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JOINT DIAMONDS AND LAVER DIAMONDS

MIHA E. HABIČ

Abstract. The concept of jointness for guessing principles, specifically♦κ and various Laver diamonds,
is introduced. A family of guessing sequences is joint if the elements of any given sequence of targets may
be simultaneously guessed by the members of the family. While equivalent in the case of ♦κ , joint Laver
diamonds are nontrivial new objects. We give equiconsistency results for most of the large cardinals under
consideration and prove sharp separations between joint Laver diamonds of different lengths in the case of
�-supercompact cardinals.

§1. Introduction. The notion of a Laver function, introduced for supercompact
cardinals in [16], is a powerful strengthening of the usual ♦-principle to the large
cardinal setting. It is based on the observation that a large variety of large cardinal
properties give rise to different notions of a “large” set, intermediate between sta-
tionary and club, and these are then used to provide different guessing principles,
where we require that the sequence guesses correctly on these “large” sets. This is
usually recast in terms of elementary embeddings or extensions (if the large cardinal
in question admits such a characterization), using various ultrapower constructions.
For example, in the case of a supercompact cardinal κ, the usual definition states
that a Laver function for κ is a function � : κ → Vκ such that for any � and any
a ∈ H�+ there is a �-supercompactness embedding j : V → M with critical point
κ such that j(�)(κ) = a (this ostensibly second-order definition can be rendered
in first-order language by replacing the quantification over arbitrary embeddings
with quantification over ultrapowers by measures on Pκ(�), as in Laver’s original
account). In this example, Łoś’s theorem tells us that the set of α < κ, for which
�(α) codes an “initial segment” of a, is large, in the sense that it has measure 1 with
respect to the normal measure on κ derived from j.
Laver functions for other large cardinalswere later definedbyGitik andShelah [9],
Corazza [5], Hamkins [12], and others. The termLaver diamondshas been suggested
to more strongly underline the connection between the large and small cardinal
versions.
In this article we examine the notion of jointness for both ordinary and Laver
diamonds. We shall give a simple example in Section 2; for now let us just say that
a family of Laver diamonds is joint if they can guess their targets simultaneously
and independently of one another. Section 2 also introduces some terminology that
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will ease later discussion. Sections 3 and 4 deal with the outright existence or at
least the consistency of the existence of joint Laver sequences for supercompact
and strong cardinals, respectively. Our results will show that in almost all cases the
existence of a joint Laver sequence of maximal possible length is simply equicon-
sistent with the particular large cardinal. The exception are the �-strong cardinals,
where � is a limit of small cofinality, for which we prove that additional strength
is required for even the shortest joint sequences to exist. We also show that there
are no nontrivial implications between the existence of joint Laver sequences of
different lengths. Section 5 considers joint ♦κ-sequences and their relation to other
known principles. Our main result there shows that, for a fixed κ, the principle
♦κ is simply equivalent to the existence of a joint ♦κ-sequence of any possible
length.
We shall list open questions wherever they arise in the course of exposition.

§2. Jointness: A motivating example. All of the large cardinals we will be dealing
with in this article are characterized by the existence of elementary embeddings
of the universe into inner models which have that cardinal as their critical point.
We can thus speak of embeddings associated with a measurable, a �-strong, a 17-
huge cardinal, and so forth. At this stage we do not insist that these embeddings
are any kind of ultrapower embedding, or even definable, so this whole introduc-
tory discussion should take place in an appropriate second-order setting. Since
the definitions of (joint) Laver diamonds for these various large cardinals are
quite similar, we give the following general definition as a framework to aid future
exposition.

Definition 2.1. Let j be an elementary embedding of the universe witnessing
the largeness of its critical point κ (a measurable or a (κ+2)-strongness embedding,
for instance) and let � be a function defined on κ. We say that a set a, the target, is
guessed by � via j if j(�)(κ) = a.
If A is a set or a definable class, say that � is an A-guessing Laver function (or
Laver diamond) if for any a ∈ A there is an embedding j, witnessing the largeness
of κ, such that � guesses a via j. If there is an A-guessing Laver function for κ, we
shall say that κ(A) holds.1

To simplify the terminology even more, we shall associate to each type of large
cardinal considered a default set of targets A (for example, when talking about a
measurable cardinal κ, we will be predominantly interested in targets fromHκ+). In
view of this, whenever we neglect the mention of a particular class of targets, these
default targets will be intended.
We will often specify the type of large cardinal embeddings we have in mind
explicitly, by writing meas

κ , or
�-sc
κ , or similar. This is to avoid ambiguity; for example,

we could conceivably start with a supercompact cardinal κ but only be interested
in its measurable Laver functions. Even so, to keep the notation as unburdened
as possible, we may sometimes omit the specific large cardinal property under
consideration when it is clear from context.

1Different notation has been used by different authors to denote the existence of a Laver function.
We chose here to follow Hamkins [12].
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As a further complication, the stated definition of an A-guessing Laver function
is second-order, since we are quantifying over all possible embeddings j. This
is unavoidable for arbitrary A. However, the default sets of targets we shall be
working with are chosen in such a way that standard factoring arguments allow us
to restrict our attention to ultrapower embeddings (by measures or extenders). The
most relevant definitions of Laver functions can therefore be recast in first-order
language in the usual way.
Given the concept of a Laver diamond for a large cardinal κ, we might ask
when two Laver functions are different and how many distinct ones can κ carry.
It is clear that the guessing behaviour of these functions is determined by their
restrictions to large (in the sense of an appropriate large-cardinal measure) sets;
in other words, j(�)(κ) and j(� ′)(κ) equal one another if � and � ′ only differ on
a small (nonstationary, say) subset of their domain. We definitely do not want to
count these functions as distinct: they cannot even guess distinct targets! Instead,
what we want are Laver functions whose targets, under a single embedding j, can
be chosen completely independently. Let us illustrate this situation with a simple
example.
Suppose � : κ → Vκ is a supercompactness Laver function as defined in the
introduction. We can then define two functions �0, �1 by letting �0(�) and �1(�)
be the first and second components, respectively, of �(�), if this happens to be an
ordered pair. These two are then easily seen to be Laver functions themselves, but
have the additional property that, given any pair of targets a0, a1, there is a single
supercompactness embedding j such that j(�0)(κ) = a0 and j(�1)(κ) = a1 (just the
one thatmakes j(�)(κ) = (a0, a1)). This additional trait, where twoLaver functions
are, in a sense, enmeshed, we call jointness.

Definition 2.2. Let A be a set or a definable class and let κ be a cardinal
with a notion of A-guessing Laver function. A sequence �� = 〈�α ;α < �〉 of A-
guessing Laver functions is an A-guessing joint Laver sequence if for any sequence
�a = 〈aα ;α < �〉 of targets from A there is a single embedding j, witnessing the
largeness of κ, such that each �α guesses aα via j. If there is an A-guessing joint
Laver sequence of length � for κ, we shall say that κ,�(A) holds.

In other words, a sequence of Laver diamonds is joint if, given any sequence
of targets, these targets can be guessed simultaneously by their respective Laver
diamonds.
We must be careful to distinguish between an entire sequence being jointly Laver
and its members being pairwise jointly Laver. It is not difficult to find examples of
three (or four or even infinitely many) Laver functions that are pairwise joint but
not fully so. For example, given two joint Laver functions �0 and �1, we might define
�2(�) to be the symmetric difference of �0(�) and �1(�). It is easy to check that any
two of these three functions can have their targets freely chosen, but the third one
is uniquely determined by the other two.
Jointness also makes sense for ordinary diamond sequences, but needs to be
formulated differently, since elementary embeddings do not (obviously) appear in
that setting. Rather, we distil jointness for Laver diamonds into a property of certain
ultrafilters and then apply this to more general filters and diamond sequences. We
explore this further in Section 5.
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§3. Joint Laver diamonds for supercompact cardinals.
Definition 3.1. A function � : κ → Vκ is a �-supercompactness Laver function
for κ if it guesses elements ofH�+ via �-supercompactness embeddings with critical
point κ. This also includes the case of κ being measurable (as this is equivalent to
it being κ-supercompact).
If κ is fully supercompact, then a function � : κ → Vκ is a Laver function for κ if
it is a �-supercompactness Laver function for κ for all �.

We shall say that �-scκ holds if there is a �-supercompactness Laver function for κ;
in view of the definition just stated,H�+ is the default set of targets for these Laver
functions, and so �-sc

κ is merely a synonym for
�-sc
κ (H�+ ). Similarly,

meas
κ will denote

the existence of a measurable Laver function for κ and is a synonym for meas
κ (Hκ+).

For fully supercompact cardinals κ, the existence of a supercompactness Laver
function will be denoted by sc

κ, which should be read more precisely as
sc
κ(V ).

While the definition of a �-supercompactness Laver function refers to arbitrary
�-supercompactness embeddings, one can in fact work solely with embeddings
arising from normal measures on Pκ(�). This is because any �-supercompactness
embedding j can be factored as j = k ◦ i , where i is the ultrapower by the induced
normal measure on Pκ(�) and k is an elementary embedding with critical point
strictly above �. Since we are only interested in guessing targets from H�+ by � , we
get the same value whether we compute j(�)(κ) or i(�)(κ). In brief, if � guesses
a target in H�+ via any �-supercompactness embedding, then it does so via a �-
supercompactness ultrapower embedding. Moreover, in the joint setting, if several
�α guess their targets via a single �-supercompactness embedding, then they all
guess their targets via a single �-supercompactness ultrapower embedding as well.
Observe that there are at most 2κ many �-supercompactness Laver functions for
κ, since there are only 2κ many functions κ → Vκ. Since a joint Laver sequence
cannot have the same function appear on two different coordinates (as they could
never guess two different targets), this implies that � = 2κ is the largest cardinal for
which there could possibly be a joint Laver sequence of length �. Bounding from the
other side, a single �-supercompactness Laver function, for some � ≤ 2κ, already
yields a joint Laver sequence of length �.

Proposition 3.2. If �-sc
κ holds, then there is a �-supercompactness joint Laver

sequence for κ of length � = min{�, 2κ}.
Proof. Let � be a Laver function for κ, and fix a subset I of P(κ) of size � and
a bijection f : � → I . For α < � define �α : κ → Vκ by �α(�) = �(�)(f(α) ∩ �) if
this makes sense and �α(�) = ∅ otherwise. We claim that 〈�α ;α < �〉 is a joint Laver
sequence for κ.
To verify this, let �a = 〈aα ;α < �〉 be a sequence of elements of H�+ . Then
�a◦f−1 ∈ H�+ , so by assumption, there is a �-supercompactness embedding j : V →
M such that j(�)(κ) = �a ◦ f−1. But now observe that, for any α < �,

j(�α)(κ) = j(�)(κ)(j(f(α)) ∩ κ) = j(�)(κ)(f(α)) = aα
holds by elementarity. �
Of course, if a given Laver function works for many degrees of supercompactness
then the joint Laver sequence derived above will work for those same degrees.
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In particular, if κ is fully supercompact, then this observation, combined with
Laver’s original construction, gives us a supercompactness joint Laver sequence of
length 2κ.

Corollary 3.3. If κ is supercompact then sc
κ,2κ holds.

It should be pointed out that Laver’s original argument only shows that a �-
supercompactness Laver function exists for a cardinal κ provided κ is somewhere
in the range of 2�

<κ

-supercompact. Plain �-supercompactness does not suffice in
the case � = κ (that is, in the measurable case), since there are no Laver func-
tions in Kunen’s model L[U ] (as will follow from Proposition 3.11). It is currently
unknown whether the hypothesis from Laver’s proof can be reduced to just �-
supercompactness in the case that κ < �.2 We will not say much about this question
in the present article, and, since we are mainly interested in jointness phenomena,
we will liberally assume that the large cardinal in question carries at least one Laver
function.
Proposition 3.2 essentially shows that joint Laver sequences of maximal length
exist automatically for cardinals with a high degree of supercompactness that carry
at least one Laver function. Since we will be interested in comparing the strengths
of the principles κ,� for various �, we will in the remainder of this section be
mostly concerned with cardinals κ which are not 2κ-supercompact (but are at least
measurable), so as to avoid situations where a single Laver function gives rise to the
longest possible joint Laver sequence.

3.1. Creating long joint Laver diamonds. We now show that the existence of �-
supercompactness jointLaver sequencesofmaximal lengthdoesnot require strength
beyond �-supercompactness itself.
The following notion is due to Hamkins [10], although its original form, relating
to strong compactness, dates back to Menas [19].

Definition 3.4. A �-supercompactness Menas function for a cardinal κ is a
functionf : κ → κ such that there is a �-supercompactness embedding j : V →M
with cp(j) = κ and j(f)(κ) > �.

A Menas function is a particularly weak form of a Laver function. If � is a �-
supercompactness Laver function for κ, then it is also a �-supercompactnessMenas
function, since we can pick the embedding j to have � guess � + 1, for example.
However, the advantage of Menas functions is that we can prove their existence
from the optimal large cardinal hypothesis on κ, something which is unknown for
Laver functions, as we mentioned in the preceding subsection.

Lemma 3.5. If κ is �-supercompact, then κ carries a �-supercompactness Menas
function.

It is unclear who this lemma should be attributed to; we heard the following proof
from Hamkins.

