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Abstract

Let E be an elliptic curve defined over Q with good ordinary reduction at a prime p ≥ 5 and let F be an
imaginary quadratic field. Under appropriate assumptions, we show that the Pontryagin dual of the fine
Mordell–Weil group of E over the Z2

p-extension of F is pseudo-null as a module over the Iwasawa algebra
of the group Z2

p.
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1. Introduction

At the turn of the millennium, Coates and Sujatha [4] and, a little later, Wuthrich [22]
initiated a systematic study on the fine Selmer group of an elliptic curve E. The fine
Selmer group is a subgroup of the classical p-primary Selmer group defined by stricter
local conditions at primes above p. Analogous to the usual Selmer group, this fine
Selmer group R(E/F) sits in the middle of the short exact sequence

0 −→M(E/F) −→ R(E/F) −→Ж(E/F) −→ 0,

where M(E/F) and Ж(E/F) are the fine Mordell–Weil group and fine Tate–
Shafarevich group, respectively (defined in the sense of Wuthrich [23]), which
can be thought as the ‘fine’ counterparts of the usual Mordell–Weil group and
Tate–Shafarevich group.

In [4, Conjecture B], Coates and Sujatha proposed the following conjecture.

CONJECTURE 1.1 (Conjecture B). Let E be an elliptic curve defined over a number
field F. Suppose that F∞ is a p-adic Lie extension of F for which Gal(F∞/F)
has dimension ≥ 2 containing the cyclotomic Zp-extension Fcyc. Then, R(A/F∞)∨ is
pseudo-null over Zp[[Gal(F∞/F)]].
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Here, a finitely generated Zp[[Gal(F∞/F)]]-module M is said to be pseudo-null if

ExtiZp[[Gal(F∞/F)]](M,Zp[[Gal(F∞/F)]]) = 0 for i = 0, 1.

This conjecture remains wide open but we refer readers to [2, 7, 11, 12] for some
discussion and numerical examples in support of the conjecture. The goal of this note
is to provide further theoretical support for Conjecture B. We will prove the following
result.

THEOREM 1.2. Let E be an elliptic curve defined over Q with good ordinary reduction
at a prime p ≥ 5, and let F be an imaginary quadratic field. Suppose that E has no
complex multiplication and that the discriminant of F is coprime to the conductor of
E. In the event that the root number ε(E/F, 1) equals −1, assume further that p does not
divide the class number of F. Suppose that Sel(E/Fcyc) is cofinitely generated over Zp.
Then, the Pontryagin dualM(E/F∞)∨ of the fine Mordell–Weil group is a pseudo-null
Zp[[Gal(F∞/F)]]-module, where F∞ is the Z2

p-extension of F.

As an application, we can prove the following result, where we note that every
Zp-extension of F is necessarily contained in F∞.

COROLLARY 1.3. Retain the settings of Theorem 1.2. Then, for every Zp-extension L∞
of F, the Pontryagin dualM(E/L∞)∨ is torsion over Zp[[Gal(L∞/L)]].

It is conjectured that R(E/L∞)∨ should always be torsion over Zp[[Gal(L∞/L)]]
(see [13, 18, 21]). The above corollary thus constitutes partial evidence towards
this conjecture. Furthermore, if one is willing to assume the finiteness of the fine
Tate–Shafarevich group, we have the following observation.

COROLLARY 1.4. Retain the settings of Theorem 1.2. Suppose that L∞ is a
Zp-extension of F with the property that Ж(E/L) is finite for every finite extension L
of F contained in L∞. Then, R(E/L∞)∨ is torsion over Zp[[Gal(L∞/L)]].

The proofs of the preceding theorem and corollaries will be given in Section 4.

2. Selmer group

We now introduce the Selmer group in a slightly more general context. As a start,
we let F be an arbitrarily fixed number field and E an elliptic curve defined over F.
Let S be a finite set of primes of F which contains all the primes above p, the infinite
primes and the primes of bad reduction of E. We shall also write Sp for the set of
primes of F above p. Denote by FS the maximal algebraic extension of F which is
unramified outside S. If L is a (possibly infinite) extension of F contained in FS and
S′ ⊆ S, we write S′(L) for the set of primes of L above S′.

For each v ∈ S and a finite extension L of F, set

Jv(E/L) =
⊕

w|v
H1(Lw, E)p∞ .
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If L is an infinite extension of F contained in FS, we define

Jv(E/L) = lim−−→
L

Jv(E/L),

where L runs through all finite extensions of F contained in L.
The classical (p-primary) Selmer group of E over L is defined by

Sel(E/L) = ker
(
H1(GS(L), Ep∞) −→

⊕

v∈S
Jv(E/L)

)
,

where we write GS(L) = Gal(FS/L). The Pontryagin dual of Sel(E/L) is then denoted
by X(E/L).

