equal to —i.

We can write each projective A°"-module in the form A ® ¢ K ®g A for some Z-graded pro-
jective S®"-module K, where we consider S as a Z-graded algebra concentrated in degree 0; see
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[BK99]. In particular, we write P, = A ®g K; ®g A for Z-graded projective S*-modules K, for
0 <.
In general K; =2 Toré\(S, S), and explicit descriptions for these spaces are known. For m > 0,

mnJrm-1tJj

JIrmnimJj
I T and Tory,.(S,9) =

A ~
TOI'Qm(S, S) = = W

For more information and references, see the introduction to [BK99]. For certain kinds of algebras
there are nicer descriptions of these spaces: see §2.2 and the final chapters of [BK99].
As well as our vector-space duality (—)*, we have dualities

()Y := Homgen (—, S") : §" -mod — S°" -mod,
(=)* := Homg(—, S) : S -mod = S°™-mod,
(—)*" := Homgen (—, S) : S -mod — S -mod .
For S*"-modules X and Y, we have functorial isomorphisms
Y9 X* = (X @sY), (1)
Y g X* = (X 05 V)™ (2)
sending f @ g to (z @y — g(zf(y)),
Y @5 X2 (X ®sY)" (3)
sending f ® g to (x ®@ y — f(g(x)y)), and
Y s XV (X ®gY)Y (4)

sending f @ gto (x @y — Y., s @ f(siy)) for g(z) =", s; ® 5. For example, (4) can be checked
as follows: as Homgep (Y, S") = S @p Y*" € S -proj, we have

(X ®5 Y)Y = Homgen (X, Homgon (Y, S)) 2 (S @F Y*) ®gen XY 2 Y* R X .
Note the following simple lemma.

LEMMA 2.3. Let L be a A ®p S°P-module, X be a projective S*-module, and M be a S Ry
A°P-module. Then there is an isomorphism of A**-modules that is natural in L, X, and M :

Hompen (L ®g X ®g M, A®") = Homy (M, A) ®g XV ®g Hompop (L, A).
In particular, for any projective S**-module X, there is a functorial isomorphism of A*"-modules

Hompen(A ®5 X @5 A, A™) 2 A ®s XY ®g A.

Proof. We include a complete proof for the convenience of the reader. Using the tensor-hom
adjunctions, for any X € S°"-mod we have isomorphisms of A*"-modules

HOHlAen (L Xg X Xg M, Aen) = HomAen((L XKF M) &) gen X, Aen)
= HomSen (X, HomAen(L ®F M, Aen)) = X\/ ®Sen HomAen (L ®F M, Aen)
=~ XY ®gen (Homy (L, A) @ Hompop (M, A)) = Homp (M, A) @5 X ¥ @5 Hompep (L, A).

All our isomorphisms are natural. ]
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The four duals (—)*, (=)*, (=)*", and (=) are isomorphic to each other (see, e.g., [Ric02,
Section 3, BSW10, Section 2.1]). In fact, because S is a symmetric F-algebra, there exists an
F-linear form ¢ : S — F such that t(xy) = t(yz) and the map S — S* sending z to (y — t(zy))
is an isomorphism. This gives isomorphisms

ai=to(): () = (2, Bi=to(—):(2)7 = () and yi= (t©1)o(=): ()

of functors.

I

(_)*7’

For later use in §5, we now show that these isomorphisms are compatible with module
structures in the following sense: let L = ,;,L; be a Z-graded Tg(V*)°P-module, and let

LW =@r,, 9=@Pre, L=@rL7, and LV =PLY,

1€ 1€EL 1€EZL €7

Then L™ and L*9 are Z-graded Tg(V**)-modules, and L") and L") are Z-graded Tg(V*")-
modules as follows: the action of TS(V"‘Z)Op on L is given by a morphism a; : L; ®g | . Ly
of S°"-modules for i € Z. This corresponds to a morphism b; : L; — L;11 ®g V of S"-modules
via Hom-tensor adjunction Homgen (A ®g B, C') = Homgen (A, Homges (B, C)). Applying (—)T for
T =%, %, *%r,V, we obtain morphisms

N

ot RO POl
V¥ ®@s L, (Lit1®@s V)T — L for =% or =,

—
~—

I

—~
w
=
—~
~

4

12

bl
V7T es L, (Lisa ©s V)T 5 LT for f=#r or v

of Se"-modules, which give the desired structures on L*), L&O LG and LM,

LEMMA 2.4.

(a) We have isomorphisms L*) = LU0 of Z-graded Tg(V*')-modules, and L") = L) of
Z-graded Tg(V*")-modules.

(b) Under the isomorphism Tg(V*") = Tg(V*) of algebras given by ay' By : V" 2 V* we
have isomorphisms L(*) = L0 = [,(7) = [ (V) of 7-graded Ts(V*")-modules.

Proof. The assertions follow from the following commutative diagram.

1) by

V7T ®s Ly (—> (Liy1 @5 V)Y LY
Tysr®vL; J/ , VL;i41®V i por i L,
V¥ @5 Li) ——— (Liz1 ®s V)" — L
0y 0v) B, | L By | § | 51,
V¥ gL, —— (Liy1®sV)* i Lr
1V*4®O£Li+1 T QAL; 110V T ” TaLi
V¥ ®s Lity —— (Lis1 ®5 V)" Lyt

The right squares commute because «, 3,7y are morphisms of functors. The top left square
commutes because both the north-east composition and the south-west composition send
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f@geV* gLl to (Liti®sV3z®@uv Y t(si)f(siv) € S), where g(z) =3, ® s,
The bottom left square also commutes because both the north-west composition and the
south-east composition send f ® g € V** ®g L%, to (Liy1 ®sV 2 z®@v — t(g(zf(v))) € F).
To check that the left middle square commutes, fix f® g€ V™ ®g Li};. The north-east
composition sends f ® g to (xr ® v — t(f(g(x)v))). The south-west composition sends f ® g to
(z @ v t(g(zf'(v)))), where f' = ay'Bv(f) € V** satisfies to f =to f'. These two elements

coincide because t(f(g(x)v))) = t(f'(9(z)v)) = t(g(z)f'(v)) = t(g(zf'(v))). 0

2.2 Graded algebras and Koszul algebras
In this section, we give preliminaries on Koszul algebras, which were introduced in [Pri70] and
studied extensively in [BGS96].

Let A = @,~,A; be a positively Z-graded F-algebra satisfying the following conditions:

e S := Ay is a finite-dimensional semisimple F-algebra or, equivalently, the Z-graded radical of
A coincides with Asg := @, Ai;

e A is generated in degree 1, that is, the multiplication map Ay ®r A1 ®F -+ @ Ay — A; is
surjective for each j.

In this case, we call the grading a radical grading.

We assume, for simplicity, that A is basic. Our assumptions ensure that A is a quotient of
the tensor algebra Tg(V) where V is the S°"-module A;. When A is finite-dimensional and F
is algebraically closed, we can identify S with the space FQq of vertices, and V with the space
FQ: of arrows, of the Gabriel quiver @ of A.

For a Z-graded A-module M and j € Z, let M(j) denote the shifted Z-graded A-module
where M (j); = M;;;. A complex

-— M —-My—>M_1— ---

of Z-graded A-modules is linear if each module M; is generated in degree ¢ and each map
is homogeneous of degree 0. The algebra A is Koszul if each simple module S; has a linear
projective resolution.

All Koszul algebras are quadratic in the sense that they can be written as a quotient of a
tensor algebra:

A=Ts(V)/(R),

where V' is an S°"-module, R is a subset of V ®gV, and (R) is the ideal in Tg(V) gen-
erated by R. To simplify the proofs, we sometimes assume that R is a sub-S°"-module
of V®gV instead of just a subset. In particular, it is a vector subspace. This is no real
restriction.

We view S as a Z-graded F-algebra concentrated in degree 0, and V as a Z-graded S°"-module
concentrated in degree 1. Then the tensor grading and the grading coming from A coincide, and
so we can safely refer to just the grading on A.

We record a useful lemma on quadratic algebras that can be checked easily.

LEMMA 2.5. Let ¢:Tg(V)/(R) — Tg(V')/(R') be a morphism of Z-graded quadratic
F-algebras. If ¢ is an isomorphism in degrees 0, 1, and 2, then it is an isomorphism.
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In the rest of this subsection, let A = Tg(V)/(R) be a quadratic algebra. We have S°"-
modules Ko =5, K1 =V, Ko = R, and
j—2
Kj=(V®sKji-1)N(Kj-1®sV)= m Vies Reg VIT2!
i=0
for j > 3. Here, V? denotes the ith tensor power V ®g --- ®g V. Note that K; is concentrated
in degree i and that for ¢ < 0, we set K; = 0. We have obvious inclusions Lf K, —> Vs K1
and ¢ : K; — K;_1 ®g V of S°"-modules.
Recall [BGS96, Section 2.7] that if U is a subset of V', the right orthogonal complement of
Uis Ut ={f e (V*)| f(U) =0}, where we identify (V*)? with (V¥)** by (2). The quadratic
dual of a quadratic algebra A = Tg(V)/(R) is

A= Ts(V*)/(RY).

It is again quadratic. If moreover A is Koszul, then A' is also Koszul and it coincides with the
opposite ext algebra (69120 Extf (S, S))Op (see [BGSY6, Proposition 2.10.1]). In this case, A' has
the following description.

LEMMA 2.6 [BGS96, Section 2.8|. For a Koszul algebra A, we have an isomorphism of Z-graded

algebras
N - @ =

i>0 i>0
where the Z-graded algebra structure on @iZOK;‘e is given by the duals (i£)* and (:})*".

Now we assume that S is a separable F-algebra, that is, S @ F’ is semisimple for all field
extensions F C F’ or, equivalently, S is semisimple [Wei94, Theorem 9.2.11]. Let

Pi=A®s K; @5 A = A" @gen K.

This is a projective A*"-module because S is semisimple by our assumption. Combining Lf and
¢; with the multiplication for A, they induce maps il,ir . Py — Pi_y. Let

(L)
6 =it + (=1,

(3

One can check that these maps give a chain complex
S5 p, 2 p Py o, (5)

which is called the Koszul bimodule complex. Note that, as K; C V* and V is concentrated in
degree 1, each P; is generated in degree ¢, i.e. the complex is linear.

The next result is an important characterization of Koszul algebras. It can be found as, for
example, [BG96, Proposition A.2, BK99, Theorem 9.2].