Proof. We consider the nontrivial case when κ ≤ �. Define a functionf : κ → κ
by letting f(α) = 0 if α is κ-supercompact, and f(α) = 2�

<α

where � < κ is least

2We might hope that recent work in providing a canonical inner model for finite levels of
supercompactness will go some way towards answering this question.
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such that α is not �-supercompact. It is simple to check that f really maps into κ,
since if α < κ is �-supercompact for every � < κ, then it is �-supercompact. We
claim that this f is a Menas function.
Let j : V → M be a �-supercompactness embedding with critical point κ such
that κ is not �-supercompact in M . One can find such an embedding by either
considering the Mitchell order on normal measures on Pκ(�) and taking the
embedding corresponding to a minimal such measure, or by simply taking a �-
supercompactness embedding j for which j(κ) is least among all such embeddings.3

Let us see that j(f)(κ) > �.
Sinceκ is not �-supercompact inM and j(κ) > �, we see that j(f)(κ) = (2�

<κ

)M ,
where � is the least such that κ is not �-supercompact in M . So suppose that
(2�

<κ

)M ≤ �. Since M is closed under �-sequences, this means that M computes
Pκ(�) and P(Pκ(�)) correctly and, in fact, contains every subset of P(Pκ(�)) from
V . ButV has a normal measure onPκ(�), which is a subset just like that, and soM
must also have this normal measure. This means that κ is in fact �-supercompact in
M , contradicting our earlier assumption. �
Theorem 3.6. If κ is �-supercompact, then there is a forcing extension in which
�-sc
κ,2κ holds.

It should be mentioned that the forcing we do in the course of the proof may
collapse 2κ, and so the �-sc

κ,2κ in the conclusion of the theorem should be read with
the extension’s version of 2κ.

Proof. Since the �-supercompactness of κ implies its �<κ-supercompactness
(see, for example, [15, Proposition 22.11(b)]), we may assume that �<κ = �. Fur-
thermore, we assume that 2� = �+, since this may be forced without adding subsets
toPκ(�) (which means that anymeasure onPκ(�) remains a measure) or functions
Pκ(�) → � (which means that any normal measure remains normal), and so κ
will remain �-supercompact after this forcing. Fix a Menas function f for κ as
in Lemma 3.5. Let Pκ be the length κ Easton support iteration which forces with
Q	 = Add(	, 2	) at inaccessible closure points of f, meaning those inaccessible 	
for which f[	] ⊆ 	. Finally, let P = Pκ ∗ Qκ. Let G ∗ g ⊆ P be generic; we will
extract a joint Laver sequence from g.
If g(α) is the α-th subset added by g, we view it as a sequence of bits. Using some
coding scheme which admits end-of-code markers we can, given any � < κ, view
the segment of g(α) between the �th bit and the next marker as theMostowski code
of an element of Vκ. We then define �α : κ → Vκ as follows: given an inaccessible
�, let �α(�) be the set coded by g(α) at �; otherwise let �α(�) = ∅. We claim that
〈�α ;α < 2κ〉 is a joint Laver sequence.
Let �a = 〈aα ;α < 2κ〉 be a sequence of targets in HV [G ][g]�+ . Let j : V → M be
the ultrapower embedding by a normal measure on Pκ(�) which corresponds to f,
meaning the one for which j(f)(κ) > �. We will lift this embedding through the
forcing P in V [G ][g].
The argument splits into two cases, depending on the size of �. We deal first
with the easier case when � ≥ 2κ. In this case the poset j(Pκ) factors as j(Pκ) =
3In either case, the key observation is that if 
 and � are normal measures on Pκ(�) and 
 appears

in the ultrapower by �, then j
(κ) < j� (κ), where j
 and j� are the corresponding embeddings.
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Pκ ∗Qκ ∗Ptail. Since j(f)(κ) > �, the next stage of forcing in j(Pκ) above κ occurs
after �, so Ptail is ≤�-closed in M [G ][g] and has size j(κ) there. It follows that
Ptail has j(2κ) many subsets inM [G ][g]. SinceM was an ultrapower by a normal
measure on Pκ(�), the ordinal j(2κ) has size at most (2κ)� = �+ in V [G ][g]
(as every smaller ordinal is represented by a function Pκ(�) → 2κ). Therefore,
V [G ][g] sees that there are only �+ many dense subsets of Ptail inM [G ][g]. These
can be lined up and met one at a time, using both that M [G ][g] is closed under
�-sequences in V [G ][g] and that Ptail is a≤�-closed poset inM [G ][g]. This process
produces in V [G ][g] an M [G ][g]-generic Gtail ⊆ Ptail and allows us to lift j to
j : V [G ]→M [j(G)], where j(G) = G ∗ g ∗Gtail.
Since M [j(G)] is still an ultrapower and thus closed under �-sequences in
V [G ][g], we get j[g] ∈ M [j(G)]. Since j(Qκ) is ≤�-directed closed inM [j(G)] it
has q =

⋃
j[g] as a condition. This q is a partial function on the domain j(2κ)×κ.

SinceM [j(G)] has both the sequence of targets �a and j � 2κ, we can further extend
q to q∗ ∈ M [j(G)] by coding aα into the bit-sequence of q(j(α)) at κ for each
α < 2κ. We again diagonalize against the

∣∣22j(κ)∣∣ ≤ �+ many dense subsets of j(Qκ)
in M [j(G)] below the master condition q∗ to get aM [j(G)]-generic g∗ ⊆ j(Qκ)
and lift j to j : V [G ][g] → M [j(G)][g∗]. Finally, observe that we have arranged
the construction of g∗ = j(g) in such a way that g∗(j(α)) codes aα at κ for all
α < 2κ and, by definition, this implies that j(�α)(κ) = aα for all α < 2κ. Thus we
indeed have a joint Laver sequence for κ of length 2κ in V [G ][g].
It remains for us to consider the second case, when κ ≤ � < 2κ. In this situation
our assumptions on � imply that 2κ = �+. The poset j(Pκ) factors as j(Pκ) = Pκ ∗
Q̃κ ∗Ptail, where Q̃κ = Add(κ, (2κ)M [G ]). Since V [G ] andM [G ] agree on P(κ), the
ordinal (2κ)M [G ] has size 2κ inV [G ], so Q̃κ is isomorphic, but not necessarily equal,
to Qκ. Nevertheless, the same argument as before allows us to lift j to j : V [G ]→
M [j(G)] where j(G) = G ∗ g̃ ∗Gtail and g̃ is the isomorphic image of g.
We seem to hit a snag with the final lift through the forcing Qκ, which has size
2κ and thus resists the usual approach of lifting via a master condition, since this
condition would simply be too big for the amount of closure we have.We salvage the
argument by using a technique, originally due to Magidor [18], sometimes known
as the “master filter argument”.
The forcing j(Qκ) = Add(j(κ), 2j(κ))M [j(G)] has size 2j(κ) and is ≤�-directed
closed and j(κ)+-cc in M [j(G)]. Since M [j(G)] is still an ultrapower, |2j(κ)| ≤
�+ = 2κ and so M [j(G)] has at most 2κ many maximal antichains of j(Qκ),
counted in V [G ][g]. Let these be given in the sequence 〈Zα ;α < 2κ〉. Since each
Zα has size at most j(κ), it is in fact contained in some bounded part of the
poset j(Qκ). Furthermore (and crucially), since j is an ultrapower by a measure
on Pκ(�), it is continuous at 2κ = �+ and so there is for each α a �α < 2κ
such that Zα ⊆ Add(j(κ), j(�α)). In particular, each Zα is a maximal antichain
in Add(j(κ), j(�α)). We will now construct in V [G ][g] a descending sequence of
conditions, deciding more and more of the antichains Zα , which will generate a
filter, the “master filter,” that will allow us to lift j to V [G ][g] and also (lest we
forget) witness the joint guessing property. We begin by defining the first condition
q0. Consider the generic g up to �0. This piece has size � and so

⋃
j[g � �0] is a

condition in j(Qκ) � j(�0). Let q′0 be the extension of
⋃
j[g � �0] which codes the

target aα at κ in q′0(j(α)) for each α < �0. This is still a condition in j(Qκ) � j(�0)
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and we can finally let q0 be any extension of q′0 in this poset which decides the
maximal antichainZ0. Note that q0 is compatible with every condition in j[g], since
we extended the partial master condition

⋃
j[g � �0] and made no commitments

outside j(Qκ)�j(�0).We continue in this way recursively, constructing a descending
sequence of conditions qα for α < �+, using the closure of j(Qκ) andM [j(G)] to
pass through limit stages. Now consider the filter g∗ generated by the conditions
qα . It isM [j(G)]-generic by construction and also extends (or can easily be made
to extend) j[g]. We can thus lift j to j : V [G ][g] → M [j(G)][g∗] and, since P is
�+-cc and bothGtail and g∗ were constructed inV [G ][g], the modelM [j(G)][g∗] is
closed under �-sequences, which shows that κ remains �-supercompact in V [G ][g].
Finally, as in the previous case, g∗ was constructed in such a way that j(�α)(κ) = aα
for all α < 2κ, verifying that these functions really do form a joint Laver sequence
for κ. �
As a special case of Theorem 3.6 we can deduce the corresponding result for
measurable cardinals.

Corollary 3.7. If κ is measurable, then there is a forcing extension in which there
is a joint Laver sequence for κ of length 2κ.
It follows from the results of Hamkins [11] that the forcing P from Theorem 3.6
does not create anymeasurable or (partially) supercompact cardinals below κ, since
it admits a very low gap.We could therefore have startedwith the least large cardinal
κ of interest and preserved its minimality throughout the construction.

Corollary 3.8. If κ is the least �-supercompact cardinal, then there is a forcing
extension where κ remains the least �-supercompact cardinal and �-sc

κ,2κ holds.
It is perhaps interesting to observe the peculiar arrangement of cardinal arith-
metic in the model produced in the above proof. We have 2� = �+ and, if � ≤ 2κ,
also 2κ = �+. In particular, we never produced a �-supercompactness joint Laver
sequence of length greater than �+ (assuming here, of course, that � = �<κ is the
optimal degree of supercompactness). One has to wonder whether this is significant.
Certainly the existence of long joint Laver sequences does not imply much about
cardinal arithmetic, since, for example, if κ is indestructibly supercompact, we can
manipulate the value of 2κ freely, while maintaining the existence of a supercom-
pactness joint Laver sequence of length 2κ. On the other hand, even in the case of
measurable κ, the consistency strength of 2κ > κ+ is known to exceed that of κ
being measurable. The following question is therefore natural:

Question 3.9. If κ is �-supercompact and 2κ > �+, is there a forcing extension
preserving these facts in which there is a joint Laver sequence for κ of length 2κ?
We next show that the existence of joint Laver sequences is preserved under mild
forcing. This will be useful later when we separate the existence of these sequences
based on their lengths.

Lemma 3.10. Let κ be �-supercompact (with κ ≤ �), � a cardinal, and assume
�-sc
κ,� holds. Suppose P is a poset such that either

(1) � ≥ �<κ and P is ≤�-distributive, or
(2) |P| ≤ κ and, for any �-sequence of targets, some embedding associated with the
joint Laver sequence and these targets lifts through P.

Then forcing with P preserves �-sc
κ,�.
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If |P| ≤ κ, it is very often the case that every �-supercompactness embedding
with critical point κ lifts through P, so the hypothesis in item (2) is easily satisfied.
Furthermore, while the restriction |P| ≤ κ in (2) is necessary for full generality, it
can in fact be relaxed to |P| ≤ � for a large class of forcings.
Proof. Under the hypotheses of (1) every ultrapower embedding by a measure
on Pκ(�) lifts to the extension by P (see, for example, [6, Proposition 15.1]) and
no elements of H�+ or �-sequences of these are added, so any ground model joint
Laver sequence of length � remains such in the extension.
Now suppose that the hypotheses of (2) hold, let 〈�α ;α < �〉 be a joint Laver
sequence for κ and let G ⊆ P be generic. We may also assume that the underlying
set of P is a subset of κ. Define functions � ′α : κ → Vκ[G ] by � ′α(�) = �α(�)G∩� if
this makes sense and � ′α(�) = ∅ otherwise. We claim that 〈� ′α ;α < �〉 is a joint Laver
sequence in V [G ].
Let �a be a �-sequence of targets in HV [G ]�+ , and let �̇a be a name for �a. We can use
this name and the fullness property to derive names ȧα for the targets aα , uniformly
in α < �, which means that we find the entire sequence 〈ȧα ;α < �〉 in V . Since each
ȧα names an element of H

V [G ]
�+ , and because P is small (and therefore �+-cc), we

can find a nice name α ∈ H�+ for each ȧα , and the sequence of these nice names is
in V as well. Now let j : V →M be a �-supercompactness embedding with critical
point κ which lifts through P and which satisfies j(�α)(κ) = α for each α. It then
follows that j(� ′α)(κ) = aα in V [G ], verifying the joint Laver diamond property
there. �
3.2. Separating joint Laver diamonds by length. We next aim to show that it
is consistent that there is a measurable Laver function for κ but no joint Laver
sequences of length κ+. The following proposition expresses the key observation for
our solution, connecting the question to the number of normal measures problem.

Proposition 3.11. If there is a �-supercompactness joint Laver sequence for κ of
length �, then there are at least 2�·� many normal measures on Pκ(�).
Proof. The point is that any �-sequence of targets inH�+ can be guessed via the
embedding arising from a normal measure on Pκ(�) (see the discussion at the start
of Section 3) and any such measure realizes a single �-sequence via the fixed joint
Laver sequence. But there are 2�·� many sequences of targets, and thus there must
be at least this many measures. �
Theorem 3.12. If κ is measurable, then there is a forcing extension in which there
is a Laver function for κ but no joint Laver sequence of length κ+.

