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Abstract

“Neural coding” is a popular metaphor in neuroscience, where objective properties of the
world are communicated to the brain in the form of spikes. Here I argue that this metaphor
is often inappropriate and misleading. First, when neurons are said to encode experimental
parameters, the neural code depends on experimental details that are not carried by the cod-
ing variable (e.g., the spike count). Thus, the representational power of neural codes is much
more limited than generally implied. Second, neural codes carry information only by reference
to things with known meaning. In contrast, perceptual systems must build information from
relations between sensory signals and actions, forming an internal model. Neural codes are
inadequate for this purpose because they are unstructured and therefore unable to represent
relations. Third, coding variables are observables tied to the temporality of experiments,
whereas spikes are timed actions that mediate coupling in a distributed dynamical system.
The coding metaphor tries to fit the dynamic, circular, and distributed causal structure of
the brain into a linear chain of transformations between observables, but the two causal struc-
tures are incongruent. I conclude that the neural coding metaphor cannot provide a valid basis
for theories of brain function, because it is incompatible with both the causal structure of the
brain and the representational requirements of cognition.

1. Introduction

A pervasive paradigm in neuroscience is the concept of neural coding (deCharms and Zador
2000): the query “neural coding” on Google Scholar retrieved about 15,000 papers in the last
10 years. Neural coding is a communication metaphor. An example is the Morse code
(Fig. 1A), which was used to transmit texts over telegraph lines: each letter is mapped to a
binary sequence (dots and dashes). In analogy, visual signals are encoded into the spike trains
of retinal ganglion cells (Fig. 1B). Both the Morse code and the retinal code relate to a com-
munication problem: to communicate text messages over telegraph lines, or to communicate
visual signals from the eye to the brain. This problem has been formalized by communication
theory (Shannon 1948), also called information theory, a popular tool in neuroscience (Rieke
et al. 1997).

The neural coding metaphor has shaped neuroscience thinking for more than five decades.
Barlow (1961) used the metaphor extensively in his work on sensory neurons, although he
warned to “not regard these ideas as moulds into which all experimental facts must be forced.”
In a seminal review entitled Neural Coding, Perkel and Bullock (1968) depicted “the nervous
system [as] a communication machine” and already recognized the “widespread use of “code”
in neuroscience.” An illustration of hieroglyphs figures prominently at the top of the technical
appendix. Around the same time, entire books were devoted to “sensory coding” (Somjen
1972; Uttal 1973).

As the linguists Lakoff and Johnson (1980a) have argued, the metaphors that pervade our
language are not neutral; on the contrary, they form the architecture of our conceptual system.
What are the concepts carried by the neural coding metaphor that make it a possibly relevant
metaphor for the activity of the retina? There are three key properties (Fig. 1C), which are all
used in Perkel and Bullock’s (1968) review:

1. The technical sense of a code is a correspondence between two domains, for example, visual
signals and spike trains. We call this relation a code to mean that spike trains specify the
visual signals, as in a cipher: one can theoretically reconstruct the original message (visual
signals) from the encoded message (spike trains) with some accuracy, a process called
decoding. Information theory focuses on statistical aspects of this correspondence
(Shannon 1948). It is in this sense that neurons in the primary visual cortex encode the
orientation of bars in their firing rate, neurons in the auditory brainstem encode the spatial
position of sounds (Ashida and Carr 2011), and neurons in the hippocampus encode the
animal’s location (Moser et al. 2008).
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2. Yet, not all cases of correlations in nature are considered
instances of coding. Climate scientists, for example, rarely
ask how rain encodes atmospheric pressure. Another key ele-
ment of the coding metaphor is that the spike trains are con-
sidered messages for a reader, the brain, about the original
message: this is the representational sense of the metaphor.
Perkel and Bullock call the reader’s activity “interpretation of
the encoded information.” In his book on sensory coding,
Somjen (1972) writes: “Information that has been coded
must at some point be decoded also; one suspects, then, that
somewhere within the nervous system there is another inter-
face … where ‘code’ becomes ‘image.’” Similar statements
abound in modern neuroscience literature: “A stimulus acti-
vates a population of neurons in various areas of the brain.
To guide behavior, the brain must correctly decode this popu-
lation response and extract the sensory information as reliably
as possible” (Jazayeri and Movshon 2006).

3. Finally, we would not say that visual signals encode retinal
spike trains, even though this would comply with the technical
sense. The reason is that the communication metaphor implic-
itly assumes a causal relation between the original message and
the encoded message; here, spike trains result from visual

signals by a causal process (transduction). Similarly, to be a
representation for a reader, the neural code must at least
have a causal effect on the reader. This causal structure is
implicit in Perkel and Bullock’s (1968) definition of neural
coding: “the transformations of information in the nervous
system, from receptors through internuncials to motor neurons
to effectors.”

These three elements (correspondence, representation, causality)
constitute the conceptual scaffold of the neural coding metaphor.
It could be argued that most technical work on neural coding uses
only the first technical sense (correspondence), where the word
code is used as a synonym for correlate. The use of the metaphor
would thus amount to only an inappropriate but innocuous
choice of words. But what is the scope of neural codes if they
have no causal powers? In his famous critique of Skinner’s behav-
iorism, Chomsky et al. (1959) summarizes the problem with the
improper use of metaphors: “[Skinner] utilizes the experimental
results as evidence for the scientific character of his system of
behavior, and analogic guesses (formulated in terms of a meta-
phoric extension of the technical vocabulary of the laboratory)
as evidence for its scope.” The goal of this article is to demonstrate
that this quote fully applies to the neural coding metaphor, where
“scope” is a particular theory of brain function implied by the
conceptual structure of the metaphor.

The general argument is as follows. Scientific claims based on
neural coding rely on the representational sense or at least on the
causal sense of the metaphor. But none of these two senses is
implied by the technical sense (correspondence). When we exam-
ine the representational power of neural codes (part 1), we realize
that coding variables are shown to correlate with stimulus proper-
ties but the code depends on the experimental context (stimulus
properties, protocol, etc.). Therefore, neural codes do not provide
context-free symbols. But context cannot be provided by extend-
ing the code to represent a larger set of properties, because con-
text is what defines properties (e.g., the orientation of a bar).
Thus, neural codes have little representational power. The funda-
mental reason (part 2) is that the coding metaphor conveys an
inappropriate concept of information and representation
(Bickhard 2009; Bickhard and Terveen 1996). Neural codes
carry information by reference to things with known meaning.
In contrast, perceptual systems have no other option than to
build information from relations between sensory signals and
actions, forming a structured internal model. Finally (part 3),
the neural coding metaphor tries to fit the causal structure of
the brain (dynamic, circular, distributed) into the causal structure
of neural codes (atemporal, linear), substituting the arbitrary tem-
porality of algorithms for the temporality of the underlying phys-
ical system. The two causal structures are incongruent. Without
denying the usefulness of information theory as a technical tool,
I conclude that the neural coding metaphor cannot constitute a
valid basis for theories of brain function because it is discon-
nected from the causal structure of the brain and incompatible
with the representational requirements of cognition.

2. Encoding stimulus properties

2.1. Encoding an experimental parameter

The activity of neurons is often said to encode properties, for
example, “Many cortical neurons encode variables in the external
world via bell-shaped tuning curves” (Seriès et al. 2004). Here the
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Figure 1. The coding metaphor. (A) An emitter transmits a message to a receiver in
an altered form called “code” (here the Morse code). The receiver knows the corre-
spondence and can reconstruct (“decode”) the original message. (B) In analogy,
visual signals are encoded in the spike trains of the optic nerve. The rest of the visual
system treats these spike trains as visual information. (C) Implicit structure of the
neural coding metaphor (“Y encodes X”). There is correspondence between X and
Y. Encoding refers to a causal mechanism from X to Y, and decoding is a theoretical
inverse mapping; Y causes changes in the reader (often improperly called “decod-
ing”) and represents X in some sense.
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authors refer to a particular type of experiment, where a param-
eterized stimulus is presented to an animal and the activity of a
neuron is recorded. For example, the orientation of a small bar
is varied and the activity of a neuron in the primary visual cortex
is recorded (Fig. 1B). It is found that orientation and neural activ-
ity co-vary and, hence, the neuron’s firing rate encodes the orien-
tation of the bar in the sense of correspondence. What is the scope
of such a proposition?

I will discuss a cartoon example from color perception, used by
Francis Crick to warn against the “fallacy of the overwise neuron”
(Crick 1979). Cones are broadly tuned to wavelength (Schnapf
et al. 1987); in an experiment where light of different wavelengths
is flashed, the amplitude of the transduced current varies system-
atically with wavelength (Fig. 2A). Thus, the current encodes
wavelength in the technical sense of correspondence; one can
recover wavelength from the magnitude of the current. Yet ani-
mals or humans with a single functional type of cone are color
blind. Why are they color blind if their cones encode color infor-
mation? This is clear in Figure 2A; if the current also depends on
light intensity, then it does not provide unambiguous information
about wavelength. In other words, the cone does not in fact
encode wavelength in any general setting, even in the narrow
sense of correspondence. The same remark applies to any tuning
curve experiment.

Formally, the logical problem can be analyzed as follows. The
tuning curve experiment shows a correspondence between stimu-
lus parameter and current. This correspondence is composed of
two parts (Fig. 2B): a mapping from wavelength to stimulus,
which is experiment specific, and the transduction of stimulus
into current. Thus, the experimental design ensures that there
exists a mapping from wavelength to current. In other words,
the proposition that the neuron encodes the experimental param-
eter is mainly a property of the experimental design rather than a
property of the neuron (which only needs to be sensitive to the
parameter). However, the situation is completely different in the
real world, which is not constrained by the experimental design
(Fig. 2C). In general, there might be a variety of stimuli, one of
their properties being wavelength. In this case, there is a mapping
from stimulus to wavelength and a mapping from stimulus to cur-
rent, and it is not obvious at all that there is a mapping from
wavelength to current, because current depends also on other

properties. In this context, the proposition that the neuron
encodes wavelength is a much stronger claim, but it is not at all
entailed by the tuning curve experiment.1 This confusion under-
lies influential neural coding theories of perception, for example,
Bayesian theories (Jazayeri and Movshon 2006; Pouget et al.
2003), in which a neuron’s firing rate is assumed to be a function
of the stimulus parameter, rather than a context-dependent corre-
late (see sect. 2.3.2).

Thus, the correct interpretation of the tuning curve experiment
is that the neuron is sensitive to the stimulus parameter, while to
encode a property of stimuli (a “variable in the external world”) is
a somewhat orthogonal proposition; it means that the observable
is not sensitive to other properties. For example, a color scientist
would point out that wavelength is indeed not encoded by single
cones, but by the relative activity of cones with different tunings
(Fig. 2D), because that quantity does not depend on light inten-
sity. Thus, referring to tuning curve experiments in terms of cod-
ing promotes a semantic drift, from the modest claim that a
neuron is sensitive to some experimental manipulation to a
much stronger claim about the intrinsic representational content
of the neuron’s activity. We will now see that this semantic drift
indeed operates in current theories of brain function.

2.2. The overwise neuron and its ideal observer

To understand how the neural coding metaphor unfolds, I will
discuss one particular example in detail (but another one could
have been chosen). In mammals, the major cue for sound locali-
zation in the horizontal plane is the difference in arrival times of
the sound wave at the two ears (interaural time difference [ITD])
(Fig. 3A). Neurons in the medial superior olive (MSO) (in the

Figure 2. Encoding wavelength of light. (A) Response of a cone to flashed light as a
function of wavelength (cartoon), at different intensities (grays). If intensity is fixed,
wavelength can be inferred from transduced current. Otherwise, current is not infor-
mative about wavelength. (B) In a tuning curve experiment, the coding relation is
implied by the experimental design: wavelength is mapped to stimulus, which is
transduced into current. (C) If wavelength is only one property of a larger set of stim-
uli, there might be no coding relation. (D) The relative response of cones with differ-
ent tunings may provide intensity-invariant information about wavelength.

Figure 3. Encoding sound location. (A) A major cue for sound localization is the inter-
aural time difference (ITD), dR – dL. (B) Number of spikes in response to two binaural
tones (950 and 800 Hz) as a function of ITD for the same neuron in the medial supe-
rior olive of a cat (digitized from Yin and Chan [1990], Fig. 10). It is possible to infer
the ITD from spike count if the experimental configuration (presented tone) is known,
not if the sound is a priori unknown. (C) If the organism lived in a world with a single
sound played at different ITDs, then the best way to encode ITD would be with a neu-
ron tuned to an ITD outside the range of natural sounds (shaded), so that the selec-
tivity curve is steep inside that range. However, the response of a single neuron is
fundamentally ambiguous when sounds are diverse, irrespective of the steepness
of the curve (selectivity curve for another sound shown in gray).
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auditory brainstem) are sensitive to this cue (Joris et al. 1998);
when a sound is played through earphones and the ITD is varied,
the firing rate of those neurons changes (Fig. 3B). These neurons
project to neurons in the inferior colliculus (IC), which also have
diverse ITD tuning properties. Electrical stimulation in the cat’s
IC triggers an orienting response toward a particular contralateral
direction, with stronger stimulations resulting in responses with a
larger part of the body (one pinna, both pinnae, and eyes), by a
pathway involving the superior colliculus (Syka and Straschill
1970). Unilateral lesions in the MSO or IC result in sound local-
ization deficits in the contralateral field (Jenkins and Masterton
1982). Therefore, neurons in the IC have a critical role in localiz-
ing sounds in the contralateral field.

How does the activity of these neurons contribute to sound
localization behavior? One way is consider the entire pathway,
try to build a model of how neuron responses in various struc-
tures combine to produce an orientation reflex to a localized
sound, and compare with the diverse experimental observations
mentioned above. Another way is to ask how neurons encode
sound location (McAlpine et al. 2001). It has, for example, been
claimed that “there is sufficient information in the firing rates
of individual neurons to produce ITD just-noticeable-differences
that are comparable with those of humans psychophysically”
(Shackleton et al. 2003, p. 723; Skottun 1998). What does this
mean, and how significant is this fact?

The neuron of Figure 3B encodes ITD in the technical sense
that one can estimate the ITD with some accuracy from the obser-
vation of the number of spikes, by inverting the tuning curve (i.e.,
decoding the neuron’s response). It turns out that this accuracy is
similar to the accuracy of sound localization by the animal. But
the neuron’s response is also sensitive to various aspects of
sound (e.g., frequency, intensity), so our decoder would give
totally inaccurate results in any other context. Therefore, the per-
formance of this decoder is unrelated to our general ability to
localize sounds. Yet, although the problem of ambiguities was
acknowledged, it was concluded that “it might not be necessary
to pool the outputs from many neurons to account for the high
accuracy with which human observers can localize sounds”
(Skottun 1998). This conclusion is unwarranted because tuning
curves address the exactly orthogonal problem (sensitivity to
ITD vs. insensitivity to other dimensions).

This incorrect conclusion is about localization, but what about
discrimination? The first quote compared the tuning curve to dis-
crimination performance, that is, psychophysical measurements
of the ability to discriminate between two sounds that differ
only by their ITD. This is a more restricted situation, but how
can the responses of a single neuron be compared with the behav-
ior of an organism without making any reference to the mecha-
nisms that might link this neuron’s activity to behavior (e.g.,
the pathway mentioned earlier)? More generally, how can a neural
code be about behavior, when it is technically only about
stimulus-response properties? This requires what Teller (1984)
called a “linking proposition,” an implicit postulate that directly
relates neural activity to behavior. The linking proposition here,
as in many neural coding studies, is that the brain implements
an “ideal observer” (Macmillan and Creelman 2005). This is the
representational sense of the metaphor, namely, the idea that neu-
ral responses are messages for a reader. The empirical question,
then, is how plausible is this linking proposition?

Let us spell it out. The ideal observer reads the activity of the
neuron. When the first stimulus is presented, it stores the number
of spikes produced by the neuron in a window of a given duration

(chosen by the experimenter) after the stimulus. It ignores all
spikes produced before and after that window until the second
stimulus is presented, upon which it stores again the number of
spikes produced by the neuron. Then it retrieves the two stored
numbers, compares them (and not others, e.g., the activity of
other neurons), and decides to push one of two buttons. It is
not so obvious how this ideal observer can be mapped to the path-
way described above, for example, how the number of spikes of an
arbitrary neuron in the brainstem, produced during several prede-
fined time windows, can be stored in working memory for later
comparison.

The ideal observer is ideal in the sense that it makes the best
use of all available information. This includes the neural activity
itself, but most importantly all the information that is available
to the experimenter: when exactly the activity corresponds to
the stimulus, what stimulus has been presented, the knowledge
that the exact same sounds are played twice, which parts of the
activity should be stored. On the other hand, the observer is
not ideal in the sense that it uses nothing more than the informa-
tion available to the experimenter. For example, if it also used the
information available in other neurons (not recorded), then dis-
crimination performance would be much better than psychophys-
ical measurements. In other words, the ideal observer is not the
best thing that the brain can do; it is the best thing that the exper-
imenter can do.

Thus, by implying that the brain reads the neural code, we
manage to make claims about perception and behavior while
totally ignoring the mechanisms by which behavior is produced,
as well as the constraints that the organism must face in ecological
situations (e.g., not knowing the sound presentation protocol in
advance). These claims rely on implicit linking propositions
based on abstract constructs, where neural activity is likened to
a processor register that the brain manages to store, retrieve,
and manipulate, wherever it is in the brain and whenever it
occurs. It would seem that empirical evidence or argumentation
should be required to support such questionable hypotheses,
since all conclusions are based on them. Why is it that no such
justification is ever provided when “ideal observers” are intro-
duced? The reason, it seems, is the semantic drift from the tech-
nical sense of code to the representational sense of code, which is
logically flawed. The same flaw appears to underlie leading theo-
ries of neural population coding.

2.3. Populations of overwise neurons

2.3.1. Slope coding
What is the optimal way to encode ITD in the activity of neural
populations? If all confounding dimensions (level, frequency,
etc.) are neglected, then the best way to encode ITD is to have
a steep monotonous relation between ITD and firing rate, that
is, to maximize neural sensitivity to the ITD (Fig. 3C). Thus,
the neuron’s preferred ITD should lie outside the range of natural
sounds (around ±800 μs for humans [Benichoux et al. 2016])
while the steepest slope of the selectivity curve should be inside.
This is the concept of “slope coding.” Thus, it has been argued
that the optimal way to encode ITD is with two homogeneous
populations of neurons with symmetrical tuning curves, peaking
at ITDs that are not normally experienced (Harper and
McAlpine 2004). Unfortunately, this conclusion is based entirely
on the fallacy of the overwise neuron. If confounding dimensions
are not neglected, then the opposite conclusion follows: As in the
case of cones, heterogeneity of ITD tunings is crucial to resolve
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the ambiguities resulting from nonspatial dimensions of sounds
(Brette 2010; Goodman et al. 2013).

On the basis of the slope coding idea, a leading theory of
sound localization (Grothe et al. 2010) proposes that sound loca-
tion is encoded in the relative average activity of the two popula-
tions of neurons. It was initially meant to explain why many
neurons are tuned to large ITDs that are not normally experi-
enced2 (McAlpine et al. 2001). Although using the relative activity
of two populations somewhat reduces the ambiguity resulting
from sound level, the fact that sounds have more than two dimen-
sions again means that this model is unlikely to work in practice
unless the auditory world consists of pure tones (Goodman et al.
2013). In any case, what needs to be demonstrated to support this
theory is not that tuning curves have a steep slope, but that the
relative average activity of the two neural populations is insensi-
tive to properties other than the ITD (e.g., the sound at the
source). Thus, the application of the coding metaphor to tuning
curve experiments leads to confusion between parameter sensitiv-
ity and information about the corresponding property in a
broader context. It could be argued that information in a broad
context at least requires sensitivity, but this is also technically
incorrect3 (see, e.g., Zylberberg 2018).

2.3.2. Encoding visual stimuli
In visual neuroscience, theories of neural coding are based on het-
erogeneous tunings. There are several theories of population cod-
ing of stimulus properties in the visual cortex (Jazayeri and
Movshon 2006; Pouget et al. 2003). One influential theory, the
“Bayesian brain” hypothesis (Knill and Pouget 2004), postulates
that neural activity represents the probability distribution of the
stimulus property, which the brain can manipulate to perform
statistical inference. A key assumption in this and other coding
theories is that the firing rate of neurons is a context-free function
of stimulus properties. This assumption appears explicitly in the
models and in the way the brain is proposed to compute with
those representations. For example, one variation of this theory
proposes that the brain computes the log likelihood of a stimulus
property by summing the activity of neurons weighted by the log-
arithm of each neuron’s tuning curve (Jazayeri and Movshon
2006). This operation is described as a “simple neural readout
strategy,” because it involves only summation and multiplication
by fixed weights. As already discussed, the problem is that in real-
ity, tuning curves are defined for a specific experimental condi-
tion; they are not context free. Therefore, either the
computation of the log likelihood will be systematically incorrect
for all other conditions, or the weights used in the readout must
be adapted to correspond to the tuning curve of each condition by
an undescribed mechanism, in which case the readout cannot
possibly be described as a “simple neural readout.”

To what extent do tuning curves depend on context? As it
turns out, to a large extent. It has long been known that properties
of sensory neurons adapt to input statistics (Barlow et al. 1957;
Hosoya et al. 2005). In the primary visual cortex, responses to
local orientation depend on the surrounding context (Bolz and
Gilbert 1986; Hubel and Wiesel 1968). Tuning properties of visual
cortical neurons (not just the gain) depend on cognitive context,
including the task the animal is doing (Gilbert and Li 2013), loco-
motion (Pakan et al. 2018), and prior presentation of sounds
(Chanauria et al. 2018). Current evidence indicates that the activ-
ity of neurons is sensitive to stimulus properties (the technical
sense of coding) but cannot be considered as context-free symbols
that stand for the corresponding properties (the representational

sense of coding). Can neural coding theories of perception accom-
modate for this fact? It would require that in every context,
changes in encoding (stimulus-response properties) are mirrored
exactly by changes in decoding (computations performed on neu-
ral activity, e.g., the “simple neural readout”). No mechanism has
been proposed to achieve this (see also next section).

Theories of neural coding have the ambition to explain some
aspects of perceptual behavior, namely, results of psychophysical
experiments. Again, this requires that a link is made between the
neural code and behavior. This link involves ideal observers; for
each possible task there is an optimal way to decode neural activity
into the variable of interest, which uses detailed elements of the
experimental design. Critically, this link with behavior is not consid-
ered part of the model because it is assumed that it belongs to the
reader of the neural codes.4 Thus, the behavioral predictions of the
coding theories critically rely on linking propositions whose validity
or plausibility is not addressed. To be clear, the questionable
assumption is not so much whether behavior or perception is opti-
mal in some way (Rahnev and Denison 2018), but whether the
activity of a neuron is something that is read and manipulated as
if it were a register of a processor and not simply something that
the neuron is doing at a particular time (acting on other neurons).

When the brain is engaged in solving a particular visual task,
the activity of neurons depends specifically on object properties
relevant to that task (Gilbert and Li 2013). This seems entirely
logical if we see neurons as collaborating to solve a task. In con-
trast, it is surprising if we see the visual cortex as encoding the
world and the remainder of the brain as dealing with this repre-
sentation to guide actions. Thus, thinking in terms of coding
seems to obscure rather than clarify understanding.

2.4. Can neurons encode variables?

It could be objected that the problem of contextual dependence of
tuning curves calls only for a minor amendment to the main-
stream neural coding theories, which is to consider that contex-
tual variables are encoded too. This would require more
complicated decoding schemes, but not fundamentally different
theories.

For example, it could be proposed that populations of cones
jointly encode wavelength and intensity, and both can be decoded
from the joint activity of cones. But to decode cone activity into
wavelength, it must be known that a monochromatic light is
being presented. In natural experience, light is not monochro-
matic; it has a continuous spectrum, and the transduced current
depends on the convolution of the spectrum of incident light
with the absorption spectrum of the photoreceptor. In those
cases, cones cannot possibly encode wavelength, even jointly,
because there is no such thing as the wavelength of a patch of
visual scene. Thus, the activity of cones is not sufficient to infer
wavelength. A critical element of context that also needs to be
encoded is the fact that a monochromatic light is being presented.

Similarly, a cat’s neuron may encode the orientation of a bar
only in conjunction with the information that a bar is being pre-
sented. That information does not take the form of a variable, but
perhaps of a model of the experiment. But models are not vari-
ables; rather, they define variables. Thus, a perceptual scene can-
not be represented by a set of variables, because this leaves out
what defines variables. This missing aspect corresponds to object
formation and scene analysis, two fundamental aspects of percep-
tion that are not addressed by coding: There is no object property
to be encoded if there is no object.
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Consider the Bayesian brain hypothesis: “the brain represents
information probabilistically, by coding and computing with
probability density functions” (Knill and Pouget 2004). This pre-
supposes that there is a set of predefined variables to which prob-
ability is attributed – examples of variables are the position of an
object and the orientation of a visual grating. If neurons encode
variables, then what encodes the definitions of those variables,
and what do neurons encode in situations where those variables
are not defined? We can imagine that such theories might
apply to the representation of eye position, for example, because
the eye is always there and its position is always defined. This is
not the case of objects of perception in general.

Similarly, influential models of working memory propose that
memory items are stored and encoded in the persistent activity of
neurons tuned to the underlying stimulus property, for example,
the spatial position of an object (Constantinidis and Klingberg
2016). This provides a way to store graded properties, such as
the position of a visual target or the pitch of a musical note.
But suppose there is a neural network in my brain that is storing
the number 100. What have I memorized? Clearly not the same
piece of information if this number is the area of my apartment
in square meters or the height of my son in centimeters. To
store the information, one needs not only the number but also
what it refers to. Can the persistent activity of tuned neurons
store that information? It can if there is a network of neurons
tuned to the area of my apartment and another tuned to the
height of my son.

Perception and memory cannot just be about encoding stimu-
lus properties because this omits the definitions of those proper-
ties and of the objects to which they are attached. But could it be
that neurons encode more abstract “internal variables” that some-
how describe the external world? Such is the claim of predictive
coding (Rao and Ballard 1999) and related propositions such as
the free energy principle (Clark 2013; Friston 2009). In these the-
ories, neural coding is described as a statistical inference process,
where neurons encode the inferred value of internal variables of a
generative model of the inputs, for example, the retinal image.
Technically, this essentially means that the code is a parametric
description of the image (e.g., a Fourier transform). Described
at this technical level, the theory seems to have little to say
about perception or behavior. But the intended scope extends
as these internal variables are described as the “causes” of the sen-
sory input, and the process of encoding is referred to as “inferring
the hidden causes.” The sensory input is caused by things in the
world, so an internal variable can be considered a cause only if it
is assumed to encode properties of objects in the world as in the
Bayesian brain hypothesis. Again, this is incoherent because no
perceptual scene can be fully specified by the properties of its
objects; one needs first to define objects and their properties,
and these definitions are not conveyed by the variables. “Cause”
must then be understood in the strict technical sense of variable
of a statistical function, which has little to do with the usual
sense of “cause.” Thus, this use of the term cause appears to be
another case of a metaphoric extension of the technical vocabu-
lary. As Chomsky (1959, p. 30) observed, “This creates the illusion
of a rigorous scientific theory with a very broad scope, although in
fact the terms … [have] at most a vague similarity of meaning.”
We will return to predictive coding theory in the next section.

Neurons encode stimulus properties according to the technical
sense of the metaphor. To acquire a broad scope, the metaphor
drifts into the representational sense, according to which neurons
convey information about the said properties to the rest of the

brain. But neural activity can only be interpreted as properties
once the interpretative framework is provided. Critically, this
framework is not contained in the coding variables. In what
sense do neural codes constitute information for the brain if
their meaning lies outside the encoded messages and varies
depending on situations? Where do ideal observers obtain the
information necessary to decode the messages? In the next sec-
tion, I argue that the coding metaphor conveys a very particular
notion of information, which is information by reference, and
that this is not the kind of information relevant to perception
and behavior.

3. Do neural codes constitute information about the world?

3.1. Codes as information by reference

The coding metaphor assumes that neural codes represent informa-
tion about theworld, which the brain uses to produce adapted behav-
ior. This sense is implied by the use of ideal observers in the neural
coding literature and, more generally, by the presumption that the
brain “decodes” neural responses or “extracts information” from
them. In what sense is the neural code “information” about objective
properties of theworld? According to the technical sense of coding, it
is information in the sense that these properties can be inferred from
neural activity.Methodologically, this inference ismade by the exper-
imenter, who confronts these properties with measurements of neu-
ral activity. But by using the term neural code and by comparing the
output of ideal observers with psychophysical measurements, we
imply that the brain must also make this inference.

This raises the issue of “the view from inside the box” (Clark
2013): How is it possible for the nervous system to infer external
properties from neural activity if all that it ever gets to observe is
that activity? In fact, what does it even mean that a neural net-
work infers external properties (e.g., the direction of a sound
source), given that those properties do not belong to the domain
of neural activity? This is related to the symbol grounding problem
(Harnad 1990b): How do spikes, the symbols of the neural code,
make sense for the organism?

A fundamental issue with the coding metaphor, as it applies to
the brain, is that it conveys a very particular notion of informa-
tion, information by reference; the meaning of the encoded mes-
sage is that of the original message to which it refers. Shannon
(1948, p. 379) made this very clear when he defined his mathe-
matical notion of information:

The fundamental problem of communication is that of reproducing at one
point either exactly or approximately a message selected at another point.
Frequently the messages have meaning; that is, they refer to or are corre-
lated according to some system with certain physical or conceptual enti-
ties. These semantic aspects of communication are irrelevant to the
engineering problem.

But the semantic aspects are precisely what is relevant to the bio-
logical problem: How does the brain know what the codes refer to?

One possibility is that the meaning of neural codes is implicit in
the structure of the brain that reads them; the brain understands
neural codes because it has evolved to do so. There are at least
two objections that make this proposition implausible. First, there
is considerable plasticity, including developmental plasticity, both
in the nervous system and in the body, which makes the idea of
a fixed code implausible. An impressive example is the case of a
patient born with a single brain hemisphere, who has normal vision
in both hemifields, with a complete reorganization of brain
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structure (Muckli et al. 2009). This plasticity implies that the
“reader” of neural codes must learn their meaning, at least to
some extent. Second, it might be imagined that the meaning of a
neural code for eye position might be fixed by evolution – that
there are fixed motor circuits that control the eye based on that
fixed neural code. But how could this be true of a neural code
for the memory item “my apartment is 100 meters square”?

To see that Shannon information cannot be the notion of
information relevant to understanding perception, consider the
following experiment of thought, which I call the paradox of effi-
cient coding. Suppose that all information about the world
(including efferent copies) is encoded by a set of neurons. From
the heuristic that biological organisms tend to be efficient, we
now postulate that neurons transform their inputs in such a
way as to transmit the maximum amount of information about
the world, in the sense of Shannon; this is the efficient coding
hypothesis (Barlow 1961; Olshausen and Field 2004). This
means that all redundancy is removed from the original signals.
If it is done perfectly, then encoded messages are indistinguish-
able from random by the organism. Therefore, the perfectly effi-
cient code cannot be understood by its reader.

It is indeed paradoxical that when we maximize the amount of
information carried by code, we find something that provides no
information at all to the reader. This is because the notion of
information implied by the phrase “neurons encode information”
is information by reference to the inputs, a kind of information
that is accessible only to an external observer. This is not the
right way to address the representational problems faced by the
organism. As Bickhard has argued (Bickhard 2009; Bickhard
and Terveen 1996), “encodingism” fails to provide an adequate
notion of representation because it does not allow the possibility
of system detectable error; there is no way for the system to know
whether the representation is in error.

Again, the coding metaphor appears to promote a semantic
drift, from the technical sense of information as defined by
Shannon to a broader sense of information that might be useful
for an organism. The neural coding metaphor is so prevalent in
the neuroscience literature that the notion of information it car-
ries seems to be the only possible one: “the abstract definition
of information is well motivated, unique, and most certainly rel-
evant to the brain” (Simoncelli 2003, p. 145). Next, I discuss alter-
native notions of information that are more relevant to the brain.

3.2. Information as subjective laws or internal models

How can there be any information about the world without direct
access to the world? John Eccles, a prominent neurophysiologist,
expressed the problem in the following terms (Eccles 1965, p.
322):

In response to sensory stimulation, I experience a private perceptual world
which must be regarded, neurophysiologically, as an interpretation of spe-
cific events in my brain. Hence I am confronted by the problem: how can
these diverse cerebral patterns of activity give me valid pictures of the
external world?

To him, the logical solution was a form of dualism, much like
Cartesian dualism, except he did not believe that the interaction
between mind and brain occurred at a single place (Descartes’
pineal gland). Dualism is a natural solution if neural activity is
thought to encode information by reference to the external
world, because the external world belongs to a different domain.

A number of philosophers and psychologists have proposed
alternative solutions. O’Regan and Noë (2001) proposed the anal-
ogy of the “villainous monster.” Imagine you are exploring the sea
with an underwater vessel. A villainous monster mixes all the
cables; hence, all the sensors and actuators are now related to
the external world in a new way. How can you know anything
about the world? The only way is to analyze the structure of sen-
sor data and their relationships to actions that you can perform. If
dualism is rejected, then this is the kind of information that is
available to the nervous system. A salient feature of this notion
of information is that, in contrast to Shannon’s information, it
is defined as relations or logical propositions: If I do action A,
then sensory property B occurs; if sensory property A occurs,
then another property B occurs next; if I do action A in sensory
context B, then C occurs.