THEOREM 2.7. The algebra A is Koszul if and only if the Koszul bimodule complex (5) is its
minimal projective resolution as a A**-module.

In this paper, we need separability of S when we consider bimodule resolutions including
the Koszul bimodule resolutions. We assume separability in Theorems C and 2.7, §§3.1 and 3.3,
Corollary 4.3, and §5.1.
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2.3 Higher preprojective algebras
Let

7= (—)"oTr: A-mod — A-mod

denote the Auslander—Reiten translation, which is a functor from the stable category of modules
over A to the costable category, and

7~ =Tro(—)*: A-mod — A -mod

the inverse Auslander—Reiten translation. Note that if A is hereditary, then the Auslander—Reiten
translation in fact can be regarded as an endofunctor of the module category: 7 = Ext}\(—, A)*
and 7~ = Ext} (A*, —). Moreover, 77 is left adjoint to 7.

Recall [Iya07] that the d-Auslander—Reiten translation and inverse d-Auslander—Reiten
translation are defined as

1 =70%1: A-mod — A-mod and T, = Q@1 A mod — A -mod,

where Q0 : A-mod — A-mod denotes the syzygy functor and Q™ : A-mod — A-mod the cosyzygy
functor. If gldim A < d, then we regard 74 and 7, as the endofunctors

74 = Extd(—,A)* : A-mod — A-mod and T, = Ext{(A*, —) : A-mod — A-mod

of A-mod.
Generalizing the classical case, we have two distinguished classes of modules.

DEFINITION 2.8 [HIO14, Definition 4.7]. We have the following two full subcategories & and
& of A-mod:

P :=add {r;'(A)]|i >0} and & :=add{7j(A*)|i>0}.
Any module in & is called d-preprojective and any module in .# is called d-preinjective.
In the rest of this section, we assume that A has global dimension d. The A®"-module
E = Ext$(A*,A)

plays a central role in this paper. We take this opportunity to record a useful lemma, which
makes the A**-module structure of E clearer.

LEMMA 2.9. We have isomorphisms
E 22 Ext4en (A, A™) 2 ExtGop (A%, A)
of A°™-modules.

Proof. For each finite-dimensional A-module M, there is a natural isomorphism M = M**. Then
we use the natural isomorphism of finite-dimensional vector spaces V* @p W = Homp(V, W) to
see that we have an isomorphism of A®®-modules

A2 AQr A2 A Qp A HOIII]F(A*,A)
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Finally, we use the tensor-hom adjunctions to obtain
Ext%en (A, A°®) = Ext4en (A, Homp(A*, A)) = Extd (A @4 A*, A) = Extg (A%, A).
The second isomorphism is shown similarly. g
Using E, one can describe the functors 75 and 7, as follows.
ProrosiTION 2.10. If gldim A < d then we have isomorphisms of functors
7q = Homy (E,—) : A-mod — A-mod and 7, =2 E®j —: A-mod — A-mod.
In particular, 7; is left adjoint to 74.
Proof. See the proof of [I013, Lemma 2.13]. The latter assertion follows from the former. O
Now we recall the definition of higher preprojective algebras as given in [IO11].

DEFINITION 2.11. The higher preprojective algebra (or, more precisely, the (d + 1)-preprojective
algebra) of A is the tensor algebra of the A°"-module E:

I = I (A) = Ta(E).

As this is a tensor algebra, it comes with a natural grading that we call the tensor grading, i.e.,
the degree i part of II is E°.

The following result justifies the name of the higher preprojective algebra.

PROPOSITION 2.12. As both a left and a right A-module, 11 is the direct sum of all indecom-
posable d-preprojective A-modules.

Proof. The statement is immediate from the definition of Il and Proposition 2.10. U

As in the global dimension 1 case, the preprojective algebra can be identified with

@Hom/\ (A,Td_i(A)),

i>0
where the composition of f: A — Td_i(A) and g: A — Td_j(A) is given by
gf = Td_i(g) of :A— Td_i_j(A).

The ith part of the tensor grading is just Homy (A, Td_i(A)).

3. Description of higher preprojective algebras as higher Jacobi algebras

The aim of this section is to give some basic properties of higher preprojective algebras, including
presentations of these algebras by generators and relations.
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3.1 Preliminaries
In this subsection, let A be a finite-dimensional F-algebra A with global dimension at most d,
where d is a positive integer. Moreover, we assume that

A=Ts(V)/I

for a separable F-algebra S. Thus, S is semisimple, and the projective dimension of the A®"-
module A coincides with the global dimension of A, which is at most d. As before, let

E = Extd (A", A).
We take a minimal projective resolution of the A°"-module A:
0P 2. % p %2 p 2 p 0 with P = A ©g K; @5 A, (6)
where K; is an S®"-module. For each ¢ > 1, we define a map ¢ by the commutative diagram

Aen (65,A°™)

HOmAen (R;_l, Aen) HOHlAen (PZa Aen)

- -
&

A@g KY | @g A o L= Aes KY @5 A,
where the vertical maps are given by Lemma 2.3.

PROPOSITION 3.1. We have isomorphisms E = (A ®s K ®g A)/Im o), of A®"-modules and
head E = K/ of S°®-modules.

Proof. The former isomorphism is immediate from (7). As the resolution (6) is minimal,
Im Hompen (0, A) C J**(A ®g K ®g A) holds. Thus, head E = head (A ®5 K] ®g A) = K
because S is semisimple. O

Let V be the Se®-module
V=V Kc\l/

This notation is meant to be reminiscent of Q, which, in the global dimension 1 case, is used to
denote the doubled quiver of the underlying quiver Q. For T' := Tg(V'), we have an isomorphism

Ts(V) =2 Tr (T ®s Kj ®s7T)

by Lemma 2.1(a). Regarding T ®s K} ®sT as a subspace of Tg(V), we have the following
description of II.

PROPOSITION 3.2. Let A =T/I with T = Tg(V) and I C V=2,

(a) We have a surjective morphism of algebras:
TS(‘?) — 1L,

which is bijective on restriction to S ® V.
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(b) Let L be a subspace of T ®g K} ®gT whose image under the natural surjection T ®g
K} ®sT - A®s K] ®g A is §,(K, |). Then we have an isomorphism of algebras:

Ts(V)/(I + L) =1L

Proof. We only need to prove part (b) of the proposition, from which part (a) follows. By
Proposition 3.1, we have

E = Cokdy = (Aos Kj @5 A) /A6y (Kj_1)A
>~ (Tws Ky ®sT)/(I®sKj@sT+T®sKj ®s1+TLT).

Thus, applying Lemma 2.1(a) and (b), we have

Ts(V)/(I+L) =Ty (Tos Kj ®sT)/(I+TLT)
2T) (T ws Kj @sT)/(I®s K @sT+T ®s Kj ®s1+TLT))
>~ Ty\(E) =11

as desired. OJ

Consider the case where F is algebraically closed, so we can describe A as FQ/I. Let
{k1,...,k.} be a basis of K;, each with a unique source and target s(k;) and ¢(k;), and let
Q be the quiver obtained by adding r arrows k; : t(k;) — s(k;) to Q. Then, just as V is the
arrow space of @, V is the arrow space of @), and Proposition 3.2 says that Q is the Gabriel
quiver of II.

We can therefore calculate the Gabriel quiver @ of II as follows. First, for each vertex i of
@, compute the projective resolution

0—=PF,—-—PFPo—0

of the simple left A-module S;, where some projective modules P; ;, may be zero. Then, for each
i and for each summand of the projective module P;,, that is isomorphic to the projective cover
of S;, add an arrow i — j to the quiver ). The resulting quiver is Q.
Example 3.3. Let

Q=[1%22%32%45%525¢]
and A =FQ/(579,~vde). Let S; denote the simple left A-module associated to the vertex i, and

P(S;) its projective cover. One can check that A has global dimension 3 and the only simple
module with projective dimension 3 is Sg. Its projective resolution is

. ~6 £
0 — P(S5) 2 P(S5) 22 P(S5) -5 P(Ss) — 0,

where -a denotes right multiplication by a. Thus, the quiver @ of IT is just @ with an extra arrow
from 6 to 2, which we label (Bvde)*.

3.2 Superpotentials and higher Jacobi algebras
To introduce our main notions of superpotentials, we need preparations. For an F-algebra A and
an A°"-module M, we write

C(M) = A®Aen M
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for the zeroth Hochschild homology Hy(A, M) of A. This can be naturally identified with the
quotient of M modulo the subgroup generated by am — ma with a € A and m € M. Therefore,
we have a natural surjective map m: M — A ® gen M of F-modules.

For A°"-modules My, ..., My, we clearly have functorial isomorphisms

c(My®4--@aMy)Zc(Ma®@y - @4 MyR4 M) Ze(MyR@a M ®@4---®@4 Me—1) (8)

given by mi @ - @mpr—ma®@---@mpR@mpr— -+ —my@m;Q---®my_1. For M,N €
A°" -mod, there is a functorial isomorphism

(M &4 N) =M @pen N (9)

given by a ® (m ®n) — am ® n = m ® na, whose inverse is m®@n — 1 ® (m®@mn). It gives a
functorial morphism
(M @4 N) — Homuen (MY, N), (10)

which is an isomorphism if M is a finitely generated projective A°"-module.
Setting M = A" in (9), we have a functorial isomorphism of A®"-modules

(A" ®4 N) = N. (11)

For M, N € A°"-mod, we have a well-defined pairing
evy @1y : MY @pc(M @4 N) — N (12)
given as the composition MY @ ¢(M ®4 N) — c(A™ @4 N) un, N, where the first map sends

f®(1a® (m®n)) to f(m)n.
Now we are ready to introduce the following, which is a central notion in this paper.

DEFINITION 3.4. Let S be a semisimple F-algebra and U an S“"-module. A superpotential of
degree  for T = Tg(U) is an element of c¢(U*) = S @gen U*, where U’ is the fth tensor power
U®g--®gU as before.

By (8), we have a well-defined automorphism
p:S ®gen Uz—>5®5en Ué, (1 R23Q Q@) — (22 R - Ry ® x1).

Using p, we define ¢ by

[y

/—
Y= (_1)(871)lp7' : S ®Sen UZ — S ®Sen Ué
=0

By (12), for 0 < k < ¢, we have a well-defined pairing

~ Vo @1 o
evyr ®lyes 1 (UF)Y @ c(UY) 5 (UF)Y @p o(UF @g UL ZUE 000, ek
For f € (U*)Y and z € ¢(U"), we simply write f -z := evyx @1y (f @ ).