Proof. After forcing as in the proof of Theorem 3.6, if necessary, we may assume
that κ has a Laver function. A result of Apter, Cummings, and Hamkins [1] then
shows that κ still carries a Laver function in the extension by P = Add(�, 1) ∗
Coll

(
κ+, 22

κ)
, but only carries κ+ many normal measures there. Proposition 3.11

now implies that there cannot be a joint Laver sequence of length κ+ in the
extension. �
We can push this result a bit further to get a separation between any two desired
lengths of joint Laver sequences. To state the sharpest result we need to introduce a
new notion.
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Definition 3.13. Let κ be a large cardinal supporting a notion of Laver diamond
and � a cardinal. We say that a sequence �� = 〈�α ;α < �〉 is an almost-joint Laver
sequence for κ if �� � 	 is a joint Laver sequence for κ for any 	 < �. We say that κ,<�

holds if there is an almost-joint Laver sequence of length �.

Theorem 3.14. Suppose κ is measurable and let � be a regular cardinal satisfying
κ < � ≤ 2κ. If meas

κ,<� holds then there is a forcing extension preserving this in which
meas
κ,� fails.
Proof. We imitate the proof of Theorem 3.12 but force instead with P =
Add(�, 1) ∗ Coll(�, 22κ). The analysis based on [1] now shows that the final exten-
sion has at most � many normal measures on κ and thus there can be no joint
Laver sequences of length � there by Proposition 3.11. That measκ,<� still holds follows
from (the proof of) Lemma 3.10: Part (2) implies that, by guessing names, the
meas
κ,<�-sequence from the ground model gives rise to one in the intermediate Cohen
extension. Part (1) then shows that each of the initial segments of this sequence
remains a joint Laver sequence in the final extension. �
We can also extend these results to �-supercompact cardinals without too much
effort.
Theorem 3.15. If κ is �-supercompact, � is regular, and �<κ = �, then there is a
forcing extension in which �-sc

κ holds but
�-sc
κ,�+ fails.

Of course, the theorem is only interesting when κ ≤ � < 2κ, in which case the
given separation is best possible in view of Proposition 3.2.
Proof. We may assume by prior forcing, as in Theorem 3.6, that we have a
Laver function for κ. We now force with P = Add(�, 1) ∗ Coll(�+, 22�) to get an
extension V [g][G ]. By the results of [1], the extension V [g][G ] has at most �+

many normal measures on Pκ(�) and therefore there are no joint Laver sequences
for κ of length �+ there by Proposition 3.11. It remains to see that there is a Laver
function in V [g][G ]. Let � be a Laver function in V and define � ′ ∈ V [g][G ] by
� ′(�) = �(�)g if �(�) is an Add(�, 1)-name and � ′(�) = ∅ otherwise. For a given
a ∈ HV [g][G ]�+ = HV [g]�+ we can select an Add(�, 1)-name ȧ ∈ HVκ+ and find a �-
supercompactness embedding j : V → M such that j(�)(κ) = ȧ. The embedding
j lifts to j : V [g][G ] → M [g][j(G)] since the Cohen forcing was small and the
collapse forcing was≤�-closed. But then clearly j(� ′)(κ) = ȧg = a, so � ′ is a Laver
function. �
Theorem 3.16. Suppose κ is �-supercompact and let � be a regular cardinal satis-
fying �<κ < � ≤ 2κ. If �-sc

κ,<� holds, then there is a forcing extension preserving this in

which �-sc
κ,� fails.

Proof. The relevant forcing isAdd(�, 1)∗Coll(�, 22�<κ ). Essentially the argument
from Theorem 3.14 then finishes the proof. �
Just as with joint Laver sequences, there is an upper bound on the length of an
almost-joint Laver sequence.

Proposition 3.17. The principle �-sc

κ,<(2κ)+ fails for every cardinal κ.

Proof. Any potential �-sc
κ,<(2κ)+ -sequencemust necessarily have the same function

appear on at least two coordinates. But then any initial segment of this sequence
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containing both of those coordinates cannot be joint, since it cannot guess distinct
targets on those coordinates. �
A question remains about the principles κ,<�, whether they are genuinely new
or whether they reduce to other principles.

Question 3.18. Let κ be �-supercompact and � ≤ 2κ. Is �-sc
κ,<� equivalent to

�-sc
κ,	

holding for all 	 < �?
An almost-joint Laver sequence definitely gives instances of joint Laver diamonds
of each particular length 	. The reverse implication is especially interesting in the
case when � = 
+ is a successor cardinal. This is because simply rearranging the
functions in a joint Laver sequence of length 
 gives joint Laver sequences of any
length shorter than
+. The question is thus asking whether κ,
 suffices for κ,<
+ .
An annoying feature of the models produced in the preceding theorems is that in
all of them the least � for which κ,� fails is � = 2κ. One has to wonder whether this
is significant.
In particular, we would like an answer to the following question: Is it relatively
consistent that there is a �-supercompact cardinal κ, for some �, such that �-scκ holds
and �-sc

κ,� fails for some � < 2
κ?

To satisfy the listed conditions,GCHmust fail atκ (sincewemust haveκ < � < 2κ

by Proposition 3.2). We can therefore expect that achieving the situation described
in the question will require some additional consistency strength.
In the case of a measurable κ the answer to this question is positive: we will
show in Theorem 3.20 that, starting from sufficient large cardinal hypotheses, we
can produce a model where κ is measurable and has a measurable Laver function
but no joint Laver sequences of length κ+ < 2κ. The proof relies on an argument
due to Friedman and Magidor [8], which facilitates the simultaneous control of the
number of measures at κ and the value of the continuum function at κ and κ+.
Let us briefly give a general setup for the argument of [8] that will allow us to
carry out our intended modifications without repeating too much of the work done
there.
We first recall the higher Sacks forcing, originally due to Kanamori [14]. Let 	 be
an inaccessible cardinal. A condition in the poset Sacks(	) is a <	-closed subtree
T of <	2 of height 	, such that there is a club CT ⊆ 	 such that a node t ∈ T is a
splitting node inT if and only if |t| ∈ CT . Stronger conditions are given by subtrees.
A generic filter for Sacks(	) determines (and is, in turn, determined by) a single
branch through <	2, a new subset of 	 in the extension. The forcing is <	-closed
and satisfies a form of fusion, which means that it preserves 	+ as well.
As a slight generalization, one might consider bushier trees instead of just binary
trees as conditions. Of particular interest will be the version in which conditions
are <	-closed subtrees of <		 of height 	, where each splitting node of height �
(and there is again a club of these heights of splitting nodes) splits into �++ many
immediate successors. Call this version of the forcing Sacksid++(	).
Fix a cardinal κ and suppose GCH holds up to and including κ. Furthermore
suppose thatκ is the critical point of an elementary embedding j : V →M satisfying
the following properties:

• j is an extender embedding, meaning that every element of M has the form
j(f)(α) for some function f defined on κ and some α < j(κ).
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• (κ++)M = κ++.
• There is a function f : κ → V , such that j(f)(κ) is, in V (and therefore also
inM ), a sequence of κ++ many disjoint stationary subsets of κ++ ∩ Cofκ+.

Given this arrangement, Friedman and Magidor define a forcing iteration P of
length κ + 1 (with nonstationary support) which forces at each inaccessible stage
	 ≤ κ with Sacks∗(	, 	++) ∗ Sacksid++(	) ∗ Code(	). Here Sacks∗(	, 	++) is a large
product of versions of Sacks(	)where the splitting levels are restricted to the singular
elements of a club and Code(	) is a certain≤	-distributive notion of forcing coding
information about the stage 	 generics into the stationary sets given by f(	).
Let G ⊆ P be generic. We shall use P<κ to denote the initial segment of the
iteration P up to stage κ, and G<κ will be the corresponding restriction of the
generic G . In the interest of avoiding repeating the analysis of the forcing notion
given in [8], we list some of the properties of the extension V [G ] that we will use
(but see [8] for proofs):
(1) P preserves cardinals and cofinalities, and increases the values of the contin-
uum function by at most two cardinal steps. In particular, any inaccessible
cardinals of V remain such in V [G ].

(2) We have 2κ = κ++ in V [G ].
(3) P has the κ-Sacks property: for any function f : κ → Ord in V [G ] there is a
function h ∈ V such that f(α) ∈ h(α) for all α and |h(α)| ≤ α++.

(4) The generic G is self-encoding in a strong way: in V [G ] there is a unique
M -generic for j(P)<j(κ) extending j[G<κ].

(5) If Sκ is the generic filter added by Sacksid++(κ) within P, then
⋂
j[Sκ] is a

tuning fork: the union of κ++ many branches, all of which split off exactly at
level κ.

(6) In V [G ] there are exactly κ++ many M -generics for j(P) extending j[G ],
corresponding to the κ++ many branches in

⋂
j[Sκ]. In particular, there are

exactly κ++ many lifts jα of j to V [G ], distinguished by jα(Sκ)(κ) = α for
α < κ++.

Proposition 3.19. In the above setup, the iteration P adds a measurable Laver
function for κ.
Proof. Let G ⊆ P be generic. As we stated in item (6), for any α < κ++ there
is a lift jα : V [G ] → M [jα(G)] of j such that jα(Sκ)(κ) = α, where Sκ is the
Sacks subset of κ added by the κth stage of G . This shows that �̄(	) = Sκ(	) is a
κ++-guessing measurable Laver function for κ.
Note that all of the subsets of κ in M [jα(G)] (and V [G ]) appear already in
M [G ]; this is because the part of j(P) above stage κ is forced to be≤κ-distributive.
Let �e = 〈eα ;α < κ++〉 be an enumeration of HM [G ]κ+ in M [G ] and let ė ∈ M be
a name for �e. We can write ė = j(F )(κ) for some function F , defined on κ. Now
define a function � : κ → Vκ in V [G ] by �(	) = (F (	)G )(�̄(	)). This is, in fact, our
desired Laver function; given an arbitrary element of HV [G ]κ+ , we can find it in the
enumeration �e. If α is its index, then

jα(�)(κ) =
(
jα(F )(κ)jα (G)

)
(jα(�̄)(κ)) =

(
j(F )(κ)jα (G)

)
(α) = �e(α) = eα . �

Theorem 3.20. Suppose κ is (κ + 2)-strong and assume that V = L[ �E] is the
minimal extender model witnessing this. Then there is a forcing extension in which
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2κ = κ++, the cardinal κ remains measurable, κ carries a measurable Laver function,
and there are no measurable joint Laver sequences for κ of length κ+.

Proof. Let j : V →M be the ultrapower embedding by the top extender of �E, the
unique extender witnessing the (κ+2)-strongness of κ. In particular, every element
of M has the form j(f)(α) for some α < j(κ), and M computes κ++ correctly.
Furthermore, V has a canonical♦κ++(Cofκ+)-sequence, which is definable without
parameters over Hκ++ via the standard condensation argument. Since Hκ++ ∈ M ,
this same sequence is also in M and is of the form j(f̄)(κ) for some function
f̄, since it is definable in M just from the parameter κ. By having this diamond
sequence guess the singletons {�} for � < κ++, we obtain a sequence of κ++ many
disjoint stationary subsets of κ++ ∩ Cofκ+ , and this sequence itself has the form
j(f)(κ) for some function f. We are therefore in a situation where the definition
of the Friedman–Magidor iteration we described above makes sense. But first, we
shall carry out some preliminary forcing.
Let g ⊆ Add(κ+, κ+3) be generic. Since this Cohen poset is ≤κ-distributive, the
embedding j lifts (uniquely) to an embedding j : V [g]→M [j(g)].4 Let us examine
the lifted embedding j. It is still an extender embedding. Additionally, since GCH
holds inV , the forcingAdd(κ+, κ+3) preserves cardinals, cofinalities, and stationary
subsets of κ++. Together, this means thatM [j(g)] computes κ++ correctly, and the
stationary sets given by the sequence j(f)(κ) above remain stationary. Therefore
we may still define the Friedman–Magidor iteration P over V [g].
Let G ⊆ P be generic over V [g]. We claim that V [g][G ] is the model we want.
We have 2κ = κ++ in the extension, by item (2) of our list, and Proposition 3.19
implies that κ is measurable in V [g][G ] and meas

κ holds there. So it remains for us
to see that meas

κ,κ+ fails. By Proposition 3.11 it suffices to show that κ does not carry
2κ
+
= κ+3 many normal measures in V [g][G ].
Let U ∗ ∈ V [g][G ] be a normal measure on κ and let j∗ : V [g][G ] →
N [j∗(g)][j∗(G)] be its associated ultrapower embedding. This embedding restricts
to j∗ �V : V → N . SinceV is the core model from the point of view ofV [g][G ], the
embedding j∗ � V arises as the ultrapower map associated with a normal iteration
of extenders on the sequence �E (see [22, Section 7.4] for more details).
We first claim that the first extender applied in this iteration is the top extender
of �E. Let us write j∗ �V = j1 ◦ j0, where j0 : V → N0 results from the first applied
extender. Clearly j0 has critical point κ. Now suppose that j0(κ) < κ++. Of course,
j0(κ) is inaccessible inN0 and, sinceN is an inner model ofN0, also inN . But j0(κ)
is not inaccessible inN [j∗(g)][j∗(G)], since 2κ = κ++ there. This is a contradiction,
since passing from N to N [j∗(g)][j∗(G)] preserves inaccessibility, by item (1) of
our list.
It follows that we must have j0(κ) ≥ κ++. We will argue that the extender
E applied to get j0 witnesses the (κ + 2)-strongness of κ, so it must be the top
extender of �E.Using a suitable indexing of �E, the extenderE has index (j0(κ)+)N0 >
κ++, and the coherence of the extender sequence implies that the sequences in V
and in N0 agree up to κ++. By the acceptability of these extender models it now

