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Abstract. Let k be a field and R a standard graded k-algebra. We denote

by HR the homology algebra of the Koszul complex on a minimal set of

generators of the irrelevant ideal of R. We discuss the relationship between

the multiplicative structure of HR and the property that R is a Koszul algebra.

More generally, we work in the setting of local rings and we show that certain

conditions on the multiplicative structure of Koszul homology imply strong

homological properties, such as existence of certain Golod homomorphisms,

leading to explicit computations of Poincaré series. As an application, we show

that the Poincaré series of all finitely generated modules over a stretched

Cohen–Macaulay local ring are rational, sharing a common denominator.

Introduction

Let (R,m, k) denote a local Noetherian ring R with maximal ideal m and

residue field k. Let KR denote the Koszul complex on a minimal generating

set of m, and let HR denote its homology. The Koszul complex KR can be

endowed with the structure of a differential graded (DG) algebra, and is

the first step in constructing a DG algebra minimal free resolution of k over

R (called a Tate resolution of k over R) through the process of adjoining

DG algebra variables. It is thus natural to expect that the properties of

the homology algebra HR are related to other homological properties of
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R. Indeed, it is known that both the Gorenstein and complete intersection

properties of R can be characterized in terms of HR.

Certain higher order homology operations on Koszul homology, intro-

duced by Golod [10], can be used to characterize extremality in the growth

of the minimal free resolution of k over R. If R is Golod, then it has the

property that for all finitely generated R-modules M the Poincaré series∑
i>0 rankk(TorRi (M, k))zi are rational and share a common denominator,

see Ghione and Gulliksen [9]. This property is also satisfied by other large

classes of rings, and recent work of Rossi and Şega [24] and Kustin, Şega, and

Vraciu [15] provides insight into the fact that the multiplicative structure of

Koszul homology plays a role in establishing such results. In this paper we

further explore how the structure of HR can be used to derive rationality

of Poincaré series and other homological properties of R. In particular, we

give special attention in the graded case to the Koszul property.

Recall that the Koszul homology of a Golod ring has trivial multiplication,

see [10]. When R is not Golod, we find it useful to consider conditions on

HR that, to some extent, generalize the condition that multiplication is

trivial. We require that cycles living “deep” enough in KR (i.e., ones that

are contained in mi KR for large enough values of i) can be expressed, up

to a boundary, in terms of certain cycles that have trivial products among

themselves. More precisely, we consider the following conditions on KR,

depending on integers t, b, s:

Zt,b,s: There exists a finite set Z ⊆ Z(mt KR) such that zz′ = 0 in Z(KR)

for all z, z′ ∈ Z and for every v ∈ms KR there exists m ∈ N and zi ∈ Z,

ui ∈ Z(mb KR) for each i with 1 6 i6m, such that v −
∑m

i=1 ziui ∈
B(ms−1 KR).

Pt: There exists [l] ∈H1(K
R) such that for every z ∈ Z(mt KR) there exists

z′ ∈ Z(mt−1 KR) such that z − z′l ∈B(mt−1 KR).

After setting some ground work in the first two sections, in Sections 3

and 4 we prove various homological implications of the conditions Zt,b,s
and Pt, under specific conditions on the integers t, b, s. The main results

regarding these conditions are Theorems 3.1 and 4.2. We note that the

hypotheses of Theorem 3.1 also require R to be artinian, while the hypothe-

ses of Theorem 4.2 and its corollaries do not. The conclusions of these

theorems and their corollaries are formulated in terms of vanishing of the

natural maps TorR∗ (mj , k)→ TorR∗ (mi, k) induced by the inclusions mj ⊆mi

for certain values of i, j, as well as identifying Golod homomorphisms,
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establishing generation of the Yoneda algebra ExtR(k, k) in low degrees,

and deducing rationality of Poincaré series. Our arguments utilize the DG

algebra structure of the minimal free resolution of k over R. This approach

is inspired by, and generalizes, work of Levin and Avramov [18], where

homological properties of local Gorenstein artinian rings are derived from

the fact that the Koszul homology algebra of such a ring is a Poincaré

algebra.

For appropriate values of t, the property Pt holds for the class of

compressed Gorenstein artinian local rings discussed in [24] and also for

the class of compressed level local artinian rings of odd socle degree, see

[15]. In particular, our results in Section 4 can be used to recover the results

of [24] and [15] regarding the fact that when the socle degree is different than

three, these rings can be obtained as homomorphic images of a hypersurface,

via a Golod homomorphism.

In Section 5 we show that the property P2 is satisfied in the case of

stretched artinian rings satisfying m3 6= 0 and rankk(m/m
2) 6= rankk(0 : m).

The class of stretched Cohen–Macaulay local rings was considered by Sally

in [25], where she proves that the Poincaré series of the residue field over such

a ring is rational. A consequence of our results on generation in the Koszul

homology algebra is that the Poincaré series of all finitely generated R-

modules over a stretched Cohen–Macaulay local ring R are rational, sharing

a common denominator. Theorem 5.4 also states that the Yoneda algebra

ExtR(k, k) of a stretched artinian local ring (R,m, k) is generated in degree

1 if rankk(m/m
2) 6= rankk(0 : m) and in degrees 1 and 2 if rankk(m/m

2) =

rankk(0 : m).

For the remainder of the introduction, assume that R is a standard graded

k-algebra. Let KR denote the Koszul complex on a set of minimal generators

of the irrelevant ideal of R and let HR denote the homology algebra of KR.

The k-algebra R is said to be a Koszul algebra if the resolution of k over R is

linear, that is to say, the differentials in the minimal graded free resolution

of k can be represented by matrices of linear forms (see e.g., [26] and [12]).

The algebra HR is bigraded; when writing the bidegree (i, j) of an element,

the index i denotes homological degree and the index j denotes internal

degree. The linear strand of HR is the set of elements of bidegree (i, i+ 1),

and the nonlinear strands are composed of elements of bidegree (i, i+ r)

with r > 1. We say that the nonlinear strands of HR are generated by a set

Z ⊆HR if the nonlinear strands are contained in the ideal generated by Z

https://doi.org/10.1017/nmj.2018.20 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.20


50 A. CROLL ET AL.

in HR. If the nonlinear strands are generated by a subset Z of the linear

strand, it follows that HR is generated by the linear strand as a k-algebra.

In Section 6 we interpret our earlier results in the graded setting, with

special attention to the Koszul property. In particular, we obtain the

following statements, which provide new homological criteria for verifying

that an algebra is Koszul:

(1) If the nonlinear strands of HR are generated by one element of bidegree

(1, 2), then R is absolutely Koszul, hence Koszul. (See [14] or Section 6

regarding absolutely Koszul algebras.)

(2) If R>3 = 0 and there exists a set of cycles Z representing elements in

the linear strand in HR, with the property that zz′ = 0 in Z(KR) for

all z, z′ ∈ Z and such that the nonlinear strand of HR is generated by

Z = {[z] | z ∈ Z}, then R is Koszul.

If R is Koszul, then part of the Koszul homology algebra HR is generated

by elements in the linear strand; this point was made by Avramov, Conca,

and Iyengar [4] and Boocher et al. [7]. More precisely, in [4, Theorem 4.1]

it is shown that if R is Koszul then HR
i,j = 0 for j > 2i and HR

i,2i = (HR
1,2)

i

for all i> 0 and in [7, Theorem 3.1] it is proved that one has also HR
i,2i−1 =

(HR
1,2)

i−2 HR
2,3 for all i> 2. Sections 6 and 7 provide some further insight into

the connections between the fact that R is Koszul and the structure of HR.

In Proposition 6.2 we note that if R is Koszul then the nonlinear strands

of HR are contained in the set of matric Massey products of KR. However,

generation of HR by the linear strand (which implies that the nonlinear

strands of HR are contained in the set of matric Massey products) does not

imply that R is Koszul. This can be seen by means of the example in 7.4,

which relies on a ring from a paper of Roos [23]. (The fact that the linear

strand need not generate HR as a k-algebra when R is Koszul is also noted

in [7, Remark 3.2].) On the other hand, 7.2 describes a Koszul algebra R

for which HR has the same bigraded Hilbert series as the homology algebra

of the ring of 7.4 and is also generated by the linear strand. It turns out

that the ring in 7.2 satisfies the hypothesis of statement (2) above. This

observation sheds some light on our effort to understand what distinguishes

one homology algebra from the other in the two examples.

The examples in Section 7 utilize the Macaulay2 package DGAlgebras

written by Frank Moore, which provides an efficient way to verify rings for

which statements (1) or (2) hold; using this, we apply our Theorem 6.1

to the rings studied in Roos [23]. The last section also contains a concrete
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example of how our results can be used toward establishing homological

properties of the ring and computations of Poincaré series, see 7.6.

Given the evidence that the properties considered in this paper show up

in a large variety of situations, we hope that this study will be useful in

further explorations of homological properties of local rings.

The work on this paper started during the 2015 Mathematical Research

Communities program in Commutative Algebra, under the guidance of

Liana Şega. The authors would also like to thank the other organizers of this

program, Srikanth Iyengar, Karl Schwede, Gregory Smith, and Wenliang

Zhang, for their support, and also the AMS staff that coordinated the

program. Anjan Gupta joined the project following conversations during

the conference in honor of Craig Huneke held in Ann Arbor in July 2016,

and is thankful for support to travel to this conference from the Department

of Mathematics at the University of Michigan and IIT Bombay.

§1. Background

In this section we set notation and provide needed definitions, including

that of a small homomorphism, for which we provide some preliminary

results.

1.1. Let (R,m, k) be a local ring and M a finite (meaning finitely

generated) R-module. Fix a minimal generating set of m and let KR denote

the Koszul complex on this set. Let HR denote the homology algebra of KR.

The complex KR has a natural structure of a graded commutative algebra,

and this structure is inherited by HR. We denote by KM the Koszul complex

KR ⊗RM .