Gibson (1979) previously developed a related psychological
theory. While criticizing the information-processing view of per-
ception, he argued that there is information about the world pre-
sent in the invariant structure of sensory signals: “A great many
properties of the [optical] array are lawfully or regularly variant
with change of observation point, and this means that in each
case a property defined by the law is invariant.” Clearly, he did
not mean information in the sense of communication theory,
but rather in the sense of scientific knowledge. A set of observa-
tions and experiments provide information about the world in the
form of laws that relate observables (sensory signals) between
them and with possible actions. This form of information is
intrinsic; I proposed calling this set of laws the subjective physics
of the world (Brette 2016), which is related to von Uexküll’s
(1909) Umwelt. A related view, formalized by theoretical biologist
Robert Rosen (1985), is that biological organisms build an inter-
nal model of the world in which the variables are sensory signals.
This view addresses the symbol grounding problem by mapping
sensory signals to elements of an internal model. The signals
make sense in reference to that model; they are not mapped to
externally defined properties. In Bickhard’s (2009; 2015c) interac-
tivist model, representations are based on anticipatory relations
between internal processes.

Crucially, relations between observables are precisely what
neural coding theory considers as redundancy, which ideally
should be eliminated. In contrast, in the alternative view discussed
here, relations constitute information. This point was made by
Thompson (1968, p. 305). “It is our subjective habit to organize
the individual elements of our experience, to cross-correlate
these elements to others distant in space and time, and it is
only after this process of imposing organization that we feel
informed.” The number 100 does not really constitute informa-
tion; only when I have inserted it into my internal model of the
world by saying that it is the area of my apartment in square
meters does it become information.

3.3. Subjective physics of the Martian iguana

To make this point more concrete, I will discuss an example
adapted from Brette (2016). Consider a fictional organism with
two ears – let us call it a Martian iguana in reference to
Dennett (1978) (Fig. 4A). The iguana is fixed on the ground,
and there is another organism – let us call it a frog – which pro-
duces sounds. The frog is usually still and produces some random
sounds repeatedly, but occasionally it jumps to a new position.
The question is: To what kind of information can the iguana
have access based on the acoustical signals at the two ears?

Brette: Is coding a relevant metaphor for the brain? 7

https://doi.org/10.1017/S0140525X19000049 Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X19000049


When a source produces a sound, two sound waves SL and SR
arrive at the two ears, and these two sound waves have a particular
property: they are delayed versions of each other (SL(t) = SR(t – Δ))
(Fig. 4B). In Gibsonian terminology, there is “invariant structure”
in the sensory flow, which is to say that the signals obey a particular
law. Thus, the sensory world of the iguana is made of random pairs
of signals that follow particular laws that the iguana can identify.
This identification is what Gibson called the “pick-up of informa-
tion.” Evidently, “information” is not meant in the sense of
Shannon but in the sense of laws or models of the sensory input.
Note that the model in question is not a generative model as in pre-
dictive coding, but relations between observables, as in the models
of physics.

A first interesting aspect of this alternative notion of informa-
tion is that the topology of the world projects to the topology of
sensory laws. By this, I mean that two different sounds produced
by the frog at the same position will produce pairs of signals (SL,
SR) that share the same property (the sensory law). This can be
assessed without knowing what this property corresponds to in
the world (i.e., the frog’s position).

Thus, the iguana can observe sensory laws that have some par-
ticular properties, but do these laws convey any information about
where the frog is? For an external observer, they certainly do,
because the delay Δ is lawfully related to the frog’s position. For
the iguana, however, they do not because that lawful relation can-
not be inferred from simply observing the acoustical signals.
Therefore, this organism cannot have any sense of space, even
though neural coding theories would pretend that it does, based
on the correspondence between frog position and activity of the
iguana’s auditory neurons.

Let us now consider in addition that the iguana can turn its
head (Fig. 4C). It can then observe a lawful relation between a
proprioceptive signal (related to the head’s position) and the
observed delay Δ, which holds for some time (until the frog
jumps to another position). Now when the iguana observes

sounds with a particular delay, it can infer that if it were to
move its head, then the delay would change in a particular pre-
dictable way. For the iguana, the relation between acoustical
delay and proprioception defines the spatial position of the frog.
We note that the perceptual inference involved here does not
refer to a property in the external world (frog position), but to
manipulations of an internal sensorimotor model.

Thus, the kind of information available to an organism is not
Shannon information (correspondence to external properties of
the world), but internal sensorimotor models. The interest of
such models for the animal is that they can be manipulated to
predict the effect of hypothetical actions.

3.4. Predictive coding and generative models

Predictive coding theory and its derivatives (Clark 2013; Friston
2010; Rao and Ballard 1999) propose that the brain encodes an
internal model, which predicts the sensory inputs.5 This seems
to resemble the proposition put forward in the previous section.
More precisely, neurons are thought to encode the variables of
a hierarchical model of the inputs, in which higher-order neurons
encode their prediction of the activity of neurons lower in the
hierarchy, down to the sensory inputs. This prediction is sub-
tracted from the input of lower-order neurons, so only the predic-
tion error remains. This leads to a compressed representation of
the inputs, and in this sense, it is a type of efficient coding theory.

This particular kind of model is called a generative model
because its maps internal variables to the observables (sensory
inputs), in contrast to the models of physics, which take the
form of relations between observables (e.g., the ideal gas law,
PV = nRT). Generative models are not the kind of internal models
described in the previous section.

Consider the iguana with a fixed head. A generative model of
the sensory inputs would map two internal variables S (sound)
and Δ (interaural delay) to the two acoustical inputs SL and SR,
as SL(t) = S(t), SR(t) = S(t – Δ). Neural activity encodes not the
model itself but the coding variables Δ and S. In particular, neu-
rons encode the entire sound S, even though it carries no infor-
mation for the iguana (S is, by construction, random). This
appears to contradict the claims of predicting coding theory:
“To successfully represent the world in perception … depends
crucially upon cancelling out sensory prediction error” (Clark
2013, p. 7). Indeed, the success of a predictive code is evaluated
by its ability to represent the input in a pictorial sense (as if it
were a painting), but in this example, the numerical value of
the signals provides no useful information beyond the relations
they obey.

Consider now the case where the iguana can move its head.
The internal model discussed in the previous section is SR(t) =
SL(t – Δx( p)) for all t, where x is the frog’s position (Fig. 4C).
The usefulness of this model stems from the fact that it can be
manipulated; that is, on hearing a sound, the iguana can infer
that, if it were to move its head to a new position p, the relation
obeyed by the auditory signals would change in a predictable way.
For example, the iguana can move its head so that SR = SL (“the
frog is in front”). Thus, the kind of prediction that this model
can produce is about relations between signals and not about
the numerical value of the signals.

On the other hand, a generative model would map the coding
variables S, x, and p to the sensory inputs SL(t) = S(t) and SR(t) =
S(t – Δx( p)). This mapping is referred to as prediction and is
instantiated by the feedback from higher-order neurons to

Figure 4. Subjective physics of a fictional iguana. (A) The (blind) iguana listens to
sounds produced by the frog, which occasionally jumps to a new position. (B)
When there is a sound, the iguana can notice that the acoustical signals at its two
ears follow a particular law: SR(t) = SL(t – Δ) for all t. (C) If the iguana can move its
head, it can also notice that the delay Δ changes in a lawful way with the propriocep-
tive signal p. This relation defines the frog’s position for the iguana. When a sound is
heard, the iguana can infer the frog’s position; that is, it can infer how Δ would
change if it were to move its head.
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lower-order neurons. This is not the same as predicting what
action would make the two signals SL and SR match, which brings
us to a discussion of the term predictive in predictive coding. The
appeal of predictive processing is that making predictions seems
to be a prerequisite to goal-directed behavior and, thus, a funda-
mental aspect of behavior. In fact, several authors have argued
that anticipation is not simply a property of nervous systems,
but even a fundamental property of life (Maturana and Varela
1973; Rosen 1985). For example, the iguana can predict how
some properties of its sensory inputs should change if it were
to turn its head. Consider this other example in human behavior:
When someone is facing a cliff, she tends to slightly lean back-
ward, because this posture makes it easier to move backward if
necessary (Le Mouel and Brette 2017). But this is not at all the
technical sense of “prediction” in predictive coding, as argued
by Anderson and Chemero (2013). A neuron “predicts” the sen-
sory inputs in the sense that its firing correlates with them; more
specifically, a spike produced by a neuron leads to a subtraction of
the expected input of a target neuron, which is the input occur-
ring now, or possibly if we incorporate conduction delays, what
will be happening after a fixed delay. This is not the kind of pre-
diction implied by an anticipatory postural adjustment: If I
change my posture in this way, then it will be easier to move back-
ward in the hypothetical event that my balance is challenged.

In fact, what is useful for the organism is not literally to predict
what will happen next, but rather what might happen next, con-
ditionally on the actions I can do, so that I can select the appro-
priate action. But this requires manipulation of the model. For
example, selection of an action requires instantiating the internal
model with several possible values of action and then calculating
the expected sensory variables. But this contradicts the proposi-
tion that neurons encode the “causes” of current sensory signals;
to manipulate the model, encoding neurons would then have to
be somehow disconnected from the sensory stream.

Technical work on predictive coding has focused exclusively
on the technical senses of prediction and coding (correspon-
dence); therefore, there is no empirical evidence that such codes
might allow the organism to form predictions in a broader
sense, nor is there any indication of how a theory based on neural
coding might in principle explain anticipatory behavior.

3.5. Can neural codes represent structure?

The kind of representation of the world useful for adapted behav-
ior is a structured internal model. Can neural codes possibly rep-
resent that structure? Memories and percepts are thought to be
encoded by cell assemblies. In its basic and most popular form,
a cell assembly is simply a specific subset of all neurons. When
neurons of a cell assembly activate, the corresponding percept is
formed (possibly indirectly by the activation of target neurons).
This is the basic assumption of associative neural models of mem-
ory (Tonegawa et al. 2015): Retrieving a memory consists of trig-
gering activity in part of the memory-specific cell assembly (or
“engram cells”), which then leads to the activation of all neurons
in the assembly.

One problem with cell assemblies, in this simple form, is that
they are unstructured and, thus, cannot represent structured inter-
nal models. The cell assembly model is analogous to the “bag of
words” model in text retrieval, where a text is represented by its
set of words and all syntax is discarded. In essence, a cell assembly
is a “bag of neurons.” This causes a problem in representing not
only the lawful structure of the world, but also the structure of any

given perceptual scene. Consider, for example, the simple visual
scene depicted in Figure 5. There is Paul, a person I know, wear-
ing a new shirt, driving a car (Fig. 5). What is important here is
that a scene is not simply a “bag of objects”; objects have relation-
ships with each other, and there are many possible different rela-
tionships. For example, there is a car and there is Paul, and Paul is
in specific relationships with the car, both a physical relationship
(a particular posture within the car) and a functional relationship
(driving it). Some of my behavior depends on identifying these
relations because, for example, I can talk about them, and so if
behavior relies on neural codes, then those codes should represent
relations, not just the pixels of the image.

But cell assemblies cannot represent these relations. Suppose
there is a cell assembly that encodes “Paul” and another one
that encodes “car.” To encode the driving relation between Paul
and the car, a cell assembly that encodes “driving” would also
be needed, but that assembly should also somehow refer to the
two assemblies representing Paul and the car, and this is some-
thing that cannot be done with an unstructured bag of neurons
(mathematically, one would need a labeled graph and not simply
a subset of nodes).

This is related to the “binding problem,” although it is broader.
If it is true that any given object is represented by the firing of a
given assembly of neurons, then several objects should be repre-
sented by the firing of a larger assembly of neurons, the union
of all assemblies, one for each object. Several authors have
noted that this may lead to the “superposition catastrophe”
(von der Malsburg 1999); that is, there may be different sets of
objects whose representations are fused into the same big assem-
bly. One proposition is that the binding problem could be solved
using retinotopic position as an object label; that is, neurons do
not encode features but encode the conjunction of feature and ret-
inotopic position (Kawato 1997). However, this objection does
not address the broader point, which is that cell assemblies encode
objects or features to be related, but not the relations between
them. In fact, it is known that current connectionist models,

Figure 5. Perceptual scenes are highly structured. For example, there is Paul (person
I know), driving a car and wearing a new shirt. Representing this scene by the firing of
neural assemblies raises two issues: (1) It may be difficult to split active neurons into
the correct assemblies (superposition catastrophe) and, more importantly, (2) the
structure of the scene (relations shown by arrows) cannot be represented in this way.
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which are designed to optimally implement the idea that features
are represented by the activity of one or several cells, cannot be
trained to detect very simple relations between shapes in an
image (Ricci et al. 2018).

The binding problem has led several authors to postulate that
synchrony is used to bind the features of an object represented by
neural firing6 (Singer 1999; von der Malsburg 1999). This avoids
the superposition catastrophe because at a given time, only one
object is represented by neural firing. Synchrony is indeed a rela-
tion between neurons (mathematically, an equivalence relation).
There are a few other examples in the neuroscience literature
where synchrony is used to represent relations, although they
are not usually cast in this way. One is the Jeffress (1948)
model of ITD coding (Fig. 6A). In that model, neurons receive
inputs from monaural neurons on the two sides, with different
conduction delays. When input spikes arrive simultaneously, the
neuron spikes. Thus, the neuron spikes when the two acoustical
signals at the two ears are such that SL(t) = SR(t – d), where d
is the conduction delay mismatch between the two ears.
Physically, this corresponds to a sound source placed at a position
such that it produces an ITD equal to d. In this model, the neu-
ron’s firing indicates whether signals satisfy a particular sensory
law.

This interpretation of the model has been generalized with the
concept of “synchrony receptive field” (Brette 2012), which is the
set of stimuli that elicit synchronous responses in a given group of
neurons (Fig. 6B). One considers two neurons A and B that con-
vert their time-varying inputs into precisely timed spike trains,
where their inputs are seen as transformed versions NA(S) and
NB(S) of the stimulus S (NA and NB are fixed and correspond
to the receptive fields of the neurons). Synchrony between A
and B then reflects (“encodes”) the sensory law NA(S ) =NB(S ).
This framework has been applied to pitch perception

(Laudanski et al. 2014) and to sound localization in realistic envi-
ronments (Benichoux et al. 2015; Goodman and Brette 2010).

Although synchrony can represent relations, neither binding
by synchrony nor synchrony receptive fields solve the general
problem (even theoretically), because only one type of relation
can be represented by synchrony, and a symmetrical one: Does
Paul drive the car, or does the car run over Paul? The fact that
sentences can represent relations motivates the idea that the tem-
poral structure of neural activity (e.g., the sequence of activated
neurons, much like a sequence of words) could perhaps provide
the adequate basis for structured neural representations
(Buzsáki 2010). But this possibility remains speculative, and in
particular, it remains to be demonstrated whether such hypothet-
ical structures have the quality of representations that the brain
can manipulate.

4. The causal structure of the coding metaphor

In the previous sections, I have argued that neural coding theories
generally rely on the representational sense of the metaphor, the
idea that neural codes are symbols standing for properties that
the brain manipulates, but no evidence has been provided that
this sense is valid. Worse, there is empirical evidence and theoret-
ical arguments to the contrary.

Here I focus on a deeper problem with the neural coding met-
aphor. A striking characteristic of this metaphor is that it is a way
to think about the brain independently of its causal structure.
When we say, for example, that neurons encode the location of
sounds, we talk about the activity of neurons without making
any reference to the result of that activity or to the system of
which the neurons are a component. I now examine the implica-
tions of this fact.

4.1. The dualistic structure of the coding metaphor

The coding metaphor has a dualistic structure. It structures the
function of the brain into two distinct and dual components:
the component that encodes the world into the activity of neu-
rons, and the dual component that decodes that activity into
the world or into actions in the world, as illustrated by the follow-
ing examples: “Information that has been coded must at some
point be decoded also; one suspects, then, that somewhere within
the nervous system there is another interface, or boundary, but
not necessarily a geometrical surface, where ‘code’ becomes
‘image’” (Somjen 1972, p. 3). “[I]nterpretation of the encoded
information, typically consisting of its recoding by a higher-order
set of neurons or of its “decoding” by an effector” (Perkel and
Bullock 1968, p. 307). “A stimulus activates a population of neu-
rons in various areas of the brain. To guide behavior, the brain
must correctly decode this population response and extract the
sensory information as reliably as possible” (Jazayeri and
Movshon 2006, p. 690). “[T]he brain typically makes decisions …
by evaluating the activity of large neuronal populations” (Quian
Quiroga and Panzeri 2009, p. 173). “Ideal observers” used in
many studies implement this dual-decoding brain.

Using the coding metaphor does not necessarily mean believ-
ing in dualism of body and mind,7 but its dualistic structure has
important consequences when it comes to understanding func-
tion. The two dual components (encoding/decoding) are indistin-
guishable in behavior, because no behavior involves just one of
them. How then is it possible to attribute function to neural
codes? How is it possible to draw conclusions about the neural
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Figure 6. Neural representation of structure (adapted from Brette 2012). (A) Jeffress’
model of sound localization. The sound arrives at the two ears with delays dL and dR.
It is then transduced into spike trains that arrive at a binaural neuron with delays dL
and dR. Synchrony occurs when dR – dL = δL – δR, making the neuron fire. (B)
Synchrony receptive field. The response of a neuron to a stimulus is described as fil-
tering of the sensory signal S through the receptive field N, followed by spiking. The
synchrony receptive field of two neurons A and B with different receptive fields NA

and NB is defined as the set of stimuli that elicit synchronous responses in these
neurons.
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basis of behavior from properties of neural codes, independently
of the system in which the neurons are embedded? This is only
possible by making an additional assumption, namely, that the
encoding component has a function by itself (representing the
inputs), somehow assigning the status of organ to a part of
the nervous system. But there is no indication that the brain
can be functionally decoupled in this way; neuroanatomy rather
seems to invalidate this hypothesis.

To illustrate this point, I now discuss a concrete biological
example. Paramecium is a unicellular organism that swims in
stagnant fresh water using cilia and feeds on bacteria. It uses dif-
ferent kinds of sensory signals, including mechanical signals to
avoid obstacles and chemical signals to localize food (Jennings
1906). To a first approximation, it alternates between straight
courses and sudden random changes in direction (Fig. 7). It
turns out that each change in direction is triggered by a spike pro-
duced by voltage-gated calcium channels (Eckert 1972). To find a
chemical source, Paramecium uses a simple method: when con-
centration decreases, the membrane is depolarized by chemical
receptors and a spike is produced (with some stochasticity), trig-
gering a change of direction (similar to chemotaxis in Escherichia
coli). This is of course a simplified description of Paramecium
physiology and behavior, but for the sake of argument, we will
consider an organism that functions in this simple way.

Paramecium is thus a sort of swimming neuron. Spiking activ-
ity varies lawfully with sensory signals (concentration) and, hence,
encodes them in the same sense as a visual cortical neuron
encodes visual signals. As for sensory neurons of the brain, we
may argue that if the organism can navigate efficiently in its envi-
ronment, then the spikes must contain information about that
environment. Thus, it seems that the coding metaphor applies
equally well to this swimming neuron as to any typical case in
neuroscience.

Let us now think about functional questions. As an organism,
Paramecium may have goals, for example, finding food. We may
hypothesize that it achieves this goal efficiently, for example, by
finding food as quickly as possible. To this end, sensory signals
must be transformed into spikes in a specific way, which depends
both on the goal (to move toward or away from a source, to look
for food or to sleep, or to look for a mate) and on the effect of
spikes on the organism’s actions. Thus, there is a way to organize
this system so that it achieves its function appropriately, which
determines the transformation of inputs into spikes, that is, the
neural code.

But if we now think of the neural code independently of the
organism and environment that host it, we draw different conclu-
sions. If the function of this neuron is to encode its input, then we

may hypothesize that it achieves this function efficiently. This pre-
scription determines a neural code that is specified by the statis-
tics of inputs. Here the code depends neither on the goals of the
animals nor on the effect of spikes on the organism’s actions. It
follows that this efficient code does not match, in general, the
neural code that is adapted for the organism’s goal. This mis-
match occurs because function can be meaningfully ascribed to
the organism as a system, but not necessarily to the components
of this system.

This sensorimotor system is arguably much simpler than the
brain; nevertheless, it demonstrates that the function of neurons
cannot be meaningfully framed in terms of coding just because
they respond to sensory stimuli. There is no indication that the
brain is special in that it can be meaningfully separated into
two dual components with independent functionality.

4.2. Coding versus causing

The Paramecium example highlights the fact that the neural cod-
ing metaphor is a way to think about the brain that is discon-
nected from its causal structure. Yet by postulating that neural
codes are representations, we imply that these codes have a causal
impact on the brain. This is also the case when neural codes are
considered simply as transformations of inputs rather than
explicit representations, as in Perkel and Bullock (1968, p. 227):
“The problem of neural coding is defined as that of elucidating
the transformations of information in the nervous system, from
receptors through internuncials to motor neurons to effectors.”
But does coding imply causing?

Consider, for example, the BOLD (blood oxygen level-
dependent) signal, a property of blood used for functional brain
imaging because it covaries with neural activity. The signal
encodes visual signals in the same technical sense that the firing
of neurons encodes visual signals. For example, one can “decode”
the image from this signal (Naselaris et al. 2009). Yet, visual per-
ception is not caused by the BOLD signal, which is why we do not
consider that it is an internal representation used by the brain.
Thus, not all coding variables have causal powers.

Consider the firing rate-versus-spike timing debate (Brette
2015; Kumar et al. 2010). This debate is generally formulated as
follows: “Does the brain use a firing rate code or a spike timing
code?” As the previous example illustrates, this is a largely irrele-
vant question because it focuses on correlations between stimuli
and observables. We may as well ask Does the brain use the
BOLD code? The relevant question is rather whether those
observables have a causal role in the activity of the brain, and
this involves a different set of arguments and answers (see
Brette [2015] for a discussion). To see why, consider a sensorimo-
tor system whose function is well understood in relation to its
electrical activity: the heart (Fig. 8). The heart operates like a
pump to circulate blood in two phases: the two atria contract,
pushing blood into the ventricles (diastole); then the two ventri-
cles contract, pushing blood into the pulmonary arteries (systole).
These contractions are triggered by excitable cells in the atria and
ventricles. For the heart to operate as a pump, cells in the two
atria must spike synchronously, but out of phase with cells in
the two ventricles. But the heart also responds to sensory stimu-
lation. For example, the heart beats at a faster pace when we run.
This means that the excitable cells of the heart encode running
speed in their firing rate, in the technical sense. If we now look
at the coding properties of these cells, we find that (1) firing
rate is sensitive to running speed, (2) cells fire regularly, (3)

Figure 7. Spatial cognition in Paramecium, a “swimming neuron.” Paramecium finds
a chemical source by switching to a new random direction when concentration
decreases.
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spike timing is not reproducible between trials, and (4) spike tim-
ing (absolute or relative) carries no information about the stimu-
lus beyond the rate. Thus, we would conclude that the heart uses a
rate code. Yet, the temporal coordination of spikes is critical in
this system; in fact, it is life critical. This paradox arises because
the neural coding metaphor totally neglects the causal effect of
spikes.

If we want to describe the operation of the brain in terms of
neural coding, the relevant question is whether the causal struc-
ture of neural codes is congruent with the causal structure of
the brain.

4.3. Causal powers of coding variables

The causal structure of the brain is sketched in Figure 9A. At a
coarse description level, the brain is a dynamical system coupled
to the environment by circular causality. At a finer description
level, the brain is itself made of neurons, which are themselves
dynamical systems coupled together. To a first approximation,
the coupling is mediated by spikes, which are timed events.

Consider the proposition “the firing rate of neuron A encodes
the location of a sound source,” corresponding to some empiri-
cally observed correlation. The implication that this information
is decoded by the brain relies on the presupposition that the cod-
ing variable “firing rate of neuron A” causally influences the
future activity of the brain. Spikes, of course, have causal effects
on the brain. But a neural coding variable (“firing rate of neuron
A” or “relative activity of two neural populations”) is a particular
measurement of spiking activity, and the question is whether that
particular measurement has causal powers.

Empirically, a coding variable is an aggregate variable based on
measurements of spiking activity over some time, space, and possi-
bly trials. An example of integrating over trials (and time) is a neu-
ron that responds specifically to pictures of Jennifer Anniston in
various poses (Quian Quiroga et al. 2005). But only on average:
the coding variable is the median number of spikes across trials
between 300 and 1,000 ms after stimulus onset. On a given trial,
the neuron might not be firing at all. Unless the subject was not
perceiving the actress in those trials, this implies that this neuron
cannot encode the percept “Jennifer Anniston” in the sense of caus-
ing the percept. Rather, its firing correlates (on average) with the
presentation of pictures of Jennifer Anniston, which is already a
notable fact. Perceptual representations cannot be based on

averages; percepts are experienced now, not on average. Neural
codes based on averaging over trials do not have causal powers
(see also Gomez-Marin and Mainen 2016). In the same way, a fir-
ing probability (one abstract way to define a neuron’s firing rate)
does not have causal powers8; only the occurrence of firing does.

An example of integrating over space (and time) is when we
propose that the position of a sound source is encoded by the dif-
ference in total activity between the two symmetrical inferior col-
liculi (Grothe et al. 2010). This coding variable indeed varies
when source position is changed (Thompson et al. 2006). Does
it mean that it has causal powers, that is, that it determines
sound localization behavior? It seems implausible, first, as previ-
ously discussed because it also varies with other properties of
sounds, and second, because electrical stimulation in the inferior
colliculus triggers orienting responses that vary with the place of
stimulation, whereas stronger stimulation results in orienting
responses that engage a larger part of the body (one pinna,
both pinnae, and eyes, in order of recruitment) (Syka and
Straschill 1970). Thus, there is no guarantee that a coding variable
obtained by integrating over neurons has causal powers.

But the key difficulty is time. The course of a dynamical system
is determined by its current state, which is characterized by state
variables such as membrane potential and the state of ionic chan-
nels. Spikes, on the other hand, are events (something happening
to the system) and not properties (some characteristic of the sys-
tem). Therefore, spiking activity is not something defined at any
point in time, which could give it the causal role of a state vari-
able, but something that is measured over some predefined period
(in the first example, 300 to 1,000 ms after stimulus onset).
Empirically, a neural coding variable is necessarily anchored to
the temporality of the experiment (some window of time after
the onset of the stimulus). Once we have anchored variables
in time, all possibility of physical interaction between coding
variables disappears: if variables X and Y are defined over two
different time windows T1 and T2, then there cannot be causal
influence in both directions (X→Y and Y→X ). But neurons
mutually influence themselves over timescales of a few millisec-
onds, without waiting for the coding variable to be defined or
for a stimulus to be presented. Neural codes abstract time
away, but temporality is critical to the operation of a dynamical
system.

Figure 8. Operation of the heart. Atria simultaneously contract, triggered by synchro-
nous firing of excitable cells; then ventricles simultaneously contract, pushing blood
into the lungs.

Figure 9. Causal structure of brain and neural codes. (A) The brain is a distributed
dynamical system made of interacting neurons and is coupled to the environment
by circular causality. A coding variable is a property of neural activity, which is implic-
itly assumed to have a causal effect on the brain. (B) Neural codes are linked together
and with the world by linear causality.
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4.4. Causal structure of neural codes

If neural coding variables are anchored in time, then the only pos-
sible causal structure linking coding variables is a linear sequence
of transformations (Fig. 9B). This is implicit in Perkel and
Bullock’s (1968) definition of neural coding (“transformations …
from receptors through internuncials to motor neurons to effec-
tors”). This linear structure is also implicit in any claim that a stim-
ulus is encoded, then decoded: cognition follows a linear causal
flow,9 from stimulus to perception to action (Hurley 2001). In
such descriptions, the temporality of the physical system has disap-
peared and has been replaced by the discrete temporality of an
algorithm, which is disconnected from physical time. In other
words, this is an algorithmic description. But as van Gelder
(1995) pointed out, dynamical systems cannot in general be
mapped to algorithmic descriptions.10

The coding metaphor tries to match the causal structure of
dominoes to the causal structure of a tent, where the states of dif-
ferent elements are co-determined (Fig. 10). In addition to the cou-
pling of neurons, the brain itself is coupled to its environment; that
is, there is circular and not linear causality (Fig. 9A). As Dewey
(1896, p. 363) pointed out more than a century ago, “the motor
response determines the stimulus, just as truly as sensory stimulus
determines the movement.” Many other authors in biology, psy-
chology, philosophy, and robotics have argued that perception is
not a one-way process but an interaction with the environment
(Ahissar and Assa 2016; Brooks 1991a; Gibson 1979; O’Regan
and Noë 2001; Powers 1973a). This makes the proposition that
neural activity encodes stimuli questionable. In fact, it makes the
very notion of stimulus questionable, as it seems to give no role
for spontaneous activity other than noise (Deco et al. 2011),
when autonomous activity is central to the organization of behav-
ior. As a theory of cognition, the neural coding metaphor seems to
embrace the most basic form of behaviorism.11

5. Conclusion

5.1. Summary

When I say that the heart is a pump, I propose a function for the
heart (to circulate blood) and mechanisms by which blood is circu-
lated; I propose specific ways in which elements of the heart inter-
act by identification with elements of a pump. In effect, the pump is
a model of the heart. A metaphor is not simply words arbitrarily
chosen to designate an object; it is a model of the object (Lakoff
and Johnson 1980a), and as such it deserves scrutiny as does any
other model in science. Is coding a good model of brain function?

There are three aspects of the coding metaphor: correspon-
dence, representation, and causality. Technical results are based
on the first aspect, but their interpretation and claimed signifi-
cance draw on the two other aspects, which are not subject to
the same scrutiny. Many neural coding theories rely on the idea

that the brain manipulates neural representations of stimulus prop-
erties, as if the variable of a neural code were a processor register
that the brain can store, retrieve, and combine arbitrarily, while
knowing what the variable refers to. But what is the evidence
that such neural representations exist, and what is the evidence
that the brain can manipulate spikes in this way?

Technically, it is found that the activity of many neurons varies
with stimulus parameter, but also with sensory, behavioral, and
cognitive context; neurons are also active in the absence of any
particular stimulus. A tight correspondence between stimulus
property and neural activity only exists within a highly constrained
experimental situation. Thus, neural codes have much less repre-
sentational power than generally claimed or implied. Behavioral
significance is obtained only by making an implicit “linking prop-
osition” (Teller 1984) that relates coding variables and behavior,
which takes the form of a “decoder.” The decoder, often an
“ideal observer,” is a hypothetical abstract construct whose biolog-
ical basis is unspecified and whose existence is unquestioned, even
though the decoder must incorporate key contextual aspects,
including methodological details of the experiment, which defines
the coding variables. Critically, the contextual dependence of neu-
ral codes cannot be solved by incorporating contextual variables in
a broader neural code, because context is precisely what defines the
variables. A perceptual scene cannot be fully defined as a vector of
properties. Properties of what?

The notion of information implied by the coding metaphor is
inappropriate in understanding perception and behavior, because
it is information by reference to external symbols (Bickhard
2009). A more appropriate notion is information as organization
(Thompson 1968), namely, relations between sensory signals and
actions, forming a structured internal model. The relation
between such structured models of the world and neural activity
is unclear, but what is clear is that no neural coding theory pro-
posed so far seems adequate, even in principle.

Ultimately, the neural coding metaphor is a way to think about
the brain that is disconnected from its causal structure. The brain is
a dynamical system coupled to the environment and is itself com-
posed of coupled dynamical systems (neurons), whose interaction
is mediated by spikes, which are timed events. The dualistic struc-
ture of the metaphor cuts through this organization and decides
that one part of the brain can be understood independently of
the way it interacts with the rest of the brain and independently
of the way the brain interacts with the world. More fundamentally,
a causal role is attributed to coding variables, but this is incoherent
because coding variables are extended measurements of activity
linked to the temporality of experiments; they are not causal vari-
ables of the underlying dynamical system. In conclusion, the causal
structure of neural coding metaphor is incongruent with the causal
structure of the brain. If neural codes have no causal power, then
they cannot form a valid basis of a theory of brain function.

5.2. What else, if not coding?

Since the coding metaphor is so ingrained in neuroscience, how
could it be possible to abandon it? What could it be replaced with?

First, that there is no simple substitute for neural coding does not
make it a viable option. The neural coding metaphor is attractive
partly because it resonates with Cartesian philosophy, as pointed
out by Cisek (1999), and partly because it seems to fit with the com-
putational view of the mind, the idea that cognition is the manipu-
lation of symbols that represent properties of objects in the world.
But the symbols provided by neural codes are not context free;

Figure 10. The causal structure of the neural coding metaphor is that of dominoes
(A), but the causal structure of the brain rather resembles that of a tent (B).
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they are unstructured and they have no causal powers. They do not
have the quality required by the computational view. Thus, the
appeal of the neural coding metaphor is illusory. Even if it were pos-
sible to map brain activity to computational descriptions, neural
codes would not provide the adequate mapping.

Similar arguments have been made against the idea of a genetic
code (or genetic program), and the alternative route is to adopt a
systemic approach (Noble 2008). The brain is a system, or, more
accurately, the brain, body and environment are a system. This
approach is precisely what the coding metaphor forbids, because
it cuts through the system and uncouples its different components.
Since it is a dynamical system, this view is related to the dynam-
ical view of cognition (van Gelder 1998). But the specific point
here is not so much that cognition is dynamic, but rather that its
neural basis is a dynamical system and must be understood as
such. It is a special kind of dynamical system in that it is com-
posed of units (neurons), which are also dynamical systems. The
causal role of spikes in this system is to mediate coupling
between these dynamic units. They are transient events that
are better understood as actions than as representations. A use-
ful analogy then might be collective behavior: social insects are
also dynamical systems coupled to each other by actions, and
the collective behavior they display can be understood in
terms of self-organization without resorting to the concept of
coding (Bonabeau et al. 1997). This view should not be mis-
taken for an argument against representations in general, but
more precisely against the classic view of representations as
encodings. Bickhard (2015c), in particular, has made a case
for representations as a form of normativity realized by antici-
patory properties of internal processes.