4The lifted embedding will not be a (κ + 2)-strongness embedding and, in fact, κ is no longer
(κ + 2)-strong in V [g]. Nevertheless, the residue of strongness will suffice for our argument.
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follows that HVκ++ = H
N0
κ++ or, equivalently, Vκ+2 ∈ N0. This means that j0 is the

(κ + 2)-strongness ultrapower of V , and is equal to the embedding j we started
with.
Finally, we claim that the iteration giving rise to j∗ � V ends after one step,
meaning that j∗ �V = j0 = j. Suppose to the contrary that j1 is nontrivial. By the
normality of the iteration, the critical point of j1 must be some � > κ. We can find
a function h ∈ V [g][G ], defined on κ, such that j∗(h)(κ) = �, since j∗ is given by
an ultrapower of V [g][G ] by a normal measure on κ. By the κ-Sacks property of P
(see item (3)) we can cover the function h by a function h̄ ∈ V [g]; in fact, since the
forcing to add g was ≤κ-closed, we have h̄ ∈ V . Now

� = j∗(h)(κ) ∈ j∗(h̄)(κ) = j1(j0(h̄))(j1(κ)) = j1(j0(h̄)(κ))
and A = j0(h̄)(κ) has cardinality at most κ++ inM , using the properties of h̄. In
particular, since κ++ < �, we have � ∈ j1(A) = j1[A], which is a contradiction,
since � was the critical point of j1.
We can conclude that any embedding j∗ arising from a normal measure on κ in
V [g][G ] is a lift of the ground model (κ + 2)-strongness embedding j. But there
are exactly κ++ many such lifts: the lift to V [g] is unique, and there are κ++ many
possibilities for the final lift to V [g][G ], according to item (6). Therefore there are
only κ++ many normal measures on κ in V [g][G ]. �
Ben-Neria and Gitik [3] have announced that the consistency strength required
to achieve the failure of GCH at a measurable cardinal carrying a unique normal
measure is exactly that of a measurable cardinal κ with o(κ) = κ++. Their method
is flexible enough to allow us to incorporate it into our proof of Theorem 3.20,
reducing the consistency strength hypothesis required there from a (κ + 2)-strong
cardinal κ to just o(κ) = κ++. We have chosen to present the proof based on the
original Friedman–Magidor argument since it avoids some complications arising
from using the optimal hypotheses

3.3. (Joint)Laver diamonds and the number of normalmeasures. Theonlymethod
of controlling the existence of (joint) Laver diamonds we have seen is by control-
ling the number of large cardinal measures, relying on the rough bound given by
Proposition 3.11. One has to wonder whether merely the existence of sufficiently
many measures guarantees the existence of (joint) Laver diamonds. We focus on
the simplest form of the question, concerning measurable cardinals.

Question 3.21. Suppose κ is measurable and there are at least 2� many normal
measures on κ for some � ≥ κ. Does there exist a measurable joint Laver sequence
for κ of length �?
As the special case when � = κ, the question includes the possibility that having
2κ many normal measures, the minimum required, suffices to give the existence of a
measurable Laver function for κ. Even in this very special case it seems implausible
that simply having enough measures would automatically yield a Laver function.
Nevertheless, in all of the examples of models obtained by forcing and in which
we have control over the number of measures that we have seen, Laver functions
have existed. On the other hand, Laver functions and joint Laver sequences also
exist in canonical inner models that have sufficiently many measures. These models
carry long Mitchell-increasing sequences of normal measures that we can use to
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obtain ordinal-guessing Laver functions. We can then turn these into actual Laver
functions by exploiting the structure of these models.

Definition 3.22. Let A be a set (or class) of ordinals and let �̄ be an A-guessing
Laver function for some large cardinal κ. Let � be some wellorder (one arising
from an L-like inner model, for example). We say that � is suitable for �̄ if, for any
α ∈ A, there is an elementary embedding j, witnessing the largeness of κ, such that
�̄ guesses α via j and j(�) � (α+1) = � � (α +1); that is, the wellorders j(�) and
� agree on their first α + 1 many elements.
If J is a class of elementary embeddings witnessing the largeness of κ, we say
that� is supersuitable for J if j(�) � j(κ) = � � j(κ) for any j ∈ J .
We could, for example, take the class J to consist of all ultrapower embeddings
by normal measures on κ or, more to the point, all ultrapower embeddings arising
from a fixed family of extenders. We should also note that, for the notion to make
sense, the order type of�must be quite high: at least supA in the case of wellorders
suitable for anA-guessing Laver function and at least supj∈J j(κ) for supersuitable
wellorders (the latter would also make sense if the order type of�were smaller than
κ, but that case is not of much interest).
If �̄ is an ordinal-guessing Laver function and J is a class of elementary embed-
dings that includes all the embeddings that �̄ requires to guess its targets, then any
wellorder that is supersuitable for J is also suitable for �̄. The following lemma
describes the way in which suitable wellorders will be used to turn ordinal-guessing
Laver functions into set-guessing ones.

Lemma 3.23. Let A be a set (or class) of ordinals and let �̄ be an A-guessing Laver
function for some large cardinal κ. Let � be a wellorder such that otp(�) ⊆ A. If �
is suitable for �̄, then there is a B-guessing Laver function for κ, where B is the field
of �.
Proof. We can define a B-guessing Laver function by simply letting �(�) be the
�̄(�)th element of �. Then, given a target b ∈ B, we can find its index α in the
wellorder � and an embedding j such that j(�̄)(κ) = α. Since � is suitable for �̄,
the orders � and j(�) agree on their αth element and so � guesses b via j. �
It follows from the above lemma that in any model with a sufficiently absolute
wellorder, being able to guess ordinals suffices to be able to guess arbitrary sets.

Lemma 3.24. LetX be a set (or class) of ordinals and letJ be a class of elementary
embeddings of L[X ] with critical point κ such that j(X ) ∩ j(κ) = X ∩ j(κ) for any
j ∈ J . Then ≤X , the canonical order of L[X ], is supersuitable for J .
Proof. This is obvious; the order ≤X �j(κ) is definable in Lj(κ)[X ], but by our
coherence hypothesis this structure is just the same as Lj(κ)[j(X )]. �
We are mostly interested in this lemma in the case when X = �E is an extender
sequence andL[ �E] is an extendermodel in the sense of [22]. In particular, wewant �E
to be acceptable (a technical condition which implies enough condensation proper-

ties inL[ �E] to concludeHL[
�E]

� = L�[ �E]), coherent (meaning that if j : L[ �E]→ L[ �F ]
is an ultrapower by the αth extender of �E then �F � (α + 1) = �E � α), and to use
Jensen indexing (meaning that the index of an extender E on �E with critical point
κ is jE(κ)+, as computed in the ultrapower).
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Corollary 3.25. Let V = L[ �E] be an extender model. Then the canonical
wellorder is supersuitable for the class of ultrapower embeddings by the extenders
on the sequence �E .

Proof. This is immediate from the preceding lemma and the fact that our
extender sequences are coherent and use Jensen indexing. �
Theorem 3.26. Let V = L[ �E] be an extender model. Let κ be a cardinal such that
every normal measure on κ appears on the sequence �E. If o(κ) ≥ κ+ then meas

κ holds.
Moreover, if o(κ) = κ++ then meas

κ,κ+ , and even
meas
κ (Hκ++), holds.

In particular, the above theorem implies meas
κ holds in the least inner model with

the required number ofmeasures and the same holds for measκ,κ+. This provides further
evidence that the answer to Question 3.21, which remains open, might turn out to
be positive.

Proof. We can argue for the two cases more or less uniformly: let � ∈ {κ+, κ++}
such that � ≤ o(κ). The function �̄(�) = o(�) is a �-guessing measurable Laver
function for κ. By the acceptability of �E we have that H� = L�[ �E]. The canonical
wellorder ≤ �E ∩L�[ �E] has order type � and, by Corollary 3.25, is supersuitable for
the class of ultrapower embeddings by normal measures on κ. It follows that≤ �E is
suitable for �̄, so, by Lemma 3.23, there is anH�-guessingmeasurable Laver function
for κ.
To finish the proof we still need to produce a joint measurable Laver sequence
for κ, in the case that o(κ) = κ++. This is done in exactly the same way as in
Proposition 3.2; one simply uses the Hκ++-guessing Laver function to guess the
whole sequence of targets for a joint Laver sequence. �
Interestingly, if we restrict to a smaller set of targets, having enough normal
measures does give us Laver functions.

Lemma 3.27. Let κ be a regular cardinal and 	 ≤ κ and suppose that 〈
α ;α < 	〉
is a sequence of distinct normal measures on κ. Then there is a sequence 〈Xα ;α < 	〉
of pairwise disjoint subsets of κ such that Xα ∈ 
� if and only if α = � .
Proof. We prove the lemma by induction on 	. In the base step, 	 = 1, we simply
observe that, since 
0 �= 
1, we must have a set X0 ⊆ κ such that X0 ∈ 
0 and
κ \ X0 ∈ 
1.
The successor step proceeds similarly. Suppose that the lemma holds for sequences
of length 	 and fix a sequence of measures 〈
α ;α < 	 + 1〉. By the induction
hypothesis we can find pairwise disjoint sets 〈Yα ;α < 	〉 such that each Yα picks
out a unique measure among those with indices below 	. Again, since 
	 is distinct
from all of the other measures, we can find sets Zα ∈ 
	 \ 
α for each α < 	. Then
the sets Xα = Yα \ Zα for α < 	 and X	 =

⋂
α<	 Zα are as required.

In the limit step suppose that the lemma holds for all � < 	. We can then fix
sequences 〈X�α ;α < �〉 for each � < 	 as above. The argument proceeds slightly
differently depending on whether 	 = κ or not. If 	 < κ we can simply let
Xα =

⋂
α<�<	 X

�
α ∈ 
α . If, on the other hand, we have 	 = κ, then first let

Yα = �α<�<κ X �α ∈ 
α . Given α < � < 	, the sets Yα and Y� are almost contained
in X�+1α and X�+1� , respectively. Since these two are, in turn, disjoint, Yα and Y�
have bounded intersection. Now consider
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Xα = Yα \
⋃
�<α

(Yα ∩ Y�)

for α < κ. Since Yα ∩ Y� is bounded for all � < α, we still have Xα ∈ 
α .
Furthermore, we obviously have Xα ∩ X� = ∅ for � < α and this implies that the
Xα are pairwise disjoint. �
Theorem 3.28. Let κ be a measurable cardinal and 	 < κ+ an ordinal. There is a
	-guessing measurable Laver function for κ if and only if there are at least |	| many
normal measures on κ.
Proof. First suppose that meas

κ (	) holds. Then, just as in Proposition 3.11, each
target α < 	 requires its own embedding j via which it is guessed and this gives us
|	| many distinct normal measures.
Conversely, suppose that we have at least |	|many normal measures on κ. We can
apply Lemma 3.27 to find a sequence of pairwise disjoint subsets of κ distinguishing
these measures. By reorganizing the measures and the distinguishing sets we may
assume that they are given in sequences of length 	. We now have normal measures
〈
α ;α < 	〉 and sets 〈Xα ;α < 	〉 such that 
α is the unique measure concentrating
on Xα; we may even assume that the Xα partition κ.
Letfα forα < 	 be the representing functions forα, that is, j(fα)(κ) = α for any
ultrapower embedding j by a normal measure on κ. Constructing these functions
is not difficult. If α < κ, we can simply take fα to be the constant function with
value α. If κ ≤ α < 	 < κ+, we can fix a wellorder �α of κ in ordertype α, and the
function fα(�) = otp(�α ∩ (� × �)) will be a representing function for α.5
We can now define a 	-guessing Laver function � by letting �(�) = fα(�) where
α is the unique index such that � ∈ Xα . This function indeed guesses any target
α < 	: Simply let j : V → M be the ultrapower by 
α . Since 
α concentrates on
Xα we have j(�)(κ) = j(fα)(κ) = α. �
Corollary 3.29. Let κ be a measurable cardinal and fix a subsetA ⊆ Hκ+ of size
at most κ. Then there is an A-guessing measurable Laver function for κ if and only if
there are at least |A| many normal measures on κ.
Proof. The forward direction follows just as before: each target inA gives its own
normal measure on κ. Conversely, if there are at least |A|many normal measures on
κ then, by Theorem 3.28, there is an |A|-guessing measurable Laver function �̄. Fix
a bijection f : |A| → A. We may assume, moreover, that A ⊆ P(κ). Then we can
define anA-guessing Laver function � by letting �(�) = f(�̄(�))∩ �. This works: to
guess f(α) we let �̄ guess α via some j. Then j(�)(κ) = j(f(α)) ∩ κ = f(α). �
Lemma 3.27 can be recast in somewhat different language, giving it, and the
subsequent results, a more topological flavour.
Given a cardinal κ, let M(κ) be the set of normal measures on κ. We can
topologizeM(κ) by having, for each X ⊆ κ, a basic neighbourhood [X ] = {
 ∈
M(κ) ; X ∈ 
} (this is just the topology induced onM(κ) by the Stone topology
on the space of ultrafilters on κ). Lemma 3.27 can now be restated to say that any
subspace ofM(κ) of size at most κ is discrete and, moreover, the basic open sets
witnessing this can be taken to arise from a pairwise disjoint family of subsets of κ;

5These functions fα are essentially just the first κ+ many canonical functions for κ, see [13, Section
1.3].
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such subspaces of spaces of ultrafilters are sometimes also called strongly discrete
(see [7], for example). One might thus hope to show the existence of Laver functions
by exhibiting even larger discrete subspaces ofM(κ). In pursuit of that goal we
obtain the following generalization of Corollary 3.29.