DEFINITION 3.5. Let S be a semisimple F-algebra, U an S°"-module, and T'= Tg(U). For a
superpotential W of degree ¢ and a non-negative integer k < £, the k-Jacobi ideal of T is the
two-sided ideal

JEU,W) = (f-o(W) | f € Homgen (U*, 5)).
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The k-Jacobi algebra is the quotient algebra
P§(U,W) = Ts(U)/J§(U,W).
We now explain a connection to notation used elsewhere.

Remark 3.6. Given a quiver (), we have a semisimple algebra S = FQ)y with basis the vertices of
@ and an S°"-module U = F@Q; with basis the arrows. For each i > 0, let ); be the set of all paths
of length i on Q. Then Q; gives a basis of the S®"-module U?, and we denote by {p" | p € Q;}
the dual basis of (U*)Y in the obvious sense.

Let W be a superpotential for FQ = Tg(U). Define

HW =p” - o(W).

Then the k-Jacobi ideal is the ideal of Tg(U) generated by {9, | p € Qx}. Note that when
k =1 and the superpotential W is of odd degree we recover the usual notion of the Jacobi
algebra of a quiver with potential (Q, W).

Note also that some sources, such as [BSW10], define the superpotential to be (W) rather
than W.

In the remainder of this section, we give general observations that are used later. Let A be
an F-algebra.

LEMMA 3.7. For A"-modules X,Y, Z, we have functorial morphisms
HOmAcn(Xv,Y XA Z) — C(X RaY ®4 Z) — HOIIlAcn<YV7 YA X)

The left (respectively, right) one is an isomorphism if X (respectively, Y') is a projective A®"-
module.

Proof. Using (10), we have functorial morphisms ¢(X ®4Y ®4 Z) — Homgen (XV,Y ®4 Z) and
(8)
(X R4Y R42Z) = c(YR4ZR4X)— Hompen(YV,Z @4 X). O
As in (4) when A is semisimple, for A°*-modules X,Y, Z, we have functorial isomorphisms

YV ®4Homg(X,A) 2 (X ®4Y)Y and Homaer(Y,4) @4 X' 2 (X ®4Y)Y. (13)

The first map sends f ® g to (x @y — >, g(zs;) ® ;) where f(y) = >, s; ® s;, and the second
one sends f'® g’ to (x®@y— >, t; ® f'(tiy)) where ¢g'(z) =3 _;t; ®t;. We have the following
commutative diagram.

1®(evx ®1)

(HOonp(Y,A) XA XV) XF C(X ®AY®A Z) Hoonp(Y,A) XA (Y XA Z)

I l (13) l evy ®1

evX®y

(X®RAY) Qpc(X®4Y ®4 2) 7z (14)

0 T (13) T 1®evx
(evy ®1)®1

(VV @4 Homy (X, A)) pc(X @Y @4 Z) ———— (Z®4 X) ®4 Homy (X, A)
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3.3 Higher preprojective algebras of Koszul algebras
Now we go back to the setting in §3.1, that is, A is a finite-dimensional F-algebra with global
dimension d > 0. Moreover, we assume that A is a Koszul algebra and

A=Ts(V)/I

for a separable F-algebra S. Then the minimal Z-graded projective resolution (6) of the A®"-
module A is given by the Koszul bimodule complex (5). Let V =V & K.

DEFINITION 3.8. We define a superpotential W of degree d + 1 for Tg(V') as the image of 1p € F
under the composition

F 2 o(Kg @5 KY) € e(V3@g KY) C e(VE@g V) = (V)
where coevg, : F — Endgen (Kg) & Kq @gen K = ¢(Kq ®s K|) is the coevaluation map. We call
W the superpotential associated to A, or the associated superpotential.

By Lemma 3.7, we have isomorphisms Homgen (K;,V ®g K;—1) = Homgen (K, |, K}/ ®gV)
and Homgen (K;, K;—1 ®g V) = Homgen (K} |,V ®g K}'). Thus, the inclusions i} : K; — V ®g
K;_1and ¢ : K; — K;_1 ®g V give rise to

0! K, - KY®sV and 6/ :KY,—V®sK) . (15)
We need the following observations.

LEmMA 3.9. The following assertions hold.

_ or _ _ _
(a) The map (V4 1) - KY | -5V ®g K — V? coincides with — - W : (VI=1)V — V2,
'3

_ 0 _ _ _
(b) The map (V1) — KY | -5 KY ®gV < V2 coincides with — - p(W) : (VI"1)V — V2,

Proof. (a) By definition, W belongs to the subspace C(Kd_l RsV ®g KC}/) of ¢(V4t1), and
coincides with ¢/, under the isomorphism Homgen(Ky, Kq—1 ®g V) = C(Kd_1 ®RsV ®g Kc\l/) in
Lemma 3.7. By definition, 07 is the image of W under the isomorphism c(Kd_l ®RsV ®g K(}/) =
Homgen (K} 1,V ®g K/) in Lemma 3.7. Thus, 0); coincides with

evi, . ®1x1
Ky, 2 KY | @p oKy ®sV 05 KY) ———— V 05 K.

On the other hand, because W belongs to C(Kd_1 ®sV ®g Kc\l/)v the map — - W factors through
the surjection (V4~1)¥ — KY ,. Thus, the assertion follows.

(b) Although the argument is mostly the same as (a), we record the details.

By definition, W belongs to the subspace c(V ®Rs K41 ®g K(\i/) of c(VdH), and coincides
with Lfl under the isomorphism Homgen (K, V ®g Kgq_1) & C(V ®s K4_1 ®g Kc\l/) in Lemma
3.7. By definition, Hfl is the image of W under the isomorphism c(V Rs Kg_1 ®s KCY) =
Homgen (K 1, K} ®s V) in Lemma 3.7. Thus, 0 coincides with

1QW eVK, 4 ®R1R1

Ki | ——Kj  ®rc(VesKi1®sKy) ELIN Ki  ®pc(Kqo1 @5 K ®5V)

V®SK(}/,

evi, ; ®1x1

1 w
Lﬁ,(—)—» K] | Qr C(Kd_1 Ry K) ®s V) — Vs K].

which equals K

2602

https://doi.org/10.1112/50010437X20007538 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X20007538

HIGHER PREPROJECTIVE ALCEBRAS, KOSZUL ALGEBRAS, AND SUPERPOTENTIALS

On the other hand, because p(W) belongs to ¢(K4_1 ®5 K ®g V'), the map — - p(W) factors
through the surjection (V41)¥ — KY . Thus, the assertion follows. O

On the other hand, 8 and 67 induce morphisms #¢ and 67 : A ®5 K | @5 A — A ©g K @5 A
of A*"-modules. This gives an explicit construction of ] in (7) by the following observation.

LEMMA 3.10. If A is Koszul, then we have a commutative diagram

Aen (65,A°™)
Hompen (A ®g K;—1 ®g A, A°")

l Oi+(-1)0; l
A®s K | ®@sA A®s K ®s A

Hompen (A Rs K; ®Rg A, Aen)

and therefore &, = 0! + (—1)1.
To prove this, we prepare the following observation.

LEmMA 3.11. For S*"-modules X and Y, we have the following commutative diagram.

Lemma 3.7

(Y @5V ®sXV) Homgen (YV,V ®g XV)
| Lemma 3.7 L&
Homgen (X, Y ®g V) Hompen(A @5 YV @5 A, A @5 XY ®@g A)
& s ~ | Lemma 2.3

HOmAen(A Rs X Rs A, ARsY ®g A) %) HomAen((A ®RsY ®g A)VA, (A ®s X ®g A)VA),

where we write (—)¥A = Hompen (—, A®").

Proof. Fixy@v® f €c(Y @5V ®s XV), and let a € Hompen (A @5 X @5 A, A ®gY ®g A) and
b € Hompen (A @5 YV ®5 A, A ®g XV ®g5 A) be the corresponding maps. Let @’ and b be the
maps in Hompen (A ®5Y @5 A)VA, (A ®g X ®g A)VA) corresponding to a and b, respectively.
To prove a’ =V, it suffices to show that a/(¢’) = ¥'(¢’) holds for all g € YV, where ¢’ € (A ®g
Y ®g A)VA is the natural extension of g.

Asa(l®@z®1l)=(1yev)f(x) =1y 1)((v®1)f(x)) holds for all x € X, we have
(d(@))1e@zx®1)=g(y)(vel)f(x). On the other hand, since b(¢") =gy (v® f®1)=
(g(y)(v®1))(1® f®1) holds for all g€ YV, we have (V/'(¢')(1®@zx®1)=g(y)(v®al)f(z).
Thus, o’ = b’ holds. O

Proof of Lemma 3.10. As 9; = Zf + (—=1)%F, it suffices to show that the following diagram
commutes for s € {{,r}.

pen (25,07

HOHlAen (A Xg Kifl ®g A, Aen) HOmAen (A Xs Kz KRg A, Aen)

|- |-

A®SK1-V_1®SA A®5Ki\/®SA
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We just show the s = r version; s = £ is the dual. We apply Lemma 3.11 to X := K; and Y :=
K;_1. As /I € Homgen (K;, K;—1 ®g V) corresponds to 67 € Homgen(K,” |,V ®g K;’), the map
Aen (27, A°™) coincides with éf up to the isomorphisms in Lemma 2.3. This gives the commutativity
of the diagram. O

As A is Koszul, we can regard §,(K] ;) CV ®g K] @3S+ S ®g K} ®sV as a subspace of

T ®s K ®sT C Tg(V) naturally. Now we show the following assertion.

ProOPOSITION 3.12. IfA = Tg(V)/(R) is a finite-dimensional Koszul algebra of global dimension
d with R C V2, then we have an isomorphism of algebras:

== Ts(V)/(R+ 65(Kq_1)).
In particular, 11 is quadratic.

Proof. The first assertion is immediate from Proposition 3.2(b). The second assertion is
immediate from the first because both R and §,(K) ,) are contained in VZ2. 0

Now we are ready to prove the following.

THEOREM 3.13. If A =Tg(V)/(R) is a finite-dimensional Koszul algebra of global dimension
d, then we have an isomorphism of algebras:

1= PEY(V,W)/(R).