In terms of neural modeling, this requires considering sensor-
imotor systems. The necessity of this level of analysis has been
stressed by a number of authors who have developed alternative
views on cognition (Ahissar and Assa 2016; Bickhard and
Terveen 1996; Brooks 1991a; Gibson 1979; Hurley 2001;
Maturana and Varela 1973; O’Regan and Noë 2001; Pezzulo
and Cisek 2016; Powers 1973a). Paradoxically, it is customary
in systems neuroscience to model perceptual abilities by consider-
ing only the corresponding sensory areas. We speak, for example,
of the visual system as a set of anatomical structures from the eye
to the visual cortex. But the visual system defined in this way is
not actually a system if it is disconnected from the elements with-
out which it cannot have any function. It follows that models of
perceptual systems are in effect not biological models, but chi-
meras obtained by attaching a neural model of a sensory area
to an abstract construct (“decoder”) that maps the activity of
neurons to descriptors of behavior and, often, to an even
more problematic abstract construct (“encoder”) that maps
stimulus parameters to model inputs. This methodology
embraces both behaviorism (neural activity is only responses
to stimuli) and dualism (something else makes sense of neural
activity). Instead, I suggest developing models of the full sensor-
imotor loop, “models that behave” (Gomez-Marin 2017). For
example, instead of looking for neural codes of sound location,
one could look for neural models of auditory orientation
reflexes. Measurements of neural activity in stimulus-response
experiments can be used to constrain and test such models,
but they do not need to be the output of the model, nor do
they need to be a causal variable in the model. To be clear,
the issue is not about the amount of detail that needs to be
incorporated. Models can be simplified or idealized, as any
model needs to be. The issue is to respect the causal structure

of brain and behavior and to see neural activity as what it really
is: activity. Action potentials are potentials that produce actions;
they are not hieroglyphs to be deciphered.

Notes

1. A strong correlation (or mutual information) between wavelength and cur-
rent observed in the first case (Fig. 2B) may transfer to a negligible correlation
in the second case (Fig. 2C) (Brette 2010).
2. A similar number of neurons are also tuned to small ITDs, especially in
larger mammals such as cats (Goodman et al. 2013) (Fig. 1a).
3. Suppose, for example, that we observe the activity A of a neuron whose firing
rate varies with parameter X as A =X + Z, where Z is an uncontrolled variable. If
Z has large variance, A might hardly be correlated with X. But if we simultane-
ously observe B = Z, then we can recover X exactly (B – A), even though B is not
correlated at all with X. There is no direct relation between parameter sensitivity
assessed with a tuning curve and information in a broader context.
4. For example, Jazayeri and Movshon (2006) argue that the representation of
the probability distribution of stimulus property (rather than simply the most
likely property) allows the same code to perform different tasks, and they com-
ment: “In contrast, previous models of sensory decoding were for the most
part designed to account for a particular task” (p. 695). But the new proposi-
tion still requires a specific decoder for each task.
5. Not to be confused with predictive information, which is the mutual
(Shannon) information between the past and future of a signal (Bialek et al.
2001; Palmer et al. 2015).
6. This proposition remains controversial because it is unclear whether syn-
chronous firing across distant brain areas has causal powers (Merker 2013a)
(see next part).
7. Nonetheless, the resemblance to Cartesian dualism is hard to miss. Indeed,
Cisek (1999) argues that this dualistic structure has been inherited from
Cartesian dualism, specifically that computationalism has replaced the non-
physical mind with a mechanistic cognition, while keeping the architecture
unchanged (perception–cognition–action).
8. Except if the law of large numbers is used. This requires a number of
assumptions (see Brette 2015).
9. Despite the explicit incorporation of feedback, hierarchical predictive cod-
ing still adheres to this general scheme, where stimulus is transformed into
coding variables, which are then presumably used by some other process.
10. A notable exception being, of course, a computer executing an algorithm.
11. A variation that Gomez-Marin (2017) calls “neuralism.”
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Abstract

First, I argue that there is no agreement within non-classical cog-
nitive science as to whether one should eliminate representations,
hence, it is not clear that Brette’s appeal to it is going to solve the
problems with coding. Second, I argue that Brette’s criticism of
predictive coding as being intellectualistic is not justified, as pre-
dictive coding is compatible with embodied cognition.
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Among the shortcomings that the metaphor of coding involves,
Brette mentions its inability to truly function as a representation.
At the same time, he seeks an alternative to coding in non-
classical cognitive science, such as dynamic systems, ecological
psychology, and embodied cognition, which, in their most radical
and most interesting versions are precisely anti-representationalist
approaches. How is the former complaint to be squared with the
latter alleged solution? Brette does not tell us, but his critical dis-
cussion of predictive coding indicates that, ultimately, his problem
with coding is the alleged intellectualism involved in it, hence, it is
the alternative, embodied and embedded cognition theory that he
thinks should be understood as currently the best remedy. He
appears to think that an approach like predictive coding suffers
from the same problems of intellectualism and inadequacy
when it comes to how an organism perceives.

There are two problems with this view. One is that the embod-
ied and embedded approach to the mind lacks anything close
enough to agreement when it comes to whether representation
should or should not play a central role (or any role) in it. The
other is that, similarly, predictive coding does not (or should
not) imply anything in particular about the issue of classicism
versus 4E (embodied, embedded, enactive, extended) cognition.
I will, in turn, explain these two simple points.

First, let us consider the issue of representation within the frame-
work of non-classical cognitive science. It makes sense to structure
the multitude of such views in some meaningful way. Following
Gallagher (2017) we could order these views according as how com-
mitted they are to eliminating representations and how anti-
individualistic they are, that is, to what extent the organism is con-
sidered as sufficient for cognition and mentality. The extant views
range from ones that are very close to classicism in both taking rep-
resentations as necessary to cognition and taking the organism as
the ultimate unit of analysis to ones that pride themselves in
being so radical as to eliminate representations completely and
hypothesize that the ultimate unit of analysis is the causal loop
between organism and its environment or niche. What, then, to
make of the idea that a viable alternative to the metaphor of receptor
coding could be 4E cognition, given this diversity of 4E views? It
looks like the only versions that could serve that purpose are the
most radical ones on the above-mentioned two-axis classification.
Indeed, Brette explicitly states that one crucial problem with recep-
tor coding is its inadequacy in emulating the organism-environment
circular causal loop, at least when it comes to perception; more pre-
cisely, given that this loop (reafference) is an ultimate unit of anal-
ysis of cognition, it does not make sense to posit receptor coding as
a first stage (afference) in perceptual processing.

This idea is coherent, but one wonders, then, why receptors
would even get be discussed at all. If the reafference and the con-
tinuous circular causal loop of organism-environment interaction
is truly the ultimate unit of analysis, then there is nothing special
about the receptors to consider, or about any other part of the
nervous system for that matter. Then it looks as though the initial
problem was not really about receptor coding in particular, but
about anything like computational processes that are at a lower
level than the organism-environment loop. This is not an alterna-
tive to receptor coding, but an alternative to the receptors them-
selves – they would cease to have any theoretical role in
explaining cognition or perception. Needless to say, one is not
forced in any way to take that route even if one is skeptical
about the metaphor of coding. On the contrary, one could even
conider the PNS (including the receptors) as an essential compo-
nent of the neural realizers of any perceptual or sensory state

(Aranyosi 2013) or go even as far as to hypothesize that neuron
populations at the receptor level are performing computations
(Pruszynski & Johansson 2014).

Turning now to predictive coding in particular, contrary to
Brette’s criticism, it does not necessarily imply intellectualism.
It is true that the most interesting and radical way of thinking
about predictive coding is one according to which it is rather a
“Kantian” rival to 4E cognition (e.g. the view defended in
Hohwy 2013 and especially in Hohwy 2016), but it is not the
only game in town. Indeed, when it comes to perception, there
is no reason to think that predictive coding is uncongenial to
4E cognition. On the contrary, as Orlandi (2018, p. 2368)
observes, “PCP [predictive coding approach to perception] was ini-
tially developed in cognitive science in the field of active vision,
and it was thought to be good news for proponents of ecological
and embodied understandings of perception (Rao and Ballard
1999). It is a curious development that it would be taken up by
proponents of more intellectualist accounts.” The basic point to
emphasize here is that the central tenets of predictive coding (gen-
erative models, prediction error minimization, free energy princi-
ple) are really about a model of information communication; the
issue of whether that communication chain is present wholly
within the brain, as Hohwy thinks, or spans across the brain-body
or even across the body-environment frontier (c.f. Kirchhoff
2015) is orthogonal to the issue of whether the model is adequate
for perception or cognition in general. Hence, there is nothing
intrinsically uncongenial to more embodied and embedded
views of the mind in the idea of predictive coding.

To sum up, while I think Brette points out some significant
shortcomings of the metaphor of receptor coding, it is unclear
whether an alternative to it, in guise of what he seems to think
this would involve, is forthcoming anytime soon.

Beyond Neural Coding? Lessons from
Perceptual Control Theory

Xerxes D. Arsiwallaa , Ruben Moreno Boteb,c

and Paul Verschurea,d

aInstitute for Bioengineering of Catalonia & Barcelona Institute for Science and
Technology, 08019 Barcelona, Spain; bCenter for Brain and Cognition,
Department of Information and Communication Technologies, Universitat
Pompeu Fabra, 08018 Barcelona, Spain; cSerra Húnter Fellow Programme,
Universitat Pompeu Fabra, 08018 Barcelona, Spain and dCatalan Institute for
Advanced Studies, 08010 Barcelona, Spain.
x.d.arsiwalla@gmail.com https://specs-lab.com ruben.moreno@upf.edu
https://www.upf.edu/web/tcn pverschure@ibecbarcelona.eu
https://specs-lab.com

doi:10.1017/S0140525X19001432, e217

Abstract

Pointing to similarities between challenges encountered in
today’s neural coding and twentieth-century behaviorism, we
draw attention to lessons learned from resolving the latter. In
particular, Perceptual Control Theory posits behavior as a
closed-loop control process with immediate and teleological
causes. With two examples, we illustrate how these ideas may
also address challenges facing current neural coding paradigms.
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It is noteworthy that many of the challenges to today’s neural cod-
ing paradigms, pointed out in Brette’s target article, are strikingly
similar to problems encountered with twentieth-century behav-
iorism. Other authors have also alluded to this correspondence
(Fiorillo et al. 2014; Gomez-Marin 2017). Gomez-Marin com-
ments that once it became possible to look inside neural tissue,
the philosophical essence of behaviorism made its way back.
Behavior was once again relegated to linear responses, but this
time to internal causes. According to Powers (1973b), behavior
is control of the animal, by the animal, and should be studied
as a circular process from the perspective of the animal, including
both immediate and teleological causes. In other words, once one
knows the “inside,” would one really know everything on the
“outside”? The issue seems to be with what is meant by causation
in these paradigms. Admittedly, both behaviorism and coding do
not consider circular causation, nor do they address teleological
aspects of causation. Circular causation also features prominently
in the “enactivist” philosophy of mind, where an organism’s
action and perception are constantly shaped by mutual interaction
with its environment (Varela et al. 1991; Verschure et al. 2003).
The other problem seems to be the way information theory is
used. Fiorillo et al. (2014) make the case for a shift in perspective,
where information conditioned on the neuron’s biophysics, rather
than the experimenter’s knowledge, does away with the need for a
“neural code” (arguing that encoding/decoding only makes sense
from the perspective of an external observer). These works sub-
stantiate Brette’s main argument, claiming that the implicit defi-
nition of “code” used in neural paradigms does not encompass
aspects of causation or representation relevant for bridging
brain and behavior.

There are, however, lessons we can learn from behaviorism.
More specifically, solutions to those problems might also prove
insightful today for addressing difficulties encountered in current
neuroscience paradigms. In particular, Perceptual Control Theory
(PCT), championed by William Powers (1973b), was one such
response to behaviorism. PCT originated from early cybernetics,
which was concerned with control and autonomy in living organ-
isms. PCT posits that behavior is the process of closed-loop con-
trol of what the animal senses, rather than a linear causal response
to stimuli. The main insight of PCT was that autonomous goal-
directed behavior necessitates a hierarchical control architecture,
where higher-level controllers are coupled to lower-level control-
lers such that the output of one layer provides a reference to the
next. An organism performs actions to cancel the effects of distur-
bances in what it senses, to achieve intended perceptual conse-
quences. Reference signals across this hierarchy constitute
immediate or distal goals. The specification of goals for achieving
intended consequences constitutes purpose. Ultimate purposes
are assumed to be intrinsic, tied to survival drives.

How does this link to neural coding? The important point is
that neural coding theories are also trying to explain behavior.
However, they attempt to do so by anchoring on linear input–out-
put neural mechanisms, akin to a “switchboard” model of behav-
ior (Powers). The alternative is that neural activity influences
actions and actions influence neural activity in terms of what
the animal perceives. Behavior is thus a circular control process.
This solicits an explanation of how and why the animal itself con-
trols the “switchboard.” If neural coding approaches ultimately
seek to explain perception and action, then ideas from PCT sug-
gest ways to progress beyond metaphors. Namely, PCT calls for a
process-theoretic view of the brain-body-environment system,

where circular causation is implemented through hierarchical
feedback control.

How does control theory address challenges that neural coding
theories face? For this, we now turn to control architectures built
upon a hierarchy of forward models. These offer a viable solution
to closed-loop adaptive and anticipatory processes. The forward
models we refer to are internal models acquired during learning
and development. These are akin to the physics and psychology
engines discussed in Lake et al. (2017). Let us point to two specific
examples, where systems-level control architectures with forward
models offer the type of closed-loop causal explanations men-
tioned above. The first example comes from cerebellar motor con-
trol. Herreros et al. (2016) and Maffei et al. (2017) have proposed
an anticipatory control scheme involving the vestibular system,
where the cerebellum implements a forward model of the
motor system being controlled. The model generates anticipatory
adjustments to counteract postural and equilibrium disturbances
during voluntary movements. It does so by learning to anticipate
counterfactual errors in motor action given sensory stimuli and an
internal model of the motor system. This closed-loop control
architecture has been proposed to model eye-blink conditioning,
vestibulo-ocular reflexes, and visual tracking, all involving cerebel-
lar circuits. Physiologically, this implies that timing-dependent
plasticity rules of Purkinje cell synapses implement a model of
the motor system being controlled by that cerebellar microcircuit
(Suvrathan et al. 2016). Our second example refers to the hierarchi-
cal mirror system identified in the brain (Gazzola & Keysers 2009).
This extends across several brain regions including the motor,
somatosensory, and gustatory areas. These systems have been
shown to hierarchically implement internal forward and inverse
models relating to one’s own sensations. The mirror system projects
outputs of these self-models upon others during social interactions.
This hierarchy of forward and inverse models has been used to
explain empathy, somatic sensations in others, and emotions in
social cognition (Keysers et al. 2010). Both these examples illustrate
the role of control and internal models in brain and behavior.

In closing, one would agree that encoding and decoding of
experimental variables in behavioral paradigms are valuable epis-
temological constructs for the experimenter. If “goals” and “pur-
poses” are necessary to describe behavior emerging from
dynamical systems engaged in hierarchical control (Powers),
then neuronal coding protocols might be useful tools to identify
precisely those variables that define the underlying closed-loop
dynamical system. However, it is also true that one ought to
refrain from the fallacy of extending conditional epistemic
descriptors to ontological explanations of brain and behavior.

Generative models as parsimonious
descriptions of sensorimotor loops

Manuel Baltieri and Christopher L. Buckley

EASY Group – Sussex Neuroscience, Department of Informatics, University of
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Abstract

The Bayesian brain hypothesis, predictive processing, and varia-
tional free energy minimisation are typically used to describe
perceptual processes based on accurate generative models of
the world. However, generative models need not be veridical rep-
resentations of the environment. We suggest that they can (and
should) be used to describe sensorimotor relationships relevant
for behaviour rather than precise accounts of the world.

In the target article, Brette questions the use of the neural coding
metaphor in the neurosciences. One of the main arguments is
related to the criticism of approaches that overemphasise the
role of perception as opposed to motor control for accounts of
cognition. As suggested by Brette, while the sense-model-plan-act
paradigm has long been criticised (Brooks 1991b), it still survives
in modern approaches to neuroscience. He then extends this crit-
icism to the notion of efficient coding and its most recent heir,
predictive coding. Specifically, he argues that models that describe
perception as a process of minimising redundancy (efficient cod-
ing) or prediction error (predictive coding) between incoming
sensations and a generative model of sensory data are often
used to ascribe the “goal” of minimising redundancy/error to
an agent, to account for the rich repertoire of behaviours of living
organisms. The shortcomings of this approach have previously
been discussed, and resulted in the emergence of problems such
as the dark-room paradox (Friston et al. 2012): why should agents
show complex behaviour when, to minimise redundancy/predic-
tion error, they could easily find the most predictable state in
the world, for example, a dark room?

Recently, the ideas of predictive coding/processing have been
extended to include accounts of action, for example, active infer-
ence. On this account, while perception is a process of changing
predictions to better account for sensory data, action is a process
of changing the world to better meet predictions. Normative
behaviour then arises in this framework if an agent predicts
rewarding states (Friston et al. 2012). Active inference moves
the goal of cognitive agents from inferring properties of sensory
data to acting in order to meet their goals. This extension of pre-
dictive coding is thus not in conflict with the ideas in the target
article but, rather, directly supports them.

Furthermore, adaptive behaviour can emerge even if generative
models are far divorced from a veridical representation of the
environment. These action-oriented generative models, described
in the context of radical predictive processing (Clark 2015), can
operate on the basis of linear approximations of world dynamics
(Baltieri & Buckley 2019b) or simple sensorimotor couplings
rather than objective properties of the world (Baltieri & Buckley
2017). These ideas are derived from 4E (embodied, enactive,
embedded, and extended) theories of cognition which have long
sought to address different issues of computationalism (Newen
et al. 2018), including the misuse of properties metaphors such
as neural coding.

Thus, the idea of predictive processing/coding that the author
describes, based on models that generate accurate representations
of observed data and inherited from statistics and machine learn-
ing, is not the only game in town. Instead, we advocate for ideas of
predictive coding that include generative models that are parsimo-
nious descriptions of sensorimotor contingencies (Baltieri &
Buckley 2017). This may sound like an unnecessary stretch of
the definition of a generative model (Bruineberg et al. 2018)

but, we argue, is far from being just a semantic argument. The
mathematical definition of these models is still entirely consistent
with the more familiar notion of “generative” models and
constitutes a valuable framework for the modelling of sensori-
motor loops because of its strong and established relationships
with (optimal) control theory (Todorov 2009). In this context,
“inference” can be best understood as a process of estimating
actions necessary to attain future goals, generating expectations
of desired states of affairs (rather than objective truths about
the world) that are brought into existence by means of active
behaviour.

In active inference, generative models further diverge in some
fundamental ways from the more traditional ideal-observer-based
forward models used in the context of motor neuroscience
(Friston 2011) and discussed in the target article. Forward models
rely largely on a Kalman-like approach where all the variables
affecting a system (parameters and inputs or causes, in a
state-space formulation sense) and observations of said system
(outputs) are available for an ideal observer to infer is latent states.
On the other hand, generative models in active inference explicitly
take the perspective of an agent into account. This includes dis-
carding the idea that all causes affecting observations are known
to an agent, suggesting instead the presence of approximate mech-
anisms to implement actions purely based on incoming sensa-
tions (not their estimates or “predictions”) (Baltieri & Buckley
2019a).

The target article further argues that theories based on
Shannon communication theory (including efficient and predic-
tive coding, but more in general all notions of neural coding) can-
not in principle explain meaning in biological systems, as this
definition explicitly precludes a study of the semantics of infor-
mation. We agree with Brette that notions of semantic informa-
tion (with meaning for an agent, not necessarily for an
experimenter) are largely neglected in neuroscience but his
claim seems to overlook some of the efforts made to extend
Shannon’s work (Kolchinsky & Wolpert 2018). To understand
the implications of the value of information in biological systems,
we suggest not to ignore frameworks based on Shannon informa-
tion, but rather to further look into their connections to causal
frameworks. In this light, extensions of predictive coding models
such as active inference based on Bayesian networks could, in
principle, describe biological agents as intervening in the world
using motor actions to learn causal relationships between their
actions and their sensations (Hohwy 2013), that is, the “subjective
physics of the world” described by Brette.

The neural coding metaphor has long exhausted its appeal to
explain cognition. This is because metaphors that attempt to
describe living organisms as passively gathering and representing
information from the environment cannot account for the com-
plexity of the behaviour of biological systems. Similarly, we believe
that a narrow interpretation of generative models as veridical
world models is also a misdirection for cognitive science.
Instead, we argue that the generative models at the heart of
active inference, which are not to be seen as accurate maps of
the world but as descriptions of useful information and desires
for an agent in the form of parsimonious actions/percepts
relationships, will be a valuable tool for the study of cognitive
systems.
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Abstract

Brette argues that coding as a concept is inappropriate for expla-
nations of neurocognitive phenomena. Here, we argue that
Brette’s conceptual analysis mischaracterizes the structure of
causal claims in coding and other forms of analysis-by-
decomposition. We argue that analyses of this form are permis-
sible and conceptually coherent and offer essential tools for
building and developing models of neurocognitive systems like
the brain.

Brette argues that coding is an inappropriate concept for explana-
tions of neurocognitive phenomena. Brette identifies three proper-
ties of coding: correspondence, representation, and causality. Brette
grants correspondence but rejects both representation and causality
for the neural code. Although we disagree with his analyses of rep-
resentation and causality, we limit our critique to the latter.

Brette’s argument against causality focuses on two points.
First, coding assumes that the parts of a cognitive system have
separate functions. However, Brette claims that function cannot
be attributed to the brain’s parts. Second, coding implies linear
causality for the brain. Brette argues instead that the brain features
circular, coupled causality.

We argue that functions can be attributed to the parts of brains
and, though brains are dynamical systems with circular causality,
linear causality may still apply. We contend that the rejection of
functions for parts of the brain constitutes a direct attack on the
nature of explanation in cognitive neuroscience. Furthermore,
the causality claim commits a category mistake, as the linear struc-
ture of the concept need not be mimicked by the causal structure
of the brain. Finally, linear approximations are immensely success-
ful in neuroscientific explanations.

Brette first argues against the assignment of decoding and
encoding functions to parts of the brain. Such assignment requires
the analysis of behavior “independently of the system in which the
neurons are embedded” (sect. 4.1, para. 2). But such an analysis
“determines a neural code that … depends neither on the goals
of the animals nor on the effect of spikes on … actions” (sect.
4.1, para. 6). He concludes that the analysis of the brain by decom-
position cannot proceed because “function can be meaningfully
ascribed to the organism as a system, but not… to the components
of this system” (sect. 4.1, para. 6). As such coding functions are
defined independently of the organism’s goals, Brette rejects the
possibility of assigning coding functions to parts of the brain.

Brette’s analysis relies on several misleading claims. First, some
notions of function that do not rely on goals, such as causal role
functions (Cummins 1975; Walsh & Ariew 1996), can be attributed
to parts of organisms. Second, nothing about goals prevents

function ascription to the organism’s parts while permitting func-
tion ascription to the whole organism. As part of a larger system,
the function of the part could share the goal of the organism.
Indeed, this is typical for biology, where functions are often assigned
to organs – such as the circulation of blood for the heart or cleaning
the blood of toxins for the kidneys – even though the goals of these
functions might be for the organism. Third, encoding and decoding
can take into account variables relevant to the organism’s biological
fitness (Rice 2015), and goal-oriented functions are defined and
ascribed with respect to those fitness-relevant variables.

Furthermore, we contend that coding and other analysis-
by-decomposition models are indispensable to explanations of
brain function that integrate with psychology. These models
break down psychological phenomena into subfunctions for
explanation (cf. Dennett 1981; Lycan 1981; Marr 1982a).
Decomposition requires that the psychological properties of sub-
functions be reduced or removed when ascribing those subfunc-
tions to component parts and proceeds recursively with finer
decompositions with fewer psychological properties. At the lowest
levels, functional descriptions are completely bare of psychology,
yielding a reduction to neuroscience. Coding is a perfect example
of such decomposition. The concept of coding implies encoding
and decoding functions with reduced intentional implications,
as those functions are grounded purely in probabilistic terms
(Shannon & Weaver 1963). While message contents still need
to be determined, coding analyses of systems like the brain can
result in parts that carry weaker intentional properties.

Brette next argues that the causality implied by coding does not
apply to the brain. The neural code has linear causality (viz., input
→ encoder → decode → output), whereas the brain possesses cir-
cular, coupled causality. The brain is like a tent, where “different
elements are co-determined…. In addition to the coupling of neu-
rons, the brain itself is coupled to its environment; that is, there is
circular and not linear causality” (sect. 4.4, para. 2). Linear causality
refers to temporally sequential, causally related pairs of states,
whereas tentlike causality refers to simultaneous, jointly causally
related sets of states. In short, the causal structure implied by the
neural code fails to match the causal structure of the brain.

We first note that tentlike causality is consistent with linear cau-
sality. Linear encoding-decoding relationships between each pair of
elements are consistent with an overall picture of a circular, coupled
causal system. Indeed, Brette arguably commits a category mistake
(Ryle 1949): while the conceptual analysis of coding involves a lin-
ear structure (Shannon & Weaver 1963), the implementations of
encoding and decoding functions need not. This category mistake
is further illustrated by Brette’s claim that coding structures imply
the “discrete temporality of an algorithm, … disconnected from
physical time…. But … dynamical systems cannot in general be
mapped to algorithmic descriptions” (sect. 4.4, para. 1). However,
nothing about the coding metaphor entails discrete time, and
one variable may encode another in the sense of carrying
Shannon information without being part of an algorithm.

Brette’s argument also ignores the utility of linearity and discrete
time for analyzing complex systems. Continuous-time systems can
be well approximated by discrete-time systems (Oppenheim &
Schafer 2013), and many equivalences exist between dynamical sys-
tems with circular causality and approximators with iterated linear
causality (e.g., Funahashi et al. 1993; Schäfer & Zimmerman 2007).
Furthermore, systems with tent-like causality can be approximated
by linear causal elements, such as by iteratively computing local
relationships (e.g., Geman & Geman 1984; Roth & Black 2005;
Van Den Oord et al. 2016). Deep learning research uses discrete-
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time architectures to model many forms of continuous behavior as
well (e.g., handwriting [Graves 2013], speech synthesis [Van Den
Oord et al. 2016], video prediction [Srivastava et al. 2015], robotic
control [Levine et al. 2016], humanoid running [Heess et al. 2017]).
Hence, complicated, ethologically relevant behavior can be ana-
lyzed with linear causality and discrete time, and this analysis is
likely to remain a crucial part of building and designing models
of this behavior (Santoro et al. 2019).

From the “coding metaphor” to a
theory of representation

Jonathan Bircha and Joulia Smortchkovab

aDepartment of Philosophy, Logic and Scientific Method, London School of
Economics and Political Science, London WC2A 2AE, United Kingdom and
bFaculty of Philosophy, Radcliffe Humanities, Radcliffe Observatory Quarter,
University of Oxford, Oxford OX2 6GG, United Kingdom.
j.birch2@lse.ac.uk joulia.smortchkova@philosophy.ox.ac.uk
http://personal.lse.ac.uk/birchj1 https://jouliasmortchkova.wordpress.com

doi:10.1017/S0140525X19001456, e220

Abstract

Brette highlights a conceptual problem in contemporary neuro-
science: Loose talk of “coding” sometimes leads to a conflation of
the distinction between representing and merely detecting a
property. The solution is to replace casual talk of “coding”
with an explicit, demanding set of conditions for neural repre-
sentation. Various theories of this general type can be found
in the philosophical literature.

Although Brette’s official target is the “coding metaphor,” he
often seems more broadly sceptical of the idea that patterns of
neural activity can represent properties of the external environ-
ment. His scepticism is motivated by examples where, although
a neuron’s activity is sensitive to an environmental property
and carries correlational information about that property (i.e.,
information in Shannon’s sense), this close dependence is a
fragile artefact of a particular experimental setup, prone to disap-
pear as soon as the subject leaves the lab and re-enters the wider
world.

He gives us several cautionary tales along these lines. For exam-
ple, a single cone cell carries correlational information about wave-
length in a laboratory setup that fixes the intensity of the light, but
the correlation breaks down when the intensity is allowed to vary.
A neuron in the medial superior olive may carry correlational
information about the location of a sound in a laboratory setup
that holds fixed intensity and frequency, but intensity and fre-
quency will not be fixed outside the lab.

Brette argues that the use of the term coding to describe these
fragile correlations is misleading: it obscures their dependence on
a specific laboratory context, suggesting instead that the correla-
tion is robust and general. He also laments a particular kind of
slip: the existence of a fragile correlation leads to talk of coding,
and this leads to an assumption that neural activity represents
the detected property, where “representing” goes beyond merely
“correlating with” and implies semantic content.

The article brings out a real conceptual problem in contempo-
rary neuroscience: representing a feature in the environment is
sometimes considered synonymous with detecting that feature
in a controlled setting. Loose talk of “coding” may be part of
this problem, if it encourages researchers to conflate the distinc-
tion between detection and representation. But is the only alterna-
tive abandoning all talk of representation in the brain?

A different approach is to set out an explicit and demanding
set of conditions under which a pattern of neural activity genu-
inely represents an environmental property. This approach has
been pursued in some depth in the philosophical literature on
mental representation. Although philosophical accounts of men-
tal representation are many and various, none simply identifies
representation with correlation. Typical additional requirements
include the following: (a) the correlation between the detected
feature and the pattern of neural activity is exploited in further
processing; (b) this further processing ends up guiding action
and explaining success; and (c) misrepresentation is possible
(e.g., when neurons fire in the absence of the stimulus they
evolved to detect), and this helps explain unsuccessful action.
These criteria have been discussed under different guises in the
philosophical literature on causal and teleosemantic theories of
mental content (Dretske 1981; Millikan 1984; Neander 2017;
Shea 2018). With a theory of this general type in hand (such as
Shea’s or Neander’s), there is room for a serious empirical debate
about whether a given pattern of neural activity represents the
property it detects.

As an illustrative example, consider mirror neurons: neurons
that fire both during motor action production and during obser-
vation of motor acts in others. These neurons were first discovered
in area F5 and in the inferior parietal lobule of the monkey and
later found in functionally equivalent areas of the human brain
(Fabbri-Destro & Rizzolatti 2008). There is no doubt that their
activity correlates under controlled conditions with properties of
a variety of motor acts, such as grasping movements. They belong
to an information-processing route that involves other brain
regions and they receive information from higher visual areas.
There are also well-documented contextual effects: for example,
some (but not all) neurons that fire in response to a perceived
grasping movement will also fire if the movement is partially
occluded by a screen, but only if the agent previously saw a grasp-
able object hidden behind the screen (Umiltà et al. 2001).

Here we have systematic correlation, inviting casual talk of neu-
rons “coding” for motor acts. Yet it would be hasty to infer that the
neurons represent the properties they detect. There is a long-
running debate about their function in cognition and about what
they represent (Cook et al. 2014). To settle that, we need to address
a package of further questions: Do mirror neurons detect the same
type of property in a variety of experimental settings and with dif-
ferent techniques? Are the correlations with properties of motor
acts exploited in further processing? Do they guide successful
action? Are there cases in which unsuccessful action can be
explained by the mirror neurons misrepresenting a property of a
motor act? As long as clear answers to these questions remain elu-
sive, we should remain agnostic on the question of what features of
the external world mirror neurons represent. However, the fact
these questions are difficult to answer is no reason to doubt the
validity and value of the concept of representation for understand-
ing the brain. On the contrary, the concept of representation is
exactly what we need to formulate and test hypotheses about the
function of mirror neurons. To call for the elimination of the con-
cept would be akin to arguing that, because it is often hard to tell
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whether or not a trait is an adaptation, we should eliminate the
concept of “adaptation” from evolutionary biology.

In sum, Brette correctly highlights the shortcomings of the
“coding metaphor” as a theory of representation in the brain.
His article points to the need to replace fairly loose talk of “cod-
ing” with more precisely articulated concepts of feature detection,
correlation, and representation. The concept of representation is
especially onerous and should be used with great care. But to
eliminate the concept altogether would be throwing out the
baby with the bathwater.

Modest and immodest neural codes:
Can there be modest codes?
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Abstract

We argue that Brette’s arguments, or some variation on them,
work only against the immodest codes imputed by neuroscien-
tists to the signals they study; they do not tell against “modest”
codes, which may be learned by neurons themselves. Still, cau-
tion is warranted: modest neural codes likely lead to only modest
explanatory gains.

Coding in the context of human communication involves using
one set of symbols to stand in for another. A codebook specifies
the appropriate interpretation of symbols in the code by mapping
them to already meaningful representational entities (e.g., words,
letters, pictures). How can this notion be extended to signals
exchanged between simpler senders and receivers that have no
pre-existing linguistic or representational practice?

Brette thinks this cannot be done for neural signals for two
reasons. First, what content is assigned in practice depends as
much on the experimenter’s interpretations and interests as it
does on the system being studied. And second, signalers in the
brain couldn’t possibly have access to the external facts needed
to establish meanings for the symbols that they use.

On the first point, he is absolutely right. Brette’s concerns
about the context-boundedness of neural codes are close kin to
well-known philosophical worries about the meaning of biological
signals: Mere correlations are too permissive to attach unique
contents to signals; what is needed in addition is something like
a normative function for the signal – a target relative to which
its performance may be judged, either by evolution, punishment,
or some other mechanism (Dretske 1994). But it’s commonly
agreed that learning- or evolution-based normative functions
can never be so precise as to allow us to use them to specify per-
fectly determinate, non-disjunctive contents. Some have thought
this fatal for the project of naturalizing representations, but others
argue that whatever indeterminacy we end up with is a feature,

not a bug: Biological function is somewhat indeterminate, and
so too is meaning; there is no further fact of the matter to
worry us (Fodor 1990; Neander 1995; Papineau 2003).