Theorem 3.30. Let κ be a measurable cardinal andA ⊆ P(κ). Then meas
κ (A) holds

if and only if there are for each a ∈ A a set Sa ⊆ κ and a normal measure 
a on
κ such that {
a ; a ∈ A} is discrete in M(κ), as witnessed by {Sa ; a ∈ A}, and
Sa ∩ Sb ⊆ {� ; a ∩ � = b ∩ �}.
We could have relaxed our hypothesis to A ⊆ Hκ+ by working with Mostowski
codes.

Proof. Assume first that � is a measurableA-guessing Laver function for κ. Then
we can let Sa = {� ; �(�) = a ∩ �}. Obviously we have j(�)(κ) = a if and only
if the measure derived from j concentrates on Sa . It follows that the measures

a derived this way form a discrete subspace of M(κ) and we obviously have
Sa ∩ Sb ⊆ {� ; a ∩ � = b ∩ �}.
Conversely, assume we have such a discrete family of measures 
a and a family
of sets Sa as described. We can define an A-guessing measurable Laver function �
by letting �(�) = a ∩ � where a is such that � ∈ Sa . This is well defined by the
coherence condition imposed upon the Sa , and it is easy to see that � satisfies the
guessing property. �
This topological viewpoint presents a number of questions which might suggest
an approach to Question 3.21. For example, it might be the case that every discrete
subset ofM(κ) has its discreteness witnessed by a family of sets Sa as in Theo-
rem 3.30. If this were so, we could reduce the problem of finding Laver functions
to the seemingly simpler problem of finding large6 discrete subspaces ofM(κ). But
even this simpler task is problematic, since it might be possible thatM(κ) has size
(at least) κ+ but has no discrete subspaces of size κ+ at all.

3.4. κ-trees. Thus farwe have thought of joint Laver diamonds as simply matri-
ces or sequences of Laver diamonds. To better facilitate the reflection properties
required for forcing iterations using prediction, we would now like a different repre-
sentation. A reasonable attempt seems to be trying to align the joint Laver sequence
with the full binary tree of height κ.

Definition 3.31. Letκ be a large cardinal supporting a notion ofLaver diamond.
A κ-tree is a labelling of the binary tree such that the labels along the branches
form a joint Laver sequence. More precisely, a κ-tree is a function D :

<κ2 → V
such that for any sequence of targets 〈as ; s ∈ κ2〉 there is an elementary embedding
j, witnessing the largeness κ, such that j(D)(s) = as for all s ∈ κ2.
Given an I ⊆ κ2, an I - κ-tree is a function D as above, satisfying the same
guessing property but only for sequences of targets indexed by I .

Naturally, we will in this section mostly be interested in �-sc
κ -trees, that is, κ-trees

whose branches form a �-sc
κ,2κ -sequence. If the degree of supercompactness of κ is

sufficiently large, then �-sc
κ -trees are nothing new.

6Recall that Lemma 3.27 says that every subset ofM(κ) of size≤κ is already strongly discrete.
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Proposition 3.32. Suppose κ is �-supercompact and � ≥ 2κ. Then a �-sc
κ -tree

exists if and only if a �-supercompactness Laver function for κ does (if and only if
�-sc
κ,2κ holds).

Proof. The forward implication is trivial, so we focus on the reverse implication.
Let � be a Laver function for κ. For any t ∈ <κ2 define D(t) = �(|t|)(t) if this
makes sense and D(t) = ∅ otherwise. We claim this defines a �-sc

κ -tree. Indeed, let
�a = 〈as ; s ∈ κ2〉 be a sequence of targets. Since � ≥ 2κ we get �a ∈ H�+ , so there
is a �-supercompactness embedding j such that j(�)(κ) = �a. Therefore, given any
s ∈ κ2, we have j(D)(s) = j(�)(κ)(s) = as �
In other situations, however, the existence of a �-sc

κ -tree can have strictly higher
consistency strength than merely a �-supercompact cardinal.

Definition 3.33. Let X be a set and � a cardinal. A cardinal κ is X -strong with
closure � if there is an elementary embedding j : V →M with critical point κ such
that �M ⊆M and X ∈M .

Proposition 3.34. Suppose κ is �-supercompact and there is a �-sc
κ -tree. Then κ is

X -strong with closure � for any X ⊆ H�+ of size at most 2κ.
Proof. Suppose D : <κ2 → Vκ is a

�-sc
κ -tree and fix an X ⊆ H�+ of size at

most 2κ. Let f : κ2 → X enumerate X . We can then find a �-supercompactness
embedding j : V →M with critical pointκ such that j(D)(s) = f(s) for all s ∈ κ2.
In particular, X = j(D)[κ2] is an element ofM , as required. �
If 2κ ≤ � then X -strongness with closure � for all X ⊆ H�+ of size 2κ amounts
to just �-supercompactness and Proposition 3.32 gives the full equivalence of Laver
functions and �-sc

κ -trees. But if � < 2
κ, then X -strongness with closure � can have

additional consistency strength. For example, we might choose X to be a normal
measure on κ to see that κmust have nontrivialMitchell rank (by iterating this idea
we can even deduce that o(κ) = (2κ)+). In the typical scenario where 2κ = 2� = �+,
we can also reach higher and choose X to be a normal measure on Pκ(�) and see
that κmust also have nontrivial �-supercompactnessMitchell rank.We can use this
observation to show that there might not be any �-sc

κ -trees, even in the presence of
very long joint Laver sequences.

Theorem 3.35. Suppose GCH holds and let κ be �-supercompact where either
� = κ or cf(�) > κ. Then there is a cardinal-preserving forcing extension in which
κ remains �-supercompact, has a �-supercompactness joint Laver sequence of length
2κ, but is also the least measurable cardinal. In particular, � < 2κ and there are no
�-sc
κ -trees in the extension.

Proof. We may assume by prior forcing, as in the proof of Theorem 3.6, that
κ has a Laver function. Additionally, by performing either Magidor’s iteration of
Prikry forcing (see [17]) or applying an argument due to Apter and Shelah (see [2]),
depending on whether � = κ or not, we may assume that, in addition to being
�-supercompact, κ is also the least measurable cardinal.7

7Of course, if � > κ, this arrangement requires a strong failure of GCH at κ. In fact, 2κ = �+ in the
Apter–Shelah model.
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We now apply Corollary 3.8 and arrive at a model where κ carries a �-supercom-
pactness joint Laver sequence of length 2κ, but is also the least measurable cardinal.
It follows that there can be no �-sc

κ -trees (or even
meas
κ -trees), since, by the discussion

above, their existence would imply that κ has nontrivial Mitchell rank, implying
that there are many measurables below κ. �
Proposition 3.34 can be improved slightly to give a jump in consistency strength
even for I - �-scκ -trees where I is not the whole set of branches. A simple modification
of the proof given there yields the following result, together with the corresponding
version of Theorem 3.35.

Theorem 3.36. Suppose κ is �-supercompact and there is an I - �-scκ -tree for some
I ⊆ κ2 of size 2κ. If I is definable (with parameters) overHκ+ then κ is X -strong with
closure � for any X ⊆ H�+ of size at most 2κ.
The above theorem notwithstanding, we shall give a construction which shows
that the existence of an I - �-scκ -tree does not yield additional consistency strength,
provided that we allow I to be sufficiently foreign to Hκ+ . The argument will rely
on being able to surgically alter a Cohen subset of κ+ in a variety of ways. To this
end we fix some notation beforehand.

Definition 3.37. Let f and g be functions. The graft off onto g is the function
g � f, defined on dom(g) by

(g � f)(x) =
{
f(x); x ∈ dom(g) ∩ dom(f),
g(x); x ∈ dom(g) \ dom(f).

Essentially, the graft replaces the values of g with those of f on their common
domain.

Lemma 3.38. Let � be a regular cardinal and assume ♦� holds. Suppose M is a
transitive model of ZFC (either set- or class-sized ) such that � ∈ M andM<� ⊆M
and |P(�)M | = �. Then there are an unbounded set I ⊆ � and a function g : �→ H�
such that, given any f : I → H�, the graft g � f is generic for Add(�, 1) overM .8
The hypothesis of ♦� is often automatically satisfied. Specifically, our assumptions
about M imply that 2<� = �. If � = κ+ is a successor, this gives 2κ = κ+ which
already implies ♦� by a result of Shelah [20].
We are grateful to Joel David Hamkins for suggesting this proof.

Proof. Let 〈fα ;α < �〉, with fα : α → H|α|, be a ♦�-sequence and fix an
enumeration 〈Dα ;α < �〉 of the open dense subsets of Add(�, 1) in M . We shall
construct by recursion a descending sequence of conditions pα ∈ Add(�, 1) and an
increasing sequence of sets Iα as approximations to g and I . Specifically, we shall
use ♦� to guess pieces of any potential function f and ensure along the way that
the modified conditions pα � f meet all of the listed dense sets.
Suppose we have built the sequences 〈pα ;α < 	〉 and 〈Iα ;α < 	〉 for some
	 < �. Let I ∗	 =

⋃
α<	 Iα . Let p

∗
	 ∈ M be an extension of

⋃
α<	 pα such that

I ∗	 ⊆ dom(p∗	 ) ∈ �; such an extension exists inM by our assumption on the closure
ofM .

8Here we take the version of Add(�, 1) which adds a function g : �→ H� by initial segments.
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Let us briefly summarize the construction. We shall surgically modify the con-
dition p∗	 by grafting the function given by ♦� onto it. We shall then extend this
modified condition to meet one of our dense sets, after which we will undo the
surgery. We will be left with a condition p	 which is one step closer to ensuring that
the result of one particular grafting g �f is generic. At the same time we also extend
I ∗	 by adding a point beyond the domains of all the conditions constructed so far.
More precisely, let p̃∗	 = p∗	 � (f	 � I ∗	 ). This is still a condition inM . Let p̃	 be any
extension of this condition inside D�	 , where �	 is the least such that p̃

∗
	 /∈ D�	 , and

satisfying dom(p̃	) ∈ �. Finally, we undo the initial graft and set p	 = p̃	 � (p∗	 � I ∗	 ).
Note that we have p	 ≤ p∗	 . We also extend our approximation to I with the first
available point, letting I	 = I ∗	 ∪ {min(� \ dom(p	))}.
Once we have completed this recursive construction we can set I =

⋃
	<� I	 and

g =
⋃
	<� p	 . Let us check that these do in fact have the desired properties.

Let f : I → H� be a function. We need to show that g � f is generic over M .
Using ♦�, we find that there are stationarily many 	 such that f	 = f � 	. Note
also that there are club many 	 such that I ∗	 ⊆ 	 is unbounded, and together this
means that S = {	 ; f	 � I ∗	 = f � (I ∩	)} is stationary. The conditions p̃	 for 	 ∈ S
extend each other and we have

⋃
	∈S p̃	 = g �f. Furthermore, since the setsDα are

open, the construction of p̃	 ensures that eventually these conditions will meet all
of these dense sets, showing that g � f really is generic. �
The construction in the above proof is quite flexible and can be modified to make
the set I generic in various ways as well (for example, we can arrange for I to be
Cohen or dominating overM , and have other similar properties).

Theorem 3.39. If κ is �-supercompact, then there is a forcing extension in which
there is an I - �-scκ -tree for some I ⊆ κ2 of size 2κ.

Proof. If � ≥ 2κ then even a single Laver function for κ gives rise to a full
κ-tree, by Proposition 3.32, and we can force the existence of a Laver function by
Theorem 3.6. We thus focus on the remaining case when κ ≤ � < 2κ.
We make similar simplifying assumptions as in Theorem 3.6. Just as there we
assume that � = �<κ. Furthermore, we may assume that 2� = �+, since this can
be forced without affecting the �-supercompactness of κ. Note that these cardinal
arithmetic hypotheses imply that 2κ = �+.
Let P be the length κ Easton support iteration which adds, in a recursive fashion,
a labelling of the tree <κ2 of the extension. Specifically, let P force with Q	 =
Add(2	 , 1) at each inaccessible 	 < κ stage 	. Let G ⊆ P be generic and let G	
be the piece added at stage 	. Using suitable coding, we can see each G	 , in V [G ],
as a function G	 :

	2 → H	+ ; in particular, G	 really does label the whole level 	2
in the final extension, since no new nodes appear in the tree ≤	2 after stage 	 in
the iteration P. Thus G induces a map D : <κ2 → Vκ[G ], by extending the G	 in
any way we like to the entire tree. We shall show that D is an I - �-scκ -tree for some
specifically chosen I .
Fix a �-supercompactness embedding j : V → M in V . Note that M [G ]� ⊆
M [G ] in V [G ] as well, since the forcing P is �+-cc. Furthermore, in V [G ] we still
have 2� = �+, which implies ♦�+ by a result of Shelah [20]. We also know that
| P(�+)M [G ]| = �+, since |j(κ)| = �+ and | P(�+)M [G ]| < j(κ) because � < j(κ)
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and j(κ) is inaccessible in M [G ]. Now apply Lemma 3.38 to M [G ] and � = �+

to obtain an I ⊆ κ2 of size �+ and a function g : κ2 → H�+ such that for any
f : I → H�+ in V [G ], the graft g � f is generic overM [G ]. We claim that D is an
I - �-scκ -tree.
To check the guessing property, fix a sequence of targets �a = 〈as ; s ∈ I 〉 in V [G ].
We shall lift the embedding j to V [G ]. Let us write j(P) = P ∗Qκ ∗ Ptail. We know
that g � �a is M [G ]-generic for Qκ, so we only need to find the further generic for
Ptail. We easily see thatM [G ][g � �a]� ⊆M [G ][g � �a] in V [G ], that Ptail is ≤�-closed
in that model, and thatM [G ][g � �a] only has �+-many subsets of Ptail. We can thus
diagonalize against these dense sets in �+-many steps and produce a generic Gtail
for Ptail. Putting all of this together, we can lift j to j : V [G ]→M [j(G)] in V [G ],
where j(G) = G ∗ (g � �a) ∗ Gtail. Now consider j(D). This is exactly the labelling
of the tree <j(κ)2 inM [j(G)] given by j(G). Furthermore, for any s ∈ I , we have
j(D)(s) = (g � �a)(s) = as , verifying the guessing property. �
Given a κ-tree, it is easy to produce a joint Laver sequence of length 2κ from
it by just reading the labels along each branch of the tree. The resulting sequence
then exhibits a large degree of coherence. We might wonder about the possibility
of reversing this process, starting with a joint Laver sequence and attempting to fit
it into a tree. But, taken literally, this property is not very robust. For example, all
functions in a joint Laver sequence for which this can be done must have the same
value at 0, so this coherence property of joint Laver sequences can be destroyed
without changing the sequence in any essential way. To avoid such trivialities, we
relax the definition to only ask for coherence modulo bounded perturbations.