The Poincaré series PRM (z) of M is defined as

PRM (z) =
∑
i>0

rankk(TorRi (M, k))zi.

If φ : (R,m, k)→ (S, n, k) is a surjective homomorphism of local rings

then the following coefficientwise inequality holds

PSM (z) 4
PRM (z)

1− z(PRS (z)− 1)
.

If equality holds for M = k then we say that φ is a Golod homomorphism.

The homomorphism φ induces maps

Extiφ(k, k) : ExtiS(k, k)→ ExtiR(k, k).
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If Ext∗φ(k, k) is surjective then we say φ is small. Recall that if φ is Golod

then φ is small (cf. Avramov [1, 3.5]).

When R is artinian, specific conditions formulated in terms of the

concepts above allow for an explicit computation of the series PRk (z).

Lemma 1.2. Let (R,m, k) be an artinian local ring with ms+1 = 0. Let

n denote the minimal number of generators of m and let a be the dimension

of ms.

If the canonical projection R→R/ms is small and the ring R/ms is

Golod, then the Poincaré series of k over R is rational, satisfying the

formula:

(1.2.1) PRk (z) =
(1 + z)n

1− z(HR/ms
(z)− 1) + az2(1 + z)n

,

where HR/ms
(z) stands for the Hilbert series (which is in this case a

polynomial of degree n) of the Koszul homology algebra HR/ms
.

Proof. As ms ∼= ka, we have PRR/ms(z) = az PRk (z) + 1.

Since R/ms is Golod and R→R/ms is small, R→R/ms is a Golod

homomorphism by [26, 6.7]. Therefore, we have

PRk (z) = P
R/ms

k (z)(1− z(PRR/ms(z)− 1)) = P
R/ms

k (z)(1− az2 PRk (z)).

By rearranging, we have that

(1.2.2) PRk (z) =
P
R/ms

k (z)

1 + az2 P
R/ms

k (z)
.

Finally, since R/ms is Golod, we have that

(1.2.3) P
R/ms

k (z) =
(1 + z)n

1− z(HR/ms
(z)− 1)

.

The conclusion follows from (1.2.2) and (1.2.3).

In order to apply the lemma, we need to verify that the canonical

projection R→R/ms is Golod or small. In [18], Levin and Avramov prove

that this homomorphism is Golod (thus small) whenever the artinian ring

R is Gorenstein. Their proof relies on the fact that HR is a Poincaré

algebra when R is Gorenstein. This leads us to believe that, more generally,
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the structure of the Koszul homology HR can be used to understand the

homological properties of the canonical projection R→R/ms. The next

lemma shows that matric Massey products play a role.

1.3. Let ϕ : R→ S be a homomorphism of local rings. The usual products

of HR are understood to be the set of products HR
>1 ·HR

>1. We denote by

MH(KR) the set of matric Massey products of HR
>1, as defined in [20]. This

set of higher order homology operations is a submodule of HR
>1 and contains

the usual products; see also [2, (1.4.1)] for a more concise definition.

The induced map H(Kϕ) : H(KR)→H(KS) satisfies H(Kϕ)(MH(KR))⊆
MH(KS). By [1, 4.6], if ϕ is small then the induced homomorphism

H>1(K
R)/MH(KR)→H>1(K

S)/MH(KS)

is injective. From here we derive immediately the following statement:

Lemma. Let (R,m, k) be a local ring with i> 0. Consider the conditions:

(1) The canonical projection R→R/mi is small;

(2) H>1(m
i KR)⊆MH(KR).

Then (1) implies (2).

Example 7.4 in Section 7 shows that the implication (2) =⇒ (1) does not

hold when i= 2. Ideally, one would like to replace condition (2) with a

stronger one, that is equivalent to (1). While such a condition is not yet

known, we identify in Sections 3 and 4 two conditions on Koszul homology

that imply (1), for certain values of i.

§2. A property of the Tate resolution

The purpose of this section is to record in Proposition 2.8 a general

property of the Tate resolution. This result will be used later, in the proof of

one of the main theorems. We start with a description of the Tate resolution,

and we invite the reader to consult [3] for more details, in particular for the

definition of a DG algebra. We then build the ingredients of the proof of the

proposition by means of a couple of lemmas.

2.1. Adjunction of variables. Let B be a DG algebra over R and suppose

z is a cycle in B. We embed B into a DG algebra B′ =B〈y〉 by freely

adjoining a variable y such that ∂(y) = z as follows:
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If |z| is even, the variable y such that ∂(y) = z is called an exterior variable

and satisfies y2 = 0. Denote by k〈y〉 the exterior algebra over k of a free k-

module on a generator of degree |z|+ 1. The differential on B〈y〉=B ⊗k
k〈y〉 is given by

∂(b0 + b1y) = ∂(b0) + ∂(b1)y + (−1)|b1|b1z.

If |z|> 0 is odd, y is a divided powers variable. The k-algebra k〈y〉 on

a divided powers variable y is the free k-module with basis {y(i) : |y(i)|=
i|y|}i>0 and multiplication table

y(i)y(j) =

(
i+ j

i

)
y(i+j), for i, j > 0.

We set y(1) = y, y(0) = 1, and y(i) = 0 for i < 0. Forgetting the differentials,

B〈y〉=B ⊗k k〈y〉. If z ∈B is a cycle of positive odd degree, then

∂

(∑
i

biy
(i)

)
=
∑
i

∂(bi)y
(i) +

∑
i

(−1)|bi|bizy
(i−1)

is a differential on B〈y〉 that extends that of B and satisfies the Leibniz

rule.

The notation B〈y1, . . . , yn〉 stands for the DG algebra obtained by

repeated adjunction of variables as above.

2.2. The Tate resolution. Let x1, . . . , xn be a minimal generating set

for m and KR the Koszul complex on x1, . . . , xn. Note that we can interpret

KR as the DG algebra

KR =R〈T1, . . . , Tn〉,

where Ti are degree 1 exterior variables (these exterior variables in degree

1 will be referred to as Koszul variables) with ∂(Ti) = xi. One can continue

to “kill” homology by adjoining variables to KR, following the construction

in [3, 6.3.1]. The resulting DG algebra A is a minimal free resolution of k

over R, often referred to as the Tate resolution of k over R.

Forgetting differentials, A is a free R-module: see [3, Remark 6.2.1] for

a description of the basis in terms of the variables adjoined. In particular,

one can see that A is also a free KR-module.
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2.3. Notation. We write K for KR when the ring R is understood. Since

A is a free algebra over K, we consider a homogeneous K-basis of A. For

each j, let χi,j with 1 6 i6 qj denote the elements of homological degree j

in this basis. If z ∈ Ap, then we write z in terms of this basis as

(2.3.1) z =

p∑
j=0

qj∑
i=1

zi,jχi,p−j

with zi,j ∈Kj for each j.

As usual, Z(A) denotes the set of cycles of A and B(A) denotes the set

of boundaries.

The following lemma provides the inductive step for our key lemma,

Lemma 2.7, below.

Lemma 2.4. Let z ∈ Zp(A) and write it as in (2.3.1). Let a be an integer

with 0 6 a6 p. Assume zi,j ∈mt K for all j with 0 6 j 6 a− 1 and all i with

1 6 i6 qj. Then

∂(zi,a) ∈mt+1 K

for all i with 1 6 i6 qa.

Proof. Since z ∈ Z(A), we have ∂(z) = 0. On the other hand we can

compute ∂(z) from (2.3.1), using the Leibniz rule; this yields:

(2.4.1) 0 =

p∑
j=0

qj∑
i=1

(−1)jzi,j∂(χi,p−j) + ∂(zi,j)χi,p−j .

Let i be such that 1 6 i6 qa. We express all terms in the right-hand side of

(2.4.1) in terms of the K-basis of A, and collect the terms to compute the

coefficient of each basis element in the sum. We see that the coefficient of

χi,p−a in this sum is

∂(zi,a) +
a−1∑
j=0

qj∑
i′=1

zi′,jwi′,j with wi′,j ∈m Ka−j .

The coefficients wi′,j come from expressing ∂(χi,p−j) in terms of the K-basis,

for j 6 a− 1. In particular, wi′,j ∈m K since A is minimal. (Note that if

j > a then zi,j∂(χi,p−j) does not have any contribution to the coefficient of
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χi,p−a, for degree reasons.) These coefficients of χi,p−a must equal 0, hence

∂(zi,a) =−
a−1∑
j=0

qj∑
i′=1

zi′,jwi′,j ∈ (mt K)(m K)⊆mt+1 K

for all i with 1 6 i6 qa.

2.5. Let R̂ denote the completion of R with respect to m. We may write

R̂=Q/I, with (Q, n, k) a regular local ring and I ⊆ n2; this presentation is

called a minimal Cohen presentation. We set

v(R) = max{j | I ⊆ nj}.

As noted in [13], this integer is independent of the choice of the minimal

Cohen presentation.

Remark 2.6. If v(R) > t+ 1, that is, I ⊆ nt+1, then the map

(2.6.1) Hi(K
R /mt+1 KR)→Hi(K

R /mt KR)

induced by the canonical homomorphism KR /mt+1 KR→KR /mt KR is

zero for all i> 1. In particular, we have: If ∂(z) ∈mt+1 KR, then z ∈
B(KR) + mt KR for all z ∈KR

>1.

Indeed, to justify this statement it suffices to assume that R is complete,

with R=Q/I as above. We can write KR = KQ ⊗QR, where KQ is the

Koszul complex on a minimal generating set of n obtained by lifting the

minimal generating set picked for m. Since I ⊆ nt+1 by assumption, we can

make the identifications KR /mt+1 KR = KQ /nt+1 KQ and KR /mt KR =

KQ /nt KQ. The map in (2.6.1) can then be identified with the induced

map

Hi(K
Q /nt+1 KQ)→Hi(K

Q /nt KQ)

which is zero for all i> 1 because the induced map Hi(n
t+1 KQ)→Hi(n

t KQ)

is zero for all i> 0, since Q is regular (for example, see [26, Theorem 3.3]).

