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Theoretical and numerical study of the binary
scaling law for electron distribution in
thermochemical non-equilibrium flows under
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The binary scaling law is a classical similarity law used in analysing hypersonic flow
fields. The objective of this study is to investigate the applicability of the binary scaling
law in thermochemical non-equilibrium airflow. Dimensional analysis of vibrational
and electron–electronic energy conservation equations was employed to explore the
theoretical reasons for the failure of the binary scaling law. Numerical simulation based
on a multi-temperature model (translational–rotational temperature T, electron–electronic
excitation temperature Te and the vibrational temperatures of O2 and N2, TvO2

and TvN2
)

with two chemical models (the Gupta model and the Park model) was adopted to study the
accuracy of the binary scaling law for electron distribution at high altitude with extremely
high Mach number. The results of theoretical analysis indicate that the three-body collision
reactions and the translation–electron energy exchange from collisions between electrons
and ions, Qt−e_ions, can cause the failure of the binary scaling law. The results of numerical
simulation show that the electron-impact ionization reactions are the main reasons for the
invalidation of the binary scaling law for electron distribution at high altitude with high
Mach number. With an increase of free-stream Mach number, the negative effect on the
binary scaling law caused by Qt−e_ions cannot be ignored.

Key words: hypersonic flow, laminar reacting flows

1. Introduction

Small-scale models are usually used in hypersonic testing because the complete replication
of real flight conditions is not always possible. However, scale effect exists in hypersonic
non-equilibrium flow and brings difficulty to experimental simulation. Similarity law plays
an essential role in scaled model tests, which can ensure that the experimental results
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are similar to the data in actual hypersonic flight. The binary scaling law is a classical
similarity law for hypersonic and non-equilibrium flow. The binary scaling law states
(Birkhoff 1960; Birkhoff & Eckerman 1963; Shen 2005) that under the same inflow static
temperature T∞ and Mach number Ma∞, the flow fields around two scaled models are
similar if the product of the incoming flow density and the characteristic size of the object
ρ∞L is equal. The binary scaling law provides enormous flexibility for high-altitude flight
simulation. For instance, nozzle expansion used in creating hypersonic incoming flow in
some wind tunnels can result in pressure lower than that in real flight. In order to ameliorate
this problem, binary scaling can be employed to compensate for lack of pressure by using
a model size larger than full scale (Hall, Eschenroeder & Marrone 1962). In addition,
a reduced-scale model is usually used in order to reduce costs and pressure higher than
that in flight can be employed to compensate for reduction in size according to the binary
scaling law.

The binary scaling law was first proposed by Birkhoff (1960) and was called the binary
collision modelling law. Two-body binary collision processes such as dissociation are
characterized by ρ∞L scaling, so the ρ∞L scaling is termed binary scaling (Birkhoff
1960; Hornung 1972; Candler 2019). Three-body processes are characterized by ρ2∞L
scaling, so the fundamental reason for the failure of the binary scaling law is that
three-body processes cannot be ignored (Hall et al. 1962; Gibson & Marrone 1964).
Hall et al. (1962) demonstrated the practicality of the binary scaling law for a range of
altitude and showed its application in hypersonic blunt-nose flows. Chemical kinetics
are dominated by two-body dissociation reactions in some regimes while three-body
collision processes are relatively unimportant (Hall et al. 1962; Hornung 1988), which is
the reason why the binary scaling law is well suited for high-altitude airflow with coupled
chemical non-equilibrium. Ellington (1967) examined the limitations of binary scaling
for hypersonic flight and suggested that there exists a class of low-density hypersonic
flows for which the binary scaling law is still applicable. Lee & Baker (1969) identified
the controlling parameter for non-equilibrium air dissociation and ionization using a
simplified set of boundary-layer equations and demonstrated binary scaling by comparing
with axisymmetric solutions. To determine the peak electron density in the boundary
layer, they provided a simple engineering means by which air ionization solutions for
the axisymmetric case can be scaled to that for the angle-of-attack case. The validity of
the binary scaling law was also demonstrated through analysis of a cone with constant
free-stream velocity at three different altitudes (Thoenes 1969). Zhang (1990) derived the
law of similarity for high-temperature real air through the analysis of the Navier–Stokes
equations and explored the scaling parameters for frozen, equilibrium and non-equilibrium
flows. Zeng et al. (2009) considered that the characteristic time of a dissociation reaction
(two-body collision) is inversely proportional to free-stream density (τD ∝ 1/ρ∞) and
the characteristic time of a recombination reaction (three-body collision) is inversely
proportional to the square of free-stream density (τR ∝ 1/ρ2∞). When the incoming flow
density ρ∞ decreases to a certain degree, τR is far greater than τD. If the characteristic
time of flow τF reaches the same order of magnitude as τD, the three-body recombination
reaction is frozen relative to the flow. Zeng (2007) also proved that scale effect does not
exist in inviscid frozen airflow. Therefore, the similarity condition in this circumstance
is the similarity condition for a dissociation reaction, ρ∞L. Candler (2019) reviewed the
non-dimensionalization and scaling used in hypersonic flow and compared the scaling of
gas–surface and gas-phase reactions.

Accurate prediction of peak heat flux is crucial to the development of hypersonic
vehicles (Sivolella 2014; Zhu et al. 2018). The applicability of the binary scaling law
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in predicting heat flux was verified by wind tunnel test data of the ELECTRE vehicle
under Ma∞ ≈ 13 (Muylaert et al. 1992). Camm et al. (1961) discussed the scaling of
non-equilibrium radiation and suggested that correct scaling of radiative heat transfer
requires electronic non-equilibrium to be governed by two-body collision processes.
Teare, Georgiev & Allen (1962) also used binary scaling to correlate the non-equilibrium
radiation from a normal shock and pointed out that radiation loss can invalidate the binary
scaling concept.

The distribution and number density of electrons around hypersonic vehicles are closely
related to the ‘blackout’ phenomenon and extra attention is paid to these conditions in
entry and re-entry missions (Farbar, Boyd & Martin 2013; Ramjatan et al. 2020). Gibson &
Marrone (1964) investigated the scaling of electron and nitric oxide concentrations using
Newtonian theory and the problem of binary scaling for bluff-body flows was reduced
to the simpler one of binary scaling of normal shocks. They also gave a summary of
key points concerned with the range of validity of binary scaling for blunt-body flows.
The prediction of peak electron number density and distribution using the binary scaling
law was proved to be feasible for the ELECTRE vehicle and its scaled model under a
free-stream velocity of 5530 m s−1 (Zeng et al. 2009). Zeng et al. 2009 proposed that the
binary scaling law can be applied to all flow parameters if the incoming flow speed is in
the range of 7000–11 000 m s−1 and ρ∞L is less than 3 × 10−5 kg m−2.

Although many scholars have undertaken research on the binary scaling law through
theoretical analysis and numerical and experimental simulation, there are still some
deficiencies in these works. Firstly, most theoretical analyses of the binary scaling law
are limited to either kinetic theory of gases with only binary collisions considered or the
mass, momentum and total energy conservation equations of the Navier–Stokes equations
(Birkhoff 1960; Zhang 1990; Zeng 2007). Most previous studies did not consider thermal
non-equilibrium with vibrational energy conservation equations and electron–electronic
energy conservation equations. For example, translational, rotational, vibrational and
electronic degrees of freedom were assumed to be fully equilibrated in the analysis
of Gibson & Marrone (1964). This means that only the effects of chemical reactions
(chemical non-equilibrium) on the binary scaling law were taken into account and the
effects of complex energy exchange and relaxation between different energy modes
(thermal non-equilibrium) were ignored. However, the effects of thermal non-equilibrium
play a crucial role in hypersonic flow at high altitude. Therefore, it calls into question if
there exist any other factors besides chemical three-body collisions, perhaps from energy
exchange, that could theoretically cause binary scaling to fail. If such factors do exist, the
extent of their contribution to the failure of the similarity law in practice must also be
questioned. Secondly, although Houwing et al. (2000) explored the effect of vibrational
non-equilibrium and modified the theoretical analysis predicting shock standoff distance,
chemical dissociation and ionization effects were negligible in that study. Spacecraft enter
the atmosphere at extremely high Mach number (Ma = 30–40) and ionization reactions
are violent at extraordinarily high gas temperatures. This begs the question as to whether
the binary scaling law is applicable to electron distribution under such conditions. Of all
the elementary reactions in air chemistry, those which cause the binary scaling law to fail
for electron distribution have yet to be identified. All of these issues mentioned above are
discussed in this article.