Neuroscientists, meanwhile, sidestep these problems by
directly (if often implicitly) stipulating the relevant functions
and representational targets themselves. For example, as oriented
bars are used in the experiment, oriented bars must be what the
V1 neurons represent. But this is just to build into their experi-
mental design and interpretation what they think the relevant
neural function must be and, thereby, to end up partially stipulat-
ing the meaning they claim to have discovered.

It is Brette’s second point that we want to focus on. If we
insist that neural signals have the same rich semantic properties
as conventional human symbols, then indeed there seems to be
a puzzle as to how neurons could learn such meanings, given
the stark differences between the world as scientists see it and
what neurons themselves have access to. But why must we insist
on such a demanding notion of code? To require an indepen-
dent reservoir of meaning, from which we can draw semantic
labels to stick on neural signals is not just a neuroscientist’s fan-
tasy, but a fantasy tout court. Human language itself has no
such reservoir to appeal to – ultimately, our symbols acquire
meaning by virtue of our conventions and practices with respect
to them. Insofar as action policies can be established among
parts of the brain that need to coordinate their activities with
each other and the outside world, why shouldn’t some neural
signals likewise acquire meanings by virtue of their action
policies?

Brette thinks it is impossible for neural signals to be interpreted
by the brain in the necessary ways. But it seems to us that the key
ingredient is available, at least for a modest notion of encoding.
What is required to develop an effective codebook is just the capac-
ity to learn from ongoing interaction with the world, and as Brette
points out (ironically, in defense of the opposite position), plasticity
is one of the brain’s most prominent and unavoidable characteris-
tics. This is bad if you think that codes must be Platonic and
unchanging, but good if you agree with us that codes can be
learned – and moreover that brains have evolved to do just that.

Philosophers have developed mathematical models showing
how action policies can endow bare causal commerce with mean-
ing (Skyrms 2010). As a consequence, and contra Brette, signals
might well acquire something plausibly meaning-like as a conse-
quence of the functional role they gradually learn to play in the
overall economy of the brain.

For Brette’s blind iguana to develop a code, its neurons need
only learn an action policy exploiting the correlation between
location and sound, built from dynamic feedback (again, a feature
that Brette emphasizes) with the environment. Internal signals
will then be message-like in the sense that they help neurons coor-
dinate their activities with each other to produce coherent
responses to particular environmental stimuli (Rathkopf 2017).

Failures of the policy can then count as failures of representation,
and not merely a breakdown in the causal or correlational structure
of the system. Why? Because the neurons ended up with these action
policies (and not some other ones) by virtue of the success of the
responses thus produced, successes which account for the policies
coming to be stabilized in the first place (Cao 2012; Millikan
1984; Shea 2018). That is the reasoning that leads us to say that
the function of these neurons is to produce the effects of these action
policies, in response to these environmental cues.

Of course human practices with respect to the symbols we
exchange with each other are more flexible and more sophisticated/
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articulated than those among neurons. That flexibility and sophisti-
cation eliminates some indeterminacy in what we mean, but not all.
Neural signals are likely much less determinate, which explains, in
turn, why neuroscientists are both able and tempted to affix their
own interpretations, informed by their explanatory interests.

We sympathize with Brette’s suspicion of strong neural codes
when they require illicitly projecting our human conceptual
scheme into the brain’s inner workings. This doesn’t mean that
we should never attribute contents when convenient, just that
we should be explicit when doing so, avoiding “semantic drift.”
A more modest notion of coding may help us understand the
directedness of the brain’s coordinating activities, while avoiding
anthropocentric contents, because the meanings that arise from
such a learned, action-based code are not ours, but the brain’s.
It would be a mistake to identify those neural contents with the
psychologically salient meanings that we ourselves experience.
Thus, while modest codes may be available, their explanatory pay-
offs are likely to be correspondingly modest, and so either way,
caution about the coding metaphor is warranted.

A sensorimotor alternative to coding
is possible

Paul Cisek

Department of Neuroscience, University of Montréal, Montréal, QC H3C 3J7,
Canada.
paul.cisek@umontreal.ca www.cisek.org/pavel
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Abstract

If we abandon the coding metaphor in favor of models of the full
behavioral loop, we need a way to dissect that loop into under-
standable pieces. I suggest that evolutionary data provide a sol-
ution. We can subdivide behavior into parallel sensorimotor
subsystems by following the phylogenetic history of how those
systems differentiated and specialized during our evolution, lead-
ing to promising ways of re-interpreting neural activity within
the context of its pragmatic role in mediating interaction.

Brette provides a timely critique of the coding metaphor and sug-
gests the alternative lies in models of the full sensorimotor loop
(Ashby 1965; Brooks 1991a; Cisek 1999; Clark 1997; Dewey
1896; Gibson 1979; Hendriks-Jansen 1996; Piaget 1963; Powers
1973a). Indeed, the fundamental task for an organism is not to
encode the environment but to complement its dynamics so the
entire brain-body-environment system flows toward states sup-
porting the organism’s survival and away from those that don’t.

However, the full sensorimotor loop is so complex that under-
standing it all is a daunting task. This is partly why the coding
metaphor is so pervasive – it offers a tempting method to delin-
eate subsystems within the loop, each with defined inputs and
outputs, which can then be studied experimentally. But if splitting
the loop into sensory, motor, and cognitive processes leads to arti-
ficial borders and flawed notions of coding, then how else can we
subdivide the large question of behavior into smaller and more
manageable questions?

One possible answer lies in evolution. The brain evolved through
a long series of modifications that gradually elaborated older systems
into newer ones, and the history of these modifications can be recon-
structed from comparative data. With that history as a guide, one
can develop theories of behavior through a stepwise process that
provides a different way of dissecting behavior (Cisek 2019;
Grossberg 1978). Instead of breaking the sensorimotor loop into
modules such as “perception” and “decision-making,” we can con-
sider how distinctions between control mechanisms emerged in evo-
lution through differentiation and specialization of ancestral systems.

Cisek (2019) briefly summarizes our evolutionary history as the
continuous expansion of the behavioral repertoire by differentiating
control mechanisms and extending them into progressively more
abstract domains (Hendriks-Jansen 1996; Piaget 1963). These
mechanisms operate as sensorimotor loops that ensure the brain-
body-environment system flows toward desirable states. As spikes
are a means of directing that flow, their activity perforce corresponds
to aspects of the world, but also to the organism’s needs and its pol-
icies for meeting those needs. We could call these a “pragmatic rep-
resentation” – activity that doesn’t describe the world but instead
mediates interaction with it. While it may seem inappropriate to
call this a “representation,” the termallows one to consider pragmatic
representations as one end of a continuum at the other end of which
lie “descriptive representations” – which still serve a pragmatic role
but have at least partially detached from internal context. We can
then use these concepts to interpret neural organization.

The mammalian neocortex consists of two sheets: a dorsome-
dial sheet sensitive to topographic space, and a ventrolateral sheet
that is nontopographic (Finlay & Uchiyama 2015). Dorsomedial
neocortex is organized as a set of circuits for controlling different
aspects of the animal’s behavioral repertoire (Graziano 2016; Kaas
& Stepniewska 2016). Each of these contains a map of potential
actions that compete for execution, biased by signals from other
regions such as the basal ganglia and ventrolateral cortical regions,
including temporal and orbitofrontal areas (Cisek & Thura 2018;
Yoo & Hayden 2018). In this view, behavior consists of a constant
competition between potential actions present in the environment
(Cisek 2007; Cisek & Kalaska 2010).

For example, let’s consider the primate dorsal premotor cortex
(PMd), long associated with planning and control of reaching
(Wise 1985). PMd neurons are selective to reach direction, speed,
and amplitude, but their tuning appears to change over time and
with intended speed (Churchland & Shenoy 2007), and they are
modulated by attention (Lebedev & Wise 2001), speed-accuracy
trade-offs (Thura & Cisek 2016), expected probability (Thura &
Cisek 2014), and magnitude of rewards (Pastor-Bernier & Cisek
2011) in a manner that depends on the angular distance between
reach targets. This makes decoding PMd impossible unless one
knows every detail of the experimental context, as Brette describes
for sensory systems. However, if we interpret PMd as part of a
dynamical system that guides the arm to a desirable target
(Churchland et al. 2010), then these findings make good sense.
Before movement, a target must be selected, which can be accom-
plished through competition among recurrently connected neurons
(Cisek 2006; Erlhagen & Schoner 2002; Grossberg 1973) biased by
any factors that bear upon the animal’s choice. In this view, PMd
activity is amplified when monkeys make hasty guesses (Thura &
Cisek 2016) not because it “encodes hastiness,” but because
increased tonic arousal accelerates winner-take-all selection in
recurrent networks (Grossberg 1973). Once movement starts,
these correlations vanish, and activity becomes specific to a given
movement. Thus, PMd behaves just as one would expect from a
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dynamical system for specifying, selecting, and guiding actions,
even if those actions cannot be decoded from its activity.

While dorsomedial neocortex may be specifying competing
potential actions, ventrolateral regions may be detecting cues to
help bias that competition – what ethologists call “key stimuli”
(Hinde 1966). Pragmatically most important is that the activity
helps to select the right thing to do in the world, not to describe
the world. For example, activity related to visual information com-
ing from an apple should be amplified by hunger and reduced by
cues that indicate a predator.

In a few special cases, however, a pragmatic representation may
gradually detach from its context dependence and become increas-
ingly “descriptive.” If interaction is based on exploiting affordances
in the world (Gibson 1979), then it is important that those affor-
dances are often attached to specific objects and places. Thus,
there is a pragmatic role for categorical processes in ventrolateral
cortex that group key stimuli into activity that classifies objects,
especially those of most relevance for a given species’ behavior
(Leopold et al. 2017). And as control is further extended to com-
plex social interactions, so it becomes even more useful to construct
encapsulated “symbols” that can mediate coupling in the agent-
agent system. The words on this page are an example.

In summary, I agree with Brette’s critique of the coding met-
aphor and his suggestion that we replace it with closed-loop sen-
sorimotor control. However, his message could be neglected
simply because abandoning coding may seem like abandoning
the possibility of subdividing the large problem of behavior into
manageable subproblems. Fortunately, evolution provides us
with an alternative approach. Instead of subdividing behavior
into information processing modules resulting from the history
of psychological theories, we can resynthesize those theories by
following a different kind of history: that of our own evolution.
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Abstract

The challenges raised in this article are not with information the-
ory per se, but the assumptions surrounding it. Neuroscience isn’t
sufficiently critical about the appropriate ‘receiver’ or ‘channel’,
focuses on decoding ‘parts’, and often relies on a flawed ‘veridical-
ity’ assumption. If these problematic assumptions were ques-
tioned, information theory could be better directed to help us
understand how the brain works.

We agree that the target article is right in highlighting some of the
sloppiness with which information theory is used in neuroscience,
and that in some cases the term code is used to describe the rela-
tionship between neural activity and sensory input, when actually
the term correlate would be more appropriate. We have previously
argued that neuroscience all too often focuses on what an exper-
imenter can decode from neural activity, rather than testing what
(or whether) the brain might be able to decode from that activity
(de-Wit et al. 2016). Rather than reflecting a fundamental problem
with information theory, however (which always clearly acknowl-
edged the importance of a receiver), we argue this actually reflects
the way in which “coding” is used too loosely as a metaphor.

Information theory always required a careful consideration of
the sender, channel, and receiver. We have previously argued
that neuroscience is often too hasty in assuming that the “chan-
nel” used by the brain to convey information is the firing rate
of neurons when, of course, there are many aspects of neural
activity (synchrony, precise timing) which could also be used as
the channel over which information is conveyed. Again, it is
not the fault of information theory that there is insufficient con-
sideration in neuroimaging regarding the channel by which infor-
mation might be conveyed. This is particularly significant for
strong claims regarding an “absence” of information when
using fMRI, which is completely unable to detect information
that might be conveyed by precise temporal coding.

One of the other weaknesses highlighted in the target article,
namely, a lack of consideration of context effects, also does not
reflect a fundamental problem with information theory, but rather
a limited theoretical framework within visual neuroscience. We
would argue that the Gestalt tradition offers a much clearer
insight into some of the challenges faced in processing sensory
input, but that modern neuroscience largely tries to side-step
these challenges and simply focuses on correlations between
“parts” of the input and neural activity. From a Gestalt perspective
trying to understand how “parts” might be represented in the
brain without also considering how those parts will form together
into “wholes” was obviously going to be a limited enterprise from
the start. Indeed, even seemingly simple “parts” like edges
actually need to considered in context to understand what
information neural signals might be conveying (Kogo &
Wagemans 2013).

Finally, however, the target article does make a stronger more
fundamental argument, that the coding metaphor is wrong
because information theory can account only for the reference
between information states and objective properties of the
world. Here we also agree that perception is not simply a process
of “re-presenting” the “objective” properties of the external world.
This is a bigger challenge for information theory, but we would
argue that this challenge always should have been at the heart
of how information theory was used in neuroscience.

Indeed, the focus on understanding the “goals” of different
information processing systems was clearly articulated as an

22 Commentary/Brette: Is coding a relevant metaphor for the brain?

https://doi.org/10.1017/S0140525X19000049 Published online by Cambridge University Press

https://orcid.org/0000-0003-3048-2875
mailto:lhd26@cam.ac.uk
mailto:Vebjorn.Ekroll@uib.no
mailto:s.schwarzkopf@auckland.ac.nz
mailto:johan.wagemans@kuleuven.be
https://www.psychol.cam.ac.uk/people/lee-de-wit
https://www.psychol.cam.ac.uk/people/lee-de-wit
https://www.uib.no/en/persons/Vebj&oslash;rn.Ekroll
https://www.uib.no/en/persons/Vebj&oslash;rn.Ekroll
https://unidirectory.auckland.ac.nz/people/d-schwarzkopf
https://unidirectory.auckland.ac.nz/people/d-schwarzkopf
http://www.gestaltrevision.be/en/about-us/principal-investigator
http://www.gestaltrevision.be/en/about-us/principal-investigator
https://doi.org/10.1017/S0140525X19000049


important part of Marr’s (1982b) levels of analysis, but is often
neglected in modern neuroscience. Indeed, much neuroscience
starts from an assumption that there is only one version of reality
that can be derived from sensory input, and that the job of the
visual system is simply to “optimally decode” that representation
of reality. A biologically plausible theory of information process-
ing also has to address the goals of the organism (as Marr made
clear) to then think about what kinds of representations might be
useful to achieve those goals. A frog’s visual system may extract
transient motion signals to provide information about food/flies;
a stickleback fish may represent curved contrast boundaries
with specific wavelengths of light to provide information about
competing mates; a human visual system will combine different
views of the same object to provide information that this is the
same object over time. Thus, what different organisms do with
sensory evidence will differ depending on their umwelt (von
Uexküll 1992) and their evolutionary needs, but we would
argue it is still useful to think about those perceptual systems as
representing the information that is useful for (and subjective
to) their goals.

The idea that different representations might be derived from
the same message is not an entirely alien concept for information
theory. The content of an encrypted message, for example, is
dependent on the receiver having the right decryption key.
Thus, decoding is always subjective not only to the content
from the sender, but to the computations performed by the
receiver. Different visual systems will most certainly decode differ-
ent representations from the same input but, clearly framed in
this way, we would argue that information theory is not necessar-
ily the problem here; rather, the problem is many of the assump-
tions that surround its use.

Whether or not information theory will ultimately prove useful
in explaining the activity of the brain is of course an empirical
question, but we would argue that more progress could be
made with information theory if the problem of perception
were conceived more correctly. The target article is right in high-
lighting many of these problematic assumptions, and we agree we
cannot look for neural codes in any sensible way without ques-
tioning these assumptions. But we would question whether the
problem really lies with information theory, or the lack of a psy-
chologically and biologically plausible account of the information
processing challenges our brain has to solve. To paraphrase
Mausfeld (2003), if we don’t put any substantive psychological
theory into the use of information theory in neuroscience, then
we can’t expect any plausible psychological answers from it.

Abandoning the code metaphor is
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Abstract

We agree with Brette’s assessment that the coding metaphor has
become more problematic than helpful for theories of brain and
cognitive functioning. In an effort to aid in constructing an alter-
native, we argue that joining the insights from the dynamical sys-
tems approach with the semiotic framework of C. S. Peirce can
provide a fruitful perspective.

Although some commentators may argue that the code metaphor
has been set up as a strawman by Brette, it takes little effort to cat-
alogue its ubiquitous use in the neurosciences over the past half-
century. The influence of this conceptual framing has been
reinforced by the highly successful technique of recording the
spike trains of individual neurons in response to stimulus presen-
tations. Thus, a correlation between specific stimulus features and
rapid spike production by a specific neuron is presumed to license
the claim that this neuronal activity in some way encodes that
stimulus feature. Yet correlated neural activity of any of the poten-
tially large number of neurons located anywhere along the path
linking the initial registration of the stimulus to a specific neuron
thereby caused to become highly active could likewise be under-
stood as encoding that same stimulus.

It must indeed be the case that signal transduction from neu-
ron to neuron is in some way necessary for brain processes to be
about anything. But the problem with treating correlations or
covariant dynamics as the sufficient basis for explaining cognitive
or even perceptual functions is that the designated aboutness is
only in the eye of the experimenter, not an intrinsic property of
neural processes. But is this even a useful heuristic fiction? We
agree with Brette’s assessment that framing the problem in
these terms has become more problematic than helpful, precisely
because it is often accepted as an explanation when instead it is
merely descriptive.

But having exposed the dangers of employing the code meta-
phor in cognitive neuroscience, we need a more appropriate alter-
native. One standard response is to abandon the concept of
representation altogether and use only the language of covarying
coupled dynamics. But this merely replaces an atomistic mapping
relation with a dynamical mapping relation. In this commentary
we argue that joining the insights provided by a dynamical sys-
tems perspective with the semiotic framework of C. S. Peirce
(Hartshorne & Weiss 1931–1963) can provide a middle path
between the atomistic reductionism of an encoding paradigm
and the “dynamics only” approaches. This is because each of
these frameworks addresses key weaknesses in the other. A dynam-
ical systems perspective can help to ground the notion of interpre-
tation that is framed only in formal terms within semiotic theories,
whereas a semiotic perspective can help to disentangle the distinc-
tive roles of dynamics and form in dynamical systems theories.

A key concept necessary to bridge these frameworks is the con-
cept of constraint. This is a fundamental concept both in dynam-
ical systems theories and in information theory, which provides a
precise analytical tool for characterizing relations of form. Two
seminal thinkers in theoretical biology – Howard Pattee (1973)
and Michael Polanyi (1968) – have argued that focusing on the
relationship between constraints and dynamics is essential if we
are to understand the fundamental logic of living processes.
They each stress that these complementary aspects of a living pro-
cess must at the same time be functionally interdependent but
physically independent.
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Thus, Polanyi (1968) argues that the constraints that organize
the dynamical processes of life are “Irreducible higher principles
[that] are additional to the laws of physics and chemistry”
(p. 160). And similarly, Pattee (1997) points out that “Physical
laws and semiotic controls require disjoint, complementary
modes of conceptualization and description. Laws are global and
inexorable. Controls are local and conditional. Life originated
with semiotic controls” (p. 9).

ForPattee, “semiotic controls” exist in the formof “non-integrable
constraints” that involve a “necessary epistemic cut between the
coherent physical dynamics and its rate-independent semiotic
description.” Importantly, constraints are off-loadable onto artifacts
and their structure/form. This facilitates and is necessary for the
preservation of constraints across potential changes of dynamics.

Although the Peircean semiotic framework is often treated as
though it is a structuralist typology of sign types, it is also com-
patible with a dynamical framework. This is because Peirce under-
stood the interpretation of signs to be constituted by the
production of signs (interpretant production), and because he
also understood mental processes to be sign production in this
same sense and not the locus of some intrinsically meaningful
mental token. In this framework, there is no simple mapping
between a sign vehicle (signifier) and what it refers to (signified).
Rather, sign vehicles are physical forms that mark phases of a pro-
cess of forms-modifying-the-production-of-other-forms. There is
no final form that marks the terminus of the process. Indeed, for
Peirce, what he calls the “final interpretant” is in effect a habit of
interpretant generation, that is, a process organization.

To bring this semiotic analysis into alignment with dynamical
theories it is necessary to understand signs as sources of con-
straint on dynamics and, as Pattee and Polanyi independently rec-
ognized, to understand that semiotic constraints must necessarily
be distinct from the dynamics that they control. Both the code
metaphor and the conception of cognition as mere correlated
dynamics ignore this distinction. But a dynamical semiotic
approach that treats sign vehicles (whether words or constraints
on neural activity) as information structures that control the
dynamics of the production of other sign vehicles can preserve
the concept of representation, which satisfies the requirements
specified by Brette (see also Bickhard 2009), without reducing it
to a mapping relationship. It also provides a context for distin-
guishing modes of semiotic relations and semiotic differentiation
processes in terms of different modes of constraint.

This reframing also illuminates the relationships of this debate
to debates in information theory on the one hand and linguistic
theory on the other.

Information theory, following the pioneering insights of
Claude Shannon (1948), notoriously avoids any effort to deal
with representational content or normative properties, such as
accuracy and truth. And yet it provides a precise formalization
for measuring the information content of a medium or a message
within that medium, for optimally encoding a signal, and for
compensating for noise (though both signal and noise are norma-
tive distinctions). Shannon’s measure of information in a message
is assessed in terms of the uncertainty that is thereby reduced by
virtue of the constraint on its possible entropy. Thus, implicitly, it
treats whatever semiotic value can be provided in a message as a
function of this constraint.

Linguistics has also struggled with the code metaphor (as
reflected in the famous signifier-signified relationship described
by Ferdinand de Saussure [1959]), and critics of this conception
have likewise attempted to reframe “languaging” in purely

correlated dynamical terms. The assumption of a completely
unstructured “arbitrary” correspondence between word sounds
and meanings has led to a dilemma called the symbol grounding
problem by Steven Harnad (1990b), on one hand, and has moti-
vated theories of innate or culturally imposed grammatical prin-
ciples and syntactic rules to explain the complex structure of
languages, on the other. But a reframing of the linguistic struc-
tures in terms of constraints on dynamically grounded communi-
cative processes also resolves these dilemmas (Deacon 2018;
Rączaszek-Leonardi 2009; Rączaszek-Leonardi et al. 2018).
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Abstract

The convincing argument that Brette makes for the neural cod-
ing metaphor as imposing one view of brain behavior can be fur-
ther explained through discourse analysis. Instead of a unified
view, we argue, the coding metaphor’s plasticity, versatility,
and robustness throughout time explain its success and conven-
tionalization to the point that its rhetoric became overlooked.

Brette’s thesis is that one main metaphor, that is, neural coding,
has generated one main narrative, which carries a dominant
standpoint on brain behavior that precludes other views, becom-
ing almost undiscussed. By contrast, a scrutiny of the functioning
of the coding metaphor shows a multipatterned usage of the met-
aphor and a broader metaphorical narrative. This plasticity of the
coding metaphor clarifies why its pervasive and persuasive rhe-
toric spread across time almost invisibly.

Metaphors typically help us to understand complex ideas
through more familiar elements by means of cross-domain map-
ping between “target” and “source” domains (Lakoff & Johnson
1980a). In “the brain is a computer,” for instance, the target is
the brain and the source is the computer; thus, we can imagine
the brain in terms of elements of the computer (i.e., computing
and programming). Both target and source domains are essential:
they shape the metaphor and affect its meaning. Substituting
“brain” with “mind” gives the metaphor “the mind is a com-
puter,” which changes its meaning; and replacing the source
“computer” with “computational machine” gives “the brain is a
computational machine,” which was considered not metaphorical
(Eliasmith 2003). The multiple targets of the “electric switch”
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metaphor applied to epigenetics were considered a sign that the
meaning of epigenetics is unclear and that it is a field in progress
(Stelmach & Nerlich 2015).

In Brette’s examples, instead of a unified view there are both
different targets and sources of the coding metaphor. The targets
vary, referring mainly to “treating information” (e.g., Somjen
1972, in Brette, sect. 1, numbered list, item 2); “perceptions”
(e.g., Pouget et al. 2003, in Brette, sect. 2.1, para. 3); “representa-
tions” (e.g., Bickhard 2009, in Brette, sect. 3.1, para. 7); “neural
activity” (Ashida & Carr 2011, in Brette, sect. 1, numbered list,
item 1); and “brain activity” (Jazayeri & Movshon 2006, in
Brette, sect. 1, numbered list, item 2). The source domain “cod-
ing” is associated with “encoding” (e.g., Brette, sect. 2.4, para. 6)
and “decoding” (e.g., Brette, sect. 4.1, para. 1). A broader meta-
phorical narrative develops, which more generally targets the
ideas of “reading” and “communication,” connecting “coding”
with “information” and with “encoding and decoding messages”
to end with another metaphor about the brain “deciphering”
hieroglyphs (Brette, sect. 5.2, last para.). This broad narrative,
together with the varied targets and sources, indicates that the
different voices in Brette’s examples might stand for varied views
of the coding metaphor instead of a unified one. This plasticity ful-
fills the well-known trait of metaphor in discourse, which needs to
be “robust enough to carry certain implications from one context to
another, but at the same time flexible enough to allow for different
formulations in different contexts” (Hellsten 2003).

For example, the two targets of “neural activity” and “brain
activity” allow for two different meanings. In most of Brette’s
examples of neural coding (e.g., sect. 4.1, para. 1, 2), the coding
metaphor entails a dualistic perspective on brain functioning
that duplicates the agents, e.g., “the brain,” which makes decisions
about stimuli deriving from “populations of neurons.” Here the
coding narrative presents a scenario in which the target “brain
activity” stands for higher hierarchical functions (like “deciding,”
Brette, sect. 4.1, para. 1) than the target “neural activity.” In this
scenario, the neurons encode messages while the brain decodes
them. In a different scenario, instead, the two targets are conflated
because neural activity is a metonymy for brain activity (there are
no “‘little decoders’ inside the head. … Rather, they are embedded
in the synaptic weights between neighboring neurons” (Eliasmith
2003, p. 506). Here, the coding metaphor applies equally to both
targets (i.e., brain and neurons). To get a clearer picture of the
coding narrative, the metaphor should be specified according to
its specific targets and sources in any given context so that the
diversity of the underlying theoretical models, as well as the flex-
ibility of the coding metaphor, can be better appreciated instead
of concealed.

Moreover, the coding metaphor does not stand alone in the
debate. At the core of the coding narrative there are two primary
metaphorical models: “the brain is a computational machine” and
the “information flow” of cognition (Dretske 1981; Searle 1980).
For more than 60 years, these models outlined different views
about cognition and brain functioning according to three main
approaches: symbolicism, which focuses on a formal view of com-
putation via symbols; connectionism, which emphasizes the par-
allelism of neural structures with networks; and dynamicism,
which is an “environmentalist” view pointing to interactive and
time-laden cognitive behaviors (Eliasmith 2003). Outlining
Brette’s criticism on neural coding against these pervasive cogni-
tive metaphorical models frames his position within an older
debate, that is, against a symbolicist and a computational view
of the brain and in line with the dynamic approach.

We now turn to Brette’s second point, that is, regarding the
coding metaphor that establishes one dominant narrative of infor-
mation that prevents imagining alternatives. Lakoff and Johnson
(1980b) clarified the Gestalt mechanism of metaphor: by high-
lighting a given element (such as the computational view of the
brain) other elements necessarily move to the foreground. In
other terms, through metaphor the complexity of a phenomenon
is restricted to show only one perspective at a time (Hellsten
2003). This better explains Brette’s claim on the coding metaphor
for which “the notion of information it carries seems to be the
only possible one.” Over the years, the narrative developed by
the metaphor became conventionalized and established “self‐evi-
dent ways of seeing things, even to the degree where no alterna-
tives are imagined” (Hellsten 2003). It is the plasticity of the
coding metaphor, that is, its robustness through change, that
explains why for more than 60 years it spread and served across
time and debates, allowing for its conventionalization, similarly
to “brain-computer” and “information” metaphors. The pervasive
and persuasive effects of the metaphorical narrative hinder the
fundamental self-correcting trait of science that aims to provide
counterexamples of dominant theories instead of just supporting
them. This is part of the well-known circuit of metaphor in scien-
tific discourse that entails potential risks, from misunderstanding
to hype in communication, calling for more responsibility in lan-
guage use, which should reinforce our vigilance about metaphor
and metaphorical narratives in science (Ball 2011; McLeod &
Nerlich 2018).

Our understanding of neural codes
rests on Shannon’s foundations

Charles R. Gallistel

Rutgers Center for Cognitive Science, Rutgers University, Piscataway, NJ 08854.
galliste@ruccs.rutgers.edu
https://ruccs.rutgers.edu/gallistel-research-interests
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Abstract

Shannon’s theory lays the foundation for understanding the flow
of information from world into brain: There must be a set of
possible messages. Brain structure determines what they are.
Many messages convey quantitative facts (distances, directions,
durations, etc.). It is impossible to consider how neural tissue
processes these numbers without first considering how it
encodes them.

Brette’s treatment of information theory does not do justice to the
role of the receiver in Shannon’s (1948) theory. The three ele-
ments of communication essential to understanding the role of
codes in neural communication are not “correspondence, repre-
sentation, causality”; they are source, signal, and receiver. The
receiver must have a set of possible messages it may receive
about some state of the world (the source) by way of a signal. It
must also have a probability distribution over the set of possible
messages, because Shannon’s formula makes information a prop-
erty of probability distributions. Absent a distribution, there is no
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measure of information. Shannon’s theory establishes the concep-
tual foundation for a scientific understanding of the flow of infor-
mation from the world into and within brains (Gallistel, in press).

Brett fails to ask the first question that must be asked when
applying Shannon’s theory to understanding world-brain com-
munication: What determines the set of possible messages? Not
the world; its role is passive. Brain structure determines the sets
of possible messages; they are all and only the sets of messages
its highly differentiated structures enable it to receive. Sensory
transducers and the signal processing machinery that extracts
information about distal stimuli (things out there in the world)
from the signals generated in those transducers by proximal stim-
uli (the stimuli that act directly on the transducers) determine the
messages a brain can receive.

Color vision provides an illustrative example. The set of mes-
sages the human brain receives about the reflectance spectra of
surfaces is determined by the distinguishable locations in a neural
vector space with three bipolar dimensions. Neither the dimen-
sionality of the vector space nor the bipolarity of the vectors
that encode color is a property of spectra. The brain imposes
this encoding when it creates the three types of cones in the retina
and the multiple stages of signal processing that map from cone
photon catches to the encodings that mediate color percepts. In
setting up three and only three cone types, brain epigenesis estab-
lishes the dimensionality of the space. In setting up the circuitry
for subtracting the signal from one cone type from the signal of
another cone type, it establishes the bipolarity of the representa-
tional structure. The bipolarity creates a distinctive feature of
color perception, the mutual exclusivity of certain color pairs
(red-green and yellow-blue, for example).

Shannon’s source-coding theorem enables us to understand
why the brain imposes this structure on the color messages it
receives: An efficient code must reflect the source statistics. In
the case of color, the source statistics are the statistics of the reflec-
tance spectra of surfaces in the natural world. In principle (and in
a lab equipped with monochromators), the intensity of light at
any wavelength is independent of its intensity at any other, but
in the world, reflectance spectra have massive redundancies,
because the intensity at one wavelength is highly predictive of
the intensities at neighboring wavelengths. This redundancy
greatly reduces the available information. The brain’s way of
encoding color captures a large part of the information available
from the reflectance profiles of surfaces in the natural world
(Boker 1997; Maloney 2003). Vague talk about the “dynamic, cir-
cular, distributed” nature of brain processes does not deliver this
kind of insight.

A computing machine like the brain has four material founda-
tions: its signals, which transmit information from place to place
within the machine: the symbols in its memory, which transmit
information from the past into the future; the machinery for exe-
cuting signal processing operations; and the machinery for exe-
cuting operations on symbols (Gallistel & King 2010). The
machinery for processing the signals and operating on the sym-
bols cannot be designed – if one is building the machine – or
understood – if one is reverse engineering it – until one has
decided on, or come to know, the code or codes by which the
information will be, or is, represented in the signals and the sym-
bols. The foundational role of the code is clear to computer engi-
neers and to those who know the history of molecular biology
(Judson 1980). Its importance to neuroscience is well illustrated
by the Rieke et al. (1997) book, Spikes: Explorations of the
Neural Code, which Brette cites, but otherwise ignores.

Much of the information conveyed by neural signals and
stored in neural memory is quantitative. The physically realized
representatives of quantities in a computing machine (e.g., bit pat-
terns) are what computers scientists understand by numbers. The
brain performs arithmetic operations on the signals and symbols,
which is one good reason for conceptualizing brain function in
computational terms.

An example of neural arithmetic is the time-compensated sun
compass. Animals learn and store in memory the sun’s azimuth
as a function of the time of day (Dyer & Dickinson 1996; von
Frisch 1967; von Frisch & Lindauer 1954). They can then steer
by the sun while flying a compass bearing to a food source
(whose location may have been obtained the previous day by fol-
lowing the dance of another forager [Menzel et al. 2011]). To
enable that behavior, their brain must subtract the current solar
azimuth from the desired compass course to obtain the current
solar bearing of the source, the angle at which they must hold
the sun’s image while flying to their destination.

