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The Spectral Radius Formula for
Fourier–Stieltjes Algebras

Przemysław Ohrysko andMaria Roginskaya

Abstract. In this short note we ûrst extend the validity of the spectral radius formula, obtained by
M. Anoussis and G. Gatzouras, for Fourier–Stieltjes algebras. he second part is devoted to showing
that, for the measure algebra on any locally compact non-discrete Abelian group, there are no non-
trivial constraints among three quantities: the norm, the spectral radius, and the supremum of the
Fourier–Stieltjes transform, even if we restrict our attention to measures with all convolution powers
singular with respect to theHaar measure.

1 Introduction

We ûrst collect some basic facts from Banach algebra theory and harmonic analysis in
order to ûx the notation (see [Ż] forBanach algebra theory and [R] for harmonic anal-
ysis). For a commutative unitalBanach algebra A, theGelfand space of A (the set of all
multiplicative-linear functionals endowed with weak∗ topology) will be abbreviated
△(A) and theGelfand transformof an element x ∈ A is a surjection x̂∶△(A)→ σ(x)
deûned by the formula x̂(φ) = φ(x), for φ ∈△(A), where

σ(x) ∶= {λ ∈ C ∶ µ − λ1 is not invertible}
is the spectrumof an element x. LetG be a locally compactAbelian groupwith its uni-
tary dual Ĝ, and let M(G) denote the Banach algebra of all complex-valued Borel reg-
ular measures equipped with the convolution product and the total variation norm.
he Fourier–Stieltjes transform will be treated as a restriction of the Gelfand trans-
form to Ĝ, andM(G) is also equipped with involution µ ↦ µ̃, where µ̃(E) ∶= µ(−E)
for every Borel set E ⊂ G. A measure µ is Hermitian if µ = µ̃ or, equivalently, if its
Fourier–Stieltjes transformis real-valued. he ideal ofmeasureswithFourier–Stieltjes
transforms vanishing at inûnity is denoted by M0(G).

Note that we have a direct sum decomposition M(G) = L1(G) ⊕ Ms(G), where
L1(G) is the group algebra identiûed via the Radon–Nikodym theoremwith the ideal
of all absolutely continuous measures andMs(G) is a subspace consisting of singular
(supported on a set of Haar measure zero) measures. For µ ∈ M(G), we will write
µ = µa + µs with µa ∈ L1(G) and µs ∈ Ms(G).

hemain resultof the ûrst section ispresented in the framework of Fourier–Stieltjes
algebras, so we recall some basic information [Ey,KL]. Let G be a locally compact
group and let B(G) be the Fourier–Stieltjes algebra on the groupG, i.e., the linear span
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of positive-deûnite continuous functions on G equipped with the norm given by the
duality B(G) = (C∗(G))∗, where C∗(G) is the full group C∗-algebra of G. It is well
known that B(G)with pointwise product is a commutative semisimple unital Banach
algebra with G embedded in △(B(G)) via point-evaluation functionals. As for the
measure algebra, we have an orthogonal decomposition of B(G) = A(G) ⊕ Bs(G),
where A(G) is the Fourier algebra of the group G and Bs(G) is a subspace consisting
of singular elements (itwas proved ûrst in [A], see [OW] for amodern presentation).
For f ∈ B(G), we will write f = fa + fs with fa ∈ A(G) and fs ∈ Bs(G).

In [AG] the following spectral radius formula for measure algebra on compact
(not necessarily Abelian) group was shown to be true.

heorem 1.1 LetG be a compact group and let µ ∈ M(G). hen the following formula
holds: r(µ) = max{supσ∈Ĝ r(µ̂(σ)), inf n∈N ∥(µ∗n)s∥

1
n }.

Here Ĝ is the set of all equivalence classes of irreducible unitary representations of
the group G, and µ̂(σ) is thematrix-valued Fourier–Stieltjes transform.

In the ûrst section we will give a short proof of the counterpart of this formula for
Fourier–Stieltjes algebras. he aim of the second part is to construct examples ofmea-
sures exhibiting that, other than the obvious ones, there are no connections among
the norm, the spectral radius, and the supremum of the Fourier–Stieltjes transform.

2 The Spectral Radius Formula

heorem 2.1 Let G be a locally compact group and let f ∈ B(G). hen the following
formula holds true:

(2.1) r( f ) = max{∥ f ∥∞ , inf
n∈N

∥( f n)s∥
1
n }.