This paper is organized as follows. Section 2 describes the physical models used in
this work. Section 3 is devoted to the theoretical analysis of the binary scaling law in
thermochemical non-equilibrium flows. Numerical analysis including numerical method
and detailed results is presented in § 4. Conclusions are given in § 5.
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2. Physical models

2.1. Fluid governing equations
Multi-species hypersonic reacting flows are governed by the Navier–Stokes equations with
thermochemical non-equilibrium processes described by a multi-temperature model.

The continuity equation consists of a total mass equation and (ns − 1) species equations:

∂ρ

∂t
+ ∇ · (ρV ) = 0, (2.1)

∂ρys

∂t
+ ∇ · (ρysV ) = ∇ · (ρDs∇ys) + ωs, s = 1, 2, . . . , ns − 1, (2.2)

where the index ns represents the total number of species, t is the time, ρ is the mixture
density and ys is the mass fraction of species s. Parameter V denotes the velocity and
ωs represents the source term of production of species s. Coefficient Ds is the effective
diffusion coefficient of species s.

The momentum conservation equation is

∂ρV
∂t

+ ∇ · (ρVV ) + ∇p = ∇ · τ̄ , (2.3)

where p is the pressure of the mixture and τ̄ denotes the viscous stress tensor
(Garicano-Mena, Lani & Degrez 2018).

The total energy conservation equation is

∂ρE
∂t

+ ∇ · (VρH) = ∇ ·
(

ktr∇T +
nmol∑
m=1

kvm∇Tvm + ke∇Te + τ̄ · V +
ns∑

s=1

HsρDs∇ys

)
,

(2.4)

where E and H represent the total energy and total enthalpy per unit mass of mixture,
respectively, and Hs is enthalpy per unit mass of species s. Index nmol denotes the total
number of molecular species. Parameters ktr, kvm and ke represent translational–rotational
thermal conductivity of mixture, vibrational thermal conductivity of molecular species
m and electron–electronic thermal conductivity of mixture, respectively. It is assumed
that the translational temperature is equal to the rotational temperature and T denotes
translational–rotational temperature. Here Tvm is vibrational temperature of molecular
species m. In this study, the vibrational temperature of O2, TvO2

, and the vibrational
temperature of N2, TvN2

, are considered. The electronic–free electron modes are described
by electron–electronic excitation temperature Te.

The vibrational energy conservation equation for a non-equilibrium molecule of species
m is

∂ρymEvm

∂t
+ ∇ · (VρymEvm) = ∇ · (kvm∇Tvm + EvmρDm∇ym) + ωvm, (2.5)

where Evm is vibrational energy per unit mass of molecular species m and ωvm represents
the source term of vibrational energy of species m.
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The electron–electronic energy conservation equation is

∂ρEe

∂t
+ ∇ · (VρEe) = ∇ ·

(
ke∇Te +

ns∑
s=1

HesρDs∇ys

)
+ ωe, (2.6)

where Ee and Hes denote electron–electronic energy per unit mass of mixture and
electron–electronic enthalpy per unit mass of species s, respectively, and ωe represents
the source term of electron–electronic energy of mixture.

2.2. Thermodynamic relations
The pressure of mixture is the sum of the partial pressures of each species:

p =
ns∑

s=1

ps =
∑

s /= e−

ρsRuT
Ms

+ ρeRuTe

Me
, (2.7)

where ps and Ms are the partial pressure and molecular weight of species s, respectively,
Me is the electron molecular weight and Ru is the universal gas constant.

The internal energy per unit mass of species s, i.e.

Es = Etrs + Erots + Evs + Ees + �hs, (2.8)

is split between the translational, rotational, vibrational and electron–electronic
contributions and the latent chemical energy of species s.

The translational energy and rotational energy per unit mass of species s are given by

Etrs =
⎧⎨
⎩

3RuT
2Ms

s /= e−

0 s = e−
and Erots =

⎧⎨
⎩

RuT
Ms

s = dia

0 s /= dia,

(2.9a,b)

where index dia represents diatomic molecule.
The vibrational energy and electron–electronic energy per unit mass of species s are

Evs =
⎧⎨
⎩

Ruθvs/Ms

eθvs/Tvs − 1
s = dia

0 s /= dia
and Ees =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
g1s

g0s

)
e−θes/Te

1 +
(

g1s

g0s

)
e−θes/Te

Ruθes

Ms
s /= e−

3RuTe

2Me
s = e−,

(2.10a,b)

where θvs and θes denote the characteristic vibrational temperature and the characteristic
electronic temperature of species s, respectively, and g0s and g1s are the degeneracy of the
ground and the first electronic level of species s, respectively.

2.3. Chemistry model
This study selects the Gupta chemical reaction model (Gupta et al. 1990) and the Park
model (Park 1993) which are applied to 11 air species (O2, N2, N, O, NO, N+, O+,
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N+
2 , O+

2 , NO+, e−). The mass production rate ωs is calculated by

ωs = Ms

nr∑
z=1

(νb
z,s − ν f

z,s)R
fb
z = Ms

nr∑
z=1

(νb
z,s − ν f

z,s)(R
f
z − Rb

z ), (2.11)

where ν
f
z,s and νb

z,s are the stoichiometric coefficients of species s for the reactants and
products in reaction z, respectively, and Rfb

z denotes the total reaction rate of reaction z.
The forward and backward reaction rates can be written as

R f
z = Γzk f

z

ns∏
l=1

(
ρl

Ml

)ν
f
z,l

, Rb
z = Γzkb

z

ns∏
l=1

(
ρl

Ml

)νb
z,l

, (2.12a,b)

where Γz is given as follows:

Γz =
[ ns∑

l=1

αz,l

(
ρl

Ml

)]Lz

, (2.13)

where αz,l denotes the third-body efficiency for species l in reaction z. Here Lz equals 1
when a third body M is needed in reaction z. Otherwise, Lz equals 0.

When the Gupta model is employed, the forward and backward reaction rate coefficients,
k f

z and kb
z , are expressed in modified Arrhenius form as

k f
z = Af ,zT

Bf ,z
f e−Cf ,z/Tf , kb

z = Ab,zT
Bb,z
b e−Cb,z/Tb, (2.14a,b)

where Tf and Tb represent the controlling temperature of the forward and backward
reactions, respectively. When the Park model is applied, k f

z is still calculated by (2.14a,b)
and kb

z is obtained by the equilibrium constant (Park 1985):

kb
z = k f

z (Tb)

Keq,z(Tb)
, (2.15)

where the equilibrium constant Keq,z is given as the following curve-fitting expression
(Park 1990):

Keq,z(Tb) = exp
(

Az
1

S
+ Az

2 + Az
3 ln S + Az

4S + Az
5S2
)

, (2.16)

where S = 10 000/Tb and the constants Az
1, Az

2, Az
3, Az

4, Az
5 are given by Park (1990). Those

five constants for N2 + N+ � N + N+
2 are not included in Park (1990), so the equilibrium

constant Keq,z for N2 + N+ � N + N+
2 is calculated using the similar method proposed

by Park (1985) and Ghezali, Haoui & Chpoun (2019). Radiative recombination reactions
in the Park model are not considered, because radiation is ignored in this paper.