From now on, we will always assume that the elliptic curve E has good ordinary
reduction at all primes of F above p. For each prime v of F above p, denote by Êv and
Ẽv the formal group of E at v and the reduced curve of E at v, respectively. Furthermore,
we have a short exact sequence

0 −→ Êv,p∞ −→ Ep∞ −→ Ẽv,p∞ −→ 0

of discrete Gal(F̄v/Fv)-modules. Since E is assumed to have good ordinary reduction,
both Êv,p∞ and Ẽv,p∞ are cofree Zp-modules of corank 1.

It is convenient to work with an equivalent description of the local terms Jv(E/L),
following an insight of Coates and Greenberg [3]. LetL be an algebraic extension of F.
For every non-Archimedean prime w of L, write Lw for the union of the completions
at w of the finite extensions of F contained in L. If w is a prime above p, we write
Ew = Ev, where v is a prime of F below w. Finally, we shall always denote by Fcyc the
cyclotomic Zp-extension of F. With these in hand, we have the following lemma.

LEMMA 2.1. Let L be an algebraic extension of Fcyc which is unramified outside a set
of finite primes of F. Then, we have an isomorphism

Jv(E/L) �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

lim−−→
L′

⊕

w|v
H1(L′w, Ẽw,p∞) if v divides p,

lim−−→
L′

⊕

w|v
H1(L′w, Ep∞) if v does not divide p,

where the direct limit is taken over all finite extensions L′ of Fcyc contained in L.

PROOF. See [3, Propositions 4.1, 4.7 and 4.8] or [10, Lemma 4.1]. �

We now establish a control theorem for the Selmer group over a Z2
p-extension.

PROPOSITION 2.2. Let E be an elliptic curve defined over F which has good ordinary
reduction at each prime of F above p. Suppose that F∞ is a Z2

p-extension of F which
contains Fcyc. Write H = Gal(F∞/Fcyc). Then, the restriction map

Sel(E/Fcyc) −→ Sel(E/F∞)H

has finite kernel and cokernel.

https://doi.org/10.1017/S0004972725000024 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972725000024


4 M.-F. Lim, C. Qin and J. Wang [4]

PROOF. The proposition should definitely be well known. For the convenience of the
readers, we shall supply an argument here. Consider the commutative diagram

0 �� Sel(E/Fcyc)

��

�� H1(GS(Fcyc), Ep∞
)

h

��

��

⊕

v∈S
Jv(E/Fcyc)

⊕gv

��

�� 0

0 �� Sel(E/F∞)H �� H1(GS(F∞), Ep∞
)H ��

(⊕

v∈S
Jv(E/F∞)

)H

with exact rows. Via the snake lemma, it suffices to show that ker h, ker gv and coker h
are finite. To begin with, we show that h is surjective with a finite kernel. Indeed, since
H � Zp, the restriction-inflation sequence tells us that the map h is surjective with
kernel H1(H, E(F∞)p∞). However,

0 = rankZp[[H]]
(
E(F∞)p∞

)∨
= rankZp

(
(E(F∞)p∞)∨

)
H − rankZp

(
(E(F∞)p∞)∨

)H ,

where the second equality follows from [17, Proposition 5.3.20]. Nevertheless, observe
that

(
(E(F∞)p∞)∨

)
H =
(
(E(F∞)p∞)H)∨ = (E(Fcyc)p∞

)∨,

and the latter is finite by a theorem of Imai [6]. Hence,
(
(E(F∞)p∞)∨

)H is also finite.
However, this group is precisely H1(H, E(F∞)p∞)∨, and so we have our claim.

It remains to show that gv has finite kernel for every v. Again, by the
restriction-inflation sequence, we have ker gv = ⊕w|vH1(Hw, D), where here the sum
runs over all the primes of Fcyc above v, Hw is the decomposition group of w in H and
D denotes either Ẽv,p∞ or Ep∞ according as to whether v divides p or not. In particular,
if Hw = 1, then H1(Hw, D) = 0. This is indeed the case when v does not divide p for
a Z2

p-extension that is unramified outside p. It remains to consider primes w which
divide p and for which Hw is nontrivial. Since H � Zp, it then follows that Hw � Zp.
We may then apply the same argument as in the preceding paragraph to conclude that
H1(Hw, Ẽv,p∞) is finite. The proof of the proposition is now complete. �

The following is a corollary of the preceding proposition.

COROLLARY 2.3. Retain the setting as in Proposition 2.2. Then, Sel(E/Fcyc) is
cofinitely generated over Zp if and only if Sel(E/F∞) is cofinitely generated over
Zp[[H]].