Proof Clearly, r( f ) ≥ ∥ f ∥∞. Let us take n ∈ N. hen f n = ( f n)a + ( f n)s . his
implies ∥ f n∥ = ∥( f n)a∥ + ∥( f n)s∥ ≥ ∥( f n)s∥. Taking the inûmum on both sides and
applying the spectral radius formula, we obtain the ûrst inequality.
As A(G) is an ideal in B(G) we have the splitting of△(B(G)):

(2.2) △(B(G)) =△(A(G)) ∪ h(A(G)) = G ∪ h(A(G)),

where h(A(G)) = {φ ∈△(B(G)) ∶ φ∣A(G) = 0}.
For f ∈ B(G) and any φ ∈ △(B(G)), we have φ( f ) = φ( fa) + φ( fs). If

φ ∈△(A(G)), then, of course, ∣φ( f )∣ = ∣ f (x)∣ for some x ∈ G, and so ∣φ( f )∣ ≤ ∥ f ∥∞.
In case φ ∈ h(A(G)), we have ∣φ( f )∣ = ∣φ( fs)∣ ≤ r( fs) ≤ ∥ fs∥. he above considera-
tions are summarized as the following inequality:

r( f ) ≤ max{∥ f ∥∞ , ∥ fs∥}.

Let us ûx n ∈ N and apply this inequality to f n . As r( f n) = r( f )n , we get

r( f )n ≤ max{∥ f ∥n
∞ , ∥( f n)s∥}.

To ûnish the proof of (2.1) we need only take the 1
n power on both sides and the

inûmum over n. ∎
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Corollary 2.2 Let f ∈ B(G) satisfy r( f ) > ∥ f ∥∞. hen at least one of the following
situations occurs.
(i) For every n ∈ N, we have f n ∈ Bs(G).
(ii) ∥ f ∥ > r( f ).

Proof Suppose that f n0 ∉ Bs(G) for some n0 ∈ N. hen by heorem 1.1 we obtain

r( f ) = inf
n∈N

∥( f n)s∥
1
n ≤ ∥( f n0)s∥

1
n0 < ∥ f n0∥

1
n0 ≤ ∥ f ∥,

which ûnishes the proof. ∎

Our last objective for this section is to show that neither of the two items inCorol-
lary 2.2 implies the other and, also, that both of them may hold at the same time,
providing explicit examples ofmeasures on the circle group. he last one will be also
used in the next section.

Example Ameasure satisfying ∥µ∥ > r(µ) > ∥µ̂∥∞, but with non-singular convo-
lution powers

Let us consider µ = 1
2R − 1

2m, where R = ∏∞
k=1(1 + cos(3k t)) is the classical

Riesz product measure (understood as a weak∗ limit of ûnite products) and m is the
normalized Lebesgue measure on T. Let us recall that R is a continuous probability
measure with independent powers, i.e., R∗n�R∗m for n ≠ m [BM1], and satisfying
σ(R) = D = {z ∈ C ∶ ∣z∣ ≤ 1} (see the chapter on Riesz products [GM]). Moreover,

R̂(Z) = {0} ∪ { 1
2n } n∈N

∪ {1}.

We clearly have ∥µ∥ = 1. It is also immediate that ∥µ̂∥∞ = 1
4 . Taking into account

(2.2), we get

σ(µ) = µ̂(Z) ∪ µ̂(△(M(T)) ∖Z)

= {0} ∪ { 1
2n+1 }

∞
n=1

∪ 1
2
R̂(△(M(T)) ∖Z)

= 1
2
D as σ(R) = D.

Example A measure with all convolution powers singular with the properties
∥µ∥ = r(µ) > ∥µ̂∥∞.

Put µ = 1
2 (R − R∗2). hen ∥µ∥ = 1 and all convolution powers of µ are singular.

By the spectral properties of Riesz products there exists φ ∈ △(M(T)) such that
φ(R) = −1. his gives φ(µ) = −1 and thus r(µ) = 1. Also, ∥µ̂∥∞ = 1

8 .

Example A measure with all convolution powers singular satisfying additionally
∥µ∥ > r(µ) > ∥µ̂∥∞.

Let q0(z) ∶= 1
4 (z5 − z4 + z2 − z) = 1

4 z(z
3 + 1)(z − 1). hen q0(1) = 0, and by the

maximum modulus principle we get

(2.3) sup
z∈{ 1

2n }n∈N∪{1}
∣q0(z)∣ = sup

z∈{ 1
2n }n∈N

∣q0(z)∣ < sup
z∈D

∣q0(z)∣.
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Also, using themaximum modulus principle again,

sup
z∈D

∣q0(z)∣ = sup
z∈T

∣q0(z)∣ ≤
1
4

sup
z∈T

∣z3 + 1∣ ⋅ sup
z∈T

∣z − 1∣ = 1.

However, as the supremum of ∣z3 + 1∣ on T is attained only for the roots of unity of
order three and the supremum of ∣z − 1∣ as attained only for z = −1, we obtain
(2.4) sup

z∈D
∣q0(z)∣ < 1.