We are now prepared to prove a key lemma; a reformulation of this will

yield Proposition 2.8 below.

Lemma 2.7. Suppose (R,m, k) is a local ring, K is the Koszul complex

on a minimal generating set x1, . . . , xn of m, and A is the Tate resolution

of k. Let t> 1 be an integer such that v(R) > t+ 1. If x ∈ A, then there

exists y ∈K1 A such that ∂(x− y) ∈mt K1 A.
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Proof. Let x ∈ Ap+1. If p= 0, we may take y = x and the result follows

trivially. Now assume p> 1. Since A is minimal, we have ∂(x) =
∑
xigi with

xi ∈m and gi ∈ Ap. Choosing Ai ∈K1 such that ∂(Ai) = xi, we have

∂
(
x−

∑
Aigi

)
= ∂(x)−

∑
∂(Aigi)

=
∑

xigi −
∑

∂(Ai)gi +
∑

Ai∂(gi)

=
∑

Ai∂(gi).

Set y′ =
∑
Aigi. Then y′ ∈K1 A and ∂(x− y′) ∈K1 A.

Apply Lemma 2.4 with z = ∂(x− y′) and a= 1 (noting that zi,0 = 0 for

all i with 1 6 i6 q0, so the hypothesis is satisfied). For all i with 0 6 i6 q1
this yields ∂(zi,1) ∈mt+1 K (indeed, this holds for all t in Lemma 2.4, hence

∂(zi,1) = 0), and then Remark 2.6 shows

zi,1 = ∂(ei,1) + fi,1

for some ei,1 ∈K2 and fi,1 ∈mt K. Consequently, we have:

∂(x− y′) =

q1∑
i=1

(∂(ei,1) + fi,1)χi,p−1 + V, with V ∈K2 A.

Now take y1 =
∑q1

i=1 ei,1χi,p−1 and we have:

∂(x− y′ − y1) =

q1∑
i=1

(∂(ei,1) + fi,1)χi,p−1 + V −
q1∑
i=1

∂(ei,1χi,p−1)

=

q1∑
i=1

fi,1χi,p−1 +

(
V +

q1∑
i=1

ei,1∂(χi,p−1)

)

=

q1∑
i=1

fi,1χi,p−1 + V1, with V1 ∈K2 A.

Set m= min{p, n}, and let us assume inductively, for a− 1<m, that we

constructed y1, y2, . . . , ya−1 ∈K1 A such that

∂(x− y′ − y1 − · · · − ya−1) =
a−1∑
j=1

qj∑
i=1

fi,jχi,p−j + Va−1,
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with fi,j ∈mt K and Va−1 ∈Ka A. Applying again Lemma 2.4 and

Remark 2.6, with z = ∂(x− y′ − y1 − · · · − ya−1) we have that

zi,a = ∂(ei,a) + fi,a

with ei,a ∈Ka+1 and fi,a ∈mt Ka. Consequently, we can write

∂(x− y′ − y1 − · · · − ya−1) =

a−1∑
j=1

qj∑
i=1

fi,jχi,p−j

+

qa∑
i=1

(∂(ei,a) + fi,a)χi,p−a + V,

with V ∈Ka+1 A. Now take ya =
∑qa

i=1 ei,aχi,p−a and, as above, we get:

∂(x− y′ − y1 − · · · − ya) =

a∑
j=1

qj∑
i=1

fi,jχi,p−j + Va,

with Va ∈Ka+1 A. Note that Va = 0 when a>m, by degree reasons (if p < n)

and since K>n = 0.

Set y = y′ + y1 + · · ·+ ym. Then the cycle z = ∂(x− y) satisfies the

conclusions of our statement.

We can now prove the useful decomposition property of the Tate
resolution advertised above, which was inspired by the work in [18].

Proposition 2.8. Let t> 1 be an integer such that v(R) > t+ 1, and
let A be the Tate resolution of k over R. Denote by A′ the DG subalgebra
of A given by

A′ = {x ∈ A | ∂(x) ∈mt K1 A}.
Then A is generated by A′ as a K-algebra, that is: A=A′ + K1 A′ +
K2 A′ + · · ·+ Kn A′ = KA′.

Proof. For x ∈ A, Lemma 2.7 provides an element y ∈K1 A such that
x− y ∈ A′. A reformulation of Lemma 2.7 therefore gives that A=A′ +
K1 A. Applying this fact repeatedly, and noting that Kn+1 = 0, we get:

A = A′ + K1 A=A′ + K1(A′ + K1 A) =A′ + K1 A′ + K2 A= · · ·
= A′ + K1 A′ + K2 A′ + · · ·+ Kn(A′ + K1 A)

= A′ + K1 A′ + K2 A′ + · · ·+ Kn A′

= KA′.
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§3. Generation by a special set

We continue with the notation of the previous sections for the Koszul
complex and the Tate resolution of a local ring R. In this section, we
prove one of the main theorems, Theorem 3.1 below, and we point out
its applications. In particular, these applications include a computation of
the Poincaré series PRk (z) and conditions under which the map R→R/ms

is Golod.
Recall that the invariant v(R) was introduced in 2.5.

Theorem 3.1. Let (R,m, k) be a local ring and let s be an integer such
that ms+1 = 0. Let t and b be integers such that s− t6 b6 s− 1 and v(R) >
t+ 1 > 2, and assume that the following condition holds:

Zt,b,s: There exists a finite set Z ⊆ Z(mt KR) such that zz′ = 0 for all
z, z′ ∈ Z and for every v ∈ms KR there exists m ∈ N and zi ∈ Z, ui ∈
Z(mb KR) for each i with 1 6 i6m, such that

v −
m∑
i=1

ziui ∈B(ms−1 KR).

The maps TorRi (ms, k)→ TorRi (mb, k) induced by the inclusion ms ⊆mb

are then zero for all i> 0.

We postpone the proof of the theorem in order to give some corollaries.
Concrete examples for which these results can be applied are given in
Section 7. We use below, and also in the next section, the following result
of Rossi and Şega.

3.2.[24, Lemma 1.2] Let κ : (R,m, k)→ (R,m, k) be a surjective homo-
morphism of local rings. If there exists a positive integer a such that:

(a) the map TorRi (R, k)→ TorRi (R/ma, k) induced by the canonical quo-
tient map R→R/ma is zero for all positive i, and

(b) the map TorRi (m2a, k)→ TorRi (ma, k) induced by the inclusion m2a ⊆
ma is zero for all non-negative integers i,

then κ is a Golod homomorphism.

Corollary 3.3. Under the hypotheses of Theorem 3.1, if 2b> s then
the homomorphism R→R/ms is Golod.

Proof. We apply 3.2 to the natural projection κ : R→R/ms, with R=
R/ms, m = m/ms and a= b. We need to check that conditions (a) and (b)

https://doi.org/10.1017/nmj.2018.20 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.20


60 A. CROLL ET AL.

hold. Since 2a= 2b> s, we have m2a = 0, so condition 3.2(b) holds trivially.
Theorem 3.1 gives that the induced maps TorRi (ms, k)→ TorRi (mb, k) are
zero for all i > 0, and this implies condition 3.2(a), since R/ms =R and
R/mb =R/ma.

Remark 3.4. Let R=Q/I be a minimal Cohen presentation of R, with

(Q, n, k) a regular local ring. As first noted by Löfwall [19], the ring R is

Golod whenever there exists an integer t such that

(3.4.1) n2t ⊆ I ⊆ nt+1.

Assume s and t are integers such that ms+1 = 0 and v(R) > t+ 1, and so

ns+1 ⊆ I ⊆ nt+1. If s < 2t, then the inclusions in (3.4.1) hold, and it follows

that R is Golod. If s= 2t then R is not necessarily Golod, but it follows

that the quotient ring R/ms =Q/(I + ns) is Golod.

Corollary 3.5. Assume the hypothesis of Theorem 3.1 is satisfied. If

s= 2t and b= t, then the hypotheses of Lemma 1.2 are satisfied, and thus

PRk (z) satisfies the formula (1.2.1).

Proof. The homomorphism R→R/ms is Golod by Theorem 3.1, and

thus small (see 1.1). The ring R/ms is Golod by Remark 3.4.

Proof of Theorem 3.1. Let |Z| denote the cardinality of Z. Let

{z1, . . . , z|Z|} be the cycles in Z and let I denote the set of all finite ordered

lists of elements in {1, . . . , |Z|}, including the empty set.

Let I ∈ I. If I = (i) has length 1, we set I− = ∅. If I = (i1, . . . , ir) has

length r > 2, we set I− = (i1, . . . , ir−1). We now define for each I ∈ I an

element yI ∈ A, where A is the Tate resolution of k as in 2.2, such that

(1) yI = 1 ∈ A0, if I = ∅;
(2) ∂(yI) = ziryI− , if I = (i1, . . . , ir) with r > 1.

The details of constructing these elements are as follows. If I = ∅, we

choose yI as in (1). If r = 1 and I = (i), we can choose yI ∈ A such that

∂(yI) = zi, since zi ∈ Z is a cycle. Assuming that r > 2 and the elements yI
have been defined for all I ∈ I of length r − 1, we can construct elements

yI satisfying (2) for I = (i1, . . . , ir) by noting that ziryI− is a cycle, so such

a yI exists since A is acyclic. Indeed, we have

∂(ziryI−) = (−1)|zir |zir∂(yI−) = (−1)|zir |zirzir−1y(I−)− = 0,

where the last equality is due to the hypothesis on the set Z.
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We identify the map TorRi (ms, k)→ TorRi (mb, k) with the map

Hi(m
sA)→Hi(m

bA). In order to show this map is trivial for i> 0, we let

x ∈msAc for some c and must show that x ∈ ∂(mbA).