2.4. Energy exchange model
The vibrational energy source term of molecular species m can be decomposed as

ωvm = Qt−vm + Qv−vm + Qe−vm + Qr−vm, (2.17)

where Qt−vm denotes the energy exchange between translation and vibration energies.
Energy exchange Qt−vm is evaluated using Landau–Teller theory (Landau & Teller 1936)
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as

Qt−vm = ρym
Evm(T) − Evm(Tvm)

τvt,m
, (2.18)

and the relaxation time of vibration–translation exchanges τvt,m modelled by the
Millikan–White empirical formula (Millikan & White 1963; Miller et al. 1995) is
expressed as

τMW
vt,m =

∑
s /= e−

Xs/
∑

s /= e−

Xs

τvt,m,s
, (2.19)

τvt,m,s = 101 325
p

exp[am,s(T−1/3 − bm,s) − 18.42], (2.20)

where Xs is the mole fraction of heavy particle s. Here am,s and bm,s are given by

am,s = 0.00116μ1/2
m,sθ

4/3
vm

, (2.21)

bm,s = 0.015μ1/4
m,s, (2.22)

where the reduced mass μm,s is defined as

μm,s = 1000MmMs

Mm + Ms
. (2.23)

When the temperature is higher than 8000 K, Park (1990) suggests that the correction term
should be added on the basis of τMW

vt,m and the total relaxation time τvt,m can be expressed
as

τvt,m = τMW
vt,m + (σmC̄mnm)−1, (2.24)

where the average molecular velocity C̄m, the effective cross-section σm and number
density nm of species m are given by

C̄m =
(

8RuT
πMm

)1/2

, (2.25)

σm = 10−21
(

50 000
T

)2

, (2.26)

nm = ρymN0

Mm
, (2.27)

where N0 is Avogadro’s constant. Time τvt,m can be expressed as

τvt,m = fτvt,m(ρ, T, y1, . . . , yns) = 1
ρ

f ′
τvt,m

(T, Te, y1, . . . , yns), (2.28)

where fτvt,m stand for the functions by which τvt,m can be calculated. The term f ′
τvt,m

does
not involve the density ρ. Thus, the term Qt−vm can be written as

Qt−vm = ρ2f ′
Qt−vm

(T, Tvm, Te, y1, . . . , yns), (2.29)

where f ′
Qt−vm

is independent of ρ.
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The vibrational energy exchange between the different molecules Qv−vm is described
according to Roberts (1994):

Qv−vm = ρym

Mm

mol∑
s=1,s /= m

⎧⎨
⎩ Xs

τvv,m,s

⎡
⎣1 − exp

(
− θvm

T

)
1 − exp

(
− θvs

T

)
⎤
⎦ evs(Tvs)

evs(T)
[evm(T) − evm(Tvm)]

− Xs

τvv,m,s

evm(Tvm)

evs(T)
[evs(T) − evs(Tvs)]

⎫⎬
⎭ , (2.30)

where evm denotes the vibrational energy per mole of species m. Note that species m can
only be N2 in (2.30). For other species, the transfer of vibrational energy can be obtained
according to the assumption of conservation of vibrational energy (Miller et al. 1995). The
relaxation time of vibration–vibration exchanges τvv,m,s can be written as

τvv,m,s = 1

Pm,s(8πKTN0/μm,s)
1/2σ 2

m,sns
, (2.31)

where K and σm,s represent Boltzmann’s constant and the collision cross-sections (Miller
et al. 1995), respectively. The probability of energy transfer during each collision Pm,s is
provided by Park (1993) as

PN2,NO = 5.5 × 10−5
(

T
1000

)2.32

, (2.32)

PN2,O2 = 3.0 × 10−6
(

T
1000

)2.87

. (2.33)

In this paper, only collision between N2 and O2 is taken into consideration. Like Qt−vm ,
the term Qv−vm can be expressed as

Qv−vm = ρ2f ′
Qv−vm

(T, Tvm, ym, ys1, . . . , ysmol), (2.34)

where ys1, . . . , ysmol represent the molecular species except species m.
The energy exchange between vibrational and electronic modes Qe−vm is modelled as

(Candler & Maccormack 1991)

Qe−vm = ρym
Evm(Te) − Evm(Tvm)

τe,m
, (2.35)

where τe,m denotes the relaxation time of electronic–vibrational exchanges for species m.
Parameter τe,N2 is given based on research of Lee (1993) and Candler (1988) by

log10

( peτe,N2

101 325

)
= 3.91 log2

10(Te) − 30.36log10(Te) + 48.90, 1000 K ≤ Te ≤ 7000 K,

(2.36)

log10

( peτe,N2

101 325

)
= 1.30 log2

10(Te) − 9.09log10(Te) + 5.58, 7000 < Te ≤ 50 000 K,

(2.37)

where pe is the electron partial pressure.
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Parameter τe,O2 is obtained from the formula of Park & Lee (1995) based on τe,N2:

τe,O2 = 300 × τe,N2(1.492Te). (2.38)

The term Qe−vm can also be written as

Qe−vm = ρ2f ′
Qe−vm

(T, Te, ym, ye−), (2.39)

where f ′
Qe−vm

does not depend on ρ.
The change in vibrational energy due to chemical reactions Qr−vm can be expressed as

(Miller et al. 1995)
Qr−vm = ωmEvm . (2.40)

The electron–electronic energy source term can be decomposed as

ωe = Qt−e −
∑

m=mol

Qe−vm + Qr−e + Qi−e − pe∇ · V . (2.41)

The energy exchange between translation and electron modes Qt−e can be written as
(Miller et al. 1995; Roberts 1996)

Qt−e = 3ρeRu(T − Te)
∑

s /= e−

ve,s

Ms
, (2.42)

where ve,s denotes the collision frequency between electrons and species s. For ions and
electrons, it follows Coulomb collisions and can be expressed as (Appleton & Bray 1964)

νe,s = 8
3

(
π

me

)1/2

nse4
c

1

(2KTe)
3/2 ln

(
K3T3

e

πnee6
c

)
, (2.43)

where me is the electron mass, ne denotes number density of electrons and ec is the
magnitude of the electronic charge. For collisions between neutral species and electrons,
the collision frequency can be expressed as (Appleton & Bray 1964)

νe,s = nsσe,s

(
8KTe

πme

)1/2

, (2.44)

where the effective cross-section σe,s is evaluated by curve fits (Gnoffo, Gupta & Shinn
1989) as

σe,s = as + bsTe + csT2
e . (2.45)

The collision frequency ve,s and the effective cross-section σe,s can also be calculated
by similar formulae obtained by Petschek & Byron (1957) or Matsuzaki (1988) and the
simulation in § 4 uses Matsuzaki’s model. Regardless of the model mentioned, the term
Qt−e can be written as

Qt−e = Qt−e_neu + Qt−e_ions

= ρ2[f neu
t−e (T, Te, ye−, yneu1, . . . , yneun) + f ion

t−e(ρ, T, Te, ye−, yion1, . . . , yionn)] ,
(2.46)

where Qt−e_neu denotes the translation–electron energy exchange from collisions between
electrons and neutral particles and Qt−e_ions denotes that from collisions between electrons
and ions. The term f neu

t−e represents the contribution of the electron–neutral particle
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collisions and is not correlated with ρ; f ion
t−e stands for the contribution of the electron–ion

collisions and depends on ρ.
The added or removed electron energy due to chemical reactions Qr−e can be specified

as (Hao, Wang & Lee 2016)

Qr−e =
ns∑

s=1

ωsEes . (2.47)

The term Qi−e represents the energy loss of free electrons by the impact ionization
reactions (Scalabrin 2007), which gives

Qi−e = −1
3 (IOωO+ + INωN+), (2.48)

where IO and IN are the first energy of ionization of O and N; ωO+ and ωN+ are the
formation rate of O+ and N+ in the electron-impact ionization reactions.

The term −pe∇ · V denotes the contribution of electron partial pressure in
electron–electronic energy change (Gnoffo et al. 1989; Lee 1984).