3. Mordell–Weil group over a Z2
p-extension

We continue to suppose that F∞ is a Z2
p-extension of F which contains Fcyc. Write

H = Gal(F∞/Fcyc) and denote by Hn the unique subgroup of H with index pn. The
fixed field of Hn is in turn denoted by Kn. The following hypothesis will be in full
force for the remainder of the section.

(Fg) Sel(E/Fcyc) is cofinitely generated over Zp.
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Write Λ = Zp[[H]]. We shall identify this latter ring with the power series ring
Zp[[T]] in one variable. By abuse of notation, we shall also write Λ for the ring
Zp[[T]]. Denote by Φn the pnth-cyclotomic polynomial which is viewed as an element
in Λ.

PROPOSITION 3.1. Suppose that hypothesis (Fg) is valid. Write Λ = Zp[[H]].

(a) There is an injective Λ-homomorphism
(
E(F∞) ⊗ Qp/Zp

)∨ −→ Λ⊕r ⊕
(⊕

n≥0

(Λ/Φn)⊕tn
)

with a finite cokernel, where {tn} is a sequence of nonnegative integers with tn = 0
for n � 0.

(b) Define

en =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

rankZ E(Kn) − rankZ E(Kn−1)
pn − pn−1 if n ≥ 1,

rankZ E(Fcyc) if n = 0.

Then,

Tp
(
E(Kn) ⊗ Qp/Zp

)
�

n⊕

j=0

(Λ/Φj)⊕ej .

PROOF. By hypothesis (Fg), Sel(E/Kn) is cofinitely generated over Zp for every n (for
instance, see [5, Corollary 3.4]). Thus, it follows that E(Kn) ⊗ Qp/Zp is also cofinitely
generated over Zp for every n. In view of this observation, we may apply a similar
argument to that of Lee in [8, Theorem 2.1.2] to obtain the conclusion of statement (a).
Once, we have statement (a), statement (b) will follow by carrying out the argument in
[15, Proposition 3.8]. �

4. Fine Selmer groups

Let L be a finite extension of F contained in FS. Recall that the fine Selmer group
of E over L is defined by

R(E/L) = ker
(
H1(GS(L), Ep∞) −→

⊕

v∈S(L)

H1(Lv, Ep∞)
)
.

The fine Selmer group and the classical Selmer group are related by the following
exact sequence.

LEMMA 4.1. We have an exact sequence

0 −→ R(E/L) −→ Sel(E/L) −→
⊕

v∈Sp(L)

E(Lv) ⊗Zp Qp/Zp.

In particular, the definition of the fine Selmer group does not depend on the choice of
the set S.
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PROOF. See [16, Lemma 4.1] or [23, Section 2]. �

Following Wuthrich [23], the fine Mordell–Weil groupM(E/L) is defined by

M(E/L) = ker
(
E(L) ⊗Zp Qp/Zp −→

⊕

v∈Sp(L)

E(Lv) ⊗Zp Qp/Zp

)
,

where Sp(L) denotes the set of primes of L above p. This fits into the commutative
diagram

0 ��M(E/L)

��

�� E(L) ⊗Zp Qp/Zp

��

��

⊕

v∈Sp(L)

E(Lv) ⊗Zp Qp/Zp

0 �� R(E/L) �� Sel(E/L) ��

⊕

v∈Sp(L)

E(Lv) ⊗Zp Qp/Zp

with exact rows, where the leftmost vertical map is induced by the middle vertical
map. Following Wuthrich [23], the fine Tate–Shafarevich group Ж(A/L) is given by

Ж(E/L) = coker
(M(E/L) −→ R(E/L)

)
.

Since the middle vertical map in the above diagram is injective, so is the leftmost
vertical map. Consequently, a snake lemma argument yields a short exact sequence

0 −→M(E/L) −→ R(E/L) −→Ж(E/L) −→ 0

with Ж(E/L) injecting into X(E/L)p∞ , the p-primary part of the usual Tate–
Shafarevich group.

We can now give the proof of our main theorem.

PROOF OF THEOREM 1.2. Set Cn and C∞ to be the respective cokernels of
M(E/Kn) −→ E(Kn) ⊗ Qp/Zp andM(E/F∞) −→ E(F∞) ⊗ Qp/Zp. From the argument
in [19, Proposition 3.14], we see that

rankZp[[H]]
(
E(F∞) ⊗ Qp/Zp

)∨
=

⎧⎪⎪⎨⎪⎪⎩
0 if ε(E/F, 1) = +1;
1 if ε(E/F, 1) = −1.

(4.1)

Plainly, if ε(E/F, 1) = +1, thenM(E/F∞) has trivial Zp[[H]]-corank, and so by a result
of Venjakob [20] (or see [12, Lemma 5.1]),M(E/F∞)∨ is pseudo-null over Zp[[G]].