Set Y = {yI ∈ A|I ∈ I}. For i, j > 0, define

A(i, j) :=
(
ms Ki YjA′

)
∩ Ac,

where Yj is the set of elements of Y of degree j.

Claim. For i, j > 0,

(3.5.1) A(i, j)⊆ ∂(mbA) +
∑

p+q=i+j
p>i

A(p, q) +
∑

p+q>i+j

A(p, q),

where only finitely many terms in this sum are not zero for degree reasons.

Proof of Claim. To prove the inclusion, it suffices to consider elements

of A(i, j) of the form vyIa
′ for some v ∈ms Ki, a

′ ∈ A′ and yI ∈ Yj , with

I = (i1, . . . , ir) ∈ I or I = ∅; in the last case, we set r = 0. (Note that every

element of A(i, j) can be written as a sum of elements of this form.)

By assumption there exist zι,v ∈ Z and uι,v ∈ Z(mb K) with 1 6 ι6m

such that

v −
m∑
ι=1

zι,vuι,v ∈ ∂(ms−1 Ki+1).

We need to show thus that (
∑m

ι=1 zι,vuι,v + w)yIA′ is contained in the

right-hand side of (3.5.1), for all w ∈ ∂(ms−1 Ki+1), zι,v ∈ Z and uι,v ∈
Z(mb K). Note that it suffices to prove this statement when m= 1. We

assume thus that v − zir+1u ∈ ∂(ms−1 Ki+1) for some zir+1 ∈ Z and u ∈
Z(mb K) and we show that vyIA′ is contained in the right-hand side

of (3.5.1).

In what follows, we simplify the notation when I has length 1 and we

write yi = y(i). Define I+ = (i1, . . . , ir, ir+1). Recall that we defined a set

I− for any nonempty I ∈ I. Although we do not define a set ∅−, we agree

to set yI− = zir = yir = 0 when I = ∅. With this convention, note that the

formula ∂(yI) = ziryI− also holds when I = ∅, so we will not treat this case

separately.

Note that

|u| = i− |zir+1 |= i+ 1− |yir+1 |,

|yI− | = j − |zir | − 1 = j − |yir | when I 6= ∅, and

|yI+ | = j + |zir+1 |+ 1 = j + |yir+1 |.
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We now have

vyIA′ ⊆
(
∂(ms−1 Ki+1) + zir+1u

)
yIA′

= ∂(ms−1 Ki+1)yIA′ + u∂(yI+)A′

= ∂(ms−1 Ki+1 yIA′) + u∂(yI+)A′

+ ms−1 Ki+1 ziryI−A′ + ms−1 Ki+1 yI∂(A′)

⊆ ∂(ms−1A) + ∂(uyI+A′) + uyI+∂(A′)

+ ms−1 Ki+1 ziryI−A′ + ms−1 Ki+1 yI∂(A′),

where in line 2 we used the formula zir+1yI = ∂(yI+), in line 3 we used the

Leibniz rule and the formula ∂(yI) = ziryI− , and in line 4 we used again the

Leibniz rule and the fact that u is a cycle.

Consider the terms from the last line in the previous display. Since u ∈
Z(mb K) and b6 s− 1, we have ∂(ms−1A) + ∂(uyI+A′)⊆ ∂(mbA). Addi-

tionally, since ∂(A′)⊆mt K1 A by the definition of A′, we have uyI+∂(A′)⊆
mb+t K|u|+1 yI+A and ms−1 Ki+1 yI∂(A′)⊆ms−1+t Ki+2 yIA. Furthermore,

since zir = ∂(yir), we have ms−1 Ki+1 ziryI−A′ ⊆ms Ki+|yir | yI−A
′. Thus

vyIA′ ⊆ ∂(mbA) + mb+tK|u|+1 yI+A+ ms Ki+|yir | yI−A
′ + ms−1+tKi+2 yIA.

Using Proposition 2.8 and the facts b+ t> s and t> 1, we have

vyIA′ ⊆ ∂(mbA) + ms K|u|+1 yI+A′ + ms Ki+|yir | yI−A
′ + ms Ki+2 yIA′,

with the provision that if I = ∅, the third term on the right of this inclusion

is 0 by convention. Since |u|= i+ 1− |yir+1 |, we conclude vyIA′ is contained

in

∂(mbA) +
∑

i′>i+2−|yir+1
|

A(i′, j + |yir+1 |) +A(i+ |yir |, j − |yir |)

+
∑
i′>i+1

A(i′ + 1, j),

with the caveat that we remove the term A(i+ |yir |, j − |yir |) from the

right-hand sum when I = ∅. In the display above, the second and last terms

of the right-hand side are sums of the form A(p, q) with p+ q > i+ j and

the third term is of the form A(p, q) with p+ q = i+ j and p > i. The Claim

is thus proved.
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To finish the proof of the theorem, order the set M = {(i, j)|i, j > 0} as

follows: Order the elements by i+ j first, then by i as a tiebreak. In other

words:

(i, j)> (i′, j′) ⇐⇒ i+ j > i′ + j′ or (i+ j = i′ + j′ and i > i′).

Recall that x ∈msAc and we need to show x ∈ ∂(mbA). Using Proposi-

tion 2.8, we know that x ∈
∑n

i=0 m
s Ki A′. Thus if M0 = {(i, 0) | 0 6 i6 n},

then

x ∈
∑

(i,j)∈M0

A(i, j).

Using the Claim, we see that there exists a finite set M1 and an element

x1 ∈
∑

(i,j)∈M1

A(i, j)

such that x− x1 ∈ ∂(mbA), and such that the smallest element of M1 is

strictly larger (in the order described above) than the smallest element of

M0.

Applying the Claim again, this time using x1, we see that there exists a

finite set M2 and an element x2 such that

x2 ∈
∑

(i,j)∈M2

A(i, j)

such that x1 − x2 ∈ ∂(mbA), hence x− x2 ∈ ∂(mbA), and such that the

smallest element of M2 is strictly larger (in the order described above) than

the smallest element of M1. A repeated use of the argument ensures the

construction of elements xa and sets Ma such that for each integer a the

smallest element of Ma is greater than the smallest element of Ma−1 and

such that x− xa ∈ ∂(mbA). When a is sufficiently large (so that p+ q > c

for all (p, q) ∈Ma) one sees that, for degree reasons, we have A(p, q) = 0

for all (p, q) ∈Ma, since the elements of A(p, q) are in Ac, with c fixed. We

conclude that xa = 0 for a sufficiently large, hence x ∈ ∂(mbA).

§4. Generation by one element

We now turn our focus to the case where the Koszul homology algebra

is generated by a single element. Namely, here we are concerned with rings

that satisfy the following condition, depending on integers t and r:
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Pt,r : There exists [l] ∈Hr(K) such that for every z ∈ Z(mt K) there exists

z′ ∈ Z(mt−1 K) such that z − z′l ∈B(mt−1 K).

Note that this condition is independent of the choice of the representative

l of the class [l] ∈Hr(K).

Remark 4.1. The condition Pt,r is particularly strong when the cycle l

is not a minimal generator of Zr(K). In this case, we can choose l ∈mZr(K).

Since K is constructed using a minimal generating set for m, we have that

any cycle in Zr(K) is also in m K and thus in Zr(m K). Let i> 0. We

have thus lz′ ∈mZi(m
t K) for all z′ ∈ Zi−r(mt−1 K). The hypothesis that

Pt,r holds then implies

Zi(m
t K)⊆mZi(m

t K) +Bi(m
t−1 K)

for all i, and so by Nakayama’s Lemma, we have Zi(m
t K)⊆Bi(mt−1 K),

hence the induced map Hi(m
t K)→Hi(m

t−1 K) is zero for all i> 0.

When l is part of a minimal generating set for Zr(K) and r is odd, we

see below that a similar statement can be deduced, only that the complex

K needs to be replaced with a larger complex.

We denote by B the following DG algebra

B = K〈y | ∂(y) = l〉.

Theorem 4.2. Let (R,m, k) be a local ring, let t> 2 be an integer, and

r > 1 be an odd integer. If Pt,r holds, then the map

Hi(m
tB)→Hi(m

t−1B)

induced by the inclusion mt ↪→mt−1 is zero for all i> 0.

Proof. We first prove two claims.

Claim 1. For a cycle z ∈K, if z = z′ + w with z′ ∈mt Kp y
(q) and w ∈

mt Kp+1 B, then z′ ∈ Zp(mt K)y(q).

Proof of Claim 1. Set |z|= c, hence p+ (r + 1)q = c. Write z′ = vy(q)

with v ∈mt Kp. We have

(4.2.1) 0 = ∂(z) = ∂(vy(q)) + ∂(w) = ∂(v)y(q) + (−1)pvly(q−1) + ∂(w).

Since w ∈mt Kp+1 B and |w|= c we can write ∂(w) =
∑

i,j kiy
(j) with ki ∈

mt Ki, where the sum is taken over non-negative i, j with i+ (r + 1)j =
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c− 1, and i> p. Since p+ (r + 1)q = c, we must have j < q for all such j.

Since 1, y, y(2), y(3), . . . is a basis of B over K, we conclude from (4.2.1) that

∂(v) = 0, and hence v ∈ Zp(mt K).

Claim 2. If z′ ∈ Zp(mt K)y(q), then

z′ ∈ ∂(mt−1B) + mt Kp+r+1 y
(q−1).

Proof of Claim 2. Let z′ = vy(q) with v ∈ Zp(mt K). The hypothesis of

the theorem gives v − v′l ∈ ∂(mt−1 Kp+1) for some v′ ∈ Zp−r(mt−1 K), and

so z′ − v′ly(q) ∈ ∂(mt−1 Kp+1)y
(q). An application of the Leibniz rule yields

z′ − v′ly(q) = z′ − v′∂(y(q+1)) = z′ − (−1)|v
′|∂(v′y(q+1)),

and therefore

z′ ∈ ∂(mt−1B) + ∂(mt−1 Kp+1)y
(q)

⊆ ∂(mt−1B) + ∂(mt−1Kp+1 y
(q)) +mt−1 Kp+1 ∂(y(q)), by the Leibniz rule,

⊆ ∂(mt−1B) + mt Kp+1+r y
(q−1),

which verifies Claim 2.