Definition 3.40. Let κ be a regular cardinal and �f = 〈fα ;α < �〉 a sequence of
functions defined on κ. The sequence �f is treeable if there are a bijection e : �→ κ2
and a tree labelling D : <κ2 → V such that, for all α < �, we have D(e(α) � �) =
fα(�) for all but boundedly many � < κ.

Lemma 3.41. Let κ be a regular cardinal and assume that 2<κ < 2κ. Let G ⊆
Add(κ, 2κ) be generic. Then G is not treeable.

Proof. Let uswriteG = 〈gα ;α < 2κ〉 as a sequence of its slices.Now suppose that
this sequence were treeable and let ė and Ḋ be names for the indexing function and
the labelling of <κ2, respectively. Our cardinal arithmetic assumption implies that
the name Ḋ only involves conditions from a bounded part of the poset Add(κ, 2κ),
so we may assume that the labelling D exists already in the ground model. Let p
be an arbitrary condition and α < κ. Since we assumed that G was forced to be
treeable, there is a name 	̇ for an ordinal beyond whichGα agrees withD �f(α). By
strengthening p if necessary, we may assume that the value of 	̇ has been decided.
We now inductively construct a countable descending sequence of conditions below
p, deciding longer and longer initial segments of ė(α), in such a way that, for some
� > 	, their union p∗ ≤ p decides ė(α) � � but does not decide Gα(�). Then p∗ can
be further extended to a condition forcing Gα(�) �= D(ė(α) � �), which contradicts
the fact that p forces that G is treeable. �
Corollary 3.42. If κ is �-supercompact, then there is a forcing extension in which
there is a nontreeable �-supercompactness joint Laver sequence for κ of length 2κ.
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Proof. The joint Laver sequence constructed in Theorem 3.6 was added by
forcing with Add(κ, 2κ), so it is not treeable by Lemma 3.41. �

§4. Joint Laver diamonds for strong cardinals.
Definition 4.1. A function � : κ → Vκ is a �-strongness Laver function if it
guesses elements of V� via �-strongness embeddings with critical point κ.
If κ is fully strong then a function � : κ → Vκ is a Laver function for κ if it is a
�-strongness Laver function for κ for all �.

Just as in the supercompact case, we shall say that �-str
κ holds if there is a �-

strongness Laver function for κ; since our default set of targets in this case is V� ,
this is just the same as �-str

κ (V�). In the case of full strongness, we shall similarly say
that str

κ holds if there is a strongness Laver function for κ, which should be read as
str
κ(V ).
A similar factoring argument as in the supercompact case shows thatwe can afford
to be imprecise about which embeddings we count as �-strongness embeddings in
the definition above. Specifically, if j : V →M is any �-strongness embedding with
critical point κ and a function � guesses a target a ∈ V� via j, then � also guesses
a via the induced (κ,V�)-extender ultrapower embedding.
As in the supercompact case, 2κ is the largest possible cardinal length of a �-
strongness joint Laver sequence for κ, just because there are only 2κ many functions
� : κ → Vκ.
The set of targets V� is a bit unwieldy and lacks some basic closure properties,
particularly in the case when � is a successor ordinal. The following lemma shows
that, modulo some coding, we can recover a good deal of closure under sequences.

Lemma 4.2. Let � be an infinite ordinal and let I ∈ V� be a set. If � is successor
ordinal or cf(�) > |I | then V� is closed under a coding scheme for sequences indexed
by I . Moreover, this coding is Δ0-definable.

Proof. If � = � then the I under consideration are finite. Since V� is already
closed under finite sequences we need only deal with � > �.
Fix in advance a simply definable flat pairing function [·, ·] (flat in the sense that
any infinite Vα is closed under it; the Quine–Rosser pairing function will do).
Let �a = 〈ai ; i ∈ I 〉 be a sequence of elements ofV� . For each i ∈ I we can find an
(infinite) ordinal �i < � such thatai∪{i} ⊆ V�i .Now let ãi = {[i, b] ; b ∈ ai} ⊆ V�i
and finally define ã =

⋃
i∈I ãi . We see that ã ⊆ Vsupi �i and, under our hypotheses,

supi �i < �. It follows that ã ∈ V(supi �i )+1 ⊆ V� as required. �
Proposition 4.3. Let κ be �-strong with κ + 2 ≤ � and let � ≤ 2κ be a cardinal.
If there is a �-strongness Laver function for κ and � is either a successor ordinal or
� < cf(�) then there is a �-strongness joint Laver sequence of length � for κ.

In particular, if � is a successor, then a single �-strongness Laver function already
yields a joint Laver sequence of length 2κ, the maximal possible.

Proof. We aim to imitate the proof of Proposition 3.2. To that end, fix an I ⊆
P(κ) of size � and a bijection f : � → I . If � is a Laver function for κ, we define a
joint Laver sequence by letting �α(�), for each α < �, be the element of �(�) with
index f(α) ∩ � in the coding scheme described in Lemma 4.2.
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It is now easy to verify that the functions �α form a joint Laver sequence: given
a sequence of targets �a, we can replace it with a coded version ã ∈ V� , by using
f and Lemma 4.2. We can then use � to guess ã and the �-strongness embedding
obtained this way will witness the joint guessing property of the �α . �
Again, as in the supercompact case, if the Laver diamond we started with works
for several different � then the joint Laver sequence derived above will also work
for those same �. In particular, if κ is strong, then combining the argument from
Proposition 4.3 with the construction of a strongness Laver function due to Gitik
and Shelah [9] gives an analogue of Corollary 3.3.

Corollary 4.4. If κ is strong, then there is a strongness joint Laver sequence for
κ of length 2κ.

Proposition 4.3 implies that inmost cases (that is, formost �)wedo not need to do
any additional work beyond ensuring that there is a �-strongness Laver function for
κ to automatically also find the longest possible joint Laver sequence. For example,
if � is a successor or if cf(�) > 2κ then a single �-strongness Laver function yields a
joint Laver sequence of length 2κ. To gauge the consistency strength of the existence
of �-strongness joint Laver sequences for κ we should therefore only focus on the
consistency strength required for a single Laver diamond, and, separately, on � of
low cofinality.
Forcing constructions for a single �-strongness Laver diamond are known. How-
ever, since we weren’t able to find a suitable reference, we give the proofs in some
detail.
We are going to need an analogue of Lemma 3.5 for strong cardinals.

Definition 4.5. A �-strongness Menas function for a cardinal κ is a function
f : κ → κ such that there is a �-strongness embedding j : V →M with cp(j) = κ
and j(f)(κ) = �.

We should mention that our definition differs slightly from Hamkins’ original
definition in [10],where he says thatf is a �-strongnessMenas function if j(f)(κ) >
�� for some �-strongness embedding j. A Menas function in our sense gives rise to
one in Hamkins’ original sense, and is in general more convenient to work with.

Lemma 4.6. If κ is �-strong, then κ carries a �-strongness Menas function.

Proof. We define a function f : κ → κ by letting f(α) = 0 if α is κ-strong, and
otherwise let f(α) be the least 	 < κ such that α is not 	-strong. An argument
much like the one in Lemma 3.5 shows that we can find a �-strongness embedding
j : V → M with critical point κ such that κ is not �-strong in M , and that
j(f)(κ) = � for this j. �
Lemma 4.7. Let κ be a cardinal and suppose P ⊆ Vκ is a poset. Let G ⊆ P be
generic and assume that κ is a �-fixed point in V [G ]. For any ordinal α ≥ κ + 1,
every element of V [G ]α = (Vα)V [G ] has a P-name coded in Vα .

Proof. We argue by induction on α. In the base step, the key point is that, since
κ is a �-fixed point in V [G ], names for elements of V [G ]κ+1 can be replaced with
names for subsets of κ. But nice names for subsets of κ are essentially just subsets
of κ × P and are thus elements of Vκ+1. The limit step of the induction is trivial, so
it only remains for us to consider the successor step.
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Assume that every element of V [G ]α , for some α ≥ κ + 1, has a name coded in
Vα . Now consider an arbitrary element of V [G ]α+1. By the induction hypothesis,
it has a nice name of the form  =

⋃
x{x}×Ax , where each Ax is an antichain in P

and the union runs over all the coded names x in Vα . We can think of  as simply
the sequence of the antichainsAx , indexed by a subset of Vα , and, because each Ax
is an element of Vκ+1 ⊆ Vα , Lemma 4.2 implies that this sequence is coded by an
element of Vα+1. �
Lemma 4.8. Let κ be a cardinal and let P = Add(κ+, 1). Let G ⊆ P be generic.
For any ordinal α ≥ κ, every element of V [G ]α = (Vα)V [G ] has a P-name coded in
Vα .

Proof. We can argue much like in the proof we just gave, by induction on α. For
α = κ or α = κ + 1, no new elements of Vα are added by P, so we can simply take
check names. The limit step of the induction is trivial, so it only remains for us to
consider the successor step.
Assume that every element of V [G ]α , for some α ≥ κ + 2, has a name coded in
Vα . We may as well work with an isomorphic copy of the poset P which is a subset
of Vκ+1. This means that every antichain of P is an element of Vκ+2 ⊆ Vα . Now
consider an arbitrary element of V [G ]α+1. By the induction hypothesis, it has a
nice name of the form  =

⋃
x{x} × Ax , where each Ax is an antichain in P, and

the union runs over all the coded names in Vα for elements of (V [G ])α . As in the
previous proof, we think of  as a sequence of antichains indexed by a subset ofVα ,
and use Lemma 4.2 to obtain a code for  in Vα+1. �
Theorem 4.9. If κ is �-strong and � is either a successor ordinal or cf(�) ≥ κ+,
then there is a (2κ)+-cc forcing extension in which there is a �-strongness Laver
function for κ. In the extension 2κ = κ+ holds, κ+ is preserved, and, if � was a limit
ordinal, cf(�) ≥ κ+ remains true.
Proof. If � ≤ κ, no forcing is necessary, and the case � = κ + 1 was essentially
covered by Theorem 3.6. We may therefore restrict our attention to the case when
� ≥ κ + 2.
Fix aMenas functionf as in Lemma 4.6 and define the forcing Pκ as the length κ
Easton support iteration which forces withQ	 = Add(	+, 1) at inaccessible closure
points 	 of the function f. Let P = Pκ ∗Qκ and let G = Gκ ∗ g ⊆ P be generic over
V . Let us first show that κ remains �-strong in V [G ]. We will describe later how to
derive a Laver function in the extension.
By the definition of the Menas function f, we can fix a �-strongness extender
embedding j : V →M such that j(f)(κ) = �.We canwrite j(P) = P∗Ptail∗j(Qκ).
Because of our assumptions about �, Lemma 4.2 implies thatM is in fact closed
under κ-sequences. Since Pκ is κ-cc, the model M [Gκ] remains closed under κ-
sequences in V [Gκ], and, since Qκ is ≤κ-closed, this remains true for M [G ] in
V [G ].
Recall that every element of M [G ] is of the form j(F )(a)G for some a ∈ V�
and some function F ∈ V defined on Vκ. Since Ptail has size j(κ) in M [G ],
every open dense subset of Ptail can be represented in this way by using a function
F : Vκ → Vκ+1. For a fixed F like this, let DF be the collection of all open dense
subsets of Ptail of the form j(F )(a)G for some a ∈ V� . Then DF ∈ M [G ] and it
has size �� in M [G ]. Since the first stage of forcing in Ptail occurs after the first
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inaccessible above j(f)(κ) = � inM , the forcing Ptail is≤ �� -closed inM [G ]. This
means that DF =

⋂DF is a dense subset of Ptail. Since 2κ = κ+ in V [G ] (because
of the last stage of forcing), there are only κ+ many of these dense setsDF , counted
in V [G ]. Therefore we can line them up and, using the closure of the poset Ptail and
of the modelM [G ], meet all of them in order to build a generic Gtail ∈ V [G ] over
M [G ]. This allows us to lift the embedding j to j : V [Gκ]→M [G ][Gtail].
The final lift is easier: since Qκ is ≤κ-distributive, the filter h generated by
the image j[g] is generic over M [G ][Gtail] and allows us to lift to j : V [G ] →
M [G ][Gtail][h]. To see that this embedding witnesses the �-strongness of κ in
V [G ], we use Lemmas 4.7 and 4.8. Lemma 4.7 implies that every element of
V [Gκ]� has a name coded in V� , so, since V� ∈ M and Gκ ∈ M [G ], we get
V [Gκ]� ∈ M [G ] ⊆ M [G ][Gtail][h]. Lemma 4.8, in turn, says that every ele-
ment of V [G ]� has a name coded in V [Gκ]� , and so, because g ∈ M [G ],
we get V [G ]� ∈ M [G ] ⊆ M [G ][Gtail][h]. This shows that κ is �-strong in
V [G ].
Now let us turn our attention to theLaver function.Wedefine a function � ∈ V [G ]
on κ by letting �(�) be the set whose Mostowski code appears as the first set coded
in the sequence of bitsG�′ , where �′ is the least inaccessible closure point off above
�. It follows from this definition that, given a �-strongness embedding j in V [G ],
we evaluate j(�)(κ) by consulting the first slice of the generic Gtail, as constructed
above, and seeing what is coded there. To show that � really is a Laver function,
it only remains for us to see that any target a ∈ V [G ]� can be coded into Gtail
appropriately. But this is straightforward: if we start with a �-strongness embedding
in V as above and proceed with the lifting argument, we saw that V [G ]� ⊆M [G ],
so the target a appears inM [G ]. Consequently, the bit sequence of the Mostowski
code of a is a condition in the first stage of forcing in Ptail. If we now run our
construction of Gtail as described above, with the added requirement that we start
with the fixed condition coding a before we meet all of the dense sets DF , we
will obtain a generic Gtail whose first slice codes exactly a, and a lifted embed-
ding j satisfying j(�)(κ) = a. Therefore � really is a �-strongness Laver function
in V [G ]. �
Combining Theorem 4.9 with Proposition 4.3, we immediately obtain the
following corollary.