Understanding the neural machinery that performs angular
subtraction requires understanding how the brain encodes angular
quantity (Gallistel 2018). Proponents of dynamical system theory
do not seem prepared to consider how the brain does the arith-
metic required in navigating. This refusal frees them from the
need to ponder how it encodes quantities (Gallistel 2017; 2018).

An understanding of the brain’s codes is as essential to neuro-
science as an understanding of the genetic code is to biology.
Shannon’s theory is now, and is likely to remain, the foundation
of that understanding (cf. Qian & Zhang 2019; Stevens 2018).

The origin of the coding metaphor
in neuroscience

Justin Garson

Department of Philosophy, Hunter College of the City University of New York,
New York, NY 10065.
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doi:10.1017/S0140525X19001316, e227

Abstract

To assess Brette’s proposal to expunge “coding” from the neuro-
scientist’s lexicon, we must consider its origins. The coding met-
aphor is due largely to British nerve physiologist Edgar Adrian. I
suggest two ways that the coding metaphor fueled his research. I
conclude that the debate today should not be about the “truth”
of the metaphor but about its continuing utility.

Brette, in his provocative article, gives a number of arguments for
his proposal that we expunge the coding metaphor from the neu-
roscientist’s lexicon. To properly evaluate his proposal, however,
we should consider the metaphor’s origins. When did neuroscien-
tists begin describing the neural response to a stimulus as a coded
message? Why did they begin using that metaphor? What benefit,
if any, did they derive from using the metaphor?

I have investigated these questions extensively, and concluded
that the British nerve physiologist Edgar Douglas Adrian (1889–
1977) deserves most of the credit for introducing the metaphor
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(Garson 2015). Adrian’s most notable accomplishment was his
recording, in 1925, of the action potential of a single sensory neu-
ron (Adrian and Zotterman 1926). This was the achievement for
which he was awarded the Nobel Prize in Physiology and
Medicine in 1932. Additionally, he formulated what he under-
stood to be the basic laws governing the action potential: the
all-or-none principle, rate coding, and adaptation (see Rieke
et al. 1997, pp. 3–8). Following his achievement, he spent the
next decade attempting to demonstrate the universality of these
basic laws across different neuron types and in different species.

The year 1925 marked another turning point in Adrian’s work.
From that time onward, his work was permeated with coding
metaphors. He described the neural response in terms of the
transmission of messages, signals, and codes. In a revealing anal-
ogy, he noted that these messages are “scarcely more complex
than a succession of dots in the Morse Code” (Adrian 1932,
p. 12). In his use of linguistic metaphors he distinguished himself
from his contemporaries, such as Charles Sherrington, Herbert
Gasser, and Alan Hodgkin, who, at the time, preferred the color-
less language of “impulses,” “reactions,” “activity,” and “distur-
bances” to describe the neural response.

This is not to say that nobody before Adrian had described the
nervous system as a communication device. That analogy dates
back to the middle of the nineteenth century, when pioneers
like Hermann Helmholtz and Emil du Bois-Reymond, in their
popular writings, compared the nerves to a telegraph system
that shuttles news and instructions from the body to the brain
and back. Adrian’s use, however, was quite distinctive. Unlike
his predecessors, he attributed a highly specific, language-like
code to the neuron. For Adrian, neural responses were, as
Brette puts it, “hieroglyphs to be deciphered” (last line of text).

We can speculate on the historical, sociological, and techno-
logical context that might have prompted Adrian to think about
the neuron as a coding device. I have argued that the widespread
military use of radio communication during World War I played
a role in this terminological innovation. But that is hardly the
issue here. The issue here is this: Did the coding metaphor actu-
ally benefit Adrian’s research? Did it meaningfully advance neu-
roscience? Was it, in its time, a scientifically fruitful metaphor?

I think the answer to these questions is a decisive “yes.” The
metaphor let Adrian formulate and test questions that had never
been systematically posed before. There were at least two fields
of investigation that the coding metaphor opened for him. First,
it allowed Adrian to shift his attention away from the mechanistic
details of the action potential (e.g., how the impulse propagates
through narcotized nerve) and toward the abstract correspondences
between the pattern of sensory stimuli and the neuron’s patterned
response (e.g., how a rapidly changing stimulus modulates the
neural response). By posing questions about these abstract corre-
spondences, Adrian was able to gather evidence for what later
became known as “rate coding”: For some sensory neurons,
spike frequency approximates an exponential function of the
intensity of the stimulus. It is hard to see how one would even for-
mulate such questions without using the coding metaphor.

Second, the metaphor allowed him to pose questions about the
purpose or end of various “coding” schemes. Put differently, it
allowed him to reason teleologically about the brain. Why does
the brain use rate coding, rather than some other coding principle,
to represent rapidly changing stimuli? Consider, for example, the
principle of adaptation, which describes how some sensory neu-
rons eventually stop responding to an unchanging stimulus. For
Adrian, this principle could be explained teleologically, as a

bulwark against the pointless, and metabolically costly, produc-
tion of redundant messages (Adrian 1928, p. 99). Some biologists
bristle at the mention of “teleology,” but the simple fact is that tel-
eology cannot be eliminated from biology (Garson 2019). Every
time we ask a question about the function of a trait (what is the
function of zebra stripes?) we are engaged in teleological reason-
ing. Moreover, such reasoning is usually harmless, as teleological
questions can often be restated as respectable evolutionary ques-
tions (why did zebra stripes evolve?), rather than questions
about the intentions of a divine being.

I have discussed the origins of the coding metaphor, but how
does this bear on Brette’s proposal to expunge “coding” from neu-
roscience? For everything I have said here, Brette might still be
correct that the coding metaphor is otiose. He might insist that,
while the metaphor might have been useful in the early days of
the neurosciences, it is no longer so. Because I am a philosopher
and not a neuroscientist, I am hardly in a position to survey the
current state of the science and make a pronouncement of such
scope. Still, thinking about the origins of the coding metaphor
can helpfully frame what I expect to be an ongoing and lively
debate. It seems to me that the question of eliminating “coding”
should not be a referendum on the truth of the coding metaphor,
but on its utility. In other words, in assessing Brette’s proposal, we
should not get bogged down wondering whether the brain “really”
encodes information about the world. It does not. It is a meta-
phor; like all metaphors, it gives us a partial and imperfect picture
of what the brain is doing. The questions, rather, are these: Is the
metaphor still useful for us, today? Does the usefulness of the
metaphor outweigh its inaccurate connotations? Or, has it out-
lived its usefulness entirely?

From mental representations to
neural codes: A multilevel approach
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Abstract

Representation and computation are the best tools we have for
explaining intelligent behavior. In our program, we explore the
space of representations present in the mind by constraining
them to explain data at multiple levels of analysis, from behavioral
patterns to neural activity. We argue that this integrated program
assuages Brette’s worries about the study of the neural code.

We advocate an approach that grounds claims about neural codes
in evidence about the brain and mind. Under this approach, the
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search for neural representations begins with an understanding of
the task that an organism solves, in the spirit of rational analysis
(Anderson 1989). The next step is to propose computational
models capable of solving this task. These models constitute can-
didate hypotheses for the representations and computations
employed within the brain, allowing us to establish principled
constraints on possible neural codes and give strict satisfaction
conditions for their implementation.

This program portrays brains as representational and computa-
tional devices. Brette’s arguments challenge this foundational
idea. We address his arguments on three fronts: (1) the indetermi-
nacy of claims about the neural code, (2) the ability of neural net-
works and dynamical systems to instantiate structured
representations, and (3) the historical success of the search for
representations in the brain.

First, Brette argues that many studies of neural codes fail to
account for relevant contextual features in ecological behaviors.
Brette criticizes studies of neural codes driving sound localization,
for example, which neglect how contextual features such as sound
amplitude interact with frequency. Brette draws the conclusion
that neuroscientific evidence underconstrains the search for the
contents of neural codes. But this search can be helpfully con-
strained by the computational theories introduced above. As
accounts of ecological behavior, computational models both gen-
erate and constrain our hypotheses about the environmental fea-
tures relevant for a given task. Such research puts us in a position
to make educated guesses as to the environmental features that are
likely to be represented in neural codes.

For example, computational models of vision and audition
describe how ecological tasks (e.g., object recognition) are carried
out via computational mechanisms. These models demonstrate
both why representations with particular content are present in
the mind and how they are used to produce behavior. After
being empirically tested against observed organism behavior,
their internal representations can be used to guide the search
for neural codes (see, e.g., Rajalingham et al. 2018; Młynarski &
McDermott 2018). This constraint – that neural codes must
implement the empirically validated representations of computa-
tional models – greatly reduces an otherwise open-ended and
intractable search for neural representations.

Second, computational-level models can help us narrow down
candidate neural representations, but such a search will be fruitful
only if representations can actually be realized in neural circuitry.
Brette argues that this cannot be done. We think that the evidence
suggests otherwise: Both connectionist models and neural dynami-
cal systems are capable of implementing structured representations.

Brette worries that neural codes composed of cell assemblies
can encode only “objects or features to be related, but not the rela-
tions between them,” and points to connectionist models as evi-
dence. But connectionist researchers have worked to address
this issue and have adapted models to learn relational structure,
since almost the inception of the field (McClelland 2003;
Smolensky & Legendre 2006). Indeed, modern neural networks
continue to challenge and broaden our understanding of the
kinds of relational structures they can learn to represent when
designed and trained carefully: from abstract, hierarchical syntac-
tic dependencies in natural language (Gulordava et al. 2018), to
dynamics in intuitive physical systems (Fragkiadaki 2016;
Chang 2017), to complex relationships between objects in visual
scenes (Hudson and Manning 2018; Johnson 2017; Yi 2018).
The need to represent complex structures can and should drive
us to think creatively about how cell assemblies can instantiate

them, rather than abandon the project because of arguments
from inconceivability leveled by its detractors.

Brette also alleges that “dynamical systems cannot in general
be mapped to algorithmic descriptions” (sect. 4.1, para. 1). But
recent theoretical work offers paradigms using recurrent networks
to do precisely that (Eliasmith and Anderson 2004;
Mastrogiuseppe and Ostojic 2018). Concurrently, additional
work has suggested that it is possible to map latent states of
behavior to dimensions of neural activation (Afraz and Jazayeri
2017) and verified predictions about the encoding of more com-
plex tasks in higher-dimensional spaces (Gao et al. 2017). Once
we accept that population-level neural dynamics provides a sub-
strate for representations, it makes sense to look for algorithmic
transformations of those representations, that is, a code. All
signs indicate that a major goal of neuroscience in the near future
will be identifying context-invariant subspaces of neural activity
that act as such a code (Saxena and Cunningham 2019).

Finally, this integrated approach – one that begins by under-
standing the task, proposes algorithms to compute it, and finds its
representations in the brain – is exemplified by research on temporal
difference learning. Temporal difference is a reinforcement learning
algorithm that requires representing the current reward and the pre-
dictive value of the current state, and computing reward prediction
error. Early research on the neural implementation of reinforcement
learning showed that reward prediction error correlated with phasic
dopamine signals (Montague 1996; Schulz 1997). Correlational evi-
dence, as Brette is quick to point out, does not imply neural coding.
But research on temporal difference learning in the brain has gone
far beyond correlation. This single representational model has
yielded continuous empirical successes: predicting neural responses,
both quantitatively and qualitatively (Niv 2009), causally manipulat-
ing neural responses and observing predicted behaviors (Steinberg
2013), and discovering the mechanisms responsible for key symp-
toms of Parkinson’s disease (Frank 2004). If such representations
are not actually instantiated in the brain, this streak of results span-
ning more than two decades would be nothing short of a miracle.

Webelieve that principled constraints canbe placedon the search
for neural codes. These constraints come from integrating multiple
levels of analysis, including an understanding of the task being
solved, a hypothesis space of algorithms capable of solving it, and
behavioral and neuroscientific evidence to decide between candidate
hypotheses. We’ve highlighted work showing how structured repre-
sentations can be implemented in connectionist and dynamical
systems models. We’ve described one strikingly successful search
for neural codes in the brain. Together, these successes suggest
that Brette’s skepticism is unfounded.This integrated search forneu-
ral codes remains the best framework for understanding the brain.
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Abstract

Brains enjoy a bodily life. Therefore animals are subjects with a
point of view. Yet, coding betrays an anthropomorphic bias: we
can, therefore they must. Here I propose a reformulation of
Brette’s question that emphasizes organismic perception, cau-
tioning for misinterpretations based on external ideal-observer
accounts. Theoretical ethology allows computational neurosci-
ence to understand brains from the perspective of their owners.

An apparently innocuous word in Brette’s question is a major
source of confusion but also contains a great deal of the answer.
Is coding a relevant metaphor for “the” brain? Yes and no. It
depends on whose brain we are talking about. For the scientist
studying the animal, coding is certainly relevant (at least, as the
ubiquity of such figure of speech attests in current neuroscience).
But, insofar as we are interested in the animal and its brain, the
answer is likely no. The mantra “stimulate, record, correlate”
misses the point of the organism. It is for us, by us. That the
experimenter’s model can decode the signal does not mean that
the brain can or does. The information necessary to make sense
of the data in terms of coding is seldom available to the organism,
upon which coding is predicated. This creates a can-ought prob-
lem: a description of what the neuroscientist can do prescribes
what the animal must do. Such implicit tension pervades most
of the disagreements that Brette’s question shall spur. The prob-
lem, I believe, is deeper than coding: There is a conflict of interests
between the scientist and the laboratory animal.

Biology is the science of living beings. Organisms are centers
of action. As such, perspective matters. To be an organism is to
have a point of view. All animals share a common world but
not all animals have a world in common. Each living organism
has its own Umwelt (meaningful environment), which is different
than its Umgebung (physical surroundings): A tree is a tree, but a
tree for an ant has little to do with a tree for a carpenter (Uexküll
1926). What is meaningful for an organism – or even what is pos-
sibly apprehensible – need not be meaningful for the scientist
studying it, and vice versa (a concrete and pervasive example:
stimuli are more the experimenter’s output than the animal’s
input). The use of the definite article (“the brain”) or the indefi-
nite pronoun (“one finds”) is so delicate in biology. It easily blurs
the subject (I? you? the mouse? what mouse?), unbinding grave
conflations and misleading thought and interpretation.
Eloquently said, “Hedgehogs as such do not cross roads (…).
On the contrary, it is man-made roads that cross the hedgehog’s
millieu” (Canguilhem 2008, p. 22). Rather than being an excep-
tion, coding illustrates such misattribution. Paraphrasing, we
could say that cat brains as such do not encode stripes, but it is
stripes that we decode from the cat’s brain. A clash of Umwelts
(Umwelten, in proper German) is going on in our laboratories.

The notion of Umwelt has no place in physics; it does not vio-
late physics, but it is not reducible to physics either. Living beings
inhabit a world of meaning that includes but exceeds the physical
world of masses and forces, and even more so the mathematical
world of zeros and ones. The appreciation of the uniqueness of
biology discords with a cornerstone of the scientific approach:
objectivity. Of course we always observe reality from a viewpoint,
explicitly or implicitly chosen. But it is ultimately deemed irrele-
vant. Objectivity, then, is the pretense of self-exclusion from the
phenomenon under study. The observer vanishes in classical
physics (also in biology). By means of a representation of things

that ultimately does not depend on the reference system, an
observer-independent reality is erected. Yet, “[o]n the strength
of the immediate testimony of our bodies we are able to say
what no disembodied onlooker would have a cause for saying:
(…) the point of life itself: its being self-centered individuality”
(Jonas 2001, p. 79). From subjectivity we have prodigiously
built an objectivity that can dispense with the former. However,
upon inspection, objectivity becomes a particular kind of inter-
subjective consensus. This is biology’s scotoma: We are subjects
whose objects of study are subjects too.

In behavioral neuroscience there is an observer-observed gap.
Physiology aspires to study the inner workings (brain) of an organ-
ism from the outside (scientist’s perspective); ethology strives to
understand the outer happenings (behavior) from the inside (ani-
mal’s perspective). Isn’t the neurophysiologist’s decentering a
covert self-centering? Sticking electrodes is not sufficient to know
what it is like to be a rat. But, how to look through the animal’s
eyes? A cute example is Turtle Geometry: it actually matters if a tur-
tle traces a circle by solving the x2 + y2 = r2 equation, or by iterating
a “run and turn” procedure. Both are mathematically equivalent
(from an external ideal observer, perhaps indistinguishable, even
irrelevant) but biologically they are not the same. There is much
to gain from discovering “the range of complicated things a turtle
can do in terms of the simplest things it knows” (diSessa & Abelson
1981, p. 3). What is it to make sense from the animal’s perspective
when it does not do so the way we do? Such is the paradox: The
Umgebung, the objective world of scientists, can be part of our
human Umwelt (we do not feel neutrinos crossing our bodies,
but we can detect them in bubble chambers), but it collides with
the Umwelt of the animal, which is never an Umgebung.
Neuroscientists yearn for neural codes; the animal has no clue.

Neuro-ethology is actually meta-engineering: our problem is to
solve how animals solve their problems – to scientifically empathize
with each creature. This entails a revision of Bernard’s (1957, p. 103)
foundational words: The scientist “no longer hears the cry of ani-
mals, he no longer sees the blood that flows, he sees only his idea
and perceives only organisms concealing problems which he intends
to solve.” By reformulating Brette’s question, my intention here has
been to emphasize that computational neuroscience can benefit
from the insights of theoretical ethology to transform its anthropo-
morphic bias. To crack codes, “it would suffice that we be angels.
But to do biology, even with the aid of intelligence, we sometimes
need to feel like beasts ourselves” (Canguilhem 2008, p. xx). The
question then is not so much whether coding is relevant or
wrong, but to what extent it is misleading. We must then ask:
Whose brain is the coding metaphor relevant for?
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Abstract

The long-enduring coding metaphor is deemed problematic
because it imbues correlational evidence with causal power. In
neuroscience, most research is correlational or conditionally cor-
relational; this research, in aggregate, informs causal inference.
Rather than prescribing semantics used in correlational studies,
it would be useful for neuroscientists to focus on a constructive
syntax to guide principled causal inference.

In his article, Brette argues that the “coding metaphor” in neuro-
science is inappropriate and misleading because it leads to false
interpretations of causality. Brette states that “by postulating
that neural codes are representations, we imply that these codes
have a causal impact on the brain” (sect. 4.2, para. 1). However,
this is implausible since “[in the] technical sense … the word
code is used as a synonym for correlate” (sect. 1, para. 4).
Restated, the coding metaphor is problematic because it can
imply causal function where sufficient evidence to support causal
inference does not exist. By relying on this criticism, Brette com-
mits to a broader error: He interprets that isolated correlations,
conditional correlations, and statistical inferences between neural
activity and function support or refute causal inference. Isolated
pieces of correlational or statistical evidence are insufficient to
demonstrate a causal relationship between neural activity and
functions, perceptions, or behaviors, and should be considered
in aggregate to form the basis of causal inference. For this reason,
it would be helpful for those seeking to design and interpret
experiments to adopt a constructive framework for causal infer-
ence in neuroscience.

The correlational nature of individual studies in neuroscience
has been explicit since the dawn of electrophysiology, when
Caton (1875) stated that “[t]he electric currents of grey matter
appear to have a relation to its functions.” Contemporary studies
of neural activity and function are still strictly correlational, despite
advances in recording and analysis methods. Traditional statistical
techniques are agnostic to causal relationships between variables
and thus cannot determine causality (Pearl et al. 2016).
Experimental interventions that support causal inferences between
brain (dys-)function and behavior have long been sought (Dodds
1878; Ferrier 1886). However, even studies that use modern ver-
sions of these “causal” techniques (optogenetic, chemogenetic, elec-
trical, and pharmacological modulation) provide correlations
conditioned on perturbation. Causal inferences on the basis of sin-
gle experimental results should be tempered because of plausible
confounding and off-target effects (Jazayeri & Afraz 2017).

Insights from other fields provide a clear path toward causal
inference with individually circumstantial pieces of evidence. The
most influential perspective may be that of medical statistician
Austin Bradford Hill, who described nine “viewpoints” that guide
causal inference in epidemiology when randomized controlled tri-
als are not possible (Hill 1965; see also Phillips & Goodman 2004).
Here these viewpoints are adapted to form a Bradford Hill-inspired
framework for causal inference in neuroscience, where aggregated
observational and interventional studies support causal inference:

1. Correlational evidence: Relationships between measurements
of neural activity and experimenter-defined responses
(whether in downstream neural activity, other physiological
or behavioral outcomes). These relationships can be character-
ized through a variety of forward and backward modeling tech-
niques (see, e.g., Anderson 2019; Baayen et al. 2008; Marinescu
et al. 2018; Rougier 2019; Saxena and Cunningham 2019; Song
et al. 2013; Wang and Yang 2016).

i. Strength: Does the neural activity explain a reasonable
amount of variability in the response?

ii. Consistency: Does the neural activity reliably produce the
outcome?

iii. Specificity: Is the observed relationship between neural
activity response unique or one of a vast array of poten-
tially confounding correlations?

iv. Relationship curve: Is there a clear geometric relationship
between neural activity and the response?

v. Temporality: Does the neural activity consistently pre-
cede the response in time?

vi. Mechanistic plausibility: Is there a plausible mechanism
whereby neural activity may produce response?

2. Conditionally correlational evidence: The effect of direct or
indirect modulation of neural activity on experimenter-defined
outcomes. Modulation includes loss-of-function and
gain-of-function “causal” manipulations that are under control
of the experimenter.

i. Strength: Does modulation of neural activity explain a
reasonable amount of variability in the response?

ii. Consistency: Does modulation of neural activity reliably
produce the predicted outcome?

iii. Specificity:Doesmodulation of neural activity lead to a pre-
scribed outcome or one of a vast array of potential effects?

iv. Relationship curve: Is there a predictable and replicable
geometric relationship between modulation of neural
activity and the response?

v. Temporality: Does the predicted effect follow the per-
turbed neural activity at a reasonable delay?

vi. Coherence: Is the predicted effect of modulation of neu-
ral activity coherent with other strong hypotheses?

vii. Analogy: Does a modulation of closely related neural
activity patterns produce similar effects?

With this framework in mind, one should reconsider Brette’s claims
related to neural codes and causal inference. For example, Brette
states that “BOLD (blood oxygen level-dependent) signal …
encodes visual signals in the same technical sense that the firing
of neurons encodes visual signals” (sect. 4.2, para. 2). Functional
magnetic resonance imaging and electrophysiology studies are
both correlational, but Brette’s assertion is deeply flawed in impor-
tant ways. In fMRI and electrophysiology, fundamentally different
biological activity is associated with stimulus or behavioral response
of interest (Goense and Logothetis 2008). Thus, the mechanistic
plausibility of a link between neural activity and the experimental
condition differs. Furthermore, the spatial specificity and temporal-
ity of visually evoked activity cannot be similarly addressed across
techniques (Sejnowski et al. 2014). These factors are critically
important in guiding causal inference, and therefore, each technique
uniquely contributes toward causal inference. To suggest that BOLD
signals and action potentials encode visual stimuli in the same tech-
nical sense is a conspicuous oversimplification. In this example, the
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proposed framework for causal inference aids in articulating the rel-
ative strengths and weaknesses of different experimental approaches.
Furthermore, it provides guidelines for making causal inferences by
aggregating individual pieces of evidence that are insufficient in
isolation.

Regarding the causal relationship between the physical world
and thought, Haugeland (1985, p. 106) stated, “If you take care of
the syntax, the semantics will take care of itself.” This axiom pre-
sents a useful analogy: with a proper framework to describe the syn-
tax (rules and criteria) of causal inference in neuroscience, Brette’s
claim – the coding metaphor perpetuates inappropriate causal infer-
ence – is reduced to an innocuous semantic debate. His further
claim that metaphors perpetuate “semantic drift” (sects. 2.1, 2.2,
and 3.1) should be addressed not by further semantic prescriptions,
but by adhering to reasoned syntax. These semantic debates distract
from the ultimate goal of discovering robust, causal relationships
between the many levels of organization in the brain and behavior.

Acknowledgments. I thank David L. Barack, Matthew L. Leavitt, and Rishi
Rajalingham for criticism and comments.
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Abstract

Brette criticizes the notion of neural coding because it seems to
entail that neural signals need to “decoded” by or for some
receiver in the head. If that were so, then neural coding would
indeed be homuncular (Brette calls it “dualistic”), requiring an
entity to decipher the code. But I think Brette’s plea to think
instead in terms of complex, interactive causal throughput is
preaching to the converted. Turing (not Shannon) has already
shown the way. In any case, the metaphor of neural coding
has little to do with the symbol grounding problem.

Both Shannon’s (1948) information andTuring’s (1936) computation
are important in cognitive science. Shannon is concerned with the
faithfulness of signal transmission in communication, and Turing
is concerned with what algorithms can do. Cognitive science is con-
cerned with what organisms (hence their brains) can do, and how.

Cells (including neurons) transmit signals. This is already true
in plants (Baluska & Mancuso 2009) and of course also in
machines. And organisms certainly do things. Which of the things
organisms do are “cognitive” and which are “vegetative” is mostly
just a definitional matter, but it is probably overstretching the
notion to say that paramecia or hearts are “cognizing.” The exam-
ples are nevertheless instructive for cognitive science, because par-
amecia, hearts, and organisms with brains are all systems that can
do things. So are computers and robots, for that matter. Hence
finding a causal explanation of how one of them does what it
does may provide useful lessons for explaining the others.

Let’s start with the heart, an example used by Brette. What
does the heart do? It pumps blood. No metaphors. The heart lit-
erally pumps blood, and cardiac science has successfully
reverse-engineered the heart (to a close approximation). We
know how the heart does it – and part of the proof that we
know how is that we can apply and test our hypotheses about
how the heart pumps blood by building a synthetic model of a
heart, plugging it into the heart’s inputs and outputs, and testing
whether it can pump blood. If it can, the artificial heart passes the
“Turing Test” for cardiac function.

So what does the (human) brain (and body) pump? Human
behavior. Or, rather, human behavioral capacity. What people
can do. Let’s forget about what portion of that capacity counts
as cognitive and what proportion is just vegetative (like cardiac
function): It all consists of the capacity of a (living) system to
do certain things. Now the challenge is to explain how.

Turing (1950) provided the ground rules: You have an explana-
tion if you can design a system that can do everything a human
being can do, indistinguishably – to a human – from a human. If
your interest is just in “cognitive” capacities, then just generate
those, ignoring the vegetative capacities (or at least those that are
not essential for generating the cognitive capacities). Cognition,
like Justice Potter Stewart’s pornography, may be hard to define,
but we know it when we see it. And the capacity to interact with
the dynamicworld of objects and events and their properties (includ-
ing words describing those objects, events, and properties) indistin-
guishably from the way humans do is surely cognitive, if anything is.

There is one more thing: Humans don’t just do: They also feel.
It feels like something, to a human, to be seeing and doing what
humans can see and do. But the capacity to feel eludes Turing’s
program for cognitive science. It’s something our brains pump
invisibly. Turing (1950) accordingly brackets it. But it keeps mak-
ing disruptive peekaboo appearances in our attempts to
reverse-engineer cognition, as we shall see.

One of the main hypotheses about how the brain pumps cog-
nitive capacity is via computation, Turing computation.
Computation is the manipulation of “symbols” (arbitrary formal
objects) on the basis of rules operating only on the symbols’
shapes (“syntax”), not their meanings (“semantics”), to generate
certain symbolic outputs from certain symbolic inputs. That’s
what algorithms do. (An intuitive example is the rule we all
learned in school for extracting the roots of quadratic questions:
“minus b plus or minus the square root of ….”)

Algorithms are like recipes: apply them to the symbolic ingre-
dients and you can explain how to bake a symbolic cake.
Computation is very powerful; just about everything in the uni-
verse can be encoded symbolically and explained computationally,
including cardiac function. The right algorithm can pump sym-
bolic blood. And you can show that the algorithm really works
by applying it to build a synthetic heart that really passes the car-
diac Turing Test (TT) and pumps blood. But to do that, you have
to “interpret” the symbolic code and implement it in material
form, just as a formal recipe for a cake needs to be implemented
in material form, using the real ingredients referred to by the sym-
bols, to generate a real cake.

So, despite its enormous power, computation cannot be all there
is to cognition. Searle (1980) showed, famously (in this journal),
that a computer is not cognizing even if it can pass the TT because
Searle too could pass the Chinese TT by executing the symbolic
code without understanding a word of Chinese. Why can’t he
understand? Because there is no connection between the symbols
in the code and the objects in the world that they are interpretable
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as being about. Interpretable by whom? The user or the executor of
the code. But the meaning itself is not in the code.

That is the symbol grounding problem (Harnad 2006). Simple
solution: The TT must not be merely symbolic (verbal). It must
test not only what the candidate can say, but also all the other
things a human cognizer can do in interacting with the objects
in the world that the verbal TT is merely chatting about. The can-
didate has to be a robot (Harnad 2009). And a Turing robot is not
just a computer, manipulating formal symbols; it is a dynamical
system, able to interact with the objects in the world. Its symbols
are grounded in its capacity to identify and interact with their ref-
erents indistinguishably from the way we do.

Now to neural “codes”: Brette is right that it would be homun-
cular (although he calls it “dualistic”) to think of input to sensory
receptors – activity along sensory pathways to sensory and sensor-
imotor regions in the brain and then onward to motor regions
and pathways to motor effectors – as encoded signals being trans-
mitted in order to be decoded by a receiver, as in telegraphic com-
munication of Morse code from a sender to a receiver. There is no
homunculus on the receiving end. It’s all just a dynamic causal
process constituting the organism’s capacity to do what it can
do, some of it output in response to immediate sensory input,
some of it generated by endogenous processes.

But it is harmless to call the neural activity along sensory input
pathways a “neural code.” Shannon’s communication theory is
about the end-to-end fidelity of signal transmission (of analog or
digital signals); it is not about cryptography, let alone about the
interpretation of computational algorithms or of natural language.
To show that there is a substantive issue involved here, Brette
would have to show that there is a nontrivial chunk of performance
capacity (even the detection of interaural time differences) that can-
not be explained causally if we insist on calling the activity occur-
ring along the sensory input pathways a “neural code.” (Brette’s
preferred notion of “neural representations,” by the way, sounds
just as homuncular to me as the idea of neural codes: “representa-
tion of what, to whom?” Ditto for “internal model.”)

Let me close with Brette’s fleeting mention of “percepts.” This
is an instance of the “peekaboo” influence of homuncular think-
ing. Psychophysics, too, can only study what the organism does
(input/output), not whether or how it feels like something to do
it. Sensorimotor activity is only perceptual if it is felt. I don’t
doubt that it feels like something to detect an interaural time dif-
ference, just as it feels like something to understand Chinese. But
although symbol grounding and Turing-testing may be “easy” (in
principle, if not in practice), explaining how and why organisms
feel rather than just do is and remains notoriously hard.

Neural code: Another breach in the
wall?
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Abstract

Brette presents arguments that query the existence of the neural
code. However, he has neglected certain evidence that could be
viewed as proof that a neural code operates in the brain. Albeit
these proofs show a link between neural activity and cognition,
we discuss why they fail to demonstrate the existence of an
invariant neural code.

By questioning the existence of the neural code, Romain Brette
opens again a strong debate between representational views of
the brain (cognitivism and computationalism) and sensorimo-
tor/enaction theories (O’Regan and Noë 2001; Varela et al.
1991), his preference being the latter. According to his view, all
cognitive functions, particularly action and perception, are viewed
as means to interact with the world, without the need to build
internal representations of it. Neural activity during perception
should be viewed as the result of the organism’s interaction
with the world, taking into account all possible influences, such
as its internal state and its actions resulting in a given percept.
Therefore, as the brain does not manipulate representations, it
is senseless to try to decipher any code supposed to encrypt rep-
resentations in neural activity. The results of three research fields
focusing on proving that a particular neural code is at play should
be addressed by Brette’s review to strengthen his point.

First, in sensory physiology, research on tuning curves has
been extended to naturalistic stimuli and is divided into two com-
plementary approaches: encoding and decoding. Based on models
of the stimulus-response function, these approaches rely on the
idea that neural activity encodes some features of the external
world. Successful reconstructions of complex stimuli based on
neural responses (decoding), or successful predictions of
responses to new stimuli (encoding) are viewed as proofs that
the neural code has been cracked. Interpreting these results in
the light of Brette’s arguments seems necessary. Initially, the stim-
ulus reconstruction method (decoding) was performed either with
simple artificial stimuli (Bialek et al. 1991) or in peripheral sen-
sory systems (Rieke et al. 1995; Warland et al. 1997). More
recently, studies have reconstructed natural stimuli from cortical
responses (Akbari et al. 2019; Miyawaki et al. 2008; Naselaris
et al. 2009), opening the spectacular expectation to read subjects’
percepts. In the auditory modality, encoding models were used to
investigate neural selectivity to a variety of acoustic properties
such as phonetic features (Mesgarani et al. 2014), pitch
(Oxenham 2018), and timbre and rhythm (Woolley et al. 2009).
To achieve good performance, the stimulus/response models
used in decoding/encoding approaches rely on features such as
trial averaging, statistics of natural stimuli, and starting time of
the stimulus. Thus, the right interpretation should be that an
“ideal observer” with a priori knowledge of the experimental
design can infer the stimulus (in the decoding approach) or the
neural response (in the encoding approach). Noteworthy, this
field has led to an interesting drift from the idea of a fixed rela-
tionship between stimulus and neural responses to a more
dynamic model, and is now tackling the mechanisms by which
sensory responses are modulated by learning, context, and history
(Fritz et al. 2005; Holdgraf et al. 2016; Williamson et al. 2016).