Now suppose z ∈ B represents a nontrivial class in Hc(m
tB) and let p

be the largest integer such that z ∈mt Kp B. Write z =
∑
kiy

(j), where the

sum is taken over integers i, j with i+ (r + 1)j = c and i> p, and ki ∈mt Ki.

Set z′ = kpy
(c−p/r+1) and w = z − z′. Then z = z′ + w and the hypotheses

of Claim 1 are satisfied. Putting together Claim 1 and Claim 2, we have:

(4.2.2) z ∈ ∂(mt−1B) + z1, for some z1 ∈mt Kp+1 B.

As z1 is also a cycle, we may repeat the argument for z1, and so on.

Inductively, we obtain z ∈ ∂(mt−1B) + mt Ki B for all i > p. Since Ki = 0

for i� 0, we get z ∈ ∂(mt−1B).

We recall below a result of Levin [17, Lemma 2].

4.3. Let F be a differential graded R-algebra and E a differential graded

F-module which is free as a graded F-module (i. e. forgetting differentials)

and such that ∂(E)⊆mE . Let M , N be R-modules such that mM ⊆N ⊆
M , and such that the canonical map N ⊗R E →M ⊗R E is injective. If the

induced homomorphism H(N ⊗R F)→H(M ⊗R F) is zero, then so is the

induced homomorphism H(N ⊗R E)→H(M ⊗R E).
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Corollary 4.4. If Pt,1 holds, then the following hold:

(1) The map

TorRi (mt, k)→ TorRi (mt−1, k)

induced by the inclusion mt ⊆mt−1 is zero for all i> 0.

(2) If v(R) > t, then the algebra ExtR(k, k) is generated in degrees 1 and

2.

(3) If t= 2, then the algebra ExtR(k, k) is generated in degree 1.

Proof. If l /∈mZ1(K), we can then construct a minimal Tate resolution A
of k over R by starting with the Koszul complex K, then adjoining a variable

y with ∂(y) = l, and then the rest of the needed variables as described in 2.2.

The description of the basis of A in [3, Remark 6.2.1] shows that, forgetting

differentials, A is free over the algebra B = K〈y | ∂(y) = l〉. Using 4.3 and

Theorem 4.2, we conclude that the induced map

Hi(m
tA)→Hi(m

t−1A)

is zero for all i> 0, and this yields the desired conclusion.

If l ∈mZ1(K), then by Remark 4.1 the induced map Hi(m
t K)→

Hi(m
t−1 K) is zero for all i> 0, and the conclusion follows again by applying

Levin’s result in 4.3.

In view of (1), part (2) follows from [13], and part (3) from [22,

Corollary 1].

Corollary 4.5. Let (Q, n, k) be a regular local ring, and I an ideal

with I ⊆ n2, and consider the local ring (R,m, k) defined by R=Q/I. Let

h ∈ I r nI and let L ∈KQ such that ∂(L) = h. Let l denote the image of L

in K = KQ ⊗QR. Assume that Pt,1 holds, with l as above.

If P =Q/(h), then the induced map TorPi (mt, k)→ TorPi (mt−1, k) is zero

for all i> 0.

Furthermore, let a be an integer such that I ⊆ na+1. If h ∈ I r na+2 and

a+ 1 6 t6 2a, then the canonical projection P →R is a Golod homomor-

phism.

Proof. The hypothesis implies that h is part of a minimal generating set

of I.

Set B = K〈y | ∂(y) = l〉 and B′ = KQ〈y | ∂(y) = L〉. Note that B =

(B′ ⊗Q P )⊗P R and B′ ⊗Q P is a minimal free resolution of k over P . We

can identify thus the induced map TorPi (mt, k)→ TorPi (mt−1, k) with the

https://doi.org/10.1017/nmj.2018.20 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.20


ALGEBRA STRUCTURE OF KOSZUL HOMOLOGY 67

induced map Hi(m
tB)→Hi(m

t−1B), and the latter is zero, by the theorem.

Under the additional hypotheses in the last paragraph of the statement, it

also follows that the induced map TorPi (m2a, k)→ TorPi (ma, k) is zero for

all i> 0, since t6 2a and t− 1 > a. Since I ⊆ na+1, [24, Lemma 1.4] gives

that the induced map TorPi (R, k)→ TorPi (R/ma, k) is zero for all positive i,

and then applying 3.2 to the canonical projection κ : P →R gives the final

conclusion.

Remark 4.6. The existence of a surjective Golod homomorphism from

a complete intersection ring to the local ring R is a rather remarkable

property: Using a result of Levin recorded in [6, Proposition 5.18], this

property allows one to conclude that the Poincaré series of all finitely

generated R-modules are rational, sharing a common denominator.

Compressed Gorenstein artinian local rings, and, more generally, com-

pressed level artinian local rings are defined in terms of an extremal

condition involving the length, embedding dimension, and the socle of the

ring. We refer to [24] and [15] for the precise definitions. Such rings can

be viewed as being “generic”, in a sense explained in more detail in [15,

Theorem 3.1], for example.

Remark 4.7. Let (R,m, k) be a compressed Gorenstein local ring of

socle degree s 6= 3 and assume k is infinite. Set t= s+ 2− v(R) and a=

v(R)− 1. When s 6= 3, the inequalities a+ 1 6 t6 2a follow from general

properties of compressed Gorenstein rings, and more precisely from the fact

that s= 2v(R)− 1 or s= 2v(R)− 2, as noted in [24].

The proof of [24, Proposition 4.6] shows that Zn(mt K)⊆ lZn−1(mt−1 K)

for some cycle l ∈K1, and [24, Lemma 4.4] shows that the induced map

Hi(m
t K)→Hi(m

t−1 K) is zero for all i < n, where n denotes the minimal

number of generators of m. It follows that the ring R satisfies Pt,1. We

can then construct h ∈ I such that ∂(L) = h, where L is a preimage of l in

KQ. With this data, the hypotheses of Corollary 4.5 are satisfied, hence we

recover the main structural result in [24] stating that R is a homomorphic

image of a hypersurface via a Golod homomorphism.

Remark 4.8. The condition Pt,1 is also satisfied for compressed level

artinian local rings of socle degree s= 2t− 1, with s 6= 3. This can be seen

from the proof of [15, Lemma 6.3] and [15, Lemma 4.4]. The conclusion

that such rings are homomorphic images of a hypersurface via a Golod
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homomorphism is established there using the results of [24]. Corollary 4.5

recovers the same conclusion, as well.

Another class of rings for which the condition Pt,1 holds is discussed in

the next section.

§5. Stretched Cohen–Macaulay local rings

Let (R,m, k) be an artinian local ring. We set

v = rankk(m/m
2); e= length(R); r = rankk(0 : m); h= e− v.

Note that mh+1 = 0. The ring R is said to be stretched if h is the least

integer i such that mi+1 = 0. Assume further that R is not a field. Then

R is stretched if and only if m2 is principal. Sally [25] computed the series

PRk (t) for a stretched artinian local ring R as follows:

(5.0.1) PRk (t) =

{
1/(1− vt) if r = v;

1/(1− vt+ t2) if r 6= v.

In this section we show that finitely generated R-modules have rational

Poincaré series as well, sharing a common denominator. The main result is

Theorem 5.4; its proof involves an application of the results in Section 4.

5.1. Structure of stretched artinian local rings. Assume that (R,m, k)

is a stretched artinian local ring, not a field. We further set

p= v − r and q = r − 1.

Assume that h> 3. (The case h6 2 has been treated in [5] and

will be recalled later.) As described in [25], we choose elements

t, z1, . . . , zp, w1, . . . , wq forming a minimal generating system of m such

that the following hold:

(1) mi = (ti) for all i> 2;

(2) The elements w1, . . . , wr−1, t
h form a basis of (0 : m); in particular,

twj = 0 and ziwj = 0 for all i, j with 1 6 i6 p and 1 6 j 6 q;

(3) tzi = 0 for all i with 1 6 i6 p;

(4) zizj = aijt
h, with aij = 0 or aij a unit of R, for all i, j with 1 6 i, j 6 p.

(Note that there are no elements wi if r = 1 and there are no elements zi
if r = v.)
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If r 6= v, let aij denote the image of aij in k =R/m and note that the

matrix (aij) is invertible. Indeed, if this matrix is not invertible, then there

exists an element z =
∑p

i=1 bizi, with bi ∈R such that bi is a unit for at

least one index i, and such that zzj = 0 for all j for all 1 6 j 6 p. This

implies that z ∈ (0 : m), hence z ∈ (w1, . . . , wr−1, t
h), contradicting the fact

that t, z1, . . . , zp, w1, . . . , wq is a minimal generating set of m.

The fact that the matrix (aij) is invertible also implies that for every i

with 1 6 i6 p there exists an element yi ∈ (z1, . . . , zp) such that

(5.1.1) ziyi = th and zjyi = 0 for all j with i 6= j, 1 6 j 6 p.

Since yi ∈ (z1, . . . , zp) we also have

(5.1.2) tyi = 0 = wjyi for all i, j with 1 6 i6 p and 1 6 j 6 q.

5.2. Structure of Koszul homology. Let R be as in 5.1. We consider the

Koszul complex KR on the set {w1, . . . , wq, z1, . . . , zp, t}. As a DG algebra

it can be described as the complex

KR =R〈W1, . . . , Wq, Z1, . . . , Zp, T 〉

with ∂(Wi) = wi, ∂(Zi) = zi and ∂(T ) = t.

In what follows, we consider products of some of the variables Wi or Zi,

with the index i ranging over certain sets I. We adopt the convention that

the product is equal to 1 if I = ∅; for example Z1 · · · Zp = 1 if p= 0. We set

W = {Wj1Wj2 · · ·Wji | 1 6 j1 < j2 < · · ·< ji 6 q, 0 6 i6 q},

where Wj1Wj2 · · ·Wji = 1 when i= 0.