2.5. Transport properties
The dynamic viscosity coefficient of each species is obtained by curve fits taken from
Gupta et al. (1990) in the temperature range (1000–30 000 K) and Lennard-Jones potential
(Anderson 2006) in the other temperature range. The translational–rotational, vibrational
and electron–electronic thermal conductivities of each species are given by Eucken’s
relation (Anderson 2006). The dynamic viscosity μ and thermal conductivities of gas
mixture are derived from Wilke’s rule (Wilke 1950). So μ, ktr, kvm and ke can be expressed
as

μ = fμ(T, Te, y1, . . . , yns), (2.49)

ktr = fktr(T, y1, . . . , yns), (2.50)

kvm = fkvm (T, Tvm, y1, . . . , yns), (2.51)

ke = fke(T, Te, y1, . . . , yns), (2.52)

where fμ, fktr , fkvm and fke stand for the functions by which μ, ktr, kvm and ke can be
calculated, respectively. One can observe that μ, ktr, kvm and ke depend on temperatures
and mass fraction of each species.

It is assumed that the binary diffusion coefficients between each pair of components
Dsj are the same and the electric current of the flow field is zero. The multi-component
diffusion coefficient of each species Ds is given as follows:

Ds =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − ys)μ

ρ(1 − Xs)Sc
s /= e−,

nion∑
s=1

ysDs

nion∑
s=1

ys

s = e−,

(2.53)

where Sc is the Schmidt number and index nion denotes the total number of ion species.
For neutral particles, Sc = 0.5. For ions, Sc = 0.25. In a similar way, Ds can also be
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Theoretical and numerical study of the binary scaling law

expressed as

Ds = fDs(T, Te, ρ, y1, . . . , yns) = f ′
Ds

(T, Te, y1, . . . , yns)/ρ, (2.54)

where the functions fDs and f ′
Ds

show that Ds depends on density, temperature and mass
fraction of each species.

3. The binary scaling law in thermochemical non-equilibrium

The binary scaling law requires the same ρ∞L, T∞, U∞ for two different flows and
the mass fractions of free streams y1,∞, . . . , yns,∞ also need to be consistent. Flow
parameters need to be transformed to the dimensionless form for similarity analysis (see
Appendix A). By analysing the dimensionless continuity, momentum conservation and
total energy conservation equation, the similarity law for real gas flow is given by Zhang
(1990). In this paper, the similarity analysis based on the dimensionless vibrational and
electron–electronic energy conservation equation is discussed in detail.

Radiation and ablation might become important at large Mach number. Teare et al.
(1962) considered that, in a certain range of altitude and free-stream velocity, the intensity
of radiation is proportional to the particle density when two-body collision processes
prevail sufficiently. If the condition of the binary scaling law (ρ∞R = const.) is satisfied,
the integrated radiation flux emitted from the non-equilibrium region is independent of
the particle density and binary scaling is applicable to radiation (Camm et al. 1961;
Teare et al. 1962). Zeng et al. (2009) investigated the radiation of re-entry flows at
U∞ = 7650, 11 360 m s−1 and the results revealed that non-equilibrium radiation abides
by the binary scaling law. However, the binary scaling law is invalid for analysing radiation
in some extreme cases (Teare et al. 1962; Zeng et al. 2009). Ablation involves various
gas–surface reactions. The scaling of the gas–surface reactions is not as clear as that of
the gas-phase reactions (Candler 2019). The rates of gas–surface reactions depend on the
fraction of active sites in a certain phase (Marschall & MacLean 2011). For example,
the catalytic recombination of nitrogen N + N(s) � N2 is one of the basic gas–surface
reactions. Here, N(s) denotes a nitrogen atom that is bonded to an open surface site. The
rate of this reaction depends on both the gas-phase N atom concentration and the number
of N atoms bonded to the surface sites (Candler 2019). Thus, both radiation and ablation
might inhibit the binary scaling. However, this article aims to investigate the effects
of energy exchange and air reactions on the binary scaling law. To avoid interference,
radiation and ablation are not considered in this paper. Thus, the simplest wall boundary
condition, i.e. an isothermal and fully catalytic wall boundary, is employed in similarity
analysis.

3.1. Similarity analysis for continuity equation
The analysis based on the dimensionless continuity equation (Zhang 1990) is reviewed
first:

∂ρ̄ys

∂ t̄
+ ∂ρ̄ysūj

∂ x̄j
= 1

Re∞

∂
(

ρ̄D̄s∂ys
∂ x̄j

)
∂ x̄j

+ L
ρ∞U∞

ωs, (3.1)
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where the overbar is used to denote non-dimensional variables. Parameter D̄s can be
expressed in the following form (see (2.49), (2.54) and (A4), (A5) in Appendix A):

D̄s = f ′
Ds(T̄T∞, T̄eT∞, y1, . . . , yns)/ρ

fμ(T∞, Te,∞, y1,∞, . . . , yns,∞)/ρ∞
= f ′

Ds,T∞(T̄, T̄e, y1, . . . , yns)

fμ,T∞(1, Te,∞/T∞, y1,∞, . . . , yns,∞)ρ̄
,

(3.2)

where the index T∞ represents that the functions fμ,T∞ and f ′
Ds,T∞ are relevant to the

temperature of free stream T∞. Formula (3.2) shows that D̄s only depends on dimensional
parameter T∞ in addition to non-dimensional parameters.

The second item on the right-hand side of (3.1) can be written as

rhsc2 = L
ρ∞U∞

Ms

nr∑
z=1

(νb
z,s − ν f

z,s)

[ ns∑
l=1

αz,l

(
ρl

Ml

)]Lz
⎡
⎣k f

z

ns∏
l=1

(
ρl

Ml

)ν
f
z,l

− kb
z

ns∏
l=1

(
ρl

Ml

)νb
z,l

⎤
⎦

= ρ∞L
U∞

Ms

nr∑
z=1

(νb
z,s − ν f

z,s)

[ ns∑
l=1

αz,l

(
yl

Ml

)]Lz
⎡
⎣k f

z ρ̄
Lz+

∑ns
l=1 ν

f
z,lρ

Lz+
∑ns

l=1 ν
f
z,l−2

∞
ns∏

l=1

(
yl

Ml

)ν
f
z,l

− kb
z ρ̄

Lz+
∑ns

l=1 νb
z,lρ

Lz+
∑ns

l=1 ν
f
z,l−2

∞
ns∏

l=1

(
yl

Ml

)νb
z,l
]

= ρ∞L
U∞

Ms

nr∑
z=1

(νb
z,s − ν f

z,s)

[ ns∑
l=1

αz,l

(
yl

Ml

)]Lz

R′
z,

(3.3)

where ρ∞L and U∞ are each required to be the same between two different flows according
to the binary scaling law. Terms k f

z and kb
z can be expressed as a function of dimensionless

parameters like D̄s:

kf /b
z = fkf /b

z
(T, Te, Tv1, . . . , Tvmol) = fkf /b

z ,T∞
(T̄, T̄e, T̄v1, . . . , T̄vmol). (3.4)

As far as elementary reactions of high-temperature air are concerned (Gupta et al. 1990;
Park 1993), the forward reactions can be only second-order reactions and the backward
reactions can be either second-order or third-order reactions. When the reverse of reaction
z is a second-order reaction, Lz +∑ns

l=1 ν
f
z,l = 2 and Lz +∑ns

l=1 νb
z,l = 2 in (3.3). Thus, R′

z
in (3.3) can be written as (refer to (3.4))

R′
z = k f

z ρ̄2
ns∏

l=1

(
yl

Ml

)ν
f
z,l

− kb
z ρ̄

2
ns∏

l=1

(
yl

Ml

)νb
z,l

= fR′z,T∞(ρ̄, T̄, T̄e, T̄v1, . . . , T̄vmol, y1, . . . , yns), (3.5)

where fR′z,T∞ only depends on the dimensional parameter T∞ in addition to dimensionless
parameters.