It is convenient to use the following convention. For an algebraic polynomial
f (z) = anzn + an−1z + ⋅ ⋅ ⋅ + a1z + a0, we put ∣ f ∣1 ∶= ∑n

k=0 ∣ak ∣. Let µ ∶= q0(R), where R
is the classical Riesz product. hen ∥µ∥ = ∣q0∣1 = 1 as R has independent powers. By
the spectral mapping theorem

r(µ) = sup
z∈D

∣q0(z)∣ as σ(R) = D.

By (2.4) we thus have r(µ) < 1. Using the properties of the functional calculus again,
we get

∥µ̂∥∞ = sup
z∈{ 1

2n }n∈N∪{1}
∣q0(z)∣.

he application of (2.3) ûnishes the argument.

3 The Construction

In this sectionwewill show that there are no non-trivial constraints among the quan-
tities ∥µ∥, r(µ), and ∥µ̂∥∞ even if we restrict our attention to measures with all con-
volution powers singular.

heorem 3.1 Let a, b be two ûxed numbers satisfying 0 < b ≤ a ≤ 1, and let G be
a locally compact Abelian non-discrete group. hen there exists a measure µ ∈ M0(G)
with all convolution powers singular such that ∥µ̂∥∞ = b, r(µ) = a, and ∥µ∥ = 1.

he proof of this theorem depends on the existence ofmeasureswith special prop-
erties and we combine heorem 6.1.1 and Corollary 7.3.2 from [GM] to obtain the
formulation adequate for our needs.

heorem 3.2 LetG be a locally compactAbelian non-discrete group. hen there exists
aHermitian independent power probabilitymeasure in M0(G). Moreover, the spectrum
of this measure is the whole unit disc.

An application of the functional calculus to a measure described in heorem 3.2
shows that, in order to proveheorem 3.1, it is enough to construct a polynomialwith
the properties speciûed below.

heorem 3.3 Let a, b be two ûxed numbers satisfying 0 < b ≤ a ≤ 1. hen there exists
an algebraic polynomial p with the following properties.
(i) ∣p∣1 = 1.
(ii) supz∈D ∣p(z)∣ = a.
(iii) supx∈[−1,1] ∣p(x)∣ = b, p(1) = b.
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Proof We divide the argument into three steps.

Step 1: −5+4
√

2
7 =∶ b0 < b < a ≤ 1. he polynomial

q0(z) =
1
4
z(z − 1)(z + 1)(z2 − z + 1) = 1

4
z(z − 1)(z3 + 1) = 1

4
(z5 − z4 + z2 − z)

introduced in the previous section has the following properties:
● ∣q0∣1 = 1,
● q0(1) = q0(0) = q0(−1) = 0,
● ∥q0∥C(D) < 1.

Let us consider an inductive procedure qn+1(z) = qn(z) ⋅q0(zdeg qn+1)with q0 deûned
as before. It is elementary to verify that, for every n ∈ N, the polynomial qn satisûes

● ∣qn ∣1 = 1,
● qn(1) = qn(0) = q0(−1) = 0,
● ∥qn∥C(D) ≤ ∥q0∥n+1

C(D).

he ûrst property follows from the fact that at each step we multiply qn by a poly-
nomial with gaps between powers longer than deg qn . Moreover, observing ûrst that
∣qn(x)∣ ≤ ∣q1(x)∣ ⋅ ∥q0∥n−1

C(D), we get an elementary estimate of qn on the real axis

(3.1) ∣qn(x)∣ ≤ c(1 − x)2(1 + x)2 ⋅ ∥q0∥n−1
C(D) for x ∈ [−1, 1] and n ≥ 1,

where c is a numerical constant.
Consider the family of polynomials pα indexed by the parameter α ∈ [b, 1],

(3.2) pα(z) =
1
2
(α + b)z4 − 1

2
(α − b)z2 + (1 − α)qn(z),

where n > 1will be chosen later, but let us take into account that the formof qn implies
∣pα ∣1 = 1 for α ∈ [b, 1]. Clearly, we also get pα(1) = pα(−1) = b. Applying elementary
calculus to the function f (x) = 1

2 (α + b)x
4 − 1

2 (α − b)x
2 on the interval [0, 1] (this

is suõcient, as f is even and the estimate of ∣pα ∣ is also even-type), we ûnd the local
extremum at the point x0 =

√
α−b

2(α+b) equal to

f (x0) = −
1
8
(α − b)2

α + b .