Lemma. Let s> 1. Every cycle of Zs(m
2KR) has the form∑

aW t
hTZ1 · · · ZpW + V, with V ∈Bs(mKR) and aW ∈R,

where the sum ranges over all W ∈W with |W |= s− p− 1.

Proof. If L= Zi1Zi2 · · · ZimWj1Wj2 · · ·Wjn with indices satisfying the

inequalities 1 6 i1 < i2 < · · ·< im 6 p and 1 6 j1 < j2 < · · ·< jn 6 q, then

the Leibniz rule and the fact that twj = 0 = tzi for all 1 6 i6 p and 1 6 j 6 q

imply that t∂(L) = 0. Consequently, another application of the Leibniz rule

gives

t2L= ∂(tTL).
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Since m2 = (t2), it suffices to consider cycles of the form z =
∑

L aLt
2TL

with L ranging over all possible products L as above (if p= 0 = q, then we

only have one term where L= 1). Taking differentials, we have

0 = ∂(z) =
∑

aLt
3L,

where the last equality follows again from the Leibniz rule and the fact that

t∂(L) = 0, as noted above. Since the products L are linearly independent

over R, we have aLt
3 = 0 for all L, and hence aL = th−2bL + cL, with bL ∈R

and cL ∈ (w1, . . . , wq, z1, . . . , zp). We have thus z =
∑

L bLt
hTL.

Consider a cycle thTL, with L as above. Set Z = Zi1Zi2 · · · Zim and W =

Wj1Wj2 · · ·Wjn , so that thTL= thTZW . We show that thTZW ∈ ∂(mKR)

whenever Z 6= Z1Z2 · · · Zp.
Indeed, assume Z 6= Z1Z2 · · · Zp. In particular, we have p 6= 0. Without

loss of generality, we may assume Z1 is not a factor in Z. Then for any such

Z and any W as above we have:

thTZW = z1y1TZW = ∂(y1Z1TZW ),

where the element y1 is as defined above, and the last equality follows from

the Leibniz rule, in view of the relations in (5.1.1) and (5.1.2).

5.3. Generation of Koszul homology. We continue with the notation and

hypotheses of 5.1 and 5.2. In addition, we assume r 6= v, hence p 6= 0. We

set:

J1 = {(i, j) | 1 6 i6 j 6 p, aij 6= 0}; J2 = {(i, j) | 1 6 i6 j 6 p, aij = 0}.

Consider the following element in KR
1 :

F =
∑

16i<j6q

αijwiWj +
∑

16j6q,16i6p

βijwjZi +
∑
16i6q

γiwiT

+
∑

16i6p

δitZi +
∑

(i,j)∈J1

ηij(t
h−1T − a−1ij ziZj) +

∑
(i,j)∈J2

θijziZj ,(5.3.1)

where αij , βij , γi, δi, ηij , θij ∈R. Recall that the elements aij were

introduced in 5.1. The relations in 5.1 yield that F is a cycle.

Lemma. Assume in addition that at least one of the coefficients δi, ηij,

or θij is a unit. If z is a cycle in m2KR, then z =AF +A′ for some A ∈
Z(mKR) and A′ ∈B(mKR). In other words, condition P2,1 holds with l = F .
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Proof. Using Lemma 5.2, we see that it suffices to consider cycles of

the form thTZ1 · · · ZpW , with W ∈W. Now consider the following element,

which can be seen to be a cycle in mKR:

C =
∑

16i<j6p

dij

(
yiTZ1 · · · Ẑj · · · ZpW + (−1)j−iyjTZ1 · · · Ẑi · · · ZpW

)
+

∑
16i6p

dii(yiTZ1 · · · Ẑi · · · ZpW )

+
∑

16i6p

bi

(
th−1TZ1 · · · Ẑi · · · ZpW + (−1)iyiZ1 · · · ZpW

)
with dij , bi ∈R, where the notation Ẑj indicates that the element Zj is

missing from the product. Set

α=
∑

16i6p

(−1)ibiδi −
∑

(i,j)∈J1

(−1)jdijηija
−1
ij +

∑
(i,j)∈J2

(−1)jdijθij .

Then we have

FC = α(thTZ1 · · · ZpW ).

Since at least one of the coefficients δi, ηij , or θij is a unit, we can choose

the coefficients dij and bi such that α is a unit. Then, if we take A= α−1C,

we have thTZ1 · · · ZpW =AF .

Theorem 5.4. Let (R,m, k) be a stretched artinian local ring with

minimal Cohen presentation R=Q/I, where (Q, n, k) is a regular local ring

and I ⊆ n2. Assume R is not a field.

Set v = rankk(m/m
2) and r = rankk(0 : m). The following hold:

(1) If r 6= v, then I 6⊆ n(I : n) and we have:

(a) If m3 6= 0, then the induced homomorphism Q/(f)→R is Golod

for all f ∈ I r n(I : n).

(b) The algebra ExtR(k, k) is generated by its elements of degree 1.

(c) (1 + t)v(1− vt+ t2) PRM (t) ∈ Z[t] for all finitely generated R-

modules M .

(2) If r = v, then

(a) R is a Golod ring.

(b) The algebra ExtR(k, k) is generated by its elements of degree 1

and 2.

(c) (1− vt) PRM (t) ∈ Z[t] for all finitely generated R-modules M .
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Remark 5.5. If R is a stretched artinian local ring with m3 = 0 and

r 6= v, then the hypotheses of [5, Theorem 4.1] apply. In view of [5,

Theorem 1.4], we have that, after a faithfully flat extension, there exists

a regular local ring (Q, n, k), an element u ∈ n, and a Golod surjective

homomorphism Q/(u2)→R. In this case, as noted in [5], the ring R is

Koszul, in the sense that the associated graded ring with respect to m is

a Koszul algebra, implying in particular part (1b) of the theorem. In this

case, one has (1− vt+ t2) PRM (t) ∈ Z[t] for all finitely generated R-modules

M [5, Theorem 1.1], and in particular (1c) holds.

Proof. Choose w̃i, t̃, z̃i preimages of the elements wi, t, zi in Q. Let KR

be the Koszul complex described earlier, and let KQ be the Koszul complex

over Q on the set {w̃1, . . . , w̃q, z̃1, . . . , z̃p, t̃}, and note that KR =KQ ⊗Q R,

hence we can identify KR with KQ/IKQ.

(1) Assume r 6= v and m3 6= 0. In this case, the ideal I is generated by the

elements

w̃jw̃l, w̃j z̃i, w̃j t̃, z̃it̃ with 1 6 j 6 l 6 q and 1 6 i6 p;

t̃h − ã−1ij z̃iz̃j with (i, j) ∈ J1; z̃iz̃j with (i, j) ∈ J2.

We also have

(I : n) = (w̃1, . . . , w̃q, t̃
h) + I and n(I : n) = n(w̃1, . . . , w̃q) + nI.

(Note that, if R is Gorenstein, then q = 0 and n(I : n) = nI.) In particular,

note that I 6= n(I : n).

Let f ∈ I r n(I : n). Then we can choose elements αij , βij , γi, δi, ηij ,

θij ∈R in (5.3.1) such that at least one of the elements δi, ηij , or θij is a unit,

and such that we can lift the element F in (5.3.1) to an element L inKQ with

∂(L) = f . Then Lemma 5.3 shows that the ring R satisfies P2,1, with l = F .

Part (1a) follows then from Corollary 4.5 and (1b) follows from Corollary 4.4.

Furthermore, the existence of a surjective Golod homomorphism onto R

from a hypersurface ring, together with formula (5.0.1) and a result of Levin,

see [6, Proposition 5.18], prove (1c).

Remark 5.5 explains the statements (1b) and (1c) when m3 = 0.

(2) Assume now that r = v, hence p= 0. We see that the ideal I is then

generated by the elements

w̃jw̃l, w̃j t̃, t̃h+1 with 1 6 j 6 l 6 q.
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We set A=R/(w1, . . . , wq) and B =R/(t). Note that (A, a, k) is a local ring

with A∼=Q′/(τh+1), where Q′ is the regular local ring Q′ =Q/(w̃1, . . . , w̃q)

and τ is the image of t̃ in Q′; in particular, A is a hypersurface. Also, note

that (B, b, k) is a local ring whose maximal ideal satisfies b2 = 0. Then R

is isomorphic to the fiber product A×k B. Since A and B are both Golod

rings, [16, Théorème 4.1] implies that R is a Golod ring, establishing (2a).

Also, by [21], the algebra ExtR(k, k) is then the coproduct of the algebras

ExtA(k, k) and ExtB(k, k); see loc. cit. for the definition of the coproduct.

Since b2 = 0, the Yoneda algebra ExtB(k, k) is generated by its elements of

degree 1. The Yoneda algebra of the hypersurface A is generated in degrees

1 and 2. It follows that the coproduct is generated in degrees 1 and 2,

establishing (2b).

By a result of Ghione and Gulliksen [9] and formula 5.0.1, the fact that R

is Golod implies that PRM (t) is rational, with denominator (1 + t)v(1− vt).
The more precise denominator 1− vt in (2c) requires additional discussion.

To compute PRM (t) we use a method employed in the proof of [5, Corollary

4.4]. By [8, Rem. 3] one has ΩR
2 (M) =K ⊕ L, where K is an A-module and

L is a B-module. Using further a formula in [8, Thm. 2], we have

PRM (t)− βR0 (M)− βR1 (M) · t = PAK(t) · t2 + PBL (t) · t2

=
PAK(t) · PBk (t) + PAk (t) · PBL (t)

PAk (t) + PBk (t)− PAk (t) · PBk (t)
· t2.(5.5.1)

Since A is a hypersurface, we have that PAk (t) = 1/(1− t), and the Poincaré

series of every finitely generated A-module can be written as a rational

function with denominator 1− t, since every A-module M has an eventually

periodic resolution. Since b2 = 0 and rankk(b/b
2) = v − 1, we have that

PBk (t) = 1/(1− (v − 1)t) and the Poincaré series of every finitely generated

B-module can be written as a rational function with denominator 1− (v −
1)t. Plugging these formulas into (5.5.1) we obtain that PRM (t) can be written

as a fraction with denominator 1− vt, establishing (2c).