Second, the field of neuroprosthetic devices offers demonstra-
tions of causal links between neural code and brain functions. The
most successful of these devices, the cochlear implant (CI), oper-
ates with blunt stimulations of auditory nerve terminals. Despite a
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large current spread in the tympanic ramp, the CI allows
implanted subjects to have percepts and recover speech under-
standing. Even though there are huge differences between the nor-
mal cochlea and the CI, the fact that CIs restore hearing can be
viewed as a proof that the neural code at play in the periphery
has been deciphered and is successfully implemented in a pros-
thetic device. However, the CI settings that lead to speech com-
prehension differ considerably from one subject to another, as
do the strategies leading to the largest evoked responses in audi-
tory cortex (Adenis et al. 2018). Thus, in contrast to the genetic
code that is invariant across cells and species, the neural code
(understood as changes in neural activity in adaption to a CI) is
probably specific for each individual and/or each type of neuron.
In line with sensorimotor theories, the success of CIs shows that
the brain is using a new input in a way it can interact again with
the environment, which might be the basis of hearing restoration.

A third important field investigates the effect of disrupting a
particular feature of neural activity on a cognitive skill. In the visual
system, disruption of physiological activity in the primate middle
temporal area during presentation of moving stimuli biases the per-
ceptive judgment of a behaving animal (Salzman & Newsome 1994;
Salzman et al. 1990), thus making the first link between neural code
(understood as a pattern of activity of specific neurons) and behav-
ioral performance. More recently, studies performed in the hippo-
campus have found that disrupting the replay of spiking patterns
occurring across neuronal ensembles during the sharp wave ripples
profoundly alters the memory of previously acquired information
(Ego-Stengel & Wilson 2010; Girardeau et al. 2009). These data
reinforce the notion that neuronal activity patterns do correlate
with the acquired information. More importantly, associating a
rewarding stimulation of the medial forebrain bundle with a hippo-
campal place cell activity induced a place preference at the place cell
location (de Lavilléon et al. 2015), demonstrating causal links
between a particular place cell’s firing rate and a specific location
memory. In all these examples, the exact neural activity feature
(its firing rate or its temporal spike patterns) correlated with the
animal’s location is unknown, but causal relationships do exist.
Yet, causality is not enough to define a neural code.

Clearly, more caution is necessary when discussing the neural
code as overstatements made (Ferster & Spruston 1995; Panzeri
et al. 2017) tend to generate the illusions that (1) the same code
operates in any sensory and motor system, which is obviously
not the case; and (2) the brain’s cognitive functions consist of
manipulating encoded representations of the world, a theory
that is controversial. Does this mean that the concept of neural
code should be abandoned or should be used to describe studies
linking neural activity to brain function? We believe that the neu-
ral code definition should be freed from the notion of representa-
tion, and we should clarify what we refer to when investigating the
neural mechanism of brain functions.
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Abstract

Many systems neuroscientists want to understand neurons in
terms of mediation; we want to understand how neurons are
involved in the causal chain from stimulus to behavior.
Unfortunately, most tools are inappropriate for that while our
language takes mediation for granted. Here we discuss the con-
trast between our conceptual drive toward mediation and the
difficulty of obtaining meaningful evidence.

Arguably the most popular question in systems neuroscience is
about mediation: We want to know how neurons contribute to
the translation from stimuli via groups of neurons to behaviors.
Consequently, the field’s review papers and discussion sections
saliently talk about mediation as do our own papers (Vilares
et al. 2012). In systems neuroscience in particular, elucidating the
function or role of neurons in circuits, pathways, and networks
that mediate behavior is the field’s imperative. As Brette points
out, neurons are said to represent stimuli with which we also
mean that these neurons are important to behavior (Kording
et al. 2004; Stevenson et al. 2011; Vilares et al. 2012). Relatedly,
neurons are said to encode stimuli with which we mean that
they are eventually decoded and hence have a causal impact
(Brette, target article; Glaser et al. 2018; Jazayeri & Movshon
2006; Klein et al. 2003). There are only small sections of systems
neuroscience that do not aim primarily at causal descriptions.
For example, Bayesian psychophysicists often do not make mecha-
nism claims when they point out that behavior is close to optimal
(Kording & Wolpert 2004; 2006). Similarly, neuroengineers trying
to use brain activity to control a prosthetic device do not need to
make causal assumptions (Wolpaw et al. 2000). But by and large,
the world of ideas in systems neuroscience is a world of mediation
mechanisms and algorithms; it is a world of causality.

When thinking about data, it is natural to think about the
events that we are measuring. If we assume a typical
recording-only experiment, we have a stimulus s, the activity r
that is recorded, and a behavior b, we can make our mediation
question clear. Does r mediate the influence of s on b? We can
measure the causal effect of s on r. We can also observe the

Figure 1. (Jones & Kording) How should we think about mediation? (A) If we record
from all the relevant mediators, then we can readily analyze mediation. (B) If we only
partially record activities, then an analysis is very complicated.
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relation between s and b. When only s, r, and b are involved, the
causal inference technique called instrumental variable analysis
(Angrist & Krueger 2001) allows us to calculate the causal influ-
ence of the activity r onto the behavior as

CE(r � b |s) = Cov(s, b)
Cov(s, r)

where the causal effect of r onto b can be determined by the ratio
of measured covariances between s and b, and between s and r. For
a fixed stimulus, r will have a probability distribution ( p(r|s)), and
the correlation of this with b allows us to estimate the causal medi-
ation effect. The necessary criterion for this reasoning is that there
are no causal paths between the variables we reason about that we
cannot know. Importantly, if the rest of the brain does not exist,
then this way of thinking about mediation analysis is perfectly
good. We argue that the way we think about representations and
encoding intuitively draws on this idea.

However, we typically record only a tiny proportion of all neu-
rons (Stevenson & Kording 2011). Confounding then makes
mediation analysis impossible. Any stimulus-behavior correlation
could be due to the neurons we did record or due to other neu-
rons that we did not. Similarly, correlations between neurons
can be induced by a paired interaction or indirectly by common
input from other neurons. Once our assumptions of full knowl-
edge are violated, our estimates can be arbitrarily off, and our abil-
ity to do mediation analysis is gone. We do not learn about the
flow of information, or about causal chains, from the kinds of
experiments popular in neuroscience.

It is possible to do experiments that get far closer to meaning-
ful claims about mediation. There are four well-established
aspects that jointly make mediation more believable.

1. Correlation: Neurons relate to the relevant stimulus aspects
and behavior.

2. Necessity: If the neurons are inactivated the behavior is gone.
3. Sufficiency: if the neurons are activated the behavior occurs.
4. Exclusion: The activity is not seen in parallel streams.

Such experiments are beautiful, rare (Kawashima et al. 2016), and
generally not doable in typical mammalian settings. However, if
we are after mediation effects, then these experiments should be
done (Latimer et al. 2015).

Wordings like representation and encoding implicitly suggest
that we can arrive at mediation results and, so we argue, are
thus popular in neuroscience (Fig 2). Brette points out that this
use of language implies that there is a causal relationship between
a stimulus and an encoder and between an encoder and an
assumed decoder (as in our instrumental variable case). By con-
sistently using words that imply mediation, we are depriving the
field of clarity. Language affects the way we formulate models,
which in turn affects the experiments we do. As such, it is not
just language, but it is the core of what we do as a field.

The focus of the field of mediation analysis may relate to our
relative lack of real theories. Mainstream neuroscience theory sub-
scribes to neurons influencing one another and neurons within
the same area being similar to one another. But, in a way, those
kinds of theories neither do justice to the complex zoo of neural
properties nor make the set of possible interpretations of brain
data much smaller. If we had meaningful theories, we could test
their predictions. Lacking theories, we then simply go for an intu-
itive mediation analysis, which cannot be well supported by

typical experiments. Real theory, including theory that can deal
with recurrent systems with circular causality, is needed to
break our conceptual reliance of ideas of mediation.

Much of what we know about brains comes from the mapping of
stimulus-response curves (Wurtz 2009). We were enabled to develop
prosthetic devices (Wurtz 2009; Serruya et al. 2002) and new treat-
ments for neurological diseases (Perlmutter & Mink 2006).
However, we should not take this impressive story of success as a
sign that we do not need to clearly think about what exactly these
findings mean. The focus on encoding and representation, if any-
thing, detracts from the importance of the past findings of the
field and prevents it from asking how we should think about brains.
Moving forward, the field needs to invest in transcending our cur-
rent theories to make real testable predictions to provide greater pre-
cision and logical power to our experiments and understanding of
the brain. But tuning curves by themselves can never produce an
understanding. After all, we know that theory-free learning about
a system is provably impossible (Wolpert & Macready 1997).

Is “the brain” a helpful metaphor for
neuroscience?

Fred Keijzer

Department of Theoretical Philosophy, University of Groningen, 9712 GL/19
Groningen,The Netherlands.
f.a.keijzer@rug.nl http://www.rug.nl/staff/f.a.keijzer/index

doi:10.1017/S0140525X19001341, e234

Abstract

Brette criticizes the notion of neural coding as used in neurosci-
ence as a way to clarify the causal structure of the brain. This crit-
icism will be positioned in a wider range of findings and ideas
from other branches of neuroscience and biology. While support-
ing Brette’s critique, these findings also suggest the need for more
radical changes in neuroscience than Brette envisions.

Brette’s analysis and critique of neural coding provide an important
challenge for neuroscience. He shows how neuroscience’s reliance

Figure 2. (Jones & Kording) The use of representation and code is ubiquitous in our
field.
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on neural coding brings in an external scientist’s perspective that
searches for correlations – encodings – between environmental fea-
tures that are recognizable by us and neural events made recogniz-
able for us through psychophysical experiments. In this analysis, he
argues that finding such correlations between the “outer” world and
the “inner” world is of dubious value when it comes to clarifying
how nervous systems causally function in organizing behavior. In
addition, he stresses the need to maintain the representational
sense of the coding metaphor, for example “as a form of normativ-
ity realized by anticipatory properties of internal processes” (sect.
5.2, para. 3). In this response, I argue that the issues related to
the causal operation of the brain are much more general and per-
vasive than Brette acknowledges here and that, as a consequence,
his commitment to representations becomes problematical.

This wider range of problems becomes visible by highlighting
another metaphor, “the brain,” a concept widely used – including
by Brette – to designate the target of neuroscience. “The brain”
may seem a neutral, descriptive term, but just like “neural code,”
this concept comes with a range of ready-made assumptions, asso-
ciations, and theoretical commitments that deserve scrutiny.

First, “the brain” refers only to the central, and not the periph-
eral, nervous system; second, “the” suggests a human brain
instead of central nervous systems more generally; and third,
“the brain” usually refers to nervous systems as a mental or cog-
nitive control system that consists of an inner information-
processing device, linked to the outer world via its sensors and
effectors acting as input-output devices. Overall, the phrase “the
brain” is associated with interpreting nervous systems in relation
to humans, to mind, and to agency.

Using “the brain” to designate the domain of neuroscience is
widespread, but it is actually quite strange. It restricts neurosci-
ence to a single (or a few) animal species and comes with a spe-
cific and limited focus on what nervous systems might do. It is a
bit like developing an account of computation based on a partic-
ular computer game. Instead of a human- or mind-oriented view
on neuroscience, we require a neuroscience view on neuroscience.
I discuss several issues where the difference plays a role.

Large parts of (cognitive) neuroscience still rely on a clear con-
ceptual separation between neurons and other bodily cells, but
this brain-body dualism is becoming increasingly problematic. For
example, many of the molecular ingredients of neurons go back to
unicellular ancestors (Sebé-Pedrós et al. 2017); the evolutionary dif-
ferentiation of neurons from other cells involved a gradual functional
segregation (Arendt 2008); and nonneural cells are still involved in
electrical signaling, for example, in development (Levin &
Martyniuk 2018). Brains are clearly specialized parts of the animal
body rather than something of a completely different order.

It is therefore better to talk about “nervous systems” (plural), a
phrase that easily accommodates the millions of different types of
nervous system organization in existence and refers to whole systems
instead of only the central parts. It also applies to relatively “simple”
nervous systems that enable fine-grained studies of how relatively
small collections of neurons can accomplish sophisticated behavior
(e.g., Bargmann & Marder 2013; Liu et al. 2018; Marder 2012).

Focusing on nervous systems more generally provides a differ-
ent context for neuroscience, which is more concrete than the
abstract tasks devised to address behavioral and cognitive ques-
tions. Nervous systems are intrinsically active systems that inte-
grate and balance behavioral and perceptual, as well as
physiological and developmental processes (Jékely et al. 2015).
To understand how nervous systems actually work, a more inclu-
sive view of the various functions of nervous systems is required.

A general neuroscience perspective also takes the peripheral ner-
vous system as an integral part of nervous system functioning. This
provides a corrective for the inner-outer dichotomy that looks plau-
sible in a mental context as well as for visual and acoustic input.
However, the dichotomy dissolves when it comes to touch and its
dependence on self-initiated activity, peripheral nerves, propriocep-
tive feedback, and the biomechanics of the body itself (Chiel &
Beer 1997; Turvey & Fonseca 2014; Tytell et al. 2011). The point
can also be made conceptually: The inner-outer dichotomy fits the
philosophical notion of mind, but nervous systems are not minds
and instead perfectly coextensive with the world, just like the bodies
they innervate and the interactions with the world they enable. We do
not need to interpret nervous systems as if they are material minds.

To reinforce the last point, it helps to look at recent work on the
evolution of the first nervous systems (Kristan 2016). We usually
take our own macroscopic view of a world full of trees and animals
as basic. From an evolutionary perspective, it is not. Accessing the
world at a macroscopic level is a complex achievement that only
came about when certain unicellular organisms turned into animals
with their nervous systems and complex senses like touch and eyes
(Keijzer 2015). Intriguingly, in this context the intuitive idea that
nervous systems are at heart input-output devices must be ques-
tioned as nervous systems may – at least initially – have acted
mostly as internal coordination devices by providing multicellular
muscle control (Keijzer & Arnellos 2017; Keijzer et al. 2013) rather
than responding to external stimuli.

To conclude, Brette’s critique of the coding metaphor as used
in neuroscience is spot on and he makes this problem visible in a
specific and careful way. However, outside the research field dis-
cussed by Brette, many other considerations detract from the idea
of neural coding. This wider context furthermore suggests that
neuroscience needs ideas that take in, but go beyond viewing
the brain as a dynamical system and stressing the centrality of
perception-action loops. Similarly, hanging on to representational
theorizing is not an obvious way to deal with the many issues
raised by a neuroscience view on neuroscience.

Extrinsic and intrinsic
representations

Sidney R. Lehkya and Anne B. Serenob,c
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92037; bDepartment of Psychological Sciences, Purdue University, West
Lafayette, IN 47907 and cSchool of Biomedical Engineering, Purdue University,
West Lafayette, IN 47907.
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Abstract

We extend the discussion in the target article about distinctions
between extrinsic coding (external references to known things, as
required by information theory) and the alternative we and the
target article both favor, intrinsic coding (internal relationships
within sensory and motor signals). Central to our thinking
about intrinsic coding is population coding and the concept of
high-dimensional neural response spaces.
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We are in accord with the view of this target article that neural
coding based on information theoretic concepts is insufficient
to explain perceptual processing, and extend it in this commen-
tary. Three aspects related to neural codes are discussed in the tar-
get article: correspondence, representation, and causality. We
focus here primarily on the second one.

To quote from the target article, “Second, neural codes carry
information only by reference to things with known meaning.
In contrast, perceptual systems must build information from rela-
tions between sensory signals and actions, forming an internal
model” (abstract). In other words, information theoretic neural
codes acquire meaning externally, which is problematic as the tar-
get article points out, while perceptual systems must acquire
meaning internally through relationships within the neural sys-
tem, as the article again points out correctly. We have previously
made this distinction between extrinsic and intrinsic neural cod-
ing (Lehky et al. 2013), based on similar grounds discussed in the
target article.

Population coding was only touched upon lightly in the article.
We propose that population codes may be central in implement-
ing intrinsic neural coding. A number of studies on high-level
visual processing have interpreted monkey neurophysiological
data, using multidimensional scaling (MDS) analysis, in terms of
neural populations that form high-dimensional neural
response spaces (Baldassi et al. 2013; Eifuku et al. 2004; Kayaert
et al. 2005; Kiani et al., 2007; Lehky & Sereno 2007; Murata et al.
2000; Op de Beeck et al. 2001; Rolls & Tovée 1995; Sereno &
Lehky 2011; 2018; Sereno et al. 2014; Young & Yamane 1992).
In such a neural representation space, each neuron in the popula-
tion forms one axis of the space. The response to a stimulus is a
point in the response space. In other words, the stimulus response
is a neural response vector, which, for interpretation using MDS
analysis, is simply an ordered list of neural firing rates in the pop-
ulation. No claim is made that the brain is necessarily implement-
ing dimensionality reduction algorithms, but rather dimension
reduction offers the possibility of visualizing low-dimensional man-
ifolds existing within high-dimensional neural response space (for
discussions, see (Lehky & Sereno 2011; Sereno & Lehky 2011)).

In terms of intrinsic coding, an advantage of using high-
dimensional representation spaces is that a stimulus response is
indicated by nothing more than raw firing rates in the population.
There is no measurement of tuning curves in terms of an exter-
nally defined physical parameter or any other externally refer-
enced yardstick. Such external referencing is essentially the
fallacy of information-theoretic neural coding, as pointed out in
the target article and as exemplified by neural codes mentioned
in the target article (Jazayeri & Movshon 2006; Pouget et al.
2003; Quian Quiroga & Panzeri 2009) as well as many others.
Rather than external referencing, intrinsic coding uses internal
referencing based on relations between stimulus representations.
Relationships between stimuli are indicated by geometrical rela-
tionships between points (stimulus responses) within the high-
dimensional space, such as distances in the neural response
space (differences in neural response vectors). Organizing stimu-
lus responses in terms of the neural population vectors themselves
provides structure to the responses that go beyond summary sta-
tistics of a population response distribution (summary statistics
such as are required in the “bag of neurons” model mentioned
in the target article).

From our perspective, the way to ascribe meanings to neural
representations (i.e., deal with the grounding problem) is through
coupled internal representations of sensory and motor variables

that become organized and consistent with each other through
experience in and interaction with the environment (Lehky
et al. 2013). This is essentially the same sensorimotor proposal
set forth in the target article. Under our view, populations of
neurons form high-dimensional representation spaces, and those
representation spaces are organized, developed, and transformed
as those populations project to other brain structures, whether
they be primarily sensory or motor and whether feedforward recur-
rent processing, and/or lateral interactions occur. Such an account
of neural processing follows a dynamical systems approach and
does not incorporate Shannon information theory.

There are a few specific points where we are in disagreement
with the target article or feel that amendments are possible.
First, with respect to correspondence, we do think that contextual
variables can also be encoded with an intrinsic neural population
approach and have demonstrated the effects of attention modula-
tion at a single cell in a ventral visual cortical area and its effects at
a neural population level on the discriminability of shapes and
accuracy of object position (Sereno & Lehky 2018; Sereno et al.
2019).

Second, with respect to causality, we believe the dynamical sys-
tems account is consistent with the discrete and timed nature of
spikes. Neural processing generally occurs using interactions
between analog potentials within the postsynaptic dendritic tree,
and not as digital spikes as observed in the axon. Spikes are
used for long-distance transmission of the signal along the axon
until conversion back to analog form at the next synapse for pro-
cessing. Dendritic potentials, which are continuous in terms of
voltage and time, are the proximate cause of neural processing,
not spikes. This view of neural processing as an analog dynamical
system is valid regardless of whether spikes can be described by a
rate code or time code and regardless of the presence of active
potentials within the dendrites.

In sum, we agree with the target article that some currently pop-
ular neural coding metaphors are inappropriate and misleading. We
agree that these neural coding metaphors are not neutral. They
influence the architecture of our conceptual system and limit our
understanding. Better metaphors are possible. We propose an alter-
native intrinsic and relational neural population metaphor.

Codes are for messages, not
for neurons

Bjorn Merker

Fjälkestadsvägen 410-82, SE-29194 Kristianstad, Sweden.
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Abstract

My commentary draws on extensive arguments against “coding
in the brain” developed by my neuroscience mentor, the late
Eugene Sachs, who summarized them as follows: “[T]he energy
in the signal is the only code there is for information…. The
code is the same for each cell, but each cell’s location is different,
and location is the only basis for significance” (p. 13).
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The term coding along with processing and computation forms a
trio of concepts whose ubiquitous use in neuroscience is under-
written by a usage so loose that often they can replace one another
without appreciably affecting the sense of what is being conveyed,
as in “We study how the brain codes (or processes, or computes)
emotions.” As placeholders for “something unknown or yet to be
determined,” these terms might seem innocuous, were it not for
the fact that they carry with them semantic baggage from their
nonneural provenance. This technical or formal sense figures in
some, but far from all, of their uses in neuroscience discourse, a sit-
uation that promotes conceptual and communicative confusion.

Regarding the technical and formal sense of “code” and “cod-
ing” specifically, the core of the construct as used in the disci-
plines from which it was imported is that of rule-governed
relations of correspondence between two domains with arbitrary
correspondence assignments in the sense that alternative assign-
ments would work. This is the only common denominator of
the two principal codes to be found in nature: (1) the nucleotide-
triplet code by which transfer RNA uses the base sequence of
messenger RNA to string amino acids into proteins (other genetic
operations being template-based), and (2) the two-level combina-
torics of phonological and lexical elements by which the sound
strings of human languages code the arbitrary (in this case con-
ventional) mapping between the form and meaning of utterances.
The arbitrary/conventional element is conspicuous also in the
various artificial codes created in reliance on human language:
ciphers in cryptography, Morse code in telegraphy, and the
many coding schemes employed in the design of digital comput-
ers and their programs.

Bona fide codes represent a vanishingly small portion of the
myriad lawful relationships that make up the natural world.
Likewise for the nervous system: All neural operations of which
we have actual knowledge are lawful ones lacking the arbitrary
aspect of the correspondence rules of a coding scheme. There is
no dearth of appropriate terms for such noncoding lawful relations:
“function,” “transfer function,” “transduction,” “mapping,” “trans-
form,” “representation,” and more. Yet the technically incorrect
“coding” often substitutes for more informative terms, especially
when incompletely known aspects of function, and issues of signif-
icance or meaning in particular, are being addressed.

The tacit analogy appears to be the message passing made pos-
sible by human language: Neurons “communicate,” and somehow
the nervous system generates meaning, so perhaps neurons send
language-like messages to one another, coding significance or
meaning in the temporal sequence of their spike trains. This
would supply neurons with an extra-local “code for information”
or common language.

But consider the roughly 8000 synapses impinging on a single
cortical pyramidal cell: They originate in many hundreds, if not
thousands, of other pyramidal cells and subcortical neurons.
The blending at the axon initial segment of the graded potentials
induced by the synaptic activity of all these sources, excitatory and
inhibitory, jointly determines whether that cell will reach thresh-
old to release its all-or-none action potential to its audience of
hundreds or thousands of other cells. “Messages” do not survive
such treatment anymore than it is possible to monitor the conver-
sations of a cocktail party by a single decibel meter rigged to issue
a spike at a fixed sound pressure level. The fact that close to
threshold a situation can arise in which the spike output of a neu-
ron replicates the firing of one or a few afferents does not change
the basic irrecoverability of the pattern of afferent input from a
neuron’s output.

Regarding significance, more than half a century of arduous
mapping of the response properties of single neurons throughout
the nervous system tells us that the principal determinant of what
the activity of a neuron signifies is where it is located. This
“where” ranges from the gross subdivisions of the brain down
to a cell’s precise connective position in the synaptic network it
inhabits (Passingham et al. 2002). Moving a microelectrode to a
neighboring cell typically discloses slightly different, but related,
response properties, in the aggregate generating the familiar func-
tional maps that abound at every level of the neuraxis.

The reason for this parallel and analog mode of representing
significance in the brain is not far to seek. The cortical signal
propagation speed of 1 to 6 meters per second (based on
Pascual-Leone et al. 2000; Schmolesky et al. 1998) is some 180
million to 30 million times slower than that of electronic circuitry.
Operations in this sluggish medium must deliver their global
results some three to four times per second (the frequency of
gaze movements, the leading edge of most behavior; Merker
2013b). The brain is therefore always strapped for time, and as
computer programmers know, when time is short, you don’t com-
pute, you use lookup tables.

To perform sophisticated functions with sluggish components
in real time, the brain arrays them in complex concatenations of
innate as well as acquired (learned) maps (“lookup tables” for “pri-
ors”) interfaced with one another via a variety of connectivity-
based functional transformations. Together they form an analog
“computer,” not a digital one, for which the analog inner workings
of so-called neural networks supply toy models. In analog comput-
ers there is no program running on the hardware: The hardware
itself is the program, and that hardware, moreover, is modifiable
by its own activity, generating the learned content of maps.

With no program to run, and no messages to send, there is
nothing to code, because significance is not represented in prop-
ositional or symbolic form in the brain, but positionally: where
activity flares is what it signifies or means. But what about the sig-
nal discretization of the action potential? A neuron’s work takes
place by analog blending of graded potentials on its soma-
dendrite membrane, and spikes serve only to transmit with
fidelity a running record of the upshot of that work to other loca-
tions, in keeping with Shannon’s insight regarding the utility of
discretization for faithful signal transmission. No neural work is
being performed by discrete spikes except that of bridging
distance.

In sum, the answer to the question posed in Romain Brette’s
title is a resounding “No!”

Encodingism is not just a
bad metaphor
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Abstract

Brette’s criticism of the coding metaphor focuses on its presence
in neurosciences. We argue that this problematic view, which we
call “encodingism,” is pernicious in any model of cognition that
adopts it. We discuss some of the more specific problems it
begets and then elaborate on Brette’s action-based alternative
to the coding framework.

Brette argues that encodingism assumptions are pernicious in
neuroscience. We would like to expand this critique a bit:
Encodingism is a problem in models of cognition in general,
not only in neuroscience. We argue that, though encodings cer-
tainly exist, they are derivative by nature, and cannot serve to
explain the basis of natural cognition. As Brette points out, neu-
rons could be said to “encode” the information about some prop-
erty for neuroscientists, as it is they who are interpreting the
coding relationship. That is, encodings always require an inter-
preter who already knows about or represents the two ends of
the encoding relationship, as well as the relationship itself. But
this representation is exactly the knowledge we are trying to
account for when researching minds, and so encodingism
becomes circular and leads to an infinite regress of interpretive
homunculi. Something else has to lie at the bottom of the natural
ability to represent.

The above point underlies Brette’s article, but it is also impor-
tant to note that there is a whole family of problems that plague
encodingism. Some of these problems have withstood resolution
for millennia. For example, the impossibility of system detectable
error that Brette mentions can be traced back to classical scepti-
cism – how am I supposed to know whether what I represent is
true, if, in order to find that out, I would have to step outside
of myself to gain some independent epistemic access and
check? The other end of an encoding is, supposedly, some entity,
or property, or state of affairs, but if encodings are all the system
has available to represent its reality with, then the only way to
attempt to check the encoded end of an encoding is use another
encoding. Circularity again.

Foundationalism is another problem forced by encodingism
assumptions. Within an encodingist framework, it is impossible
for the organism to create first encodings or representations
for the very same reason stated above – the organism would
have to already know what this particular information is
“about” to use it to create a representation. Circularity for a
third time.

One would think that this impossibility of representational
emergence should automatically discredit encodingism among
developmentalists who study the origins of mentality. However,
this has not always been the case. Rather, the problem of emer-
gence has been pushed onto biology, and various “core knowl-
edge” accounts have been proposed: infants are supposed to be
born with innate theories of physics, biology, or mind (for
more criticism, see Allen & Bickhard 2013; Mirski & Gut 2018).
But if encodingism blocks emergence in ontogeny, there is no rea-
son why it would not do so in phylogeny too. These are just three
of many more problems; for more, see Bickhard and Terveen
(1996; Bickhard 2009).

What alternatives are there then? Brette’s proposal that we
should ask what neurons do rather than what they encode is a

significant step in the right direction. However, there are further
aspects of cognition, which Brette does not discuss, that we
would like to briefly address. Organisms certainly represent real-
ity, and can be wrong about it, and when they are wrong, they
often discover that and learn from their mistakes. Naturalism
requires that whatever constitutes this representing, and represen-
tational error detection, has to emerge at some point from non-
representational phenomena. As has been argued, none of these
can be accounted for in encodingism in principle, but an action-
based perspective has to provide an alternative on pain of being
explanatorily vacuous.

Brette briefly mentions what we take to be central to an
action-based model when he says “what is useful for the organ-
ism is not literally to predict what will happen next, but rather
what might happen next, conditionally on the actions I can do,
so that I can select the appropriate action” (sect. 3.4, para. 6).
This statement contains a hint of what mental content can be
in an action-based model – the anticipation of possible interac-
tions. This is the proposal of interactivism (Bickhard 2009).
(Strictly, it is the anticipation of possible internal process flows
that are co-determined by the environment and the organism’s
actions; it is not anticipation of interaction with the environ-
ment as such – there is no surview of the organism and its envi-
ronment. See, for example, Bickhard 2009; 2015a; 2015b). Such
anticipations will have truth value – they implicitly predicate
something about the environment (i.e., it is the kind of environ-
ment that supports this kind of interaction). And they will be in
principle falsifiable and detectable by the organism – all it takes
to see if I am right is to actually (try to) engage in the
interaction.

As for learning and initial emergence of such action-based
normativity, it can happen if we adopt a variation and selection
model of learning. If successful anticipations are retained and
unsuccessful anticipations are selected against, then the limiting
case of representational emergence will be to randomly engage
in various interactions and retain the ones that turn out to be
successful. No prescience is necessary like in encodingism.
Similarly in learning, if my anticipations are falsified, I vary
the way I do things until I stumble on a successful alternative.
A more detailed discussion of these points can be found else-
where (Bickhard 2001; 2003; 2009; 2015c; Bickhard &
Campbell 1996).

Conceiving of brain functioning in terms of such an anticipa-
tory organization is a viable alternative to coding (Bickhard,
2015a; 2015b). On this view, the brain establishes modes of func-
tioning that implicitly anticipate the upcoming interaction. The
modes of functioning are set up by the modulations of such ele-
ments as volume transmitters, astrocytes or silent neurons. Such
modulations are anticipatory in that they set particular modes
up, which could turn out to be inappropriate modes for what pro-
cess flow actually happens. Adopting this alternative, anticipatory
view of the brain could complement and extend Brette’s proposal.
(The above has similarities to some other contemporary frame-
works, especially to predictive processing [Clark 2016] and enac-
tivism [Di Paolo & De Jaegher 2012], and indeed there are
considerable overlaps, but also fundamental differences
[Bickhard 2015b; 2016a; 2016b]).
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Abstract

It has been widely asserted that humans have a “Bayesian brain.”
Surprisingly, however, this term has never been defined and
appears to be used differently by different authors. I argue that
Bayesian brain should be used to denote the realist view that
brains are actual Bayesian machines and point out that there is
currently no evidence for such a claim.

In his target article, Brette criticized the claim that people have a
“Bayesian brain.” This term has been widely adopted to describe
the nature of the human brain (Friston 2012; Knill & Pouget 2004;
Sanborn and Chater 2016). Surprisingly, however, there is no
agreed-upon definition of the term. Two rather informal defini-
tions have been offered. First, Knill and Pouget (2004) describe
the “Bayesian coding hypothesis” as follows: “the brain represents
sensory information probabilistically, in the form of probability
distributions”; second, according to Friston (2012), the
“Bayesian brain says that we are trying to infer the causes of
our sensations based on a generative model of the world.”
Neither of these definitions even mentions Bayesian computa-
tions, which, one may expect, should be central to the idea of a
Bayesian brain. So, what then, is exactly meant by the “Bayesian
brain?”

Any model of Bayesian computation contains at a minimum a
set S of known stimuli, a set r of internal responses, and a known
generative model P(r|S ) of the response generated by each stimu-
lus. Bayes’ theorem is used to invert the generative model to com-
pute a likelihood function that is then combined with a prior P(S)
to obtain a posterior distribution. The result can be used to
inform a forthcoming action or simply the percept of the
observer.

A Bayesian brain must be implementing such Bayesian com-
putations on some level. One can distinguish between two possi-
ble views here (Block 2018). The “as if” view holds that the brain
does not necessarily literally have a generative model and does not
literally use Bayes’ theorem to derive a likelihood function.
Instead, the computations performed by the brain can be seen
“as if” it performs these operations. The “realist” view, on the
other hand, holds that a generative model, a likelihood function,
and a prior are actually represented in the brain and that the com-
putations performed are literally the computations required by
Bayes’ theorem. Unfortunately, most authors do not necessarily
commit to one or the other interpretation and, in some cases,
appear to make different theoretical commitments in different
papers.

Importantly, the “as if” view is typically expressed at Marr’s
“computational level” with no commitment to brain implementation
(Griffiths et al. 2012). Consequently, using the term “Bayesian

brain” in an “as if” sense appears almost contradictory because
this usage is explicitly not about what happens in the brain.
Thus, if the “Bayesian brain” is really a claim about the brain,
then it has to be reserved for the realist view that the brain literally
implements the components of Bayesian computation.

Is there evidence for the claim that humans have a Bayesian
brain in the realist sense? No direct evidence has been presented
to date. Instead, what is usually offered is an indirect argument
from behavior. For example, Knill and Pouget (2004) motivated
the view that brains are Bayesian by “the myriad ways in which
human observers behave as optimal Bayesian observers”
(p. 712). The problem is that this argument ignores the fact
that findings of suboptimality are at least as common as findings
of optimality (Rahnev and Denison 2018). Even more impor-
tantly, Bayesian optimality can be achieved by non-Bayesian algo-
rithms (Ma 2012), and thus. such findings do not imply that brain
computations are literally Bayesian.

In fact, as Brette eloquently explains, there are many reasons to
doubt that brains are literally implementing Bayesian computa-
tions. Here, I formalize some of the issues examined by Brette
and discuss some additional problems.