When the reverse of reaction z is a third-order reaction, Lz +∑ns
l=1 ν

f
z,l = 2 and Lz +∑ns

l=1 νb
z,l = 3. Therefore, R′

z can be expressed as

R′
z = k f

z ρ̄2
ns∏

l=1

(
yl

Ml

)ν
f
z,l

− kb
z ρ̄

3ρ∞
ns∏

l=1

(
yl

Ml

)νb
z,l

= fR′z,T∞,ρ∞(ρ̄, T̄, T̄e, T̄v1, . . . , T̄vmol, y1, . . . , yns), (3.6)
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where fR′z,T∞,ρ∞ depends on both T∞ and ρ∞ in addition to dimensionless parameters. In
this case, the similarity between two different hypersonic airflows not only needs the same
ρ∞L but also needs the same ρ∞. In other words, the scale of the flow field L needs to be
equal everywhere and the two flows are actually the same.

Generally, the density ρ of the flow field around hypersonic vehicles is relatively low
because of the low density of the free stream ρ∞ at high altitude. In this case, the backward
third-order reaction rate is far less than the forward second-order reaction rate for reaction
z in most areas of the flow field. Thus, for high-altitude flow, formula (3.6) can be written
as follows:

R′
z = k f

z ρ̄2
ns∏

l=1

(
yl

Ml

)ν
f
z,l

− ρ

[
kb

z ρ̄
2

ns∏
l=1

(
yl

Ml

)νb
z,l
]

≈ k f
z ρ̄2

ns∏
l=1

(
yl

Ml

)ν
f
z,l

= f ′
R′z,T∞(ρ̄, T̄, T̄e, T̄v1, . . . , T̄vmol, y1, . . . , yns),

(3.7)

where f ′
R′z,T∞ is unrelated to ρ∞. In this case, should ρ∞L, T∞, U∞, y1,∞, . . . , yns,∞

be identical, the airflows over geometrically similar objects will be similar and the binary
scaling law can be applied to the continuity equation.

3.2. Similarity analysis for vibrational energy conservation equation
The dimensionless vibrational energy conservation equation is written as

∂ρ̄ymĒvm

∂ t̄
+ ∂ρ̄ymĒvmūj

∂ x̄j
= 1

Re∞

∂
(

k̄vm
∂T̄vm
∂ x̄j

+ ρ̄D̄mĒvm
∂ym
∂ x̄j

)
∂ x̄j

+ L
ρ∞U3∞

ωvm, (3.8)

where k̄vm and Ēvm can be expressed as follows (see (2.49), (2.51) and (A3), (A6) in
Appendix A):

k̄vm = fkvm (T, Tvm, y1, . . . , yns)

μ∞U2∞/T∞
= fkvm ,T∞(T̄, T̄vm, y1, . . . , yns)

fμ,T∞(1, Te,∞/T∞, y1,∞, . . . , yns,∞)U2∞/T∞
, (3.9)

Ēvm = fEvm ,T∞(T̄vm)

U2∞
. (3.10)

Formulae (3.9) and (3.10) indicate that T∞ and U∞ are the only dimensional parameters
on which k̄vm and Ēvm depend. The second item on the right-hand side of (3.8) can be
written as (refer to (2.29), (2.34), (2.39) and (2.40))

rhsv2 = ρ∞L
ρ2∞U3∞

(Qt−vm + Qv−vm + Qe−vm + Qr−vm) = ρ∞L
U3∞

(ρ̄2f ′
Qt−vm

+ ρ̄2f ′
Qv−vm

+ ρ̄2f ′
Qe−vm

) + L
ρ∞U3∞

ωmEvm, (3.11)

where f ′
Qt−vm

can be written as a function of dimensionless parameters by (2.29):

f ′
Qt−vm

= f ′
Qt−vm,T∞ (T̄, T̄vm, T̄e, y1, · · · , yns), (3.12)

where f ′
Qt−vm,T∞

only depends on dimensional parameter T∞ besides dimensionless
parameters. Similarly, f ′

Qv−vm
and f ′

Qe−vm
can also be expressed as functions
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f ′
Qv−vm,T∞

(T̄, T̄vm, ym, ys1, . . . , ysmol) and f ′
Qe−vm,T∞

(T̄, T̄e, ym, ye−), which are only related
to dimensional parameter T∞. These three terms can ensure the similarity of the
vibrational energy conservation equation when the preconditions of the binary scaling law
are satisfied. The term (L/ρ∞U3∞)ωmEvm can be analogous to the term (L/ρ∞U∞)ωs
in continuity equation (3.1) and depends on both T∞ and ρ∞. Thus, the term
(L/ρ∞U3∞)ωmEvm can cause dissimilarity in two hypersonic airflows which have different
scales but meet the conditions of the binary scaling law. The fundamental cause of this
dissimilarity also lies in the three-body reactions of the reverse reaction. Just as in the
continuity equation (3.1), the binary scaling law can be applied to the vibrational energy
conservation equation as long as the incoming flow density ρ∞ is low enough.

Thus, only Qr−vm in the vibrational energy conservation equation can theoretically result
in the failure of the binary scaling law and the root cause is still three-body reactions.

3.3. Similarity analysis for electron–electronic energy conservation equation
The dimensionless electron–electronic energy conservation equation is written as

∂ρ̄Ēe

∂ t̄
+ ∂ρ̄Ēeūj

∂ x̄j
= 1

Re∞

∂

(
k̄e

∂T̄e
∂ x̄j

+ ρ̄
ns∑

s=1
D̄sH̄es

∂ys
∂ x̄j

)
∂ x̄j

+ L
ρ∞U3∞

ωe, (3.13)

where k̄e, Ēe and H̄es can be expressed as follows (see (2.49), (2.52) and (A3), (A6) in
Appendix A):

k̄e = fke(T, Te, y1, . . . , yns)

μ∞U2∞/T∞
= fke,T∞(T̄, T̄e, y1, . . . , yns)

fμ,T∞(1, Te,∞/T∞, y1,∞, . . . , yns,∞)U2∞/T∞
, (3.14)

Ēe = fEe,T∞(T̄e, y1, . . . , yns)

U2∞
, (3.15)

H̄es = fHes ,T∞(T̄e)

U2∞
. (3.16)

Similar to k̄vm and Ēvm in § 3.2, the dimensional parameters on which k̄e, Ēe and H̄es
depend are only T∞ and U∞. The second item on the right-hand side of (3.13) can be
written as (refer to (2.39), (2.46), (2.47) and (2.48))

rhse2 = ρ∞L
ρ2∞U3∞

(
Qt−e −

∑
m=mol

Qe−vm + Qr−e + Qi−e − pe
∂uj

∂xj

)

= ρ∞L
U3∞

(
ρ̄2f ion

t−e + ρ̄2f neu
t−e − ρ̄2

∑
m=mol

f ′
Qe−vm

)

+ L
ρ∞U3∞

( ns∑
s=1

ωsEes − 1
3
(IOωO+ + INωN+)

)
− Lpe

ρ∞U3∞

∂uj

∂xj
, (3.17)

where f ion
t−e and f neu

t−e can be written as functions f ion
t−e,T∞,ρ∞(ρ̄, T̄, T̄e, ye−, yion1, . . . , yionn)

and f neu
t−e,T∞(T̄, T̄e, ye−, yneu1, . . . , yneun), respectively, based on (2.46), similar to

f ′
Qe−vm,T∞

(T̄, T̄e, ym, ye−) in § 3.2. One can notice that f neu
t−e,T∞ only depends on dimensional
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variable T∞ like f ′
Qe−vm ,T∞ , whereas f ion

t−e,T∞,ρ∞ not only depends on T∞ but also is
dependent on ρ∞. Therefore, it is observed that the energy exchange between translation
and electron mode caused by electron–ion collisions, Qt−e_ions, can invalidate the binary
scaling law. If the energy exchange caused by electron–ion collisions is small enough
compared with electron–electronic energy change caused by other means, the binary
scaling law will be approximately applicable.

Due to the preceding three-body reactions in the reverse reaction, the electron–electronic
energy change resulting from chemical reactions (including

∑ns
s=1 ωsEes , IOωO+

and INωN+) can make the binary scaling law invalid. Similar to the analysis for
term (L/ρ∞U3∞)ωmEvm in (3.11), the binary scaling law can be applied to the
electron–electronic energy conservation equation if the incoming flow density ρ∞ is
sufficiently low.