Corollary 4.10. Let κ be �-strong with κ + 2 ≤ �. If � is either a successor
ordinal or cf(�) > 2κ then there is a forcing extension in which �-str

κ,2κ holds.

Again, the forcing we do in Theorem 4.9 will collapse 2κ to κ+, so the conclusion
�-str
κ,2κ in this corollary should be read with the parameters evaluated in the extension.
Moving on to the case of � of low cofinality, it is important to note that The-
orem 4.9 has little to say in this situation. In fact we do not know whether one
can force the existence of a �-strongness Laver function when � is a limit ordinal
of low cofinality, starting from just a �-strong cardinal. Of course, one can do it
starting from just a little bit more, like a (� + 1)-strong cardinal, but it is unclear
what the sharpest result is. But, since we are interested in jointness phenomena, let
us gloss over this issue and ask whether the hypotheses in Proposition 4.3 are really
necessary in the singular case.
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Question 4.11. Suppose there is a �-strongness Laver function for κ (with �
possibly being a limit of low cofinality). Is there a �-strongness joint Laver sequence
of length κ? Or even of length �?

We give a partial answer to this question. In contrast to the supercompact case,
some restrictions are in fact necessary to allow for the existence of joint Laver
sequences for �-strong cardinals. The existence of even the shortest of such sequences
can surpass the existence of a �-strong cardinal in consistency strength.
To give a better lower bound on the consistency strength required, we introduce
a notion of Mitchell rank for �-strong cardinals, inspired by Carmody [4].

Definition 4.12. Let κ be a cardinal and � an ordinal. The �-strongnessMitchell
order � for κ is defined on the set of (κ,V� )-extenders, by letting E � F if E is an
element of the (transitive collapse of the) ultrapower of V by F .

Unsurprisingly, this Mitchell order has properties analogous to those of the
usual Mitchell order on normal measures on κ or the �-supercompactnessMitchell
order on normal fine measures on Pκ(�), as studied by Carmody. In particular,
the �-strongness Mitchell order is well-founded and gives rise to a notion of a �-
strongness Mitchell rank. Having �-strongness Mitchell rank at least 2 implies that
many cardinals below κ have reflected versions of �-strongness; for example, if κ
has (κ + �)-strongness Mitchell rank at least 2, then there are stationarily many
cardinals � < κ which are (�+ �)-strong (and much more is true).
We should mention a bound on the �-strongness Mitchel rank of a cardinal κ. If
j : V →M is the ultrapower by a (κ,V�)-extender then any (κ,V�)-extenders inM
appear in VM

j(κ). It follows that these extenders can be written in the from j(f)(a)
for some function f : Vκ → Vκ and a seed a ∈ V� . In particular, there are at most
�� many such extenders, counted in V . Any given extender therefore has at most
�� many predecessors in the Mitchell order, so the highest possible �-strongness
Mitchell rank of κ is �+� .

Theorem 4.13. Let κ be a �-strong cardinal, where � is a limit ordinal, and cf(�) ≤
κ < �. If there is a �-strongness joint Laver sequence for κ of length cf(�) then κ has
maximal �-strongness Mitchell rank.

Proof. We first show that the existence of a short �-strongness joint Laver
sequence implies a certain degree of hypermeasurability for κ. Let �� = 〈�α ;α <
cf(�)〉 be the joint Laver sequence. If �a = 〈aα ;α < cf(�)〉 is any sequence of targets
in V� there is, by definition, a �-strongness embedding j : V → M with critical
point κ such that j(�α)(κ) = aα . But we can recover �� from j(��) as an initial
segment, since �� is so short. Therefore we actually get the whole sequence �a ∈ M ,
just by evaluating that initial segment at κ. Now consider any a ⊆ V� . We can
resolve a into a cf(�)-sequence of elements aα of V� , by taking a cofinal sequence
〈�α ; α < cf(�)〉 in � and letting aα = a ∩ V�α . It follows that a =

⋃
α aα . We

can take the aα as our targets for ��. Our argument then implies that there is a
�-strongness embedding j : V → M so that 〈aα ; α < cf(�)〉 ∈ M , and therefore
also a ∈M .
Now let E be an arbitrary (κ,V�)-extender. Since E can be represented as a
family of measures on κ indexed by V� , it is coded by a subset of V� (using the
coding scheme from Lemma 4.2, for example). Applying the argument above, there
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is a �-strongness embedding j : V → M with critical point κ such that E ∈ M .
It follows that κ is �-strong in M , giving κ nontrivial �-strongness Mitchell rank
in V .
The argument in fact yieldsmore: given any collection of atmost�� many (κ,V� )-
extenders, we can code the whole family by a subset of V� and, again, obtain an
extender whose ultrapower contains the entire collection we started with. It follows
that, given any family of at most �� many extenders, we can find an extender which
is above all of them in the �-strongnessMitchell order. Applying this fact inductively
now shows that κ must have maximal �-strongness Mitchell rank. �
Again, we remind the reader thatwe have not determined the consistency strength
of the existence of a �-strongness Laver function for � of low cofinality. It may well
be that the high Mitchell rank we just derived from �-str

κ,cf(κ) can already be obtained

from just �-str
κ .

Just as in the case of �-supercompactness we can also consider �-str
κ -trees. In view

of Propositions 4.3 and 3.32 it is not surprising that again, for most �, a single
�-strongness Laver diamond yields a �-str

κ -tree.

Proposition 4.14. Suppose κ is �-strong where κ + 2 ≤ � and � is either a
successor ordinal or cf(�) > 2κ. Then a �-str

κ -tree exists if and only if a �-strongness
Laver function for κ does (if and only if �-sc

κ,2κ holds).

Proof. We follow the proof of Proposition 3.32. Note that, since � ≥ κ + 2, we
have κ2 ∈ V� , so V� is closed under sequences indexed by κ2 via the coding scheme
given by Lemma 4.2. If � is a �-strongness Laver function for κ we define a �-str

κ -tree
by letting D(t) be the element with index t in the sequence coded by �(|t|), if this
makes sense. It is now easy to check that this truly is a �-str

κ -tree: given any sequence
of targets �a we simply use the Laver function � to guess it (or, rather, its code), and
the embedding j obtained this way will witness the guessing property for D. �

§5. Joint diamonds. Motivated by the joint Laver sequences of the previous sec-
tions, we now apply the jointness concept to smaller cardinals. Of course, since we
do not have any elementary embeddings of the universe with critical point �1, say,
we need a reformulation that will make sense in this setting as well.
Consider a measurable Laver function � and let a ⊆ κ. By definition there is an
elementary embedding j : V → M such that j(�)(κ) = a. Let U be the normal
measure onκ derived from this embedding. SinceU is normal, a is represented in the
ultrapower by the function fa(�) = a ∩�, and thus, by Łoś’s theorem, we conclude
that �(�) = a ∩ � for U -almost all �. In particular, the set of such � is stationary
in κ. Therefore � is (essentially) a ♦κ-sequence. Similarly, if we are dealing with a
joint Laver sequence 〈�α ;α < �〉 there is for every sequence 〈aα ;α < �〉 of subsets
of κ a normal measure on κ with respect to which the set {� < κ ; �α(�) = aα ∩ �}
has measure one for each α.
This understanding of jointness seems amenable to transfer to smaller cardi-
nals. There are still no normal measures on �1, but perhaps we can weaken that
requirement slightly.
Recall that a filter on a regular cardinal κ is normal if it is closed under diagonal
intersections, and uniform if it contains all the cobounded sets. It is a standard result
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that the club filter on κ is the least normal uniform filter on κ (in fact, a normal filter
is uniform iff it extends the club filter). It follows that any subset of κ contained in a
(proper) normal uniform filter is stationary. Conversely, if S ⊆ κ is stationary, then
it is easy to check that S, together with the club filter, generates a normal uniform
filter on κ. Altogether, we see that a set is stationary iff it is contained in a normal
uniform filter. This observation suggests an analogy between Laver functions and
♦κ-sequences: in the same way that Laver functions guess their targets on large
sets with respect to some large cardinal measure, ♦κ-sequences guess their targets
on large sets with respect to some normal uniform filter. Extending the analogy,
in the same way that a joint Laver sequence is a collection of Laver functions that
guess sequences of targets on large sets with respect to a common large cardinal
measure (corresponding to the single embedding j), a collection of ♦κ-sequences
will be joint if they guess sequences of targets on large sets with respect to a common
normal uniform filter.
We will adopt the following terminology: if κ is a cardinal then a κ-list is a
function d : κ → P(κ) with d (α) ⊆ α (this term seems to have originated in Weiß’
dissertation [21]).

Definition 5.1. Let κ be an uncountable regular cardinal. A♦♦ κ,�-sequence is
a sequence �d = 〈dα ;α < �〉 of κ-lists such that for every sequence 〈aα ;α < �〉 of
subsets of κ there is a (proper) normal uniform filter F on κ such that for every α
the guessing set Sα = S(dα, aα) = {� < κ ; dα(�) = aα ∩ �} is in F .
An alternative, apparently simpler attempt at defining jointness would be to
require that all the κ-lists in the sequence guess their respective targets on the same
stationary set. Let us say that a♦♦ κ,�-sequence is consonant if for any sequence of
targets 〈aα ; α < �〉 there is a stationary set S so that S ⊆ Sα for all α < �.
It is not hard to see that we can derive a consonant♦♦ κ,�-sequence from a ♦κ-
sequence, provided that � < κ. We omit the proof, since the following proposition
shows that the consonance requirement is, in the end, too strong to yield a useful
notion of jointness for longer sequences.

Proposition 5.2. Let κ be an uncountable regular cardinal. There are no consonant♦♦ κ,κ-sequences.
Proof. Suppose that �d is a♦♦ κ,κ-sequence and consider the sequence of targets

〈κ \ dα(α) ; α < κ〉. If �d were consonant, there would definitely need to be some
� < κ so that each particular κ-list dα guessed its target at �. But we picked the
targets in such a way that d�(�) is not a good guess for the �th target. Therefore �d
is not consonant. �
Upon reflection we thus abandon the consonance requirement and insist only
on the jointness property as originally stated in the definition. To be sure, every
κ,�-sequence is also (essentially) a ♦♦ κ,�-sequence. This means that, at least in
the presence of sufficient large cardinals, ♦♦ κ,�-sequences exist. But, as we will
see later in Theorem 5.8, ♦♦ κ,�-sequences can exist quite independently of large
cardinals.
We will not use the following proposition going forward, but it serves to give
another parallel between ♦-sequences and Laver diamonds. It turns out that
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♦-sequences can be seen as Laver functions, except that they work with generic
elementary embeddings.

Proposition 5.3. Letκ be an uncountable regular cardinal and d a κ-list. Then d is
a♦κ-sequence iff there is, for any a ⊂ κ, a generic elementary embedding j : V →M
with critical point κ andM wellfounded up to κ + 1 such that j(d )(κ) = a.

Proof. Suppose d is a ♦κ-sequence and fix a target a ⊆ κ. Let S(d, a) = {� <
κ ; d (�) = a ∩ �} be the guessing set. By our discussion above, there is a normal
uniform filter F on κ with S ∈ F . Let G be a generic ultrafilter extending F and
j : V → M the generic ultrapower by G . Then M is wellfounded up to κ+ and
κ = [id]G . Since S ∈ G , Łoś theorem now implies that j(d )(κ) = a.
Conversely, fix a target a ⊆ κ and suppose that there is a generic embedding j
with the above properties. We can replace j with the induced normal ultrapower
embedding and let U be the derived ultrafilter in the extension. Since j(d )(κ) = a
it follows that S(d, a) ∈ U . But since U extends the club filter, S(d, a) must be
stationary. �
The same proof will also show that a sequence of κ-lists is joint if they can guess
any sequence of targets via a single generic elementary embedding.
The following key lemma gives a “bottomup” criterion deciding when a collection
of subsets of κ (namely, some guessing sets) is contained in a normal uniform
filter. It is completely analogous to the finite intersection property characterizing
containment in a filter.