First, as pointed out by Brette, the internal response
depends on more than just the stimulus of interest. Instead,
the internal response to, for example, a tilted bar is better
described not as P(r|S ) but as P(r|S, Θ), where Θ is a set of
variables that affect neural firing, including the color of the
bar, the color of the background, the size of the bar, the
level of illumination, contrast, attention, arousal, metabolic
state, and so forth. Dozens of such “confounding” variables
can easily be present in any real-world situation. Inverting
this generative model necessitates the integration (i.e., margin-
alization) over all possible values of all of these variables. For
many forms of the assumed internal response, this computation
is infeasible in real brains.

Second, as also discussed by Brette, Bayesian computations
depend on the existence of a well-defined response r. However,
brain activity is a dynamic, recurrent, never-ending string of
action potentials. It is unclear how the Bayesian brain isolates
“the response” to any given stimulus to perform the necessary
Bayesian computations.

Third, an even more insidious problem that Brette did not
examine in the context of the Bayesian brain is that a realist
Bayesian brain must already know the set S of possible stimuli
and the generative model P(r|S) for each stimulus. However, the
brain has to first learn both the stimuli in the world and their
associated generative models. A truly Bayesian brain would thus
form a probability distribution over the stimuli and generative
models, which goes against current models that assume the exis-
tence of a predefined set S of stimuli.

Finally, a central tenet of the Bayesian brain – that the brain
represents and computes with full probability distributions –
has only been supported by theoretical proposals of how this
could be achieved. Recent empirical research has, however, chal-
lenged this tenet (Yeon and Rahnev 2019).

The idea of the “Bayesian brain” has gained popularity perhaps
not despite but because of the fact that it has never been clearly
defined. This ambiguity shields it from criticism but it also robs
it from any chance of contributing to scientific progress. To be
useful, the term should be defined according to its plain meaning
of a realist view where the brain literally represents the different
components of Bayesian computations and researchers should
present evidence for it that goes beyond “some behavior is close

Commentary/Brette: Is coding a relevant metaphor for the brain? 39

https://doi.org/10.1017/S0140525X19000049 Published online by Cambridge University Press

https://orcid.org/0000-0002-5265-2559
mailto:rahnev@psych.gatech.edu
http://www.rahnevlab.gatech.edu
https://doi.org/10.1017/S0140525X19000049


to optimal.” Until then, the “Bayesian brain” should be seen for
what it is: a theoretical possibility fully divorced and shielded
from the empirical reality.
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piece of a big bad metaphor
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Abstract

Besides failing for the reasons Brette gives, codes fail to help us
understand brain function because codes imply algorithms that
compute outputs without reference to the signals’ meanings.
Algorithms cannot be found in the brain, only manipulations
that operate on meaningful signals and that cannot be described
as computations, that is, sequences of predefined operations.

Brette finds fault with the coding metaphor for neuronal activity in
the brain on the basis of its disconnection with the causal structure
of brain activity and its inadequate representational power. In so
doing, he shows why brain activity is not compatible with a com-
putational picture that includes coding of sensory signals, compu-
tation with those codes, and then decoding to generate behavior.
The quotations in Section 4.1 even suggest that decoding must
occur before the brain can interpret codes to determine action.
Only in one sentence in his final section, 5.2 (para. 2), does he
come near to noticing the real problem with coding: “Even if it
were possible to map brain activity to computational descriptions,
neural codes would not provide the adequate mapping.” He is cor-
rect about adequate mappings, but the bigger problem is the one
implicit in the “even if” clause: Computational descriptions are
not the way to describe what it is the brain does.

First let me clear away one objection to my argument: Yes, the
brain computes if we look upon it as a device that receives sensory
signals encoded as neuronal firings and emits behavioral com-
mands also encoded as neuronal firings. I think it is useful to con-
strain “computation” to its nonmetaphorical usage to describe
what goes on in Turing or Von Neumann computers – not to
be a stickler for definition, but because the aspects in which the
activity in the brain differs from the activity in those machines
are precisely the things that are at the heart of the hard problems
of neuroscience, the things that the computational metaphor
drives researchers to look for that are not there: meanings assign-
able externally to neuronal firings and algorithms that describe a
finite sequence of steps to get from a defined input to a defined
output, that is, programs. Without externally assigned meanings
and programs to operate upon them, computation is only a met-
aphor, in my view a big bad metaphor that has only held back the
science of the brain.

Why is the computer metaphor bad? Because it inspires people
to look for codes and algorithms as solutions to these basic prob-
lems instead of looking for mechanisms relevant to the brain. For
example, it led Tsotsos (2011) to the absurd, admittedly straw-
man, conclusion that a general unbounded visual match on an
image with p pixels requires time on order O( p22p). So the
brain must be doing something else. Perhaps rather than search
for visual algorithms, one could address questions like these:
How does the firing of a neuron in the brain come to signify
something to those neurons that receive that firing, as opposed
to signifying something to the experimenter who records it?
How do these firings organize themselves, as a result of experience
in the world, to produce behavioral outputs that serve the survival
needs of the organism, without an external programmer?

As Brette is well aware, the meaning of a neuronal spike, unlike
a bit in a computer, cannot be described in isolation. Perhaps the
best discussions of how neural firings come to have significance
for other neurons are those provided by Harnad (1990a) and
Bickhard & Terveen (1996). It won’t do just to add more codes
(Brette, sect. 1, last para.). Neurons are members of assemblies
that form and re-form according to the situation (Izhikevich
2006); the meaning of neuronal firing depends on context
(Gilbert 1996) and may differ for different recipient neurons.
Analyzing neuronal firing from the point of view of an “ideal
observer” is useless because neuronal firing is not just a well-
defined but noisy code; for success one needs a more complicated
observer, perhaps a “homunculus,” which can vary in its responses
according to the total picture provided by all the other neurons in
the system, interacting through their recurrent or reentrant connec-
tions. But then one has just kicked the can down the road; such a
homunculus is not a computer. It is not fair to silently ascribe key
elements of the performance of a brain model to components that
are not included in the model, the unmodeled homunculus in the
machine (Reeke and Edelman 1988).

In short, coding fails because the only thing it is good for is as
input to and output from algorithms. But if not algorithms, then
what? The standard computer science picture of algorithms, even
including those that emulate nondeterministic physical phenom-
ena, is still the Turing machine definition: a predefined sequence
of operations taken from a predefined set designed to accomplish
a predefined computation. With this broad definition, algorithms
can no doubt be found in the brain. But what are the predefined
operations: membrane depolarization, spike firing, volume diffu-
sion of chemical signals? How are these operations organized with-
out a programmer: synaptic plasticity regulated by multiple
chemical signals conveying states of arousal, emotions, homeosta-
sis, reward, and punishment? And what are the predefined compu-
tations, or effective methods of performing behaviors: obtaining
food, water, mates, or just some ill-defined pleasure signal? The
answers to these questions are not found in algorithm theory.

Fodor and Pylyshyn (1988) have argued persuasively that
so-called connectionist models (Rumelhart et al. 1986) are not
sufficient to implement all cognitive activities of brains; symbol
systems and syntactic operations on them are needed. There is
no contradiction once one looks at real brains: symbol systems
and syntactic operations upon them can be constructed from
the signals and operations upon them that I have just argued
we need to look for in the brain. The question we only have partial
answers to is how this is accomplished by experience in the com-
plex real world. Computation theory does not provide the answer
to that problem. Brette’s final suggestion, that the solution resides
somewhere in the area of modeling the full sensorimotor loop, is
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indeed the best approach we know of, one perhaps most fruitfully
investigated by building “neurorobots,” robots controlled by
model neuronal systems. This approach has also been called “syn-
thetic neural modeling” (Reeke et al. 1990).

Is coding a relevant metaphor for
building AI?

Adam Santoro1, Felix Hill1, David Barrett, David Raposo,

Matt Botvinick and Timothy Lillicrap
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Abstract

Brette contends that the neural coding metaphor is an invalid
basis for theories of what the brain does. Here, we argue that
it is an insufficient guide for building an artificial intelligence
that learns to accomplish short- and long-term goals in a com-
plex, changing environment.

The goal of neuroscience is to explain how the brain enables intel-
ligent behaviour, while the goal of agent-based artificial intelli-
gence (AI) is to build agents that behave intelligently.
Neuroscience, Brette attests, has suffered from an exaggerated
(and technically inaccurate) concern for the codes transmitted
by particular parts of the brain. In AI, on the other hand, some
of the most notable recent progress has been made not by deeply
considering neural coding and its implications, but by focusing on
higher-level principles from optimization, learning, and control.

Thanks to deep artificial networks trained via backpropaga-
tion, we now have artificial learning systems capable of impressive
exhibitions of specific human-like skills, such as object recogni-
tion and language translation (e.g., He et al. 2016; Vaswani
et al. 2017). In artificial, rather than biological, neural networks,
we can more tractably characterize the relationship between a
model’s neural codes, behaviour, and its external “world.” AI
researchers have full access to their models’ input data distribu-
tion, can visualise weights and activations in any part of the net-
work and even make causal interventions on them, and can
quickly implement new models informed by any coding hypoth-
eses they may have.

Nevertheless, in-depth analysis of a model’s internal represen-
tations is of increasingly rare concern for getting these models to
work. Consider AlphaGo, which is one of the more compelling
recent breakthroughs in AI (Silver et al. 2016). Researchers on
this project precisely defined the model’s goals, the dynamics
underlying the model’s interactions with its environment, how
the model plans its actions, and how the model learns. Each of
these components contributes to the model’s success, and yet
none of them fundamentally depends on considerations from
neural coding.

This is not to say that we cannot usefully apply representa-
tional analyses to such agents post hoc, regardless of whether

the representations satisfy Brette’s criteria for neural codes
(Barack & Jaegle 2019). Indeed, since the earliest days of connec-
tionism, researchers have been interested in the neural codes that
emerge when a clearly specified learning algorithm is applied to a
well-understood model trained to execute a particular task. A
more recent and important collaboration between AI and neuro-
science revealed insight into the conditions under which well-
known codes can emerge: Grid cells can increasingly be under-
stood as the product of particular optimization processes
(Banino et al. 2018; Cueva and Wei 2018). A key feature of
these examples, however, is the central descriptive role given to
the learning algorithms, architectures, and optimization objec-
tives; neural coding was incidental, and in many cases the codes
were not fundamental, privileged primitives on top of which the
models were built (Marblestone et al. 2016).

If the broader aim of agent-based AI (Russell & Norvig 2016) is
to produce a system that accomplishes short- and long-term goals
in a complex, changing environment, then there may be a more
pernicious problem to the neural coding framework than it simply
being out of vogue in modern AI. How internal responses arrive
from given stimuli – a goal that is implicit in the neural coding
metaphor – may be logically insufficient for producing intelligent
behaviour. In outlining the reasons why, we recall arguments that
any system – artificial or biological – needs to exert control over
its environment to achieve intelligent behaviour.

First, the observations with which an agent may compute do
not exist as a prespecified data set, independently of the agent’s
actions in the world. Rather, it is precisely the decisions that the
agent takes in that world that determine the sensory data from
which it learns. Second, “[w]ithout an ongoing participation
and perception of the world there is no meaning for an agent”
(Brooks 1991a, p. 16). An agent participating in an external
world that responds to its decisions learns useful, reliable, and
meaningful interactions (Cisek 1999). It is these meaningful inter-
actions that ground the agent’s representations and allow them to
be used for understanding and reasoning about its world.
Therefore, insofar as neural coding is understood as a framework
to help understand a system’s internal stimulus-response patterns,
it is a logically insufficient framework for designing AI because of
its failure to engage with the agent-environment causal loop.

Given these considerations, what, then, can we say about neu-
ral coding’s role in describing the brain? In neuroscience, we ulti-
mately care about understanding how the brain enables intelligent
behaviour. It is often argued that such an understanding cannot
come from analyzing low-level, mechanistic details such as neural
codes, because “[a] description of neural activity and connections
is not synonymous with knowing what they are doing to cause
behavior” (Krakauer et al. 2017). For this level of understanding,
we need high-level computational and algorithmic theories that
embrace agent-environment interactions. The history of AI tells
us that the most useful principles, and the richest theoretical
insights, emerged from studying control, optimization, and learn-
ing processes rather than the particularities of representations or
codes (Sutton 2019). A focus on inferring such processes using
our increasing quantities of neural data, rather than characterizing
neural codes for their own sake, may also be the most productive
way of making progress on understanding intelligent behaviour in
humans and animals.

Note

1. AS and FH contributed equally to this work.
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Abstract

Brains are information processing systems whose operational
principles ultimately cannot be understood without resource to
information theory. We suggest that understanding how external
signals are represented in the brain is a necessary step towards
employing further engineering tools (such as control theory)
to understand the information processing performed by brain
circuits during behaviour.

The central tenet of Brette’s article is that the notion of a “neural
code” is a metaphor, which, despite being popular, does not pro-
vide a valid basis for theories of brain function. While we agree
with many things that Brette says – and, in particular, would
argue that knowing the neural code is not sufficient for an under-
standing of brain function – we think that this central tenet is
itself unfounded. A code is, quite simply, a set of rules. One
could interpret the “neural code” as the set of rules which neurons
obey (we accept that the term is usually used in a somewhat nar-
rower sense). In cryptography, a code is the set of rules which map
interpretable messages into a secret form not interpretable by an
enemy agent. The aim of the enemy agent is to recover the inter-
pretable form (decode), without knowing in advance the rules. In
sensory physiology, we are often concerned with understanding
the rules governing how sensory events in the world map onto
neuronal activity. Similarly, we do not know the rules (code) a
priori – but recovering them, through experiment or otherwise,
helps us to understand the system. In one case, the rules are
designed by a cryptographer; in the other, they emerged through
Darwinian selection. However, this has little bearing upon the
task confronting the agent. Far from being a metaphor, we
argue that the term neural code is literally applicable to the
rules governing the relationship between environmental stimuli
and neural activity, as well as to other areas of brain function
such as the generation of movement. We are thus not employing
“code” as a metaphor, except inasmuch as such rules may only
approximate far more complex biophysics.

Brette argues that neural codes depend upon experimental con-
text. Again, we disagree. The most relevant experimental context is
the full repertoire of natural behaviour; we would perform all
experiments in this context if it were feasible. Unfortunately, the
world is high dimensional, and this would typically result in inad-
equate sampling of the variables we wish to study within the life-
time of the experiment (or experimenter). We restrict the context
in order to sample sufficiently to make statistically valid conclu-
sions (i.e., use an experimental design), attempting instead to
ensure generality by also performing different experiments (e.g.,
with natural images as well as bars). If the neural code has in

fact been completely described, the rulebook used does not depend
upon context. We are mystified by the counterview proposed – that
perceptual systems “build information from relations between sen-
sory signals and actions” (Brette, abstract). Leaving aside that infor-
mation cannot be “built” (we assume it is representation that is
meant here), this structured internal model would, we expect, cor-
respond exactly to our set of rules, or “code.”

We think that, to understand brain function, it is likely to be nec-
essary to understand the neural code, as couched in these terms,
perhaps with the use of quantitative techniques from information
theory (see, e.g., Panzeri and Schultz 2001; Panzeri et al. 1999).
However, we would not argue that it is sufficient. As engineers,
our view is that the brain is an information processing system,
and to understand it, we need to know how the information is rep-
resented mechanistically. This merely sets the scene: To “reverse
engineer” (disassemble to understand) the system, we also need to
understand many other “design principles” (Sterling and
Laughlin 2015) – the performance constraints, the organisational
principles, and so forth – and finally, the specific computations
that occur. To do this, we employ (and develop, where needed)
additional branches of engineering, such as control theory. The
autonomic nervous system perhaps provides a good illustrative
example. Parasympathetic and sympathetic nerve fibres connect
the internal organs of the body in a complex control system regulat-
ing heart rate, digestion, respiratory rate, and many other internal
variables. Control theory would seem to be a fruitful approach to
study the operations of this system. A first step towards this
would be writing down the control variables, for instance, how is
blood oxygenation encoded in neural activity in the parasympa-
thetic nervous system? Understanding the neural code for the sig-
nals in this system is a necessary (but not sufficient) part of the
process of understanding how the system works. Brette provides a
counterexample concerning the heart, inwhich onemight conclude
that cardiac cells rate-code for running speed. However, any reason-
able neural coding analysis of this system would examine vascular
flow rates and pressures, obtaining the correct conclusion.

Brette suggests that it is unclear if neural codes can represent
structure, giving cell assemblies as an example and noting that a
labelled graph, not just a “bag of neurons” (sect. 2.5, para. 2), is
required to do so. There is evidence that cell assemblies do support
such structured relations. The inhibition of specific assemblies is
enough to erase long-lasting behaviours, such as cocaine-driven
place preference (Trouche et al. 2016). Co-activation of such cell
assemblies can encode goal-driven behaviours, relating both
“words” (e.g., places, rewards, actions) and “syntax” (e.g., causal
and contextual relations between “words”). Brette alludes to tempo-
ral structure as providing a possible solution to this problem, and in
fact, there is mounting evidence that this is the case. As an example,
consider sharp-wave ripples (SWRs), synchronous, brainwide, fast
oscillatory events originating in the hippocampus. During SWRs,
place cells are re-activated, according to their spatial tuning, in
time-compressed sequences (Buzsaki 2015). Spike timing is crucial
in these “replay” events, which were shown to encode previously
experienced spatial trajectories and memories in rats (Maboudi
et al. 2018). We do not yet fully understand the “rulebook,” or neu-
ral code, underpinning such structure, but we would argue that
doing so will be crucial to understanding howmemories are stored,
recalled, and used in brainwide networks.

In summary, for us the “neural code” is the set of rules govern-
ing how the activity of neurons relates to the state of the system in
which they are situated. Knowing this rulebook is likely to be an
essential step in the path towards understanding brain function.
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Abstract

If sensory organs encode environment, this code must be
decoded to perception. The currently dominant theory of per-
ception – predictive coding – assumes a “Bayesian decoder,” a
probability function, which will present (to whom?) an optimal
guess, given previous encodings of the environment – old codes
testing new codes. Such a process would delay perception notice-
ably. This is inconsistent with the perception of music, which for
several reasons must be direct.

Predictive coding (PC) was first introduced for visual perception
(Rao & Ballard 1999). PC theory has since been developed in a
series of articles to become an influential theory of perception.
In PC theory, perception is said to involve probabilistic testing
of contextually based hypotheses against sensory input.
Deviances from predictions result in prediction errors, which
are transmitted upstream in the hierarchically organized brain.
This is supposed to reduce free energy, that is, reduce the amount
of information needed for perception.

Recently, a PC model of music perception was introduced
(Koelsch et al. 2018). This model presumes that event-related poten-
tials (ERPs), assessed as EEG, reflect hypothesis testing. The cause
of ERPs has been debated. It has, however, been demonstrated that
some ERPs are reactions on deviances from predictions and, fur-
thermore, that these reactions occur at several levels in the brain
hierarchy (Wacogne et al. 2011). ERP thus seems to provide biolog-
ical confirmation of PC theory. Koelsch et al. (2018) focus on the
ERPs ERAN (early right anterior negativity), and MMN (mismatch
negativity). There is a vast literature on ERPs for music, indicating
reactions on deviances in rhythm, melody, harmony, structure, and
so forth. The ERP reaction time for music varies from 200 to 600
ms, depending on the complexity of the stimulus. This leaves us
with five questions:

1. How canweplay together if the perception ofmusic is delayed?A
musician trying to fit in would be about half a second late.

2. How can the sound wave even be perceived as music if the pro-
cessing times for rhythm, melody, chords, and structure differ?
Most musical events are predictable to some extent. Musical
beat, for example, is entrained. Here, entrainment is the
body’s synchronization to the beat. We act on the beat.
Rhythm thus is perceived directly. It has been demonstrated
that periodical sounds produce bursts of gamma oscillations
on sound onsets and, furthermore, that these bursts continue
when the stimulus is omitted (Snyder & Large 2005; Tal
et al. 2017). If the perception of unpredicted tones or chords
would be delayed noticeably, they would lag the rhythm. The
music would fall apart.

3. Why do we not hear musical predictions? According to PC,
predictions, if correct, are not affected by sensory input. The
prediction should be what we perceive. If a sound is omitted
from a predictable pattern, an auditory response can be emit-
ted (Bendixen et al. 2012). Predictions can sometimes be heard
as the inner sensation called musical imagery (Zatorre et al.
1996). But this is clearly different from actual music. If the
band stops playing, we do not hear their music, however pre-
dictable it might be.

4. Why do we not hear two tones, when the expectation is vio-
lated? A first expected tone should be substituted by an accu-
rate tone. We cannot assume that the second tone mutes the
first tone, as the second tone does not exist (in the brain)
when the first tone is heard.

5. If it is just an error signal that is sent upstream, the only sen-
sory information about a melody tone is that it is not the
expected. But, to infer the actual tone, the brain must know
how much and in which direction it deviates from a preceding
tone. This is sensory information concerning pitch differences.
If we get this information, what is the use of hypothesis testing?

As Brette points out, the word predictive in predictive coding does
not designate the prediction of future events. Classic PC models are
not designed to explain how we perceive time-varying stimuli, as
they do not account for neural transmission delays (Hogendoorn
& Burkitt 2019). …. Such delays would make it impossible to return
a tennis serve, because the actual ball would be several meters ahead
of the perceived ball. However, as demonstrated by Nijhawan (1994),
the visual system compensates for delays by means of extrapolation
of the trajectory of the moving target. This mechanism makes us see
the ball where it “should” be, and really is. A striking demonstration
of such extrapolation is the flash lag effect (FLE), where a continu-
ously moving object is compared with a discrete repetitive flashing of
a stationary cube (https://www.youtube.com/watch?v=DUBM-
GG0gAk). It appears as if the moving object is ahead of the flashes,
although they are synchronized in real time. It is believed that the
movement of the object is extrapolated but not the flashing of the
cube; that, thus, the difference in position reflects the difference in
neural transmission time. On comparison of FLE to music percep-
tion, two observations can be made:

1. In FLE, the perception of the visual pulse (the flashes),
although regular and repetitive, is delayed. In music, the per-
ception of the acoustic pulse (the beat) is not.

2. In FLE, time is dissociated (into extrapolated and non-
extrapolated time scales), but this is not the case in music.

These points indicate that acoustic perception differs fundamen-
tally from visual perception. Other mechanisms are in play. The
Hogendoorn-Burkitt model (Hogendoorn & Burkitt 2019) for
visual extrapolation would not work for music, because music is
not a continuous movement.

If the function of ERP is not to guide perception, then what? It
is possible that ERPs simply reflect negative feedback and that the
function is learning – the updating of internal models.

Perception and action are reciprocally dependent. Music is a
perfect example. Accordingly, the solution of the dissociation
problem may be sought along the lines suggested by Brette, that
is, as enactive perception.
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Abstract

The neural coding metaphor is so ubiquitous that we tend to for-
get its metaphorical nature. What do we mean when we assert
that neurons encode and decode? What kind of causal and rep-
resentational model of the brain does the metaphor entail? What
lies beneath the neural coding metaphor, I argue, is a bureau-
cratic model of the brain.

R1. Introduction

Neural coding is a popular metaphor in neuroscience, where
objective properties of the world are communicated to the brain
in the form of spikes. Most commentators have recognized that
the neural coding metaphor is often misused, but they diverge
on the extent to which these problems are constitutive of that
metaphor.

What is wrong with metaphors (sect. R2)? Metaphors can in
principle be useful, as they allow reusing concepts from a different
domain. But they can also be misleading when applied to very dif-
ferent domains. Perhaps sensory transduction can be framed as a
problem of communication. But are perception and cognition
really cases of “world-brain communication” (Gallistel)?
Unfortunately, this question is rarely explicitly formulated and
addressed. Instead, the metaphor captures language and thought
in disguise, preempting the meaning of words such as representa-
tion and information, in a way that introduces confusion between
the organism’s and the observer’s perspectives (information for
whom?). To understand what lies beneath “neural codes,” one
must then take a pragmatic approach: How does the neural coding
metaphor unfold in reasonings about brain and cognition?

The neural coding metaphor promotes a particular way of
understanding causality in complex systems (sect. R3), explana-
tions of the type “A causes B” (e.g., the firing of neuron X causes
behavior B). This is an inadequate way of understanding even
moderately complex systems of coupled components, such as a
system of gears or even a parking lot. In systems, explanations
are to be articulated at the level of the organization of processes,
not single or even pairs of components. What kind of model of
organization features agents that pass formally encoded informa-
tion along a chain of command with no dynamical constraint?
Conceptually, what lies beneath the neural coding metaphor is
more than the computer model (Reeke): it is a bureaucratic
model of the brain.

The neural coding metaphor is tightly linked with the concept
of representation, as many commentators have noted (sect. R4).
Representation is an important concept, but all supporting

arguments are articulated at the level of persons, not neurons –
they are considered useful, or necessary to explain certain aspects
of cognition. Therefore, those arguments do not entail that repre-
sentations are neural encodings, as the forms of the bureaucratic
model. In fact they cannot be encodings, because encodings need
a reader, and then we need to explain how the activity of reading
produces an experience with representational content. The way
out of the infinite regress is to conceive representation pragmati-
cally in terms of processes with certain properties. This is a chal-
lenge the neural coding metaphor covers.

R2. The metaphorical nature of neural codes

R2.1. Is it a metaphor, and what is wrong with metaphors?

Is the “neural code” actually a metaphor? Schultz & Gava propose
that the neural code is simply “the set of rules which neurons
obey” (para. 1) while admitting that the intended meaning is usu-
ally more specific, as the target article illustrates. When defined in
this very broad way, the terms seem indeed unproblematic. But is
it plausible that nothing more is implied when neurons are said to
encode stimuli? Schultz & Gava answer themselves negatively:
Claiming that the spiking cells of the heart encode running
speed in their firing rate is objectionable because it is not a “rea-
sonable coding analysis,” since it does not identify the appropriate
coding variables. However, what this “reasonable coding analysis”
might be in the context of the brain is precisely what is at stake
and needs to be defined. Schultz & Gava propose that neural
codes are “the rules governing how sensory events in the world
map onto neuronal activity” (para. 1), but this does not help
understanding why the relation between running speed and firing
rates of heart cells is not a reasonable code.

This latter quote is not free of preconceptions: It assumes that
the relation between the world and the brain is a mapping (the
stimulus-response view), rather than a coupling. As pointed out
by Keijzer, it pictures the organism as an input-output device
(stimulus in, behavior out), rather than an autonomous entity.
It rules out the alternative possibility of autonomous neural activ-
ity influenced by the environment. Any deviation from the deter-
minism of stimulus responses must then be considered as noise.
The notion that the world is mapped to neural activity corre-
sponds to a familiar philosophical position, according to which
the brain must hold some copy of the world in order to perceive
it. Such philosophical positions deserve exposure and discussion,
rather than denial (Andersen et al. 2019).

“A neuron encodes a stimulus” may be presented as a literal
description of an experimental observation (a contextual correla-
tion), not a metaphor. But the discourse slips into metaphorical
territory every time the brain is claimed to “decode,” “read,”
“interpret,” or “manipulate” the neural codes. All commentators
who defended neural coding in some form also used a narrower,
metaphorical sense. Gallistel defends the use of information the-
ory by first framing the problem in terms of “world-brain com-
munication” and considers that “the brain performs arithmetic
operations on the signals and symbols” (para. 6). Gauthier,
Loula, Pollock, Wilson, & Wong (Gauthier et al.) claim that
“neural codes must implement the empirically validated represen-
tations of computational models” (para. 4). In both cases, the
neural code is not just a contextual correlation, it is an atom in
a mechanistic model of the brain. De-Wit, Ekroll,
Schwarzkopf, & Wagemans (de-Wit et al.) agree that the neural
coding discourse often improperly focuses on what the

44 Response/Brette: Neural coding: The bureaucratic model of the brain

https://doi.org/10.1017/S0140525X19000049 Published online by Cambridge University Press

https://orcid.org/0000-0003-0110-1623
mailto:romain.brette@inserm.fr
http://romainbrette.fr
http://romainbrette.fr
https://doi.org/10.1017/S0140525X19000049


experimenter can decode from neural activity (the technical
sense), and consider that the important question is what “the
brain might be able to decode from that activity” (para. 1). But
this more cautious use of the coding metaphor is not free of pre-
conceptions. “Decoding” cannot be literal here since a decoder
maps signals to the domain of the original message, not to the
biological domain. What then is meant exactly by “decoding”
once the observer-centric perspective is rejected?

This imprecision is not without risk. Merker complains that
“code” is often used improperly. Codes are “rule-governed rela-
tions of correspondence between two domains with arbitrary cor-
respondence assignments in the sense that alternative assignments
would work” (para. 2), giving the example of the nucleotide-
triplet code for amino acids. But the terminology is often applied
to any kind of observed relation, creating confusion. Confusion is
indeed one risk of metaphor. Frezza and Zoccolotti point out
that metaphor, including the coding metaphor, is often imprecise
and multipatterned, which might explain its success. The danger
of metaphor in science, especially when their metaphorical nature
is denied, is that key presuppositions are hidden behind the nar-
rative: “The pervasive and persuasive effects of the metaphorical
narrative hinder the fundamental self-correcting trait of science
that aims to provide counterexamples of dominant theories
instead of just supporting them” (last para.). This is because the
dominant metaphorical narrative preempts the meaning of
words, making it challenging to even articulate an alternative
viewpoint. Gibson, for example, while developing a relational
view of perceptual information as lawful relations between observ-
ables (the “invariant structure” in sensory flow), warned that he
used the word information for a lack of a better term, and not
in the sense of the dominant information processing view
(Gibson 1979). The issue is rampant in this discussion about neu-
ral coding, because the dominant narrative identifies information
with Shannon information and representations with encodings.
For example, when I develop an alternative view of information
as knowledge built by the organism, in analogy with the way sci-
entific knowledge is built, Schultz & Gava object that “informa-
tion cannot be ‘built’” (para. 2), presumably because Shannon
information can only decrease with processing. They failed to
notice that I attempted to provide a more biologically relevant
definition of information, for which the data processing inequality
is irrelevant. Similarly, a number of commentators objected to my
alleged anti-representational stance (Birch & Smortchkova;
Gauthier et al.; Huetz, Souffi, Adenis, & Edeline [Huetz
et al.]), while others regretted my commitment to representations
(Aranyosi; Harnad; Keijzer). What this surprising state of affairs
reveals is that representations are identified with encodings, which
makes a criticism of encodingism either anti-representationalist or
incoherent (see sect. R3).

The great danger of metaphor, when it becomes ubiquitous, is
that by preempting the language it also freezes the concepts and
hinders critical discussion. As Jones and Kording observe,
“Language affects the way we formulate models, which in turn
affects the experiments we do. As such, it is not just language,
but it is the core of what do as a field” (para. 5). Therefore the
issue with the neural coding metaphor goes much beyond a mat-
ter of terminology. Neuroscientists might use the term code in an
improper way as Merker points out, but this is hardly the major
problem at stake. To address the scientific impact of the neural
coding metaphor, one must take a pragmatic approach to the
meaning of “neural codes,” focusing on how they are used in rea-
sonings about brain and cognition.

R2.2. The epistemic danger of the coding metaphor

Several commentators have noted that the coding metaphor pro-
motes a confusion between the experimenter’s and the organism’s
perspectives (Arsiwalla, Bote, & Verschure [Arsiwalla et al.];
Gomez-Marin; Keijzer). Gomez-Marin insightfully calls this con-
flict a “clash of Umwelts.” When a correlation between an exper-
imental parameter and neural activity measurements is reported
as a “neural code,” what the term code covers is a relation of com-
mand between the experimenter and the organism, where the
experimenter imposes a known stimulus onto the observed organ-
ism. The “neural code” is about the experimenter’s Umwelt, not
the organism’s Umwelt. Spikes might be signals for the observer,
indications that a particular stimulus has been presented. But for
the organism, spikes are just the activity of its brain, which obvi-
ously depends on the environment it is coupled with, but is not
commanded by it; spikes are not necessarily a map of the stimulus
world. Arsiwalla et al. warn us about “the fallacy of extending
conditional epistemic descriptors to ontological explanations of
brain and behavior” (last para.): this is what is done every time
the brain is presumed to “decode” or “interpret” the “neural
code,” a construction of the observer’s Umwelt.

This confusion of Umwelts leads observers to project their own
perspectives onto the organism (Cao & Rathkopf; Gomez-Marin).
As Gomez-Marin puts it, “a description of what the neuroscientist
can do prescribes what the animal must do” (para. 1). This is illus-
trated by Gauthier et al.: “the search for neural representations
begins with an understanding of the task that an organism solves
[…] The next step is to propose computational models capable
of solving this task” (para.1), and finally “neural codes must imple-
ment the empirically validated representations of computational
models” (para. 4, my emphasis). Gallistel describes a similar meth-
odology to study how animals use the sun for navigation: “their
brain must subtract the current solar azimuth from the desired
compass course to obtain the current solar bearing of the source”
(para. 7), concluding that these angles must be encoded by the
brain.