The term −(Lpe/ρ∞U3∞)(∂uj/∂xj) can be expressed as

− Lpe

ρ∞U3∞

∂uj

∂xj
= −T∞Ruye−

U2∞Me−

ρ̄T̄e∂ ūj

∂ x̄j
. (3.18)

One can observe from (3.18) that the term −(Lpe/ρ∞U3∞)(∂uj/∂xj) only depends on
dimensional parameters T∞, U∞ and does not affect the feasibility of the binary scaling
law.

Thus, Qt−e, Qr−e and Qi−e in the electron–electronic energy conservation equation
are the terms that could potentially invalidate the binary scaling law. For Qr−e and
Qi−e, the primary cause is still three-body reactions. For Qt−e, the primary cause is the
translation–electron energy exchange resulting from electron–ion collisions, Qt−e_ions.

4. Numerical analysis

The governing equations with the multi-temperature model are discretized by cell-centred
finite volume method based on unstructured scheme. The inviscid fluxes are calculated
using a modified Harten–Lax–van Leer contact scheme (Kim et al. 2009) with
second-order multi-dimensional limiting process (MLP) (Park, Yoon & Kim 2010)
reconstruction and MLP pressure-weighted limiter (Zhang, Liu & Chen 2018). The
second-order central difference scheme is applied for viscous flux calculation. The
lower–upper symmetric Gauss–Seidel implicit algorithm (Blazek 2015) is employed for
time integration. The Gupta and the Park chemical reaction models with 11-species and
four-temperature model with vibrational temperature of N2 and O2 are employed.

In this section, all the meshes of different cases have high quality near the wall. The wall
mesh Reynolds number based on local parameters next to the wall is defined as follows:

Recell = ρwcw�x
μw

, (4.1)

where c is speed of sound and �x denotes the normal height of the first grid at the wall.
The subscript w denotes the parameters near the wall. The accuracy of heat flux calculation
is guaranteed when the value of Recell is less than or equal to 3 (Men’shov & Nakamura
2000). In this paper, the maximum wall mesh Reynolds numbers Recell,max of all the cases
are located at their corresponding stagnation point and are less than 3.
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y

x
O

9°

1295 mm

152.4 mm

Figure 1. Geometry and grid of RAM-C II vehicle (top: grid; bottom: geometry of vehicle).

Grid Free-stream condition Wall

Ncell (axial × radial) Recell,max h∞ (km) P∞ (Pa) T∞ (K) Ma∞ Tw (K) Boundary
212 × 109 0.14 71 4.7 215.79 25.9 1500 Isothermal, fully

catalytic

Table 1. Computational conditions for RAM-C II vehicle.

0 2 4

x/R

n e 
(m

–
3
)

6 8
1015

1016

1017

1018

1019

1020

Gupta

Park

Experiment

Figure 2. Peak electron number density along the surface of RAM-C II vehicle at 71 km.

4.1. Code validation
The flight experimental data of RAM-C II vehicle (Jones & Cross 1972) are used for
code validation. The geometry of RAM-C II vehicle and grid of the computation field are
illustrated in figure 1. The detailed computational conditions are listed in table 1.

A comparison of peak electron number density along the RAM-C II vehicle surface at
71 km between CFD predicted result and flight data is plotted in figure 2. It is observed
that the distribution of maximum electron number densities calculated by the Gupta model
presents a good agreement with the experimental data. Although the distribution of peak
electron number density predicted by the Park model results in a poorer agreement with
the flight data compared with that predicted by the Gupta model, the result obtained by the
Park model is no more than an order of magnitude different from the experimental data on
the whole and has the same trend as the experimental data.
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Theoretical and numerical study of the binary scaling law

Cylinder Free-stream condition Wall

Radius R (m) h∞ (km) ρ∞ (kg m−3) ρ∞R (kg m−2) P∞ (Pa) T∞ (K) Ma∞ Tw (K) Boundary

0.15 70 8.754 × 10−5 1.3131 × 10−5 5.52 219.7 27 1300
Isothermal, fully

catalytic

0.015 – 8.754 × 10−4 1.3131 × 10−5 55.2 219.7 27 1300
Isothermal, fully

catalytic

Table 2. Computational conditions for original (R = 0.15 m) and 10-times-scaled (R = 0.015 m) cylinders.

Cylinder Grid Ncell (circumferential × radial) Recell,max

R = 0.15 m A 131 × 84 0.21
B 191 × 144 0.21
C 221 × 174 0.21

R = 0.015 m A 131 × 84 2.1
B 191 × 144 2.1
C 221 × 174 2.1

Table 3. Mesh information for cylinders at Ma∞ = 27 with ρ∞R = 1.3131 × 10−5 kg m−2.

4.2. The failure of the binary scaling law for electron distribution
The applicability of the binary scaling similarity law for thermochemical non-equilibrium
air was examined using the classical case of flow around cylinders. The original cylinder
which had a radius of 0.15 m and its 10-times-smaller model were used for numerical
simulation. The original cylinder was subjected to a free-stream condition of 70 km and
Mach 27 while the scaled-down cylinder had its free-stream density magnified 10 times
to ensure that the condition of the binary scaling law (ρ∞R = const.) is satisfied. The
detailed computational conditions are listed in table 2.

Grid independence studies of the original and scaled-down cylinders were implemented
with three different grids: A, B and C. The grid quality increases from A to C by increasing
both the circumferential and radial grid numbers. Detailed information of the grids is given
in table 3. Grids A, B and C are constructed with the same normal size of the first cell
next to surfaces. All the meshes are refined near the bow shock and Grid B with medium
quality for two cylinders is illustrated in figure 3. The distributions of electron number
density along the stagnation line for both the original and the scaled-down cylinders
using Grids A, B and C are shown in figure 4. The results with different grid resolutions
apparently demonstrate good agreement. According to the results with Grids B and C,
the flow parameters no longer rely on the quality of the grid. Therefore, only the results
calculated with Grid B are used for the later analysis.

Figure 5 shows the Mach number and e− mass fraction contours of the original and
scaled cylinders at Ma∞ = 27 using the Gupta model. Although there is a good similarity
in the bow-shock shape between the two cylinders, the distributions of free electrons are
significantly different between the two cylinders. Figure 6 shows the distributions of T,
Te, TvN2

and TvO2
along the stagnation streamline at Ma∞ = 27 using the Gupta model.

It is observed that the temperatures of the two flows maintain a good similarity on the
whole despite the relatively small differences in local regions. The mass fractions of free
electrons and ions along the stagnation line are plotted in figure 7. As shown figure 7(a,b),
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Figure 3. Grid B of cylinders at 70 km and Ma∞ = 27. (a) Original cylinder of R = 0.15 m. (b) Scaled
cylinder of R = 0.015 m.
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Figure 4. Comparisons of distributions of electron number density along the stagnation line using different
grids at Ma∞ = 27 with the Gupta model. (a) Original cylinder. (b) Scaled cylinder.

the gaps of maximum mass fraction between original and scaled cylinders for N+, NO+
and N+

2 are all no more than 6 %. Nevertheless, figure 7(c,d) indicates that there are
tremendous differences between the original and scaled cylinders for mass fractions of
e− and O+. The difference in peak mass fraction on the stagnation line between the two
cylinders reaches 50.4 % for e− and 59.0 % for O+. As such, the binary scaling law fails
completely for distribution of e− at Ma∞ = 27 with the Gupta model.