Definition 5.4. Let κ be an uncountable regular cardinal. A family A ⊆ P(κ)
has the diagonal intersection property if for any function f : κ → A the diagonal
intersection �α<κ f(α) is stationary.
Lemma 5.5. Let κ be uncountable and regular and let A ⊆ P(κ). The family A
is contained in a normal uniform filter on κ iff A satisfies the diagonal intersection
property.

Proof. The forward direction is clear, so let us focus on the converse. Consider
the family of sets

E =
{
C ∩ �

α<κ
f(α) ; C ⊆ κ is club and f ∈ κA

}
.

We claim that E is directed under diagonal intersections: any diagonal intersection
of κ many elements of E contains another element of E. To see this, take Cα ∩
��<κ fα(�) ∈ E for α < κ. Let 〈·, ·〉 be a pairing function and define F : κ → � by
F (〈α, �〉) = fα(�). A calculation then shows that

�
α<κ
(Cα ∩ �

�<κ
fα(�)) = �

α
Cα ∩�

α
�
�
fα(�) ⊇

(�
α
Cα ∩D

) ∩�
α
F (α) ,

where D is the club of closure points of the pairing function.
It follows that closing E under supersets yields a normal uniform filter on κ. By
considering constant functions f we also see that every a ∈ A is in this filter. �
Lemma 5.5 will be the crucial tool for verifying♦♦ κ,�. More specifically, we shall
often apply the following corollary.
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Corollary 5.6. A sequence �d = 〈dα ;α < �〉 is a ♦♦ κ,�-sequence iff every
subsequence of length κ is a♦♦ κ,κ-sequence.
Proof. The forward implication is obvious; let us check the converse. Let �a =

〈aα ;α < �〉 be a sequence of targets and let Sα be the corresponding guessing
sets. By Lemma 5.5 we need to check that the family S = {Sα ; α < �} satisfies
the diagonal intersection property. So fix a function f : κ → � and consider the
diagonal intersection �α Sf(α). We may assume without loss of generality that f
is injective. By our assumption �d � f[κ] is a♦♦ κ,κ-sequence, so {Sf(α) ; α < κ} is
contained in a normal uniform filter, which means that�α Sf(α) is stationary. �
This characterization leads to fundamental differences between joint diamonds
and joint Laver diamonds. While the definition of joint diamonds was inspired
by large cardinal phenomena, the absence of a suitable analogue of the diagonal
intersection property in the large cardinal setting provides for some very surprising
results.

Definition 5.7. Let κ be anuncountable regular cardinal. A♦κ-tree is a function
D : <κ2 → P(κ) such that for any sequence 〈as ; s ∈ κ2〉 of subsets of κ there is a
(proper) normal uniformfilter onκ containing all the guessing setsSs = S(D, as ) =
{� < κ ; D(s � �) = as ∩ �}.
This definition clearly imitates the definition of κ-trees. We also have a corre-
spondence in the style of Proposition 5.3: a♦κ-tree acts like a κ-tree using generic
elementary embeddings.
The following theorem, the main result of this section, shows that, in complete
contrast to our experience with joint Laver diamonds, ♦κ already implies all of its
joint versions.

Theorem 5.8. Let κ be an uncountable regular cardinal. The following are
equivalent:

1. ♦κ;
2. ♦♦ κ,κ;
3. ♦♦ κ,2κ ;
4. There exists a ♦κ-tree.
Proof. For the implication (1) =⇒ (2), let d : κ → P(κ) be a ♦κ-sequence and
fix a bijection f : κ → κ × κ. Define

dα(�) = {� < α ; (α, �) ∈ f[d (�)]} .
We claim that 〈dα ;α < κ〉 is a♦♦ κ,κ-sequence.
To see this, take a sequence of targets 〈aα ;α < �〉 and let Sα = {� < κ ; dα(�) =
aα ∩ �} be the guessing sets. The set

T =
{
� < κ ; d (�) = f−1

[⋃
α<κ

{α} × aα
]
∩ �

}
is stationary in κ. Let F be the filter generated by the club filter on κ together
with T . This is clearly a proper filter. To see that it is also normal, consider some
typical elements Cα ∩ T of F , where Cα ⊆ κ is club for each α < κ. Then
�α<κ(Cα ∩ T ) = (�α<κ Cα) ∩ T is also clearly an element of F .
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We claim that we have Sα ∈ F for all α < κ, so that F witnesses the defining
property of a♦♦ κ,κ-sequence. Since f[�] = � × � for club many � < κ, the set

T ′ =
{
� < κ ; d (�) = f−1

[⋃
α<κ

{α} × aα
]
∩ f−1[� × �]

}
is just the intersection of T with a club, and is therefore in F . But now observe that

T ′ =
{
� < κ ; d (�) = f−1

[⋃
α<�

{α} × (aα ∩ �)
]}

= {� < κ ; ∀α < � : dα(�) = aα ∩ �} = �
α<κ
Sα .

We see that T ′ ∈ F is, modulo a bounded set, contained in each Sα and can thus
conclude, since F is uniform, that Sα ∈ F for all α < κ.
Instead of proving (2) =⇒ (3), it will be easier to show (2) =⇒ (4) directly. Since
the implications (4) =⇒ (3) =⇒ (1) are obvious, this will finish the proof.
Fix a♦♦ κ,κ-sequence �d . We proceed to construct the ♦κ-tree D level by level; in
fact the only meaningful work will take place at limit levels. At a limit stage 	 < κ
we shall let the first 	 many ♦κ-sequences anticipate the labels and their positions.
Concretely, consider the sets dα(	) for α < 	. For each α we interpret d2α(	) as
a node on the 	-th level of <κ2 and let D(d2α(	)) = d2α+1(	), provided that there
is no interference between the different ♦κ-sequences. If it should happen that for
some α �= � we get d2α(	) = d2�(	) but d2α+1(	) �= d2�+1(	) we scrap the whole
level and move on with the construction higher in the tree. At the end we extend D
to be defined on the nodes of <κ2 that were skipped along the way in any way we
like.
We claim that the function D thus constructed is a ♦κ-tree. To check this, let
us fix a sequence of targets �a = 〈as ; s ∈ κ2〉 and let Ss be the guessing sets. By
Lemma 5.5 it now suffices to check that�α<κ Ssα is stationary for any sequence of
branches 〈sα ;α < κ〉.
For α < κ let T2α = {� ; s−1α [{1}] ∩ � = d2α(�)} and T2α+1 = {� ; asα ∩
� = d2α+1(�)}. Since our construction was guided by a♦♦ κ,κ-sequence, there is a
normal uniform filter on κ which contains every Tα . In particular, T = �α<κ Tα is
stationary. By a simple bootstrapping argument, there is a clubC of limit ordinals 	
such that all sα �	 forα < 	 are distinct. Let 	 ∈ C ∩T . We now have s−1α [{1}]∩	 =
d2α(	) and asα ∩ 	 = d2α+1(	) for all α < 	. But this means precisely that the
construction ofD goes through at level 	 and that 	 ∈ ⋂

α<	 Ssα , and it follows that
C ∩ T ⊆ �α<κ Ssα , so�α<κ Ssα is stationary. �
We can again consider the treeability of joint diamond sequences, as we did in
Definition 3.40. We get the following analogue of Corollary 3.42.

Theorem 5.9. If κ is an uncountable regular cardinal and GCH holds, then after
forcing with Add(κ, 2κ) there is a nontreeable♦♦ κ,2κ -sequence.
Proof. Let P = Add(κ, 2κ) and G ⊆ P generic; we refer to the α-th subset
added by G as Gα . We will show that the generic G , seen as a sequence of 2κ many
♦κ-sequences in the usual way, is a nontreeable♦♦ κ,2κ -sequence.
Showing that G is a ♦♦ κ,2κ -sequence requires only minor modifications to the
usual proof that a Cohen subset of κ codes a ♦κ-sequence. Thus, we view each Gα
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as a κ-list. Fix a sequence 〈ȧα ;α < 2κ〉 of names for subsets of κ, a name ḟ for a
function from κ to 2κ and a name Ċ for a club in κ as well as a condition p ∈ P.
We will find a condition q ≤ p forcing that Ċ ∩ �α<κ Sḟ(α) is nonempty, where
Sḟ(α) names the set {� < κ ; ȧḟ(α) ∩ � = Gα(�)}; this will show that G codes a
♦♦ κ,2κ -sequence by Lemma 5.5.
We build the condition q in�many steps. To start with, let p0 = p and let 	0 be an
ordinal such that dom(p0) ⊆ 2κ×	0. By deciding more andmore of the function ḟ,
the targets ȧḟ(α), and the club Ċ , we now inductively find ordinals 	n < �n < 	n+1,
sets Bαn ⊆ 	n , functions fn and a descending sequence of conditions pn satisfying
dom(pn) ⊆ 2κ × 	n and pn+1 � �n ∈ Ċ as well as pn+1 � ḟ � �n = fn and
pn+1 � ȧfn(α) = Bαn for α < �n . Let 	� = supn 	n = supn �n and p� =

⋃
n pn and

f� =
⋃
n fn and B

α
� =

⋃
n B
α
n . The construction of these ensures that dom(p�) ⊆

2κ × 	� and p� forces that ḟ � 	� = f� and ȧḟ(α) ∩ 	� = Bα� for α < 	� as well
as 	� ∈ Ċ . To obtain the final condition q we now simply extend p� by placing the
code ofBα� on top of thef(α)-th column for all α < 	� . It now follows immediately
that q � 	� ∈ Ċ ∩�α<κ Sḟ(α).
It remains to show that the generic♦♦ κ,2κ -sequence is not treeable, which follows
immediately from Lemma 3.41. �
In the case of Laver diamonds we were able to produce models with quite long
joint Laver sequences but no κ-trees simply on consistency strength grounds (see
Theorem 3.35). In other words, we have models where there are long joint Laver
sequences, but none of them are treeable. The situation seems different for ordinary
diamonds, as Theorem 5.8 tells us that treeable joint diamond sequences exist as
soon as a single diamond sequence exists. While Theorem 5.9 shows that it is at
least consistent that there are nontreeable such sequences, we should ask whether
this is simply always the case.

Question 5.10. Is it consistent for a fixed κ, for example κ = �1, that every♦♦ κ,2κ -sequence is treeable? Is it consistent that all♦♦ κ,2κ -sequences are treeable for
all κ?
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[3] O. Ben-Neria and M. Gitik, A model with a unique normal measure on κ and 2κ = κ++ from
optimal assumptions, preprint.
[4] E. Carmody, Force to change large cardinal strength, Ph.D. thesis, The Graduate Center, City

University of New York, 2015, ProQuest/UMI Publication No. 3704311.
[5] P. Corazza, Laver sequences for extendible and super-almost-huge cardinals, this Journal, vol. 64

(1999), no. 3, pp. 963–983.
[6] J. Cummings, Iterated forcing and elementary embeddings, Handbook of Set Theory (M. Foreman

and A. Kanamori, editors), Springer, Dordrecht, 2010, pp. 775–883.
[7] A. Dow, Good and OK ultrafilters. Transactions of the American Mathematical Society, vol. 290

(1985), no. 1, pp. 145–160.
[8] S.-D. Friedman and M.Magidor,The number of normal measures, this Journal, vol. 74 (2009),

no. 3, pp. 1069–1080.
[9] M. Gitik and S. Shelah, On certain indestructibility of strong cardinals and a question of Hajnal.

Archive for Mathematical Logic, vol. 28 (1989), no. 1, pp. 35–42.
[10] J. D. Hamkins, The lottery preparation. Annals of Pure and Applied Logic, vol. 101 (2000), no.

2–3, pp. 103–146.
[11] , Extensions with the approximation and cover properties have no new large cardinals.

Fundamenta Mathematicae, vol. 180 (2003), no. 3, pp. 257–277.
[12] ,Aclass of strongdiamondprinciples, preprint, 2002, arXiv:math/0211419 [math.LO].
[13] T. Jech, Stationary sets, Handbook of Set Theory (M. Foreman and A. Kanamori, editors),

Springer, Dordrecht, 2010, pp. 93–128.
[14] A. Kanamori, Perfect-set forcing for uncountable cardinals, Annals of Mathematical Logic, vol.

19 (1980), no. 1–2, pp. 97–114.
[15] ,TheHigher Infinite, second ed., SpringerMonographs inMathematics, Springer-Verlag,

Berlin, 2008.
[16] R. Laver,Making the supercompactness of κ indestructible under κ-directed closed forcing. Israel

Journal of Mathematics, vol. 29 (1978), no. 4, pp. 385–388.
[17] M.Magidor,How large is the first strongly compact cardinal? or A study on identity crises.Annals

of Mathematical Logic, vol. 10 (1976), no. 1, pp. 33–57.
[18] ,On the existence of nonregular ultrafilters and the cardinality of ultrapowers. Transactions

of the American Mathematical Society, vol. 249 (1979), no. 1, pp. 97–111.
[19] T. K. Menas, On strong compactness and supercompactness. Annals of Mathematical Logic, vol.

7 (1974/75), pp. 327–359.
[20] S. Shelah,Diamonds. Proceedings of the American Mathematical Society, vol. 138 (2010), no. 6,

pp. 2151–2161.
[21] C. Weiß, Subtle and ineffable tree properties, Ph.D. thesis, Ludwig-Maximilians-Universität

München, 2010.
[22] M. Zeman, Inner Models and Large Cardinals, De Gruyter Series in Logic and its Applications,

vol. 5, Walter de Gruyter, Berlin, 2002.

FACULTYOF INFORMATION TECHNOLOGY
CZECH TECHNICAL UNIVERSITY IN PRAGUE
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