Taking the supremum over α ∈ [b, 1], we obtain ∣ f (x0)∣ ≤ 1
8
(1−b)2
1+b . Solving the in-

equality 1
8
(1−b)2
1+b < b, gives b > −5+4

√
2

7 = b0 implying ∣ f (x0)∣ < b for b > b0.
Let us ûx ε satisfying

(3.3) ε < min{ a − b, b − 1
8
(1 − b)2

1 + b } ,

and take n (depending only on ε) such that ∥qn∥C(D) < ε. As ∣pα(x0)∣ ≤ ∣ f (x0)∣ +
∥qn∥C(D), we obtain ∣pα(x0)∣ < b for α ∈ [b, 1].
Further analysis of f shows that the function x ↦ ∣ f (x)∣ has the following

properties:
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● f (0) = 0,
● increases on the interval [0, x0] up to value ∣ f (x0)∣,
● decreases on the interval [x0 , x1] up to value 0, where x1 =

√
α−b
α+b ,

● increases on the interval [x1 , 1] up to value b and f (x) > 0 in this region.
It follows from the above discussion that for x ∈ [0, x1]we are allowed to use the same
estimates as for the point x0 to obtain the conclusion ∣pα(x)∣ ≤ b. For the interval
[x1 , 1] we proceed as follows (here we use (3.1)):

∣pα(x)∣ ≤ ∣ f (x)∣ + (1 − α)c∥q0∥n−1
C(D)(1 − x)2(1 + x)2

= 1
2
x2((α + b)x2 − (α − b)) + (1 − α)c∥q0∥n−1

C(D)(1 − x)2(1 + x)2

≤ bx2 + c̃∥q0∥n−1
C(D)(1 − x)2 ,

where c̃ is another numerical constant. he last expression can bemade smaller than
b by taking suõciently big n (depending on b only) as it is a non-negative quadratic
function with positive leading coeõcient, so one must take care of the endpoints of
the interval [0, 1] for which we have values c̃∥q0∥n−1

C(D) and b.
We startwith the estimates for the uniformnormof pα on the unit disc. he upper

bound is

(3.4) ∥pα∥C(D) ≤ α + ∥qn∥C(D) < α + ε.

In order to get the lower bound, we simply observe that

(3.5) ∥pα∥C(D) ≥ ∣pα(i)∣ = ∣α + (1 − α)qn(i)∣.

Consider now the function F(α) ∶= ∥pα∥C(D) for α ∈ [b, 1]. Using (3.4) and (3.5)
we get F(b) ≤ b + ε < a and F(1) = 1. It is immediate that F is continuous (in fact
Lipschitz continuous), so there exists α0 ∈ [b, 1] such that F(α0) = a and then the
polynomial pα0 satisûes the assertion of the theorem.

Step 2: 0 < b < a ≤ 1. We ûnd ûrst k ∈ N (depending on b only) such that k
√
b > b0.

Let us ûx ε restricted as in (3.3)with b, a replaced by k
√
b, k

√
a, respectively. Construct

the polynomial qn startingwith the data k
√
b, k

√
a, and ε as in Step 1 and let us form the

family pα for α ∈ [ k
√
b, 1] as in (3.2). Now we perform another inductive procedure

to be executed k-times:

w l+1,α(z) = w l ,α(z) ⋅w0,α(z4 degw l ,α+1) with w0,α = pα .

As 4degw l ,α + 1 > degw l ,α , we get ∣w l ,α ∣1 = 1 for l ∈ N and α ∈ [ k
√
b, 1].

Let us deûne wα ∶= wk−1,α for α ∈ [ k
√
b, 1]. hen wα(1) = (pα(1))k = b, and also

∥wα∥C[−1,1] ≤ ∥pα∥k
C([−1,1]) ≤ b. Moreover, by (3.4), we obtain

∥wα∥C(D) ≤ (α + ε)k ≤ αk + cε,

where c is a numerical constant. Decreasing ε if necessary, we get

(3.6) ∥w k√b∥C(D) ≤ b + cε < a.
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For the lower estimate, we use (3.5)

(3.7) ∥w1∥C(D) ≥ ∣w1(i)∣ =
k−1

∏
l=0

∣p1(i4de gw l ,1+1)∣ = (p1(i))k = 1.

he same continuity argument as in Step 1, using (3.6) and (3.7), ûnishes the proof.

Step 3: b = a = 1 and b = a < 1. If b = a = 1, then the polynomial p(z) = z does
the job. In case b = a < 1, we take the polynomial p with the properties ∣p∣1 = 1,
∥p∥C(D) = a, and ∥p∥C([−1,1]) = b̃ for some positive b̃ < a constructed in Steps 1 and 2.
Let zmax be the point on the circle for which ∣p(zmax)∣ = ∥p∥C(D) and consider the
polynomial pmax(z) ∶= p(zmax ⋅ z). hen ∣pmax∣1 = 1, ∥pmax∥C(D) = ∥p∥C(D) = a, and
∥pmax∥C([−1,1]) = ∣pmax(1)∣ = ∣p(zmax)∣ = a. ∎
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