Proof. The left-hand side is Ts(V)/(R + ¢/,(K,]_;)) by Proposition 3.12, and the right-hand side
is Ts(V)/(R+ (VA1) - o(W)) by definition. It suffices to prove R + §}(K) ,) = R+ (V4= 1)V

e(W). , ,
As K = ﬂ?:2V1_2 ®g R®g V4 for each 2 < i < d we have

Wec(Kg®sK)) Ce(Vi? s Ros VI @g KY)

and, hence, p'(W) € ¢(V¥ ™ ®g K} ®5 V™2 ®g R). Therefore, (V41)V - p{(W) C R holds. In
particular,

R+ (VIYY (W) = R+ (VEYY - (W 4 (=1)p(W)) "2 % Ry (05 + (~1)P09) (KY_,)
Lemrrg 3.10 R+ (5:1(K¢\1/_1)
holds as desired. ]

The extension condition in the following theorem is a special case of the following property
of [I013, Section 3]. Given a d-cluster tilting subcategory % of D?(A), we say that % has
the vosnex property (‘vanishing of small negative extensions’) if Hom ps(a) (% [j], %) = 0 for j €

{1,2,...,d — 2}. In this case, because A, A*[—d] € %, we have Extjl\;f(A, A = Extfl(j(A*, A) =
Hompy(p)(A*[j —d],A) =0 for j € {1,2,...,d — 2}.

THEOREM 3.14. Suppose A is a finite-dimensional Koszul algebra of global dimension d. If
Extien(A,A®)_; =0 for 2 <i < d — 1, then we have an isomorphism of algebras:

= pii(v,w).
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Proof. By Theorem 3.13, it suffices to prove (V¢=1)V . (W) D R. In fact, for each 2 < i < d, we
prove by downwards induction

(V)Y o(W) 2 K. (16)

First we prove (16) for i =d. Consider the decomposition VY = V" @ K,. Since W =
coevi,(ly), we have Ky - pt(W) = Kq and Kq-p'(W) =0 for each 0 <i<d—1. Thus, V" -
o(W) D Kg- (W)= K, holds.

Next, for each 3 < i < d, we prove

Homgop(V, S) K+ K - Homg(v, S) =K; 1, (17)

where - are the maps Homgos(V,S) ®g Vi — Vi~ and Vi®g Homg(V,S) — V=1 given by
the evaluations. We use the Koszul resolution together with Lemma 3.10. These tell us that
Ext’er (A, A°") is the (i — 1)th homology of the complex

O<—A®5K&/®SA<—A®SKC\Z/_1®SA<—---<—A®SK1V®5A<—A®5K(\]/®SA<—O,
where the differentials are induced by the maps
8 =0+ (1) : Ky — (K @s V) @ (Vs K) C Awg K ®gA.

This is injective since its kernel is Ext’ (A, A°");_; = 0 by our assumption. Applying (—)V, we
have a surjective map

13 Y%
( ) )\/ (51) Ki_l.

(Homger (V, S) ®s K;) @ (KZ ®s Homg(V,S)) = (Klv Rg V)v (&) (V ®g Klv
This is a restriction of the map (Homger(V,S) @5 V?) @ (V! ®s Homg(V, S)) — V=1 given by
the evaluations. Thus, (17) holds.

Now assume (16) holds. Applying the upper part of (14) to (X,Y, Z) = (V4= V Vi-l)
and the lower part to (X,Y, Z) = (V, V471 Vi) we obtain

) (16)

V=+2)V . o) L Homge (7, 8) - (V1Y - o(W)) 2 Homge(V, S) - K,

(VA2 () & (A5 (1) - Homs(V,8) D K; - Homs(V, 5).

Thus, (V4= H2)V . (W) D Homgos(V, S) - K; + K; - Homg(V, S) (o i—1 holds, which com-
pletes the induction. O

Note that the condition of Theorem 3.14 is vacuous when d = 2, so this result agrees with
Keller’s description of 3-preprojective algebras (see [Kelll, Theorem 6.10, HI11, Section 2.2]).

We will see in Corollary 4.3 that this theorem is particularly applicable to d-hereditary
algebras.

Ezample 3.15. (a) Consider the quiver

(1592 -3 —>4]

Q

and the algebra A = FQ/(af, 7). One can check that it satisfies the conditions of Theorem
3.14 for d = 3. (In fact, A is Koszul and 3-representation finite, see Definition 4.4.) We have
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K3 = (af37) so the quiver Q of IT =II(A) is

Q—[1a2ﬁ374}
_\ ______ /’
n

where n = (afv)*. The superpotential W is represented by «3yn and the space of relations of

I is given by V=2 - o(W) = (a3, 47,71, nax).
(b) Next consider the quiver

a B Y )
Q=[1-—>2—>3—>4-—>5—>6]
and the algebra A = FQ/(R) with R = (a3, 37, de). One can check that A has global dimension
3 and is Koszul, but it does not satisfy the condition of Theorem 3.14 as Exti (A*eg, Aeg)—o # 0.
Again, we have K3 = (a37) so the quiver Q of II(A) is

— e B vy £
Q:[l\—>2—>;">/—>4—>5—>6],
—

where 7 =(afv)*. The superpotential W is represented by af8vyn and the 2-Jacobi ideal is gen-
erated by V2. (W) = (a3, Bv,7m,na). We see that this does not include e, and so to obtain
the whole space of relations of II we need to consider R + V=2 - p(W).

Remark 3.16. It is worth pointing out that higher preprojective algebras are sometimes higher
Jacobi algebras even in the non-Koszul case. For example, consider the following example, due
to Vaso [Vas19, Example 5.3], of an algebra of global dimension 4 that satisfies the Ext-vanishing
condition of Theorem 3.14. (In fact, A is 4-representation finite, see Definition 4.4.) We take the
quiver

« ¢ n
Q=[1—>2-—>3—>4-—>5-—>6—>7—>8—09]

and the algebra A = FQ/(rad FQ)* = FQ/ (o376, fyde, v, 6e(n, e¢nb). We know from Propo-

sition 3.2 that the quiver for II is

- a B v s € ¢ n 0
Q:[1%\2‘>\3%4‘>5‘>6iy9],

L

where « = (af8vde(nh)*, and one can check that II is, in fact, a 5-Jacobi algebra: we obtain its
relations by differentiating the superpotential represented by W = aB~de(nf. with respect to
paths of length 5.

We do not know an example of a non-Koszul algebra that satisfies the Ext-vanishing condition
of Theorem 3.14 but is not a higher Jacobi algebra.

4. Resolutions of simple modules over higher preprojective algebras

The aim of this section is to construct projective resolutions of simple modules for preprojective
algebras of d-hereditary algebras.
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4.1 Preliminaries on d-hereditary algebras

Let A be a finite-dimensional F-algebra with gl.dim A < d, and D°(A) the derived category of
finitely generated left A-modules with bounded homology. Then we have the following result on
formality.

LEMMA 4.1 [Iyall, Lemma 5.2]. If X € D?(A) satisfies H'(X) =0 for any i ¢ dZ, then X =
Dicaz ' (X)[—1].

Let v denote the Nakayama functor
v:=A*@% —: D’(A) = DY(A)
of A and let v~! denote its quasi-inverse, defined using the internal hom,
v~! = RHomy (A%, =) : D*(A) 5 Db(A).
Let vq denote the shifted Nakayama functor v4 = v o [~d] and v;* = v~! o [d]. Then we have
74=H’(v4—) :mod A — modA and 7, = Ho(yaj1 — ) :mod A — mod A. (18)

DEFINITION 4.2 [HIO14, Definition 3.2]. A finite-dimensional algebra A with gldim A = d is d-
hereditary if H'(v}(A)) = 0 for all ¢, € Z such that i ¢ dZ.

One of the important properties of d-hereditary algebras A follows from Lemma 4.1: for any
j € Z and an indecomposable projective A-module P, there exists ¢ € Z such that

vy (P) = HY(v)(P))[~di]. (19)

Note that in [HIO14], the weaker condition gldim A < d instead of gldim A = d was imposed.
The only difference between the two definitions is whether we allow A to be semisimple, which
is a case we are not interested in. Therefore, we always assume gldim A = d.

The following result is an immediate consequence of Theorem 3.14.

COROLLARY 4.3. Let A=Tg(V)/(R) be a Koszul d-hereditary algebra over a separable
F-algebra S and (V, W) the associated superpotential. Then we have I1 = P3(V,W).

Proof. The assertion is immediate from Theorem 3.14 because
Extor (A, A®) 2 Hom ps ) (A", A[d — ]) 22 Hom sy (A[i],v; ' (M) = H (v (A) =0
holds for any 0 < ¢ < d. O

DEFINITION 4.4 [I013, HIO14]. We say that a finite-dimensional F-algebra A with gldim A = d
is:

o d-representation finite (or d-RF) if there exists an d-cluster tilting A-module M, that is,
add M = {X € A-mod | Exti(X,M) =0 forall 0 <i<d}
={Y € A-mod | Ext}(M,Y) =0 for all 0 < i < d}.

e d-representation infinite (or d-RI) if v, *(A) is concentrated in degree 0 for any i > 0.
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Then we have a dichotomy theorem.

THEOREM 4.5 [HIO14, Theorem 3.4]. Every ring-indecomposable finite-dimensional F-algebra
is d-hereditary if and only if it is either d-RF or d-RI.

In the study of d-hereditary algebras, the subcategory
U = add {VQ(A) i€ Z}

of Db(A) plays an important role.

We give a few properties of %7 and the categories &2 and .# of d-preprojective A-modules and
d-preinjective A-modules (Definition 2.8). By the following result, any d-RF algebra has a unique
d-cluster tilting module up to additive equivalence, which is given by II. For a full subcategory
Z and % of an additive category %, we denote by 2"V # the full subcategory add(Z U %)
of ©.

PROPOSITION 4.6.

(a) [Lyall, Theorem 1.6] If A is d-RF, then Il is a d-cluster tilting A-module, & = . = addll,
and % = add{Il[di] | i € Z}.

(b) [HIO14, Proposition 4.10(d)] If A is d-RI, then & =add{v;'(A)|i>0}, & =
add {v)(DA) | i > 0}, and % = J[—d) vV &. Moreover, Homy(.#, #) =0 and Z N .¥ = 0.

In the final part of our preparations for this section, we recall the generalization of almost
split sequences, or Auslander—Reiten sequences, to d-hereditary algebras.