If (R,m, k) is a d-dimensional local Cohen–Macaulay ring of multiplicity

e, then R is said to be stretched if there exists a minimal reduction

x = x1, . . . , xd of m (that is, there exist d elements x1, . . . , xd of m such

that mr+1 = (x1, . . . , xd)m
r for some non-negative integer r) such that

R/(x) is stretched. Standard arguments allow us to reduce computations

of Poincaré series over R to computations over the stretched artinian local

ring R/(x1, . . . , xd), and we obtain:

https://doi.org/10.1017/nmj.2018.20 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.20


74 A. CROLL ET AL.

Corollary 5.6. Let (R,m) be a stretched local Cohen–Macaulay ring

of dimension d and type r. Set mult(R) = e and rankk(m/m
2) = v. There

exists then a polynomial dR(t) ∈ Z[t] such that dR(t) PRM (t) ∈ Z[t] for all

finitely generated R-modules M , where

dR(t) =

{
1− (v − d)t if r = v − d;

(1 + t)v−d(1− (v − d)t+ t2) if r 6= v − d.

§6. Graded rings and Koszul algebras

We give here graded versions of the main statements. While our results

have been stated so far for local rings, they can be stated similarly in

the case that R=Q/I, with Q= k[x1, . . . , xn] with k a field and I a

homogeneous ideal, and with m denoting the irrelevant ideal (x1, . . . , xn).

Furthermore, in the graded case, the hypotheses can be formulated into

more suggestive language, as we shall point out below, and in particular we

obtain the applications to the study of the Koszul property mentioned in

the introduction.

Let R be as above, and let K denote the Koszul complex on the images of

the variables. Let H denote the homology. Note that K and H are bigraded

algebras. When we say that an element of K or H has bidegree (i, j), the

entry i denotes homological degree and the entry j denotes internal degree.

If [z] ∈Hi,j is nonzero we set

d(z) = j − i.

When looking at the Betti table of the resolution of R over Q given by

Macaulay2 [11], which can be interpreted as also describing the graded

Hilbert series of H, the information d(z) = r indicates that the element [z]

lies in the rth line (strand) of the table.

With this terminology, we can restate conditions Zt,b,s and Pt,r as follows:

Pt,r: There exists [l] ∈Hr such that for every [z] ∈H with d(z) > t, there

exists [z′] ∈H with d(z′) > t− 1 such that [z] = [z′][l].
Zt,b,s: There exists a set of cycles Z in K with d(z) > t for all z ∈ Z and

zz′ = 0 for all z, z′ ∈ Z, and such that for every [v] ∈H with d(v) = s

there exists m ∈ N and zi ∈ Z, [ui] ∈H with d(zi) > b for each 1 6 i6
m, such that [v] =

∑m
i=1[zi][ui].

We now concentrate on the consequences of our results to the study of the

Koszul property of R. As recalled earlier, [22, Corollary 1] shows that the

https://doi.org/10.1017/nmj.2018.20 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.20


ALGEBRA STRUCTURE OF KOSZUL HOMOLOGY 75

map TorRi (m2, k)→ TorRi (m, k) induced by the inclusion m2 ⊆m is zero for

all i> 0 if and only if the Yoneda algebra ExtR(k, k) is generated in degree

1. Since R is a standard graded k-algebra, the last statement is equivalent

to the fact that R is a Koszul algebra.

We also consider a property that is stronger than Koszulness. As defined

in [14], a local (or graded) ring is said to be absolutely Koszul if the linearity

defect of every finitely generated R-module is finite. While we refer to [12]

for the original definition of linearity defect, we mention that a module M

has finite linearity defect if and only if it has a syzygy N whose associated

graded module grm(N) has a linear resolution over the associated graded

ring grm(R). In the graded case, if R is absolutely Koszul, then it is also

Koszul, see [12, Proposition 1.13].

As defined in the introduction, the linear strand of H is the set of elements

[z] with d(z) = 1. The nonlinear strands are composed of those elements with

d(z)> 1. We say that the nonlinear strands of H are generated by a set Z

with Z ⊆H if the nonlinear strands are contained in the ideal generated by

Z in H. If the nonlinear strands are generated by a subset Z of the linear

strand, it follows that H is generated by the linear strand as a k-algebra.

Theorem 6.1. Assume one of the following conditions holds:

(1) There exists an element [l] of bidegree (1, 2) such that the nonlinear

strands are generated by [l], that is, every element in the nonlinear

strands of H is a multiple of [l].

(2) R>3 = 0 and there exists a set of cycles Z representing elements in the

linear strand, with the property that zz′ = 0 for all z, z′ ∈ Z, such that

the set Z = {[z] | z ∈ Z} generates the nonlinear strand of H.

Then R is Koszul. Moreover, R is absolutely Koszul when (1) holds.

Proof. If (1) holds, then P2,1 holds. By Corollary 4.4, the induced maps

TorR∗ (m2, k)→ TorR∗ (m, k) are zero. This implies that R is Koszul.

One of the consequences of the hypothesis in (1) is that there are no

elements in bidegree (1, i) with i > 2. Consequently, the ideal I is quadratic

and v(R) = 2. Let L denote a preimage of l in KQ and set h= ∂(L). Note

that h ∈ I r n3. We can apply then Corollary 4.5 with a= 1 and t= 2 to

conclude that R is a homomorphic image of a quadratic hypersurface via a

Golod homomorphism, hence R is absolutely Koszul by [12, Theorem 5.9].
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If (2) holds, then Z1,1,2 holds. We apply then the graded version of

Theorem 3.1 to conclude that the induced map TorRi (m2, k)→ TorRi (m, k)

is zero, hence R is Koszul.

There exist Koszul algebras that do not satisfy either of the conditions

of the theorem, since, as noted in [7], the fact that R is Koszul does

not necessarily imply that the Koszul homology is generated by the linear

strand. On the other hand, the fact that R is Koszul does impose conditions

on the Koszul homology; see the introduction for more details on known

results. Of particular interest is the following reformulation of Lemma 1.3

from Section 1. The statement of this result was communicated to us orally

by S. Iyengar, who arrived at it in work with L. Avramov and A. Conca.

Proposition 6.2. If R is Koszul, then the nonlinear strands of H are

contained in the set of matric Massey products MH(K).

Proof. If R is Koszul, then the induced map TorR∗ (m2, k)→ TorR∗ (m, k)

is zero, hence the canonical projection R→R/m2 is Golod, and thus small.

Apply then Lemma 1.3 to see that H>1(m
2 K)⊆MH(K).

In the next section, we discuss an example of a graded algebra R with

R>3 = 0 for which the nonlinear strand is generated by the linear strand,

but R is not Koszul, see 7.4. Thus, the converse of Proposition 6.2 does not

hold. Stronger hypotheses on the generation of Koszul homology such as

the ones in our theorem are thus needed in order to ensure R is Koszul.

§7. Examples

We now proceed to give the relevant examples mentioned above. The

computations here are done with the help of the Macaulay2 package

DGAlgebras written by Frank Moore, but all computations can also be

checked by hand (for example, see 7.6 below). In this section, k denotes

a field of characteristic 0.

Let Q= k[X, Y, Z, U ], and R=Q/a for an ideal a. Set m = (x, y, z, u),

with x, y, z, u the images of X, Y, Z, U in R, respectively, and T1, . . . , T4 the

degree one variables of the Tate complex mapping to x, y, z, u, respectively.

As before, KR is the Koszul complex on (x, y, z, u) and HR is its homology

algebra. If z ∈KR is a cycle, we denote by [z] its homology class in HR.

Recall (e.g., [23]) that HR ∼= TorQ(R, k), and so the Betti table of R over Q

gives an indication in which bidegrees elements of HR reside.

We start by applying Theorem 6.1 to rings having the form R=Q/a

where a is an ideal generated by quadratic forms in (X, Y, Z, U); such rings
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were studied by Roos in [23]. We verify the conditions of Theorem 6.1 hold

for 40+2=42 of the 104 rings in [23, Tables A–D], showing in particular that

40 of them are absolutely Koszul.

7.1. Consider the ring R which is case 66 in [23, Table C]:

R= k[X, Y, Z, U ]/(XZ, Y 2, Y U, Z2, ZU, U2).

We claim that the nonlinear strand of HR is generated by a single element

in bidegree (1, 2), that is, it satisfies Theorem 6.1(1). As a result, we can

conclude that this ring is absolutely Koszul, hence Koszul. To do this, we

use the Macaulay2 package DGAlgebras.

In the following code, the set C is a list of cycles whose images (given

by G) generate H (= HR) as a k-algebra and P is the list of generators in G

which are not in the linear strand. We define an ideal I in H to be generated

by the elements in P and all products hk with h, k ∈ G; this ideal is equal

to the union of all nonlinear strands of H, together with the zero element.

Showing generation of the nonlinear strands by an element in bidegree (1, 2)

now reduces to checking ideal containment.

needsPackage "DGAlgebras"

R=QQ[x,y,z,u]/ideal(x*z,y^2,y*u,z^2,z*u,u^2)

K=koszulComplexDGA(R)

C=getGenerators(K)

H=HH K

G=generators H

P={}; for n from 0 to length(G)-1 do {

if (degree G_n)_0+1 !=(degree G_n)_1 then P=append(P,G_n)}

I=(ideal G)^2+(ideal P)

--I is the ideal of nonlinear strands of H

m=0; for n from 1 to length(G) do

{if degree X_n =={1,2} then m=m+1 else continue}

M=sum(m, j-> G_j)

N=sum(m, j-> C_j)

J=ideal(M)

isSubset(I,J)

-- true if the nonlinear strands are generated by M

In this example, we see that the homology class of the cycle N = zT1 +

(y + u)T2 + (z + u)T3 + uT4 generates the nonlinear strands of HR, hence

by Theorem 6.1(1), R is absolutely Koszul.