Figure 8 shows the distributions of e−, O+ and temperatures along the stagnation line
at Ma∞ = 27 using the Park model. It is observed that the binary scaling law holds well
for the distributions of e− and O+ when the Park model is employed. Furthermore, the
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Figure 5. Contours of (a) Mach number and (b) mass fraction of e− at Ma∞ = 27 with
ρ∞R = 1.3131 × 10−5 kg m−2 using the Gupta model (top: original cylinder; bottom: scaled cylinder).
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Figure 6. Distributions of temperatures along the stagnation line at Ma∞ = 27 with ρ∞R = 1.3131 ×
10−5 kg m−2 using the Gupta model. (a) Translational–rotational and electron–electronic temperatures and
(b) N2 and O2 vibrational temperatures.

similarity in temperatures between the two cylinders using the Park model is greater than
that using the Gupta model. However, the binary scaling law was found to be invalid for
modelling electron distribution using the Park model when Ma∞ increases to 39 (other
boundary conditions remain unchanged). The distributions of e− and N+ at Ma∞ = 39
using the Park model are illustrated in figure 9 (the detailed information of grids is listed
in table 4). It is observed that the peak mass fraction of e− and N+ in the original cylinder
is obviously higher that in the scaled-down cylinder at Ma∞ = 39 using the Park model.
Zeng et al. (2009) also found that, at ρ∞R = 1.3131 × 10−5 and U∞ = 7650 m s−1, the
binary scaling law failed for distribution of O+ by numerical simulation of RAM-C II and
its scaled model using the Gupta model.
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Figure 7. Distributions of electrons and ions along the stagnation line at Ma∞ = 27 with
ρ∞R = 1.3131 × 10−5 kg m−2 using the Gupta model. Mass fractions of (a) NO+ and O+

2 , (b) N+
2 and N+,

(c) e− and (d) O+.

Cylinder Ncell (circumferential × radial) Recell,max

R = 0.15 m 191 × 144 0.21
R = 0.015 m 191 × 144 2.1

Table 4. Mesh information for cylinders at Ma∞ = 39 with ρ∞R = 1.3131 × 10−5 kg m−2.

4.3. Effect of the electron-impact ionization reactions
According to the analysis in § 3.1, the three-body reaction is one of the main reasons
for the invalidation of the binary scaling law. We try to find out which three-body
reactions caused the failure of the binary scaling law for the electron distribution
at high altitude with extremely high Mach number. The formation of free electrons
is governed by seven elementary reactions in the Gupta air-chemistry model: (i)
associative ionization reactions (N + O � NO+ + e−, O + O � O+

2 +e− and N + N �
N+

2 +e−), (ii) electron-impact ionization reactions (O + e− � O+ + e− + e− and N +
e− � N+ + e− + e−) and (iii) other reactions (O2 + N2 � NO+ + NO + e− and NO +
M � NO+ + e− + M). Noticing that the shape of the distribution curve of e− is very
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Figure 8. Distributions of e−, O+ and temperatures along the stagnation line at Ma∞ = 27 with ρ∞R =
1.3131 × 10−5 kg m−2 using the Park model. Mass fractions of (a) e− and (b) O+. (c) Translational–rotational
and electron–electronic temperatures and (d) N2 and O2 vibrational temperatures.

similar to that of O+ from figure 7(c,d), it is speculated that the dissimilarity of electron
distribution might be related to O + e− � O+ + e− + e− in the Gupta model. The
dimensionless reaction rates can be defined as follows:

Rfb
z , R f

z , Rb
z = Rfb

z , R f
z , Rb

z

ρ∞U∞/(RMmix,∞)
, (4.2)

where Mmix,∞ is the average molar mass of free stream and R is the radius of the cylinder.
The dimensionless total reaction rates of the foregoing seven elementary reactions are
plotted in figure 10. It is obvious that the reaction O + e− � O+ + e− + e− plays the
most dominant role in formation of free electrons. Figure 11 shows the dimensionless
reaction rate of O + e− � O+ + e− + e− on the stagnation line. As shown in figure 11(a),
the dimensionless total reaction rates of O + e− � O+ + e− + e− for the original and
scaled models are dissimilar and the difference of maximum reaction rates between the
two reaches 26.3 %. As described in § 3.1, the precondition for the binary scaling law is
that the two-body forward reaction rate is far larger than the three-body backward reaction
rate, whereas both the original and scaled cylinders demonstrate a backward reaction rate
of O + e− � O+ + e− + e− of the same order of magnitude as the forward reaction rate,
as illustrated in figure 11(b).
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Figure 9. Distributions of e− and N+ at Ma∞ = 39 with ρ∞R = 1.3131 × 10−5 kg m−2 using the Park
model. (a) Contours of mass fraction of e−, (b) contours of mass fraction of N+, (c) mass fraction of e−
along the stagnation line and (d) mass fraction of N+ along the stagnation line.

In light of the fact that the binary scaling law did not fail at Ma∞ = 27 using the Park
model, reaction rate coefficients of O + e− � O+ + e− + e− in the Gupta model were
replaced with those in the Park model to verify the preceding assumption. Leaving the
computational conditions listed in table 2 unchanged, the Gupta model was still adopted
for coefficients of other reactions and the results are illustrated in figure 12. It can be
observed that the binary scaling law works well for distributions of electrons, ions and
temperatures. As a consequence, it can be inferred that the electron-impact ionization
reaction O + e− � O+ + e− + e− is the main reason causing the dissimilarity in flow
field using the Gupta model.

Figure 13 compares the dimensionless reaction rate of O + e− � O+ + e− + e− along
the stagnation streamline between the two cylinders with only reaction rate coefficients of
O + e− � O+ + e− + e− calculated using the Park model. Although there are obvious
differences between the two cylinders for the three-body reverse reaction rate of O + e− �
O+ + e− + e− from figure 13(a), the two-body forward reaction rates of that between
the two cylinders have good similarity and the three-body reverse reaction rate can be
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Figure 10. The dimensionless total rates of reactions related to generation of e− along the stagnation line at
Ma∞ = 27 with ρ∞R = 1.3131 × 10−5 kg m−2 using the Gupta model.
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Figure 11. The dimensionless reaction rate of O + e− � O+ + e− + e− along the stagnation line at Ma∞ =
27 with ρ∞R = 1.3131 × 10−5 kg m−2 using the Gupta model. (a) Total reaction rate. (b) Forward and
backward reaction rate.

negligible compared to the forward reaction rate from figure 13(b). Thus, O + e− � O+ +
e− + e− satisfies the necessary conditions of the binary scaling law in this case.

The ratio of the forward reaction rate of O + e− � O+ + e− + e− to the reverse
reaction rate γO+e− is defined as follows:

γO+e− =
ρO
MO

ρe−
Me−

k f
O+e−(Te)

ρO+
MO+

ρe−
Me−

ρe−
Me−

kb
O+e−(Te)

= MO+Me−

MOρ

yO

yO+ye−
Keq,O+e−(Te). (4.3)
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Figure 12. Distributions of electrons, ions and temperatures along the stagnation line at Ma∞ = 27 with only
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vibrational temperatures.
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27 with only reaction rate coefficients of O + e− � O+ + e− + e− calculated using the Park model (the Gupta
model is employed for other reactions). (a) Backward reaction rate. (b) Forward and backward reaction rate.

The reverse reaction rate of O + e− � O+ + e− + e− calculated by the Gupta model is of
the same order of magnitude as the forward reaction rate (γO+e− ∼ 1) and the precondition
for the binary scaling law (γO+e− � 1) is no longer satisfied. Here Te is the controlling
temperature of the forward and backward reaction rates for the electron-impact ionization
reactions. At Ma∞ = 27, the maximum Te in cases using the Gupta model or the Park
model for O + e− � O+ + e− + e− are close from figures 6(a) and 12(e). One can notice
that the equilibrium constant of O + e− � O+ + e− + e− in the Gupta model is close to
that in the Park model from figure 14(a). Combined with (4.3), figures 7(c,d) and 12(a,b),
it can be seen that higher mass fraction of O+ and e− is the reason that γO+e− with the
Gupta model is far less than that with the Park model. Figure 14(b) compares the forward
reaction rate coefficient of O + e− � O+ + e− + e− from Gupta and Park models as a
function of the controlling temperature according to (2.14a,b). It is clear that the forward
reaction rate coefficient of the Gupta model is more than one order of magnitude larger
than that of the Park model at the corresponding peak Te. Higher forward reaction rate
with the Gupta model caused the reaction to move in the positive direction and produce
more O+ and e−, which increased the backward reaction rate and reduced γO+e− to around
1.