DEFINITION 4.7 [Iya07]. Let € be a Krull-Schmidt F-linear category with Jacobson radical rady

and let

vy o oy e B e I oy B (20)
be a complex in ¥ where X and Y are indecomposable and each f; belongs to rady. Then we
say the sequence (20) is d-almost split in € if both of the following sequences are exact for all
objects M in ¢

0 — Homy (M,Y) Ja, Homy (M, Cy_1) fd7—1*> ENEILR Homy (M, Cp) Jou, rady (M, X) — 0;
fa—1"

0 — Homg (X, M) 1% Homg (Co, M) L5 - 275, Home (Car, M) 225 rady (Y, M) — 0.

More generally, we say the sequence (20) is weak d-almost split in € if these sequences are exact
except at Homg (M,Y') and Home (X, M), respectively.

Ezample 4.8. Let Q = [1 — 2] and A = FQ. Then the short exact sequence corresponding to the
non-split extension of one simple module by the other is 1-almost split in A-mod but is only
weak 1-almost split in DY(A).

It was shown in [HIO14] (respectively, [Iya07]) that the category &2 V .# has d-almost split
sequences when A is d-RI (respectively, d-RF). In addition, it was shown in [IY08, I013] that
d-cluster tilting subcategories of triangulated categories have certain analogue of d-almost split
sequences called AR (d + 2)-angles. From these results, one can deduce the following results on
d-almost split sequences in the category %, which play a key role in this section.
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THEOREM 4.9. Let A be a d-hereditary algebra.
(a) If A is d-RI, then any indecomposable object X (respectively, Y') in % has a d-almost
split sequence in %

fa—1 fa—2
N

viteo, Yo, o Loy I x

Moreover, we have Y = v4(X) (respectively, X = I/d_l(Y)).
(b) If A is d-RF, then any indecomposable object X (respectively, Y) in % has a weak
d-almost split sequence in %

fa—1 fa—2
—

Yf—d>C’d_1———>Cd_2 "-f—2>01f—1>00f—0>X.

Moreover, we have Y = vy(X) (respectively, X = v, (Y)), Ker(fys) = soc Homy (—,Y) and
Ker(fo*) = socHomgy (X, —).

Proof. In both cases, we only show the assertion for X because the assertion for Y is the dual.
(a) Let X € % be an indecomposable object. If X is a projective A-module, then I/JI(X) is
not projective, as otherwise X = I/dlld_l(X ) would be concentrated in degree d which contradicts
our assumption that A is d-RI. As vy : % — % is an equivalence, it preserves d-almost split
sequences in 7% . Thus, we can assume that X is a non-projective object in &2.
It was shown in [HIO14, Theorem 4.25] that there exists an exact sequence

fa—1 fa—2
—_ ..

0-Y Lo, oy, SELNYG N INToNELNG QN (21)

in mod A that has terms in &, Y = v4(X), and gives a d-almost split sequence in &V .#.
Thus, because Proposition 4.6(b) implies Y ¢ .#, which implies rada (Y, .#) = Homp (Y, .#), the
following sequences are exact:

fa-1,
Jomdx

0 — Homp(2,Y) 22 Homp (2, Ca_y) - Homa (2, Co) 225 rady (22, X) — 0;

'fd

0 — Homa (X, .#) 2 Homa (Co, #) L5 - P Homy (Cyoy, #) 225 Homa (Y, #) — 0.

Using Serre duality, we have Homp (22, .#) = Homy (v, *(S)[—d], )*. As A is d-RI, we have
S C z/d_l(f ) by Proposition 4.6(b). Therefore, the latter exact sequence gives an exact sequence

0 — Homy (Z[—d),Y) L Homy (#]—d], Ca_r) 2225 - L% Homy, (#]—d), Co)

ECIR Homy, (#]—d], X) — 0.

As % = Z]|—d| v & by [HIO14, Proposition 4.10(c)], the above exact sequences give an exact
sequence

fa—1,
kL I

0 — Homy (%,Y) 1% Homy (%, Ca_1) Y Homy (7, Co) 125 vady (7, X) — 0.

Dually, the following sequence is exact:
0— Homo;/(X, %) ﬁ Hom@/ (C(), %) & ce fd;1> Homa//(Cd,l, %) i rado;/(Y, %) — 0.

Thus, the sequence (21) is a d-almost split sequence in % .

2609

https://doi.org/10.1112/50010437X20007538 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X20007538

J. GRANT AND O. IYAMA

(b) By [Iyall, Theorem 1.23], % is a d-cluster tilting subcategory of D’(A). By [IY08,
Theorem 3.10], there exist triangles

hi i
Xit1 — C; &5 X; — Xipa[1]

in D°(A) for 0 <i < d — 1 satisfying the following conditions:
o Xo=X, Xy=14(X),and C; € % for any 0 < i <d— 1,

e Homy (%,Co) 2 rady (% ,X) — 0 and Homy (Cy_q, %) b, rady (vg(X), %) — 0 are
exact.

Let fq:= hg, fi := h;g;, and fo := go. Then we have a complex

fa—1

va(X) Ja, Ca-1 Ca—2 L R Cq LN Co o, x.

Moreover, as A is d-RF, v(% ) = % by [1013, Theorem 3.1(1)=-(3)] and hence % [d] = % . Thus,
by [I013, Lemma 4.3], we have an exact sequence

. = Homy (%, Col~d)) L0 Homy (2, X[~d]) —

Homy (7, va(X)) 25 Homy (2, Ca_r) 22 o Lo Homy, (7, Co) 2 rady (7, X) — 0.

Thus, Cok(fo« : Homy (—, Cy) — Homy (—, X)) is a simple % -module, and hence Ker(fqs) =
Cok( fo[—d]«) is a simple % -module because [d] : % — % is an autoequivalence. As X[—d| € %
is indecomposable, Homy, (X [—d], —) is an indecomposable projective functor and, thus, it has
a simple top. Hence, the % -module Homy, (—, v4(X)) = Homy (X[—d],—)* has a simple socle.
Therefore, Ker(fq.) = soc Homy (% ,vq(X)).

Dually, we have an exact sequence

fr* fa
[

Homy (X, %) 225 Homy, (Co, %) J Homy (Cyr, %) L5 vady (Y, %) — 0

such that Ker(fo*) = soc Homy, (X, % ). Thus, the assertions hold. O

4.2 Resolutions of simple modules over higher preprojective algebras

For the rest of this section, A is a d-hereditary algebra and II is its higher preprojective algebra.
We assume that A is basic and ring-indecomposable. We regard 11 as a Z-graded algebra with
the tensor grading. Then we have an isomorphism

1= EBHome(A) (A, I/d_i(A))

1EL

of Z-graded algebras.

For a group ¥ and a W-graded ring I', we denote by I'-mod?¥ (respectively, I'-proj¥) the
category of finitely generated (respectively, finitely generated projective) W-graded I'-modules.
We start with the following easy observation.

LEMMA 4.10. Let ¥ be an additive category and W a group acting on ¥. Assume that
M € ¥ is an object satisfying ¢ = add{¢)M |1 € U}. Define a WV-graded ring by I :=
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@D ycy Home (M, ) M). Then there are equivalences of additive categories

@ Homg (M, —) : € — proj¥’-T' and @ Homg (—, M) : € — T -proj? .
e e

Applying Lemma 4.10 to the category % and the group {l/d_i | i€ Z} = 7, we have the
following description of the category % .

PROPOSITION 4.11. (a) There are equivalences of additive categories

G := @Home(A) (A,v;"(=)) : % — proj®-11,
1€

H := D Hompe(y) (=, 77" (A)) : % — T-proj”.
1EL

In particular, there are equivalences of additive categories

G, :mod? 1l — mod-% and H, : II-mod? — % -mod.

(b) The following diagram commutes up to natural isomorphism.

G
Y pron— II
Hompy (—,II) ,N/ Homyjop (—,IT)
U IT-proj”

H

Now we are ready to state the main result of this subsection. It asserts that minimal projective
resolutions of Z-graded simple modules over the higher preprojective algebra II of a d-hereditary
algebra A are induced from d-almost split sequences in % .

THEOREM 4.12. Let X be an indecomposable object in % , and

fa—1 fa—2
AN

Yf_d)Cdfl—’Cd72 "'f—2>C1f—1>Cof—0>X

a weak d-almost split sequence in % .

(a) There exist exact sequences

Gy i oy Sl G0 Goy S oy SR ax T -0,
ax 2 go, 2 go, 2 e go, M gy o p o

in mod?-1I and I1-mod?, where T' and U are simple.
(b) If A is d-RI, then G fq and H fy are monomorphisms.
(c) If A is d-RF, then Ker G f; = soc GY and Ker H fy = soc HX . Moreover, these are simple.
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Proof. (a) By Theorem 4.9(a) and (b), we have an exact sequence

@ Homy (Vi(A).Y) 45 @Y Homy (Vi(A), Camr) 225 - 2% @Y Homy (vi(A), Co)
i€Z i€Z i€Z
Jo, rady (v4(A),X) — 0.
1€EZ
This gives the first sequence. Dually, we obtain the second sequence. It follows from Proposition
4.11(a) that T and U are simple.
(b),(c) These follow from Theorem 4.9(a) and (b). It follows from Proposition 4.11(a) that
Ker G f; and Ker H fy are simple if A is d-RF. O

We say that an algebra A is twisted-periodic if, for some i > 1, QQQD(A) = A, as A°™-modules
for some o € Aut(A), i.e., the projective resolution of the identity bimodule is periodic up to a
twist by some algebra automorphism.

As an application of our results, we have the following result for d-RF case. The self-injectivity
was first proved in [IO13], and the twisted-periodicity was first proved by Dugas [Dugl2].

COROLLARY 4.13. Let A be a d-RF algebra and 11 its (d + 1)-preprojective algebra:

(a) II is self-injective;
(b) II is twisted-periodic of period d + 2.

Proof. (a) It follows from Theorem 4.12 that Exti(T,II) = 0 holds for any Z-graded simple
I[I-modules and 0 < ¢ < d + 1. Thus, Ext%[(—, IT) = 0 holds on mod IT and, therefore, II is injective
as a [I-module.