Moreover, a similar argument shows that 40 of the rings from [23,

Tables A–D] have the nonlinear strand of their Koszul homology algebra

https://doi.org/10.1017/nmj.2018.20 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.20


78 A. CROLL ET AL.

generated by a single element in bidegree (1, 2), and hence are absolutely

Koszul rings; these are cases 1–4, 8–10, 23, 25–28, 49, 50, 52, 53, 66–68,

70, 72, 75–83, and isotopes 46va, 66v5, 68v, 71v4, 72v2e, 75v2, 78v1, 78v2e,

78v3v, and 81va from [23, Tables A–D]. Indeed, in all these cases we show

that the homology class of the sum of generating cycles in bidegree (1, 2)

found by DGAlgebras can be taken to be such a generator.

The next example is a ring satisfying condition (2), but not condition (1),

of Theorem 6.1.

7.2. Let R be the ring which is case 54 in [23]:

R= k[X, Y, Z, U ]/(X2, XZ, Y 2, Z2, Y U + ZU, U2).

The nonlinear strand of HR cannot be generated by a single element in

bidegree (1, 2) as in the previous example, which can be seen by computing

the Betti table for R over Q:

0 1 2 3 4

total: 1 6 13 12 4

0: 1 . . . .

1: . 6 4 . .

2: . . 9 12 4

and observing there is no way for an element in bidegree (4, 6) to be a

multiple of an element in bidegree (1, 2).

Next, we use the package DGAlgebras again to show that the nonlinear

strand of HR is generated by a finite set of classes of cycles with trivial self-

multiplication, that is, the ring R satisfies condition (2) of Theorem 6.1.

R=QQ[x,y,z,u]/ideal(x^2,x*z,y^2,z^2,y*u+z*u,u^2)

m=ideal vars R; m^3==0

betti res(ideal R)

K=koszulComplexDGA(R)

C=getGenerators(K)

H=HH K

G=generators H

P={}; for n from 0 to length(G)-1 do {

if (degree G_n)_0+1 !=(degree G_n)_1

then P=append(P,G_n)}

I=(ideal G)^2+(ideal P)

--I is the ideal of nonlinear strands of H

Cyc = {C_0,C_2,C_3,C_6,C_7}
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Cls = {G_0,G_2,G_3,G_6,G_7}

for m from 0 to length(Cyc)-1 do {

for n from 0 to length(Cyc)-1 do {

if Cyc_m*Cyc_n==0

then TrivMult=true else {TrivMult=false; break} }}

print TrivMult --true if Cyc has trivial self-multiplication

J=ideal Cls

isSubset(I,J)

--true if the nonlinear strands are generated by Cls

In this example, the set Cyc is the desired generating set contained in the

linear strand and its elements correspond to the following cycles:

{xT1, zT3, zT1, zT1T3, xT1T3}.

The Macaulay2 code first checks m3 = 0, and then verifies that all the

products of elements in Cyc are 0 and that the nonlinear strand I is

contained in the ideal generated by Cls (the images in H of cycles in Cyc).

A similar argument shows that the ring in case 71 of [23, Tables A–D]

also satisfies Theorem 6.1(2); for that ring, one can show that the set Cyc=

{C0, C1, C2, C7, C8, C9, C11, C15} is the desired generating set with trivial

self-multiplication.

Remark 7.3. Even among other rings with m3 = 0 in [23], there are

limitations to Theorem 6.1(2): For example, the ring in case 71v16 of [23]

has no generating set satisfying this condition, despite being Koszul. Using

DGAlgebras as above, we see that the ring

R= k[X, Y, Z, U ]/(X2, Y 2 + Z2, XY, Y Z, ZU, XZ + U2, XU),

has m3 = 0 and has HR generated by X1, . . . , X17 such that X2
13 6= 0, hence

the cycle corresponding to X13 cannot be a part of any set with trivial self-

multiplication. However, without X13, we cannot generate the nonlinear

strand:

R=QQ[x,y,z,u]/ideal(x^2,y^2+z^2,x*y,y*z,z*u,x*z+u^2,x*u)

G=generators HH koszulComplexDGA(R)

X_13*X_13==0 -- returns false

P={}; for n from 0 to length(G)-1 do {

if (degree G_n)_0+1 !=(degree G_n)_1

then P=append(P,G_n)}

I=(ideal G)^2+(ideal P)

--I is the ideal of nonlinear strands of H

isSubset(I,ideal delete(G_12,G)) -- returns false
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Hence no set satisfying the conditions of Theorem 6.1(2) can exist for this

ring, but R is Koszul by [23, Main Theorem].

The next example shows that generation of HR by the linear strand alone

cannot detect Koszulness of R.

7.4. Consider the ring which is case 55 in [23]:

R= k[X, Y, Z, U ]/(X2 +XY, XZ + Y U, XU, Y 2, Z2, ZU + U2).

The graded Betti table of R over Q is the same as for the ring in 7.2.

Moreover, we see that HR is generated by the linear strand. This code can

also be used to show the ring in 7.2 is generated by its linear strand.

R=QQ[x,y,z,u]/ideal(x^2+x*y,x*z+y*u,x*u,y^2,z^2,z*u+u^2)

betti res(ideal R)

H=HH koszulComplexDGA(R)

G=generators H

for n from 0 to length(G)-1 list degree G_n

betti res(coker vars R, LengthLimit =>7)

We see that HR has 6 generators in bidegree (1, 2) and 4 generators in

bidegree (2, 3), all in the linear strand; further, the resolution of k over R

is not linear, hence R is not Koszul.

Remark 7.5. The Koszul homology algebras of the rings in 7.2 and 7.4

share the same Hilbert series and are both generated by the linear strand,

yet one ring is Koszul and the other one is not. Thus, generation by the

linear strand and “good” Hilbert series of the Koszul homology are not

sufficient to decide whether the ring is Koszul. The particularities of the

generation of certain nonlinear strands in the Koszul homology seem to be

relevant factors in detecting good homological behavior.

We now showcase the applicability of our results with a nonquadratic

example: a noncompressed level algebra of socle degree 4, with defining

ideal generated in degree 3.

7.6. Let Q= k[A, B, C, D], and let I be the ideal

(A3, A2C, A2D, AC2, B3, B2C, B2D, BC2, BD2, C2D,

AB2 + CD2, ABD − C3, BCD +D3),

and set R=Q/I. Write m for the maximal homogeneous ideal of R and write

a, b, c, d for the images of the variables. As before we denote by T1, . . . , T4
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the variables of the Tate complex in degree one, mapping to a, b, c, d. One

computes with Macaulay2 the Betti table of R over Q:

0 1 2 3 4

total: 1 13 22 12 2

0: 1 . . . .

1: . . . . .

2: . 13 19 5 .

3: . . 3 6 .

4: . . . 1 2

Proposition 1. The following hold:

(1) The last strand of the Koszul homology H is generated by one element

in H1,3.

(2) R→R/m4 is a Golod homomorphism and R/m4 is a Golod ring.

(3) PRk (t) = (1 + z)3/1− z − 12z2 − 10z3 − z4 + 2z5.

To give a feel for how computations in HR are done by hand, and because

the computations in this example are not too tedious, we give a proof that

does not rely on the DGAlgebras package in Macaulay2.

Proof. Using Macaulay2, we check that the reduced Gröbner basis of I

with respect to the lexicographic order is composed of the elements:

A3, A2C, A2D, AC2, B3, B2C, B2D, BC2, BD2, C2D, AB2 + CD2,

ABD − C3BCD +D3, BC3, AD3 + C4, D4, CD3, C5.

Using this information, one sees that c4 and acd2 generate the two-

dimensional socle of R.

Note that the element k1 = (ac− bd)T1 + c2T3 ∈K1,3 is a cycle. We show

that its class [k1] generates H4,8 and H3,7.

Claim 1. H4,8 is generated by the following two elements:

[c4T1T2T3T4], [acd2T1T2T3T4].

This can be seen from the fact that c4, acd2 form a basis for the socle of R.

Claim 2. H3,7 is generated by the following element: [c4T1T3T4].

To verify this claim, note first that c4T1T3T4 is a cycle. Then, compute

the module of boundaries m3∂(K4) as being generated by the classes of the
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following elements:

c4T1T2T3, c
4T1T2T4, acd

2T1T2T4, acd
2T1T3T4,

c4T2T3T4, acd
2T2T3T4, acd

2T1T2T3 − c4T1T3T4

and check that [c4T1T3T4] /∈m3∂(K4). Since dim H3,7 = 1, this proves the

claim.

Consider now the elements k2 = c2T1T2T4 and k3 = (bc+ d2)T2T3T4 −
b2T1T2T4, and k4 = c2T1T4 which are also cycles. To verify that [k1] generates

H4,8 and H3,7, we note the following relations:

k1k2 = c4T1T2T3T4

k1k3 = acd2T1T2T3T4

k1k4 = −c4T1T3T4.

We conclude that the ring R satisfies the graded version of condition

Z2,2,4, as stated in Section 6.

Corollary 3.5, together with a usage of Macaulay2 for computing the

Poincaré series of R/m4 over the polynomial ring, gives:

PRk (z) =
(1 + z)4

1− z(15z + 30z2 + 23z3 + 7z4) + 2z2(1 + z)4

=
(1 + z)3

1− z − 12z2 − 10z3 − z4 + 2z5
.
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[14] S. B. Iyengar and T. Römer, Linearity defects of modules over commutative rings,
J. Algebra 322(9) (2009), 3212–3237.
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