This methodology follows Marr’s (1982b) classical three levels
of analysis: the computational level (what does it do?), the algo-
rithmic level (how does it do it?), the physical level (how is it
implemented?), to be studied in this order. The key assumption
is that these three levels are independent, an assumption inspired
from computers, as Reeke and Frezza & Zoccolotti have noted.
But this independence assumption is not a logical necessity.
Bell (1999, p. 2013) has argued convincingly that no such inde-
pendence exists in the brain: “a computer is an intrinsically dual-
istic entity, with its physical set-up designed not to interfere with
its logical set-up, which executes the computation. In empirical
investigation, we find that the brain is not a dualistic entity.” In
theory also, we find that there is an epistemic problem with the
postulate of independence. The brain’s algorithms (the second
level) are assumed to be based on the manipulation of represen-
tations independent from the physical level (“computational
objectivism,” to use the words of Thompson et al. [1992]). But
where do those representations come from, if not the physical
level? Mirski & Bickhard explain the fallacy of encodingism:
“encodings always require an interpreter who already knows
about or represents the two ends of the encoding relationship,
as well as the relationship itself. But this representation is exactly
the knowledge we are trying to account for when researching
minds, and so encodingism becomes circular, and leads to an infi-
nite regress of interpretive homunculi” (para. 1).
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Some commentators partially recognize the epistemic problem
of encodings, but remain entrenched in the coding metaphor.
De-Wit et al. agree that the neural coding discourse often
improperly focuses on what the experimenter can decode from
neural activity, and conclude that what matters is what “the
brain might be able to decode from that activity” (para. 1). But
while “decode” literally describes what the experimenter does, it
is only applied metaphorically to the brain: The brain does not
literally transform its own biological activity into stimulus param-
eters. And how could one read its own biological activity, if “read-
ing” designates exactly that activity? This weaker version of the
coding metaphor does not depart from the observer’s perspective.
Lehky & Sereno agree that there is a conceptual problem with
extrinsic codes, defined in reference to something external, as
for example tuning curves. They propose two solutions: to replace
individual neural responses with high-dimensional population
responses, named “population coding,” and to consider relations
between these high-dimensional vectors, named “intrinsic cod-
ing.” First, however, with respect to the problem of encodingism,
there is no qualitative difference between individual and popula-
tion responses, and a vector is no more structured than a scalar.
Second, to call relations between population responses “intrinsic
coding” raises again the observer-organism confusion. It is the
observer who notices the relation between high-dimensional
responses to stimuli: the responses do not represent the relation,
they only instantiate it. Whatever “encodes” these relations is
left unexplained. Clearly, it is challenging to conceptualize intrin-
sic relational representations. But if the goal is to provide an alter-
native to encodingism, then the temptation to frame them in
terms of encodings should be resisted (see sect. R4).

R2.3. Can it be a useful metaphor?

Although metaphors are not literally true, they can still be useful,
precisely because they transport familiar concepts to an unfamil-
iar setting. When are they useful, and when are they pernicious?
To take advantage of a metaphor without being carried away by it,
one must first acknowledge its metaphorical nature and make its
assumptions explicit.

Garson explains that the coding metaphor was central in
Adrian’s work in the early twentieth century, and proposes that
the metaphor was in fact necessary for Adrian to ask questions
about the relation between sensory patterns and neural activity
patterns and to show, for example, that spike rate increases with
stimulus intensity: “It is hard to see how one would even formu-
late such questions without using the coding metaphor” (para. 6).
Yet, such questions are formulated without any allusion to codes
in virtually all non-biological domains of science, for example, the
relation between atmospheric pressure and rain. Garson correctly
notes that the coding metaphor led Adrian to propose the doc-
trine of “rate coding.” It is worth noting that a number of decades
later, many have concluded that Adrian has indeed been misled
(Brette 2015), including regarding the alleged paradigmatic exam-
ple of rate coding, neural control of muscular contraction (Sober
et al. 2018; Tang et al. 2014; Zhurov and Brezina 2006).

Garson also proposes that the coding metaphor allowed
Adrian to ask teleological questions. This is an important remark.
One cannot explain organisms without addressing normativity –
how is it that an organism can behave appropriately or can live at
all, how is it that behavior appears purposeful, and so forth.
Normativity is rightfully a key aspect of both the computational
program and the efficient coding doctrine. The error is to believe

that normativity can only be thought of in terms of codes. On the
contrary, the kind of normativity conveyed by the coding meta-
phor is highly problematic, because it is based on an external ref-
erence. Alternative accounts of normativity exist, for example, in
enactivism (Maturana and Varela 1973) and interactivism
(Bickhard 2009).

Notably, Santoro, Hill, Barrett, Raposo, Botvinick, &
Lillicrap (Santoro et al.) point out that recent progress in artifi-
cial intelligence has generally ignored coding considerations : “the
richest theoretical insights, emerged from studying control, opti-
mization, and learning processes rather than the particularities
of representations or codes” (last para.). Going further, they
observe that the circularity of agent and environment makes it
unproductive to think in terms of codes because there is no pre-
determined set of stimuli to be encoded.

For a communication metaphor to be useful, it should be
applied to a problem of communication. We may concede that
sensory transduction can be framed in this way (Gallistel takes
the example of color vision): in order for the organism to be sen-
sitive to electromagnetic waves, this physical dimension must be
translated to a biological signal such as ionic currents. It then
becomes legitimate to ask questions about signal-to-noise ratio
and redundancy, which are indeed questions about the correspon-
dence between two different domains, for which information the-
ory is relevant (Laughlin 1981). Beyond sensory receptors, one
may frame the relation between the visual field and the activity
of the retinal ganglion cells forming the optic nerve as a commu-
nication problem, by noting that the optic nerve creates a bottle-
neck in a directional flow of excitation (but note that there
actually is anatomical feedback to the retina [Gastinger et al.
2006], although from a limited number of neurons). This was
essentially Barlow’s (1961) motivation when he proposed the effi-
cient coding hypothesis, and presumably what Harnad has in
mind when he finds it “harmless to call the neural activity
along sensory input pathways a ‘neural code’” (para. 13).

But the use of the metaphor must still be carefully circum-
scribed. First, as Barlow noted, viewing the retina through the
lens of coding excludes other equally relevant ways to see this sys-
tem (e.g., as participating in the organism’s reaction to specific rel-
evant features [Lettvin et al. 1959]). Second, while the
communication metaphor appears adequate when applied to the
transformation between physical signals of two different kinds, it
becomes much more questionable when the alleged transformation
is between properties of things in the world (stimulus parameter or
object property) and a biological signal. Do properties of things,
such as a category of objects (“trees”), exist as such in the world
so that they can be communicated to the brain, or are they abstrac-
tions constructed by the mind? If the latter is more accurate, then
using a communication metaphor is unproductive.

Even when properly circumscribed, the neural coding meta-
phor is not without difficulties. Efficient coding offers a normative
explanation of transduction in terms of the organism’s surround-
ings (the physical layout of sensory signals), not of its Umwelt
(what is meaningful for the organism). This is not a totally irrel-
evant perspective since the Umwelt depends on the surroundings,
but it has limitations. Gallistel claims that “the brain’s way of
encoding color captures a large part of the information available
from the reflectance profiles of surfaces in the natural world”
(para. 4). Leaving aside the issue that this claim is supported by
behavioral rather than physiological evidence, and therefore has
little to do with whether and how neurons encode color (a fallacy
well described by Rahnev), it must be noted that species sharing
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the same surroundings can have different color vision systems,
with different dimensionality, which discards explanations based
exclusively on the statistics of natural scenes (Thompson et al.
1992).

Another difficulty has to do with the dynamic aspect of trans-
duction. Many sensory neurons adapt; that is, their firing rate
decreases when the stimulus is held constant. Normatively, this
allows neurons to remain sensitive to changes in the stimulus.
It might be tempting to frame this property as a way to increase
(Shannon) information transmitted about the stimulus (Wark
et al. 2007). But this raises the observer-organism confusion
again: Adaptation can only increase the amount of information
if one knows that and how the code changes, but this is only
known to the external observer, not the organism who sits at
the receiving end. To make such a point, one would need to dem-
onstrate that the organism precisely compensates for the adaptive
changes in the code. If the brain metaphorically “decodes” the
activity of sensory neurons, then it must be explained how the
dynamical and plastic process of coding is perfectly matched to
the decoding process in the absence of independent access to
the sensory signals.

In summary, the neural coding metaphor can be occasionally
useful, if handled with care, but only for a narrow subset of neu-
roscientific questions. Cognition, in particular, is not a case of
“world-brain communication” (Gallistel).

R3. Causality in biological systems

As Jones & Kording point out, a large part of neuroscience is
about understanding how the activity of neurons mediate behav-
ior, that is to say, how neurons are involved in the causal mech-
anisms underlying behavior. Huetz et al. assert that there are
“causal links between neural code and brain functions”
(para. 3), pointing out that electrically stimulating the auditory
nerve produces auditory experience, and electrically stimulating
the visual cortex biases visual perception. The issue at stake, how-
ever, is not whether neural activity has causal powers – again the
neural coding metaphor is so pervasive that “neural code” is iden-
tified with neural activity – but whether the causal model that the
coding metaphor conveys is correct. Gulli contends that I exposed
a trivial fallacy, the confusion of correlation and causation: obvi-
ously, “A and B are correlated” does not mean “A causes B.” He
then proposes a checklist of additional tests to establish causality
(“causal inferences must be made on the basis of aggregated evi-
dence”). However, my criticism is deeper: In many systems, the
relation between two components A and B is simply not of the
form A causes B, in which case checklists are irrelevant. I will
now give two examples to illustrate this point.

R3.1. The parking lot

The parking lot of an office building has 10 spaces, but there are
12 employees. A few employees complain that they often have to
spend time in the morning looking for a parking space in the
street. The boss is annoyed: only the employees who arrive late
have problems parking. He points out that he arrives very early
in the morning and never has any problem finding an empty
space: they should stop complaining and get up earlier. Indeed,
there is a clear correlation between arrival time and probability
of finding an empty space. In addition, if a person decides to
arrive earlier then she will find an empty space. Therefore, obser-
vation and intervention lead us to concur with the boss that it is

the employees’ arrival times that cause their ability to find a park-
ing space.

This conclusion is correct in a narrow reductionist sense, that
is, the “all else being equal” sense that is relevant to the experi-
menter’s Umwelt. But this sense is essentially irrelevant to under-
standing how the system works. Not only is it irrelevant, but it is
also misleading: Normatively, it leads the boss to conclude that
the parking lot can be made to work better by making all the
employees arrive earlier, but this is obviously wrong. The parking
lot is an example of a system of agents that interact indirectly
through the environment, by circular coupling. To understand
the system, it is not sufficient to study the relation between an
agent and some aspect of the environment. One needs to under-
stand the general organization of the system, the nature of inter-
actions and how they participate to the global function of the
system. In other words, one needs a systems approach, not a
reductionist (“all else being equal”) approach.

Jones & Kording claim that to establish causality, correlation
should be supplemented with intervention, and comment that
such experiments are “beautiful [but] rare” (para. 4). However,
aside from the esthetic aspect, interventional studies do not
turn an overly reductionist approach into a more adequate sys-
temic approach (Gomez-Marin 2017; Yoshihara & Yoshihara
2018), and neither does collecting additional “pieces of evidence”
as Gulli proposes. To understand a complex system using a dispa-
rate collection of measurements, the correct approach is not to try
to establish causal relations between measurements, but to con-
ceive a model of the system that is consistent with the measure-
ments, focusing on the global organization of the system and its
functional logic. As Jones & Kording note: “Real theory, including
theory that can deal with recurrent systems with circular causality,
is needed to break our conceptual reliance of ideas of mediation”
(para. 5).

To deny that components of a system should not be studied as
isolated pieces is not to deny that components have a role in the
system. Aranyosi asserts: “If the reafference and the continuous
circular causal loop of organism-environment interaction is
truly the ultimate unit of analysis, then there is nothing special
about the receptors to consider, or about any other part of the
nervous system for that matter” (para. 4). In a systems approach,
the “ultimate unit of analysis” is the organization of the system,
the relations between components. Therefore the components
are important, but the emphasis is on the way they interact.

R3.2. Systems of gears

The brain and environment exhibit circular causality but the cod-
ing narrative promotes linear causality. Barack & Jaegle object
that “linear encoding-decoding relationships between each pair
of elements are consistent with an overall picture of a circular,
coupled causal system” (para. 8). First, the coding metaphor is
not normally applied to each pair of elements (one neuron
encodes another neuron?) but to a relation between an external
feature and an element (or group of elements). Second, the rela-
tion between any two elements might well be linear “all else being
equal” (by construction), but studying local interactions in total
abstraction of the rest is not a proper way of understanding a sys-
tem. I will give a second example to illustrate this point.

Consider the system of three gears in Figure R1A. This system
had a moment of glory on the internet when the public transport
for Greater Manchester decided to put it on an ad with the slogan
“Making the city work together.” It takes a moment of thought to
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realize that gears cannot turn when they are arranged in this way,
despite the fact that any two of them fit together and would work
in isolation. To understand the difference between a functional
(Fig. R1B) and a dysfunctional (Fig. R1A) system of gears, one
must go beyond linear interactions between two elements and
consider the logic of the system. Mathematically, a functional
gear system has a planar bipartite (or two-colorable) graph of
contacts (Gordon 1994). B is two-colorable but A is not. If B is
a healthy brain and A is a diseased brain, can the coding para-
digm help understand why? The argument of approximation
offered by Barack & Jaegle, that “equivalences exist between
dynamical systems with circular causality and approximators
with iterated linear causality” (para. 9) misses this point.

R3.3. The bureaucratic model of the brain

What kind of causal model does the coding metaphor promote?
In the target article, I argued that the causal structure implied
by the coding metaphor is sequential (A causes B, rather than
A and B are coupled) and atemporal (timing relations are
ignored) and forbids autonomy (B can only result from an exter-
nal event), three characteristics at odds with the causal structure
of biological systems. These are the characteristic features of an
algorithm that transforms an input representation into an output
representation, by a series of manipulations of intermediate repre-
sentations. Indeed several commentators have noted the tight
relation between the coding metaphor and the computer meta-
phor (Reeke; Frezza & Zoccolotti). Gallistel uses it extensively
to support the coding metaphor: “A computing machine like
the brain has […] the machinery for executing operations on sym-
bols” (para. 5). Gauthier et al. explicitly consider “brains as rep-
resentational and computational devices” (para. 2).

There is a case for the algorithmic model as the underlying
causal model of the coding metaphor. This appears in David
Marr’s influential three levels of analysis of “information process-
ing systems” (Marr 1982b, Fig. 1–4, p. 25). In the “representation
and algorithm” level, one should ask “what is the representation
for the input and output, and what is the algorithm for the trans-
formation?” Then in the “hardware implementation” level, one
should ask “how can the representation and algorithm be realized
physically.” Marr’s view generally fits the computational theory of
mind, according to which cognition is the manipulation of sym-
bols by algorithms. The significant leap of faith of the neural cod-
ing metaphor is that “neural codes” provide the physical basis
(“hardware implementation”) of those representations or symbols.
But neural codes do not have the quality of symbols: They have a
context-dependent meaning and they are abstracted from tran-
sient events (spikes), therefore not something that can be
manipulated.

However, analyzing the coding metaphor in terms of algo-
rithms makes it difficult to grasp some of the key issues. The
fact that different people seem to mean different things about
“computer” and “computation” may lead to confusion (Wood
2019). Others might not see what could possibly be wrong with
the computer metaphor, since a computer or an algorithm can
simulate anything interesting (Barack & Jaegle; Gauthier
et al.). And finally, Garson observes that the coding metaphor
was used by Adrian in the early twentieth century, well before
computers were part of our daily life. Therefore, I suggest that
the neural coding metaphor reveals a way to think about causality
in complex systems that goes well beyond computer concepts. The
coding metaphor sees the brain as a set of agents that communi-
cate information encapsulated in forms along a chain of com-
mand. In essence, it is a bureaucratic model of the brain.

A bureaucrat takes an input, and then fills a form. For example
it takes an image and fills the form “orientation.” Then it passes
the form to the next bureaucrat. The bureaucrat will read the
forms, apply some rules, and fill some other form, for example,
the Jennifer Anniston likeness form. A key feature is that the
act of reading has no impact on the form being read (no cou-
pling). Unlike a dynamical system, its activity exists out of time.
There are no fixed temporal relations between the different form-
filling activities. The bureaucrat outputs a form; the form ends up
on the desk of another bureaucrat, who will then process it at
some undetermined point. This makes it virtually impossible to
explain behavior where a system must interact in real time with
its environment. This issue is well described by Vickhoff in the
context of music perception. Electrophysiological events are
often interpreted as encoding sound features, without consider-
ation for the timing of these events. But without time and without
temporal coordination, without binding between melody, har-
mony, and rhythm, there can be no music at all. This is true of
all perception but particularly obvious for auditory perception:
Percepts are processes that unroll, not forms floating in the
brain, waiting to be read.

In the bureaucratic model, the causal structure is essentially
sequential, but there can be parallel paths. There can also be feed-
back: Higher executives can change the forms. Barack & Jaegle
point out that linear causality between any two elements is not
incompatible with circular causality of the overall system.
Consider the way the context dependence of neural codes is
molded into the coding narrative. Tuning curves in the primary
visual cortex (V1) depend on the task being done by the animal
(Gilbert & Li 2013); specifically, V1 neurons are sensitive to fea-
tures important for the task. This effect is described as a “top-
down influence,” where “top” and “down” refer to the position
in the chain of command. The authors correctly note that it raises
an issue if we are to think of the activity of V1 neurons as a code
for stimulus features, since the meaning of the code would then
depend on what the animal is doing. The solution is clear: “The
answer lies in the fact that the higher-order areas sent the instruc-
tion for these neurons to perform a particular calculation, so the
return signal is ‘interpreted’ by these areas as the result of that cal-
culation and is not confused with other operations those neurons
perform.” In the bureaucratic model, feedback must be conceptu-
alized as “top-down” instructions for changing the forms. But this
bureaucratic concept raises a number of questions: What if the
neuron receives feedback from several “higher-order” neurons?
Would it not get conflicting instructions? If not, how do the
higher-order neurons coordinate themselves? If not by coupling,
then who gives instructions to the higher-order neurons?

Figure R1. Two systems of gears with different functionality.
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One flaw often attributed to bureaucracies is that they are
hopelessly rigid. A bureaucrat has no autonomy: it fills a rigid
form instructed from “the top.” If the bureaucrat decided to
change the form, the result would be disastrous because the rest
of the chain applies formal procedures, which would fail.
Spontaneous activity is noise, not autonomy. But what should
the bureaucrat do when she is supposed to fill the bar orientation
form but there is no oriented bar? Or when she is supposed to fill
the sound location form but there are two sounds, or the sound of
wind? In a real bureaucracy, the stimulus is typically sent back
home, or off to some other bureaucrat, but there is no such option
for the brain.

Interestingly, while “bureaucracy” tends to evoke an overly
rigid and generally dysfunctional mode of organization, there
was a time when bureaucracies were seen as efficient ways of orga-
nizing work. In the early twentieth century, Max Weber, one of
the founders of sociology, was the first to formally study bureau-
cracies (public or private), and considered that it was the most
rational way of organizing work (Weber 1978). All resources are
efficiently encoded and processes are designed rationally: What
could possibly go wrong?

Coding narratives tend to make extensive use of computational
terminology, because the computer metaphor evokes something
efficient and powerful. But when we propose that properties are
encoded in neural responses, which are then sent to other areas
for further processing, the causal model we have in mind is the
bureaucratic model of the brain. This model is hard to reconcile
with empirical knowledge about the anatomy and physiology of
the brain. Garson points out that the coding metaphor is used
to reason normatively about the brain (what the brain should
do to function efficiently). But the situation seems even worse
normatively than empirically: Who would think that bureaucra-
cies are a good idealized model of the brain?

R4. Representations

R4.1. Mental representations versus neural encodings

As many commentators have noted, the neural coding metaphor
revolves around a central concept in philosophy of mind: repre-
sentation (Aranyosi; Birch & Smortchkova; Cao & Rathkopf;
Cisek; Deacon & Rączaszek-Leonardi; de-Wit et al.; Gauthier
et al.; Huetz et al.; Jones & Kording; Keijzer; Lehky &
Sereno; Mirski & Bickhard). In fact, only four commentators
did not mention it. What are representations and why do many
think that they are necessary for cognition (Clark and Toribio
1994)? As Chemero puts it, representations are the “dark matter”
of the brain (Chemero 2011, p. 50): they are theoretical constructs
considered necessary to explain some features of cognition. One
of these features is anticipation: the ability to act as a function
of what might happen, conditionally on one’s actions. In particu-
lar, behavior can be directed towards objects that are not present.
This is presumably what makes the appeal of predictive coding
theory (Baltieri & Buckley), despite the fact that it refers to a
very narrow notion of anticipation, as I and others have noted
(Anderson and Chemero 2013).

More broadly, animals act not only in reaction to proximal
stimuli but also as a function of abstract features attributed to sen-
sory signals; these abstract constructions are called internal repre-
sentations. To take an example from the target article, we could
imagine that sound sources can be localized by a simple feedback
process: turn the head until the sounds picked up at both ears are

equally loud. But that is not what animals generally do, or at least
not only. A cat can hear a 100-μs click and then direct its eyes
towards the sound source (Populin and Yin 1998), and perceived
horizontal sound location is remarkably invariant across large
changes in the acoustical signals (Hofman and Van Opstal
1998; Sabin et al. 2005; Yost and Zhong 2014). Even binaural
acoustical cues such as interaural time differences vary substan-
tially with the sound’s spectrum (Benichoux et al. 2016), but
somehow animals behave essentially as a function of an abstract
property of the signals, their source’s position, and do so while
the signals are not present any more. Anti-representationalist
views centered on feedback control (Brooks 1991a; Powers 1973a;
van Gelder 1998) do not seem to properly address this issue.

This explains why a popular approach to understanding cogni-
tion, advocated by Gauthier et al., starts with analyzing how these
abstract representations could possibly be extracted from sensory
signals (Marr’s algorithmic level) and then tries to map this algo-
rithmic process to experimental observables. It is known, for
example, that humans and many mammals use mostly intensity
differences between the two ears (IIDs) to localize high-frequency
sounds in the horizontal plane (Marr’s computational level).
Therefore, it is thought that, at the algorithmic level, the auditory
system computes IIDs and infers sound location from this inter-
mediate calculation. As Gauthier at al. propose, “internal repre-
sentations [of the computational models] can be used to guide
the search for neural codes” (para. 4), and indeed neurons have
been identified in the lateral superior olive (LSO) whose firing
rate varies monotonically with the IID of an experimental stimu-
lus and therefore “encodes” it. This has formed the consensual
view of representation and computation of high-frequency
sound localization for several decades: LSO neurons encode
IIDs by subtracting the intensity of the two monaural signals. A
few authors noted that those neurons are also sensitive to ITDs
(Joris and Yin 1995), level and spectrum (Tsai et al. 2010), but
the neural coding narrative was compelling. Recently it was
found that experimenters had been mistakenly recording inter-
neurons instead of the principal neurons projecting to other
areas, which were missed because they fire only transiently to lat-
eralized sounds (Franken et al. 2018). As it turned out, the stan-
dard computational model of IID processing was supported by a
fiction fueled by the coding narrative, as Bénichoux and Tollin
(2018) comment: “The study by Franken et al. is a good example
of how prior expectations can involuntarily mislead scientific
endeavor.”

Gauthier et al. note correctly that the neural coding metaphor
guides the search for representations, by helping focus on the
“right” candidate representations. But is it a good thing? A critical
flaw in the methodology is to implicitly identify mental represen-
tations defined at the abstract algorithmic level with neural repre-
sentations conceptualized as encodings. Rahnev clearly explains
the fallacy in the context of the Bayesian brain. Arguments sup-
porting the Bayesian brain are based on the allegedly optimal
way in which humans behave. Therefore, they support the “as
if” view of the theory: People behave as if the brain was perform-
ing the computations of Bayesian theory. But when calling the
theory Bayesian brain, one commits not just to the “as if” view
(which is not about the brain) but to the “realist” view, the notion
that the brain literally encodes the variables of Bayesian theory
and calculates likelihoods. The problem is no argument supports
the direct view, only the “as if” view. This realist view is readily
endorsed by Gauthier et al.: “neural codes must implement the
empirically validated representations of computational models.”
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But “empirically validated” refers to the “as if” view, and therefore,
the assertion is not justified. Similarly, Gallistel gives the example
of animal navigation: “their brain must subtract the current solar
azimuth from the desired compass course to obtain the current
solar bearing of the source, the angle at which they must hold
the sun’s image while flying to their destination” (para. 7), but
arguments are exclusively based on behavior and therefore no
specific conclusion about the brain can be taken. The neural cod-
ing metaphor implicitly commits to the “realist” view, which is
incoherent, while evidence is provided for the “as if” view,
which is not about the brain.

This confusion explains why several commentators have cate-
gorized my position as anti-representationalist, despite the fact
that one of the main flaws I attributed to neural codes is their
lack of representational quality (Birch & Smortchkova;
Gauthier et al.; Huetz et al.). Arguments developed in the target
article are aimed at the direct view of representations as neural
encodings, rather than at mental representations, which are only
supported by arguments placed at the level of behavior or cogni-
tion. For example, when Clark and Toribio (1994) argue that
some problems are “representation-hungry,” the argument is
based exclusively on behavior and does not rely on any form of
encoding. Others regretted my commitment to representations
(Aranyosi; Harnad; Keijzer), but this is because representations
are identified with encodings, and encodings are (correctly)
seen as incoherent or unnecessary (Brooks 1991; Chemero
2011; van Gelder 1995).

Therefore, the debate on representations seems to rely on an
implicit identification between mental representations and encod-
ings, promoted by the neural coding metaphor. It can be argued
whether “representation” is a good word to designate the fact that
cognition and behavior depend on abstract and anticipatory prop-
erties of situations. Perhaps it is misleading. The concept, how-
ever, is important. Arguably, and although this might sound
provocative, Gibson’s (1979) affordances are an example of repre-
sentations in this “as if” sense. In one of my son’s child books, a
group of different animals stumble on a potty. The frog says: “a
bathtub!”; the dog says: “a bowl!”; the mouse says: “a slide!”
Animals perceive affordances, anticipatory properties of interac-
tion that depend on their own Umwelt and not just on the phys-
ical environment.

Is rejecting encodingism “throwing out the baby with the bath-
water” (Birch & Smortchkova)? No, because there are ways to
conceive these important aspects of representation without neural
codes.

R4.2. A short excursion on consciousness

In the target article, I avoided discussing consciousness because it
raises many other difficult issues. As Harnad correctly points out,
strictly speaking, perception refers to conscious experience and it
is notoriously hard to explain “how and why organisms feel rather
than just do” (last para.). When I used the words perception and
percept, I only meant them in the loser sense that is customary in
neuroscience, that is, to refer to certain types of tasks (e.g., local-
izing a sound source).

Nevertheless, our own conscious experience is undoubtedly a
chief source of intuition about representations. We believe there
are mental representations because at any given moment, it
seems that we have access to a sort of subjective “snapshot” of
the world, something that is not the physical world but depends
on it, in other words a “representation” of the world.

If conscious experience is produced by the brain, then it would
seem that there must be a lawful relation between the state of the
brain at a given time and the percept that the person is experienc-
ing, in other words an encoding. I will try to show with a simple
thought experiment that this intuition is misleading.

In the TV series Bewitched, Samantha the housewife twitches
her nose and everyone freezes except her. Then she twitches her
nose and everyone unfreezes, without noticing that anything hap-
pened. For them, time has effectively stopped. Was anyone expe-
riencing anything during that time? According to the encoding
view of conscious experience, yes: One experiences the same per-
cept during the entire time, determined by the unchanging state
of the brain. But this seems wrong, and indeed in the TV series
the characters behave as if there had been no experience at all dur-
ing that time. The encoding view of conscious experience is wrong
because experiencing or perceiving is an activity, not something to
be looked at (“by whom?” Harnad asks). Therefore, if we are to
keep the concept of representation, it has to be conceived not as
an encoding but as a process.

R4.3. Beyond representations as encodings

As Bickhard (2009) argues, the belief in encodingism is rooted in
substance metaphysics, which describes reality in terms of things
of different kinds (e.g., atoms). For example, the neural coding
metaphor sees neural activity as a thing that can be read or
manipulated. In contrast, process metaphysics describes reality
in terms of processes: “processes have their causal powers in vir-
tue of their organization” (Bickhard 2009, p 553). Bickhard points
out that historically, science has progressed by shifting from a
substance view to a process view of phenomena. For example,
fire is no longer considered caused by phlogiston but by the pro-
cess of combustion.

When the firing rate of a neuron is called a “neural represen-
tation,” the neuron’s activity is assimilated to a thing that can be
manipulated and observed, as if it were a sculpture or a painting.
But the neuron’s activity is not a thing, as the term indicates: it is a
process. An action potential is an event, which appears and disap-
pears immediately and has definite effects on the system. Any bio-
logically relevant concept of representation must respect this
dynamical nature.

Of course, not any dynamical system is a good model of the
brain, as pointed out by Deacon & Rączaszek-Leonardi.
Garson observes that the coding metaphor allows teleological rea-
soning, which a dynamical system might not include. But as
Arsiwalla et al. point out, teleology figures prominently in at
least one major branch of dynamical systems theory: control the-
ory. The Watt governor, chosen by van Gelder (1995) as an exam-
ple of an elementary cognitive process that is not computational
(meant in the conventional sense of manipulating representations
in a series of steps), is a feedback control system. Perceptual con-
trol theory (Powers 1973a) sees behavior as the “closed-loop con-
trol of what the animal senses” (Arsiwalla et al., para. 2).

Control theory is an interesting perspective on behavior,
because it respects the dynamical nature of the organism and
the circular relation between organism and environment, and
also connects with an important physiological concept, homeosta-
sis. However, it is not without difficulties either, for several rea-
sons. First, the physiological concept of homeostasis has some
limitations: The organism actively maintains various quantities
within certain viable bounds, but it does not necessarily keep
them at a fixed value. On the contrary, it adapts them to the
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dynamic needs of the organism, so that the concept of “allostasis”
has been proposed instead (Sterling 2012). An obvious correction
is to allow for dynamic rather than static desired states, but this
leads to the second issue: Control typically relies on the paradigm
of command, with a controller trying to match a desired state
expressed by an external agent, which is not modeled.
Therefore, it leaves untouched the question of autonomy. Third,
control is classically (but perhaps not necessarily) also entrenched
in the coding paradigm, with a variable representing the state of
the controlled system and a variable representing the desired
state. It is tempting to then postulate that a neuron encodes the
sensory variable and some other neuron compares it to the target
variable (possibly encoded by another neuron) and issues a com-
mand accordingly. But again this is an anthropomorphic projec-
tion of our own perspective.

Typically, an engineer would design a sensor in charge of
doing a measurement. By this, we mean that the sensor produces
a quantity (e.g., an electrical voltage) that is in reliable, invariant
correspondence with the physical quantity of interest, in other
words, an encoding. But biological organisms do not perform
measurements in this sense. First, neurons typically produce
spike trains, that is, signals that are highly variable when the stim-
ulus is constant or even absent (as retinal ganglion cells in the
dark). Therefore neurons map static physical quantities to
dynamic processes, so that a neuron’s output at a given time can-
not be used as a measure. Only some abstract construction such as
the “firing rate,” which is not manipulated as such by neurons
(which react to individual spikes), might be more stable. But in
general, this is not the case either because many sensory neurons
adapt to stimuli. The relation between physical quantities and
sensory neuron activity is not one of measurement but simply
of coupling. There is no physiological signal to be maintained
constant or close to a desired state, only dynamic processes:
Constancy is to be found at the behavioral level, not at the phys-
iological level.

Consider for example a simple feedback loop such as the
stretch reflex: A sensory neuron fires action potentials in response
to muscle stretch and excites a motoneuron, which then triggers
contractions of the muscle. This acts as a negative feedback
loop. To understand this, it is not necessary to look for a neural
code of stretch in the sensory neuron and to look for a subtraction
performed by the motoneuron. It is sufficient to consider the
(spiking) dynamical system formed by the neural circuit together
with the muscle, and show that it has a stable fixed point, with
dynamical properties that are more desirable when the circuit is
connected to the muscle.

The free energy principle (discussed by Baltieri & Buckley)
makes the same problematic commitment to encodings, because
free energy is defined as an information-theoretic function of
ungrounded abstract variables, not of physiological processes –
note that this is different from the physical concept free energy,
which applies to equilibrium thermodynamics, not living systems
(Martyushev 2018).

It is possible to conceive organism-environment coupling and
homeostasis (considered in a broad sense) in terms of processes
rather than encodings. One such conceptual framework in theo-
retical biology is autopoiesis (Maturana and Varela 1973; Varela
et al. 1974): a property of an organization of processes that
actively maintain the organization despite continuous change of
the substance that composes them (e.g., protein turnover).
Beyond homeostasis, several commentators have expressed the
idea that representations should be conceived not as encodings

but in terms of processes (Cisek; Deacon & Rączaszek-
Leonardi; Mirski & Bickhard). Specifically, they develop a prag-
matic concept of representation, oriented on the effects of spikes
rather than on their correlation with external features (Deacon &
Rączaszek-Leonardi refer to Peirce). Cisek describes pragmatic
representations as follows: “As spikes are a means of directing
that flow, their activity perforce corresponds to aspects of the
world but also to the organism’s needs and its policies for meeting
those needs. We could call these “pragmatic representations” –
activity that doesn’t describe the world but instead mediates inter-
action with it” (para. 4).

At this point, it is important to recall that arguments in favor
of the central role of representations in cognition are all about
what representations allow (the “as if” view). Therefore they
chiefly support the pragmatic view of representation. But what
is representational about pragmatic representations? Mirski &
Bickhard focus on the property of anticipation: “the brain estab-
lishes modes of functioning that implicitly anticipate the upcoming
interaction” (last para.). In the interactivist model of representation
(Bickhard 2009), representations are anticipations of potential
interactions and their expected impact on the future course of pro-
cesses of the system. Perhaps it might be more productive to talk
about representational processes than representations.

Arguably, this alternative process-based view of representation
and cognition opens more questions and conceptual challenges
than it solves. These challenges are hidden, not solved, by the
neural coding metaphor.
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