(b) As A is a factor algebra of II by the ideal @, (II; contained in the radical, each simple
[I-module S is realized as the top of GP, where P is an indecomposable projective A-module.
Thus, by Theorem 4.12(c), the sum S = €.S; of the simple II-modules is periodic of period d + 2.
This implies the assertion by [GSS03, Theorem 1.4]. O

We note that the twisted-periodicity is closely related to the stably Calabi—Yau property
(e.g. [IV14, Theorem 1.8]). In fact, II is known to be stably (d 4 1)-Calabi-Yau [I013, Theorem
1.1(a)].

As another application our results, we have the following result for d-RI case.

COROLLARY 4.14. Let A be a d-RI algebra and II its (d + 1)-preprojective algebra:
(a) II has left and right global dimension d + 1 (cf. the Appendix);

(b) any Z-graded simple right II-module T satisfies

T*(1) ifi=d+1;

Extéop (T, IT) 22
frr ) {0 otherwise;
(¢) any Z-graded simple left II-module U satisfies

U(1) ifi=d+1;

Ext (U, ) =
il ) {0 otherwise.
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Proof. Tt follows from Theorem 4.12 that any Z-graded simple II°P-module T' has projective
dimension d + 1 and satisfies the equalities of extension groups. Thus, part (b) holds, and dually
part (c) holds. They imply part (a) by Theorem A.1. O

Corollary 4.14 says that II, with the tensor grading, is a generalized Artin—Schelter regular
algebra of dimension d + 1 and Gorenstein parameter 1 in the sense of [MV98, MS11, MM11,
RR18] (see also [AS87]). This is equivalent to a result [MM11, Theorem 4.2] of Minamoto and
Mori up to [RR18, Theorem 5.2], and also can be deduced from results of Keller [Kelll].

4.3 7Z2-graded higher preprojective algebras
Here, we consider gradings on higher preprojective algebras, which are used in §4.4. Let A be a

Z-graded algebra
A=EPA

1€EZ
The enveloping algebra A" of A has a Z-grading given by
(A™)i = P A; @ A
i=j+k

Using the Z-grading on A, we define a new Z-grading on the higher preprojective algebra II.
For i > 0 and finitely generated Z-graded A-modules M and N, let ext) (M, N) denote the
Z-graded ith ext space (our notation follows [BGS96, Section 2.1]). Then we have an equality

Ext} (M, N) = @D ext) (M, N(j)).
JEZ

Hence, Ext) (M, N) has a Z-grading whose degree j part is ext (M, N(3)).
Now we define the Z-grading on the A®"-module F = Ext% (A*, A) by

E = @Pext{ (A, A(H)). (22)
JEZ

Then, as in Lemma 2.9, we can show that there are isomorphisms

E = @B extfen (A, AT () = € exton (A", A(5))
JEZ JEZ

of Z-graded A°"-modules. Let A-mod? denote the category of finitely generated Z-graded left
A-modules. We lift the functors 74 and 7, to Z-graded A-modules as follows:

74 = Homy (E, —) : A-mod? — A-mod? and T, = E®y—: A-mod? — A-mod?.

DEFINITION 4.15. (a) The Z?-graded (d + 1)-preprojective algebra of a Z-graded algebra A =
@,z i is the tensor algebra of the Z-graded A®"-module E:

II(A) = TA(E).
The first part of the Z2-grading is the tensor grading (Definition 2.11). The second part of the
Z2-grading is called the A-grading, which is a natural grading on E’ for any i > 0 given by the
Z-grading on E in (22).
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(b) We consider a single Z-grading on II, called the (d + 1)-total grading, by defining
= € 1y
(d+1)i+j=¢
where II; ; = (E"); denotes the jth graded component of E*.

Later we use the following observation.

PROPOSITION 4.16. If A is a Koszul algebra with radical grading (see § 2.2), then E is generated
in degree —d. Therefore, the (d + 1)-total grading of 11 gives a radical grading.

Proof. If A is Koszul, then Py is generated in degree d by Theorem 2.7, and the former assertion
follows. As Ily = Ag, II1 = A1 @ E_4 and E_; = headpen F, the latter assertion follows. ]

4.4 Koszul properties of higher preprojective algebras
Let A be a d-hereditary F-algebra. In this section, we further assume that A is a Z-graded algebra

A = @,z We denote by D’(A-mod?) the bounded derived category of A-mod”. As in the
ungraded case, we define an autoequivalence

vg = A*[—d] ®% — : D°(A-mod?) — D’(A-mod?)
and a full subcategory

" = add {v; (A)(j) | i,j € Z} € D"(A-mod?).
We have the following graded version of Theorem 4.9.
THEOREM 4.17. Let A be a Z-graded d-hereditary algebra.

(a) If A is d-RI, then any indecomposable object X (respectively, Y) in %% has a d-almost
split sequence in %"

fa—1 fa—2
RN

yiteo, Yo, LN ML Ny NEL NS 'S

Moreover, we have Y 2 vy(X) (respectively, X = v;!(Y)).
(b) If A is d-RF, then any indecomposable object X (respectively, Y) in %” has a weak
d-almost split sequence in %%

fa—1 fa—2
2.

viLe, Yo, RECNVSRE LNV NS (RS

Moreover, we have Y = vy(X) (respectively, X = v;(Y)), Ker(fss) = soc Homy (—,Y) and
Ker(fo*) = socHomy, (X, —).

Proof. The proof is very similar to Theorem 4.9. U

Let IT be the Z2-graded (d + 1)-preprojective algebra. Recall from Definition 4.15 that the
first entry of the Z2-grading is the tensor grading, and the second is the A-grading.

On the other hand, we consider the action of Z2 on %% given by (i, 5) + Vd_i( j). The following
description of the category 2 follows directly from Lemma 4.10 and the definition.

2614

https://doi.org/10.1112/50010437X20007538 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X20007538

HIGHER PREPROJECTIVE ALCEBRAS, KOSZUL ALGEBRAS, AND SUPERPOTENTIALS

PROPOSITION 4.18. (a) There are equivalences of additive categories
i . o T2
= @ Home(A—modZ) (A7 le(i)(])) : %Z = pI‘OJZ —H,
1,JEL

= P Homps(s moaz) (=17 (M) () : %% = H-proj”

1,JEZL
(b) The following diagram commutes up to natural isomorphism.

Z

Z2_H

Homy(—,IT) Tl Hompyyop (—,II)

II —pron2

HZ

(c) We have the following commutative diagrams.

GZ HZ
' projZ’-1I wr I -proj?”
J{ vyt l (1,0) l vq i (1,0)
GE HZ
wr pronQ—H UL H—projz2

Immediately, we have the following Z-graded version of Theorem 4.12.

THEOREM 4.19. Let A be a Z-graded d-hereditary algebra. For an indecomposable object X in
U™, we consider a weak d-almost split sequence in %”:

L NG 1ﬁ—1>cd L N . Ny R LN INFONELN

(a) There exist exact sequences

7 GZf, Z Z

ary G GECy far G GZc, &GZCO G fo GEX — 8§ —0,
zZ

HZX HZ fo HZC H” f1 HZC HZf2 A Ja— HZCd_l Ll fa HZY—>T—>0

in modZ”-1I and H—modZQ, where S and T are simple.
(b) If A is d-RI, then G*f; and H” fy are monomorphisms.
(c) IfA is d-RF, then Ker G* f; = soc G*Y and Ker H” fy = soc H*X hold. Moreover, these are

simple.

Proof. The assertions follow from Theorem 4.17 by a similar argument to the proof of Theorem
4.12. O

We now recall the theory of almost Koszul duality due to Brenner, Butler, and King [BBK02].
Let S be a semisimple finite-dimensional F-algebra and A = @izoAi a non-negatively Z-graded
S-algebra with Ag = S.
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DEFINITION 4.20. The Z-graded algebra A is almost Koszul, or (p,q)-Koszul, if there exist
integers p,q > 1 such that A; = 0 for all 7 > p and there is an exact sequence

0—>S'—>Pq—>---—>P0—>S—>0

of Z-graded A-modules with projective A-modules P; generated in degree i and a semisimple
A-module S’ concentrated in degree p + q.

Note that it does not matter whether we consider left or right A-modules [BBK02, Proposition
3.4].

THEOREM 4.21. Let A be a Koszul d-hereditary algebra with radical grading, and II its (d +
1)-preprojective algebra with the (d + 1)-total grading given in Definition 4.15.

(a) If A is d-RI, then II is Koszul.
(b) IfA is d-RF, then II is almost Koszul. It is (p, d + 1)-Koszul, where p = max{i > 0 | II; # 0}
with respect to the total grading.

Proof. Let mod”-1I be the category of Z-graded II-modules with respect to the (d + 1)-total grad-
ing on II. Let S be a Z-graded simple II-module S concentrated in degree 0. Consider the functor
F : mod?- I — mod?-1I given by D jyez2Xij — DrezXe, where Xo =D 4414 j=0Xij- Let
G'=FoG” and H' = F o H%. Then Theorem 4.19(a) gives the first d 4+ 1 terms of minimal
Z-graded projective resolutions

'y G qroy S L GR groy G0 oy SR arx s o, (23)
HIX%HICO %chl H’fQ H'fq_1 H/Cd_l %H/Y_)T_)O (24)

To prove both assertions, we only have to show that G'C; is generated in degree 7 + 1. As A is
Koszul, by Proposition 4.16, the (d + 1)-total grading gives a radical grading on II. As G'X is
generated in degree 0 and (23) is minimal, G'C; is generated in degrees at least 7 + 1.

By Proposition 4.18(c), we have GZY = G%v4(X) = (GZX)(—1,0) and hence G'Y =
(G'X)(—d —1). Thus, G'Y is generated in degree d + 1 and, hence, H'Y is generated in degree
—d — 1 by Proposition 4.18(b). As (24) is minimal, H'C; is generated in degrees at least —i — 1
and, hence, G'C; is generated in degrees at most 7 + 1. Thus, the assertion follows. ]

5. Quadratic duals of higher preprojective algebras

The aim of this section is to compare the quadratic duals of the higher preprojective algebras
and certain twisted trivial extension algebras of the quadratic duals for Koszul algebras.

5.1 Graded trivial extension algebras

For any finite-dimensional F-algebra I', there is a well-known way to construct a new algebra
called the trivial extension algebra. We describe a graded version of this, which can be seen as
an extension of I' by a twist of the dual bimodule I'*.