Now suppose that we have ε(E/F, 1) = −1. In view of (4.1) and the tautological
short exact sequence

0 −→M(E/F∞) −→ E(F∞) ⊗ Qp/Zp −→ C∞ −→ 0,

it therefore remains to show that rankZp[[H]] C∞ > 0.
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Now, consider the commutative diagram

0 ��M(E/Kn)

αn

��

�� E(Kn) ⊗Zp Qp/Zp

βn

��

��
⊕

w∈Sp(Kn) E(Kn,w) ⊗Zp Qp/Zp

γn

��

0 ��M(E/F∞)Hn ��
(
E(F∞) ⊗Zp Qp/Zp

)Hn
��
(⊕

u∈Sp(F∞) E(F∞,u) ⊗Zp Qp/Zp

)Hn

with exact rows. Since ker βn is contained in H1(Hn, E(F∞)p∞), it follows from the
argument in Proposition 2.2 that the latter, and hence ker βn, is finite. Similarly, we see
that ker γn is finite. Consequently, the map Cn −→ (C∞)Hn also has a finite kernel.

We claim that corankZp Cn ≥ pn − pn−1 for sufficiently large n. Suppose that this
claim holds. Since we have seen above that the map Cn −→ (C∞)H has finite kernel, it
follows that corankZp (C∞)H ≥ pn − pn−1. However, since

corankZp (C∞)H =
(
corankZp[[H]]C∞

)
pn + O(1),

we therefore have

corankZp[[H]]C∞ > 0,

which is what we want to show.
It therefore remains to establish our claim. For this, we follow an idea of Lei [9].

Consider the natural map

fn : E(Kn) ⊗ Qp/Zp −→
⊕

w∈Sp(Kn)

E(Kn,w) ⊗Zp Qp/Zp,

where im fn = Cn. Write Fac for the anticyclotomic Zp-extension of F, and Ln for the
intermediate subextension of Fac/F with |Ln : F| = pn. Since ε(E/F, 1) = −1,

rankZ E(Ln) = pn + O(1)

by [1, Proposition 7.6]. As Ln ⊆ Kn, this in turn implies that en ≥ 1 for sufficiently
large n, where en is defined as in Proposition 3.1. For each such n, choose an element
xn ∈ E(Kn) \ E(Kn−1) which is of infinite order. Then, for a prime w of Kn above p, the
image of xn in E(Kn,w) is still of infinite order and so cannot be divisible by an arbitrary
power of p. Therefore, the image of xn in E(Kn,w) ⊗ Qp/Zp is nontrivial.

As before, write Φn for the pnth-cyclotomic polynomial viewed as an element in
Zp[[H]]. For brevity, we write

Vn = Tp
(
E(Kn) ⊗ Qp/Zp

) ⊗ Qp.

Then, the map fn induces the Qp[H/Hn]-homomorphism

Vn[Φn] ↪→ Vn −→ Tp
(
E(Kn,w) ⊗ Qp/Zp

) ⊗ Qp,

which is nonzero. Since Φn is irreducible over Qp[T], it follows that the image of this
homomorphism contains at least a copy of Qp[T]/Φn, and since dimQp

(
Qp[T]/Φn

)
=

pn − pn−1, this image has Qp-dimension at least pn − pn−1. Consequently, one has
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corankZp (Cn) ≥ pn − pn−1 for sufficiently large n. This establishes our claim and
completes the proof of the theorem. �

We end the paper with the proofs of the two corollaries stated in the introductory
section.

PROOF OF COROLLARY 1.3. For each Zp-extension L∞ of F, we write HL∞ =

Gal(F∞/L∞). Consider the commutative diagram

0 ��M(E/L∞)

α

��

�� R(E/L∞)

δ

��

0 ��M(E/F∞)HL∞ �� R(E/F∞)HL∞

with exact rows. From the proof of [14, Proposition 3.8], we see that the kernel
of δ is cofinitely generated over Zp and hence so is the kernel of α. However,
combining Theorem 1.2 with [14, Lemma 2.1(ii)], we see that M(E/F∞)HL∞ is
cotorsion over Zp[[Gal(L∞/F)]]. Therefore, it follows thatM(E/L∞) is cotorsion over
Zp[[Gal(L∞/F)]] as required. �

PROOF OF COROLLARY 1.4. Under the finiteness of Ж(E/L), it is shown in [13,
Proposition 4.1] that Ж(E/L∞) is cotorsion over Zp[[Gal(L∞/F)]]. The conclusion
therefore follows from this, Corollary 1.3 and the tautological short exact sequence

0 −→M(E/L∞) −→ R(E/L∞) −→Ж(E/L∞) −→ 0. �
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