DEFINITION 5.1. Let I' be a non-negatively Z-graded finite-dimensional algebra and n € Z. The

graded (d + 1)-trivial extension algebra of T, denoted Trivgyq (L), is the Z-graded vector space
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I'® I'™(—d — 1) with multiplication given by

(a, f) - (b, 9) = (ab,ag + (~=1)* fb)

when b € I'; is a homogeneous element of degree .

We have used the fact that I', and hence I'*, has a natural structure of a I'**-module.

One can interpret Z-graded d-trivial extensions in the following way. First, let o : I' — I be
the algebra automorphism defined by o(a) = (—1)a for a € T';. Then Trivy,1(T) is the trivial
extension of I" by the twisted bimodule j«I'*. Note that another multiplication rule (a, f) - (b, g) =
(ab, (—1)%ag + fb)) with a € T'; used in [Gral9] gives an isomorphic Z-graded algebra.

In the rest of this section, we assume that

A=Ts(V)/(R) (25)

is a Koszul algebra with a separable F-algebra S, and T is its quadratic dual I' = A'. Recall that
we have S®"-modules K; with Ky = S, K1 =V and K9 = R and maps Lf K, -V ®s K;—1 and
v K; — K;_1 ®s V. By Lemma 2.6, we have an isomorphism of Z-graded algebras

N - ) = P
i>0 >0
where the algebra structure on @izoKz‘*Z is given by (i£)*: K ®sV* — Ki* and (1)* :
V¥ es K — K As (AY); = Ext} (S, S), the global dimension d of A is the maximal i such
that (A'); # 0, and we have
Trivap (A); = K & K35,

where K; =0 for i < 0 or i > d, and Trivgy;(A') is concentrated in degrees 0 to d + 1.

Recall from Proposition 3.12 that if A is a Koszul algebra, then its higher preprojective

algebra II is quadratic. We are now able to state the following result for the quadratic dual II'
of TI.

THEOREM 5.2. Let A be a finite-dimensional Koszul F-algebra of global dimension d such that
S = Ag is a separable F-algebra, and let 11 be its higher preprojective algebra with radical
grading:

(a) there exists a morphism ¢ :II' — Trivy,i(A') of Z-graded F-algebras, which is an iso-
morphism in degrees 0 and 1 and is injective in degree 2;

(b) ¢ is surjective if and only if (A')g = socen (A'); in this case ¢ is an isomorphism in degrees
0, 1, and 2;

(c) ¢ is an isomorphism if and only if (A')q = socyten(A') holds and Trivgy1(A') is quadratic.

To prove this, we need the following technical observation. Consider the Z-graded A'**-module

L= @ Kg—ﬁ—i
i€Z

whose structure is given by (0)*:V* ®g KY* — K/* and (07)*: K)*f @5 V*¢ — K/**
obtained from (15).

LEMMA 5.3. We have an isomorphism A%(—d — 1) = L of Z-graded A'*"-modules.
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Proof. Applying Lemma 2.4 and its dual to the Z-graded A'*"-module @ZEZK;‘K, we
obtain isomorphisms of Z-graded A'**"-modules A = @, , K*% = @, ., K4 = @, K ;. Sim-
ilarly, we obtain isomorphisms of Z-graded A'*"-modules L = @iGZK(}/ﬁ_Z. =P, KiH =

@z‘eZKdJrlfi- Thus, the assertion follows. ]
We are ready to prove Theorem 5.2.

Proof of Theorem 5.2. Twisting the right action of A' on L as f-a:= (—1)%fa for f € L and
a € (A");, we obtain an A'*™-module L. Thanks to Lemma 5.3, we can regard Trivgy;(A') as
Trivgyq (A!) =A' &L = @iEZ (Kz*g D K;l/:li—z) B _

(a) By Proposition 3.2, TI is a quotient of Tg(V), so IT' is a quotient of Tg(V*’). As

Ts(V*)o =8 = Trivgp1(A)o and Tg(V*); = V* = V* @ KY** = Trivgy (A,

we have a morphism ¢’ : Tg(V*) — Trivg ;1 (A') of F-algebras
By Proposition 3.12, II is a quadratic algebra whose degree 2 part is

—V®SV@ (Vos K)o (K ®sV)

11
‘TR 34 (Ky))

®KJ @5 K,

where we use the notation (25). Therefore, IT' is also a quadratic algebra whose degree 2 part is

_ V*Z ®g V*é (Kc\l/*é Rg V*E) D (V*Z ®g K(\i/*é) K¢\i/*£ ®g KC\Z/*Z

(1), :
R ShKY )+ KY* @g Ky*

On the other hand, we have

B V*E ®g V*é

Trivgyi (Ao = (A @ L)y = o © K.

Now we compare (IT')y with Trivg,;(A')s. To prove that ¢ induces the desired morphism ¢ :
IT' — Trivg,((AY), it suffices to show that the following sequence is exact:

0— JWEY )E — (V¥ eg KV @ (K os V) 2 kY. (26)

By our definition of the A**"-module structure on L', the morphism ¢’ in (26) is (85 + (—1)967)*.
As 05+ (-1)%;: KY | — (K) ®s V) @ (V ®@g K) is the restriction of d/;, the sequence (26) is

exact. In fact, for a morphism 7 : X — Y of S®"-modules, the sequence 0 — v(X)* — Y** ﬁ
X* is clearly exact. This completes the proof.

(b) As ¢ is an isomorphism in degrees 0 and 1 by part (a), we have that ¢ is surjective
if and only if Trivg,((A') is generated in degrees 0 and 1 as an algebra. We know that the
algebras IT' and Trivgy (A') are generated by V* @ Kc\l/*z and V** @ headyien L', respectively.
Thus, ¢ is surjective if and only if ¢ gives a surjection V*¢ @ Kj*é — V* @ headyen L' if and
only if L} = head yien L' if and only if (A™); = head yien (A™). Applying (—)*, this is equivalent to
(A")g = socen (AY).

The latter assertion is immediate from part (a).

(¢) The ‘only if’ part is clear from part (b) and the fact that IT' is quadratic. The ‘if’ part
follows from Lemma 2.5 because both algebras are quadratic and ¢ is an isomorphism in degrees
0, 1, and 2. ]
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We have the following nice property of ¢.

THEOREM 5.4. If A is Koszul and d-hereditary, then the natural morphism ¢ : II' — Trivg,q (A')
is surjective.

To prove this, we need the following.
LEMMA 5.5. Let A be a Koszul algebra and i > 0. Then Extfea (A, A*™)_; = (s0chten (A'));.

Proof. Recall that Extie. (A, A°") is the cohomology of the complex

!
5i+1

&
ARs K1 ®s A5 A®s K/ @s A —— A®s K}, @5 A.
Taking the degree —i part, Extf\en (A, A°")_; is the kernel of the morphism
1 =0+ ()T KY — (K @5 V) e (V es Ky) CA®s K ©s A

By adjunctions, f € K/ is in the kernel if and only if V*" - f=0= f - 7483
On the other hand, we have (A'); = Ki* and (socyien(A));i={f € K| V* . f=0=f"
V*e}. By Lemma 2.4 and its dual, the isomorphism K t~ | 2/ induces an isomorphism

(SOCA!en (A'))Z =~ {f S K,Lv | V*T . f — O — f . V*g} — Ext,[i\en (A, Aen)_l’. |:|
Now we are ready to prove Theorem 5.4.

Proof. Suppose ¢ is not surjective, so socien(A') # (A')4 holds by Theorem 5.2(b). By Lemma
5.5, we have Extien (A, A*") # 0, a contradiction to our assumption that A is d-hereditary. O

Now we look at the case d = 1.

Ezample 5.6. Let @ be a connected quiver and A = FQ. Assume that A is 1-hereditary, that is,
Q is not of type A; by our convention.

Then IT' is given by the double quiver Q with the following relations, where we denote by (—)*
the canonical involution of Q): For any arrows o and 3 in Q, a3 = 0 if 8 # o*, and aa* = +33*
if & and ( start at the same vertex.

This implies that, if @ is not of type Ao, then (H!)i is non-zero if and only if ¢ = 0, 1, or 2.

If Q is of type A, then II' is the path algebra of [ 1 == 2 ] and, hence, infinite-dimensional,
whereas Trivy(A') is the factor algebra of II' by the ideal generated by paths of length 3.

For other cases in d = 1, we have the following.

THEOREM 5.7. Let @ be a connected acyclic quiver that is not of type A1 and A := FQ) its path
algebra. Then the natural morphism ¢ : II' — Trivy(A') is an isomorphism if and only if Q is not
of type As.

Proof. By Example 5.6, we only have to show the ‘if’ part. Clearly A' is the factor algebra of
FQ°P by the ideal generated by all paths of length 2. Thus, (A'); is non-zero only when i = 0 or
1, and (A'); = soc yiea(A') holds because @ is not of type A;. By Theorem 5.2(b), we have that
¢ is surjective morphism,which is an isomorphism in degrees 0, 1, and 2. On the other hand,
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Trive(A'); is non-zero only when i = 0, 1, or 2, whereas (II'); is non-zero only when i = 0, 1, or
2 by Example 5.6. Thus, the assertion follows. O

As an application of Theorem 5.7, we recover a well-known result, which is mentioned in
§5.1 of [BBK02] and in the introduction of [HK01].

COROLLARY 5.8. Let Q be a connected quiver that is not of type Ay or Ao and has bipartite
orientation, and A := FQ be its path algebra. Then

IT' = Triv(A).

Proof. This is a consequence of Theorem 5.7 because, when () has bipartite orientation, we have
A' = A°P and Triv(A°P) = Triv(A). Moreover, as @ is bipartite, the algebra automorphism o is
inner: it is induced by a change of sign at either the sources or the sinks. Thus, Trivg(A) =
Triv(A). O

Ezxample 5.9. Note that our map ¢ is not necessarily injective nor surjective. Let A be the Koszul
algebra given by taking the quotient of the path algebra of the quiver

1425 324

by the ideal (o/3). Then IT' is infinite-dimensional and Trivs(A') is 16-dimensional. The kernel
of ¢ is the infinite-dimensional space (H!)24 and the cokernel is 2-dimensional, generated by

ve Ky C Tl"ng(A!)Q and eq € Ky C T‘riV‘g,(A!)g.

5.2 Type A examples
We finish this article by applying our theory to higher type A d-representation finite algebras

[Iyall, IO11].
Let 1 <d < oo and 2 < s < 0o. Let Q@) denote the quiver whose vertices are d + 1-tuples
x = (x1,...,24+1) of non-negative integers that sum to s — 1, and whose arrows are

Oz — T+ f;

for 1 <i <d+ 1 whenever x; > 1, where
i it
fi=1(0,...,0,—-1,41,0,...,0) and fg441=(1,...,0,...,0,—1).

Let Q(d’s) be the quiver obtained by removing all arrows of the form ag 441 from Q(dvs). For
example, the quivers Q2% and Q%5 are as follows.

oo 040 Q2 040
/N /N
130 < 031 130 031
/NN /NN
220 < 121 < 022 220 121 022
SNNSN SNNSN
310 < 211 < 112 < 013 310 211 112 013
NN NN NSNS NN
400 < 301 < 202 < 103 < 004 400 301 202 103 004
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Let I(@%) denote the ideal of FQ(%%) generated by elements:

QpiQqy f; § = a:c,jax+fj,i if Zi, T > 1;
Qg iQpyf;iv1 = 0 ifx; > 1 and z;41 =0,

where x € Qéd’s) and 1 <7< j<d.
For a field I, let

Alds) = FQ(s) /p(ds),

Then A9 is d-RF [Iyall, Theorems 1.18, 6.12]. In addition, as I(@3) ig g homogeneous ideal
with respect to the path length grading on FQ(®%), A(%5) inherits this grading.

The following notation will be useful: for a vertex z in Q%% let e, denote the idempotent
of A corresponding to the vertex x, and let

oy = E Oéxﬂ'.

Then the relations in A(%*) can be rewritten as

ex(aia; — ajoy) =0 for all vertices « and all 4 # j.

We have a natural morphism ¢ : II' — Trivg,;(A'). We know by Theorem 5.2 and Corollary
5.4 that ¢ is always surjective. If s > 3, then it is shown in [Gral9, Section 3] that ¢ is an
isomorphism.

We will make use of the following result.
PROPOSITION 5.10 [Gral9, Proposition 3.4]. The algebra A is Koszul

LEMMA 5.11. The space Kq has an S°"-module basis {ky | x € Qo, =1 # 0}, where

ky = ey Z (Sgn U)aa(l)aU(Z) T Og(d)-

ogESy

Proof. Fix 0 < r < d — 2. First we show that k, € V"RVY "2, For any vertex y and any i # j
we have ey(oja; — o) € R. Thus, for any indices iy, ...,74-2 such that {3, j,i1,...,9q-2} =
{1,2,...,d} we have ez, -y, (i — o ja) gy -+ 0g—g € VTRV4"=2 Summing over all
such sets {i1,...,iq_2}, with sign, we get that k, € V"RV? "2, But this did not depend on
r, so we have k, € K; = ﬂf;gV’"RVd_’”_2.

Conversely, consider an element k € K;. Without loss of generality, k = e,k for some vertex
x. No summand of k can be of the form pa;a;q with p € V™ and ¢ € VI"~2, otherwise k ¢
V"RV "=2_ Thus, we must have

k=e;x Z )\Uao(l)aa(Q) T Qg (d)

oESy
for some scalars A\, € F. But this can only be in RV42 if A, + A(12)o = 0. Similarly, we have

Ao+ Agiiv1)e = 0 for all 1 <7 < d. Thus, sgno =sgnt implies A\, = A;, and sgno = —sgnt
implies A, = —\,. Thus, k is a scalar multiple of k. O
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Let I(45) denote the ideal of FQ(%%) generated by elements:

Oy fij = O jOlatfyi A @i, x5 2 1

Qg i Oyt f; i1 = 0 if ZT; > 1 and Li+1 = 0,
where = € Q((Jd’s) and 1 <i<j<d+1. Here, azyys,, , 42 should be interpreted as az s, 1.
As an application of our results in this paper, we give the following description of the higher
preprojective algebra of A, which recovers the quiver with relations in [IO11, Definition 5.1,
Proposition 5.48].

THEOREM 5.12. Let I = II(A). The quiver Q of II is Q%) and we have an isomorphism

IT = FQ(4) /()

Proof. The former statement follows from Proposition 3.2. We prove the latter. From Lemma
5.11 we obtain the superpotential

W = Z (sgn o) ag(1)Qp(2) * * * Ap(d)Xd+ 1

gESy

for . By differentiating this superpotential with respect to all paths of length d — 1 in Q, we
have the isomorphism. O

We now apply Theorem 4.21 to obtain a large family of pairs of almost Koszul algebras.
This statement generalizes [BBK02, Corollary 4.3] for type A quivers. It appears to be the first
construction of (p, q)-Koszul algebras for all p,q > 2.

PROPOSITION 5.13. If s > 3 and n > 1, then Il and IT' are an almost Koszul pair: 1T is (s —
1,d + 1)-Koszul and II' is (d + 1, s — 1)-Koszul.

Proof. Theorem 4.21 tells us that IT is (p,d + 1)-Koszul if II is concentrated in degrees 0 to
p, and [BBK02, Proposition 3.11] tells us that the quadratic dual of a (p,q)-Koszul ring with
p,q > 2 is a (q,p)-Koszul ring. Thus, we just need to show that II is concentrated in degrees 0
to s — 1.

We use Martinez-Villa’s result that all projective modules for a Z-graded self-injective algebra
have the same Loewy length [Mar99, Theorem 3.3]. Thus we only need to show that there is a
projective II-module concentrated in degrees 0 to s — 1. Consider the left projective II-module
Hes_1,,..,0) associated to the vertex x = (s —1,0,...,0). First we claim that all paths starting
at x are of the form exoa‘li. To see this, note that the arrows in Q ensure that every path not of
this form starting at  must begin e,a"ay for some m > 1. But then the commutation relations
in II show that e af"ag = exalaga’ln_l. But e, a1a9 = 0. Next we note that exajl is non-zero for
0<d<s—1andiszeroford > s.SolIle_q ) is non-zero precisely in degrees 0 to s — 1. [
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Appendix. On global dimension of Z-graded rings

The aim of this appendix is to remark that several possible definitions of global dimensions of
Z-graded rings coincide.

For a ring A, we denote by A-Mod the abelian category of all left A-modules. For a Z-graded
ring A = @, A, we denote by A-Mod? the abelian category of all Z-graded left A-modules.
We denote by Mod- A and Mod?- A the right versions. If A; =0 for all i < 0, then by [NV79,
1.7.8] (see also [MRO1, 7.6.18(ii)]) and [NV04, 2.4.8], we have

gl.dim (A-Mod) = gl.dim (A-Mod?) = sup{proj.dim, X | X € A-Mod? : cyclic},  (A.1)
gl.dim (Mod- A) = gl.dim (Mod?- A) = sup{proj.dim X4 | X € Mod?- A : cyclic}. (A.2)

The aim of this section is to prove the following general observation.
THEOREM A.1. Let A = P,>A; be a Z-graded ring. If Ay is artinian, then
gl.dim (A-Mod) = sup{proj.dim, X | X € A-Mod” : simple}
= gl.dim (Mod- A) = sup{proj.dim X | X € Mod?- A : simple}.

It is well-known that (A.1) fails if we drop the condition A; = 0 for i < 0, e.g. A = k[z, 2]
with field Ap = k and degz = 1. In addition, Theorem A.l fails if Ay is not artinian, e.g.A =
Ao @ Ay = 7Z @ Qu is a subring of Q[z]/(z?).

Theorem A.1 follows immediately from (A.1), (A.2) and the following observation.

LEMMA A.2. Let A = @z’zoAi be a Z-graded ring. If Aq is left artinian, then
gl.dim (A-Mod?) < sup{proj.dim X4 | X € Mod%- A : simple}.

To prove this, we need some preparation. For i € Z, let 2% be the full subcategory of A-Mod?
consisting of arbitrary direct sums of modules of the form Ae(—i) for some idempotents e € Ay.
Let 2 be the full subcategory of A-Mod? consisting of arbitrary direct sums of objects from
P for all i € Z.

LEMMA A.3. Let A= @izoAi be a Z-graded ring such that Aq is left artinian, and J :=
(rad Ag) @ (€D;>14i). For any X € A-Mod? such that X; = 0 for j < 0, there exists a surjective
morphism f : P — X in A-Mod? with P € & such that Ker f C JP and (Ker f); = 0 for j < 0.

Proof. Without loss of generality, we can assume X, = 0 for all j < 0. We take a morphism
f2:P% - X in A-Mod? with P° € 229 such that (f°)g : (P°)g — X is a projective cover of the
Ag-module X. Assume that f7 : P/ — X with P/ € 27 are constructed for 0 < j < i such that

FO = (0. PO = P P S X

0<j<i
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satisfies (Cok f[0) ); = 0 for all j < i. We take a morphism ¢’ : P* — Cok fI09 in A-Mod% with
PP e &' such that (¢'); : (P?); — (Cok f1%9); is a projective cover of the Ag-module (Cok fl%9);.
We lift ¢° to f*: P® — X. Then f7 with 0 < j < i satisfy the same assumption.

Now we show that the morphism f:= (f7);<o: P := Do PJ — X satisfies the desired
properties. Clearly f is surjective, and P € & and (Ker f); = 0 hold for all j < 0. It remams

to show Ker f C JP. Take any = = (a:J)J>o € Ker f with 27 € PJ. Then the composition P EN
X — Cok fl%9 sends (27)j>; to zero, and (27);5; to an element in (Cok 1% ’))>l Thus, g*(z*)
belongs to (Cok fl%9)<;. Since (g*); : (P?); — (Cok fl%)); is a projective cover, z* € JP* holds,
as desired. O

Now we are ready to prove Lemma A.2.

Proof of Lemma A.2. As Ay is left artinian, A/J = Ap/rad Ap is a semisimple ring and A/J
is a semisimple right A-module. Let ¢ = proj.dim(A/J)4. Thanks to (A.1), it suffices to show
that proj.dim 4 X < ¢ holds for any X € A-Mod? that is cyclic. As X; = 0 holds for i < 0, by
applying Lemma A.3 to X and its syzygies repeatedly, we obtain an exact sequence

.ﬂQQﬁQlﬁQOﬁxﬁo
such that Q° € & and f(Q') C JQ'! for all i. As (A/J) ® f =0 for all i > 0, we have
QN /JQM! = (A)T) ©4 Q! = Toril, (4/J, X) = 0.

Thus, Q! = 0 and, hence, proj.dim 4 X < /. O
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