The formation of free electrons is governed by five elementary reactions in the Park
model: (i) associative ionization reactions (N + O � NO+ + e−, O + O � O+

2 +e− and
N + N � N+

2 +e−) and (ii) electron-impact ionization reactions (O + e− � O+ + e− +
e− and N + e− � N+ + e− + e−). The dimensionless total reaction rates of these five
elementary reactions along the stagnation line at Ma∞ = 39 using the Park model are
depicted in figure 15. It can be seen that the electron-impact ionization reaction N + e− �
N+ + e− + e− is dominant in the formation of e−. The other electron-impact ionization
reaction O + e− � O+ + e− + e− also plays an important role in electron formation near
the location where a significant difference in electron mass fraction began to appear
(x/R =−0.09; see figure 9c). Figure 16 shows the dimensionless reaction rates of the
two electron-impact ionization reactions along the stagnation streamline at Ma∞ = 39
using the Park model. It is noticed that the backward reaction rate is of the same order
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Figure 14. The equilibrium constants and forward reaction rate coefficients of O + e− � O+ + e− + e− in
the Gupta and Park models. (a) Equilibrium constants (particle number density equals 1.0 × 1015 cm3 in the
Park model). (b) Forward reaction rate coefficients (the arrows represent the maximum electron–electronic
excitation temperatures in figures 6a and 12e).
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Figure 15. The dimensionless total rates of reactions related to generation of e− along the stagnation line at

Ma∞ = 39 using the Park model.

of magnitude as the forward reaction rate for both reactions, which leads to the significant
differences in total reaction rate between the original and scaled cylinders in figure 16(b,d).

Figure 17 compares the forward reaction rate coefficient of two electron-impact
ionization reactions in the Gupta and Park models. Considering the foregoing results at
Ma∞ = 27 and 39 with the Gupta and Park models, one can see that the binary scaling
law is invalid for electron distribution when the forward reaction rate coefficient k f of
electron-impact ionization reactions rises to a certain degree with an increase of Ma∞.
In order to further verify this, Ma∞ is reduced to 17 (other boundary conditions remain
unchanged and the detailed information of grids is listed in table 5). Figure 18 shows the
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Figure 16. The dimensionless reaction rate of two electron-impact ionization reactions along the stagnation
line at Ma∞ = 39 using the Park model. (a) Forward and backward reaction rate of O + e− � O+ + e− + e−.
(b) Total reaction rate of O + e− � O+ + e− + e−. (c) Forward and backward reaction rate of N + e− �
N+ + e− + e−. (d) Total reaction rate of N + e− � N+ + e− + e−.

Cylinder Ncell (circumferential × radial) Recell,max

R = 0.15 m 191 × 144 0.19
R = 0.015 m 191 × 144 1.9

Table 5. Mesh information for cylinders at ρ∞R = 1.3131 × 10−5 kg m−2 with Ma∞ = 17.

distributions of e− and O+ along the stagnation line at Ma∞ = 17 using the Gupta model.
One can observe that there is good agreement in the distributions of e− and O+ between
the original and scaled cylinders (see figure 18) with a decrease in k f of electron-impact
ionization reactions at Ma∞ = 17 using the Gupta model (see figure 17).

Due to effects of the electron avalanche, it is hard to measure the forward reaction rates
of electron-impact ionization reactions (Park 1990; Hao et al. 2016). However, the reverse
reactions of electron-impact ionization are very nearly in quasi-steady-state distribution
and the forward reaction rates can be calculated using the reverse reaction rates and
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Figure 17. Forward reaction rate coefficient of two electron-impact ionization reactions in the Gupta and Park
models (the red arrow represents the maximum electron temperature of the flow field around the cylinder under
the corresponding Ma∞ using the Gupta model and the green arrow represents that using the Park model).
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Figure 18. Distributions of e− and O+ along the stagnation line at Ma∞ = 17 with
ρ∞R = 1.3131 × 10−5 kg m−2 using the Gupta model. Mass fractions of (a) e− and (b) O+.

equilibrium constants (Park 1990). Park measured the ionic recombination rate of N
atom N+ + e− + e− → N + e− by observing the rate of decrease of electron density in
an expanding nozzle (Park 1990, 1968, 1973). Although the rates of O+ + e− + e− →
O + e− have never been measured, the ionic recombination rate coefficients of various
atoms (such as C, Ar, He) are fairly similar (Park 1990). Thus, Park assumed the
recombination rates of O+ to be the same as that of N+ and obtained the rate coefficient
of O + e− � O+ + e− + e−. This assumption is also embodied in the Gupta model. The
rate coefficients of electron-impact ionization reactions in the Gupta model are taken
from the model of Dunn and Kang (Dunn & Kang 1973; Gupta et al. 1990). Only
the three-body ionic recombination rate coefficient for C+ + e− + e− → C + e− was
measured by Dunn (1971). Hao et al. (2016) found an abnormal non-equilibrium relaxation
process in the FIRE II case at Ma∞ = 39 simulated using the Gupta model, which proved
to be a consequence of electron-impact ionization reaction rates calculated using the Gupta
model. The problem was solved using modified coefficients of electron-impact ionization
reactions based on the Park model. Hao considered that parameters for electron-impact
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Figure 19. Dimensionless energy exchange between electrons and other mode along the stagnation line at
Ma∞ = 17 with ρ∞R = 1.3131 × 10−5 kg m−2 using the Gupta model.
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Figure 20. Dimensionless energy exchange (a) Q̄t−e_ions and (b) ω̄e along the stagnation line at Ma∞ = 17
with ρ∞R = 1.3131 × 10−5 kg m−2 using the Gupta model.

ionization reactions in the Park model might be more accurate because Park’s data
were taken from more recent experiments. In addition, a more recent chemical kinetic
model was developed by Ozawa, Zhong & Levin (2008) and the forward rate coefficient
of O + e− � O+ + e− + e− at high temperature calculated using the Ozawa model is
closer to that calculated using the Park model (Niu et al. 2018). Although the Gupta and
Park models have their own advantages in predictions of species formations (Niu et al.
2018), based on the points discussed above, the result at Ma∞ = 27 obtained using the
Park model might be more reliable. The rates of electron-impact ionization reactions
require to be further studied experimentally and theoretically because they strongly
affect the applicable range of the binary scaling law for modelling electron distribution.

940 A3-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

19
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.191


Y. Wu, X. Xu, B. Chen and Q. Yang

15

10

5

6

4

2

0

–2

–4

0

–5

–10

–15
–0.20 –0.15 –0.10 –0.05 0 –0.20 –0.15 –0.10 –0.05 0

Gupta Ma∞ = 27 Park Ma∞ = 27

Q�t–e_ions R = 0.15 m

Q�t–e_ions R = 0.015 m

x/R x/RD
im

en
si

o
n
le

ss
 e

n
er

g
y
 e

x
ch

an
g
e 

(1
0

–
3
)

(a) (b)

Figure 21. Dimensionless energy exchange Q̄t−e_ions along the stagnation line at Ma∞ = 27 with
ρ∞R = 1.3131 × 10−5 kg m−2. (a) Gupta model. (b) Park model.

Although the differences in forward electron-impact ionization reaction rates between the
Gupta and Park models can reach as much as an order of magnitude or more (Niu et al.
2018), the electron-impact ionization reactions can lead to the failure of the binary scaling
law in electron distribution at extremely high Mach number no matter what chemical
model is employed, which reflects that it is probably a general conclusion in nature.

4.4. Discussion of electron–ion collisions
In § 3.3, it is found that the translation–electron energy exchange from collisions between
electrons and ions Qt−e_ions can theoretically cause the failure of the binary scaling law.
The dimensionless energy exchange source term can be defined as follows:

Qx = Qx

ρ∞U∞3/R
, (4.4)

where Qx represents a certain energy exchange term in the vibrational or
electron–electronic energy conservation equation and R is the radius of cylinder.

The dimensionless constituents of electron–electronic energy source term ωe at Ma∞ =
17 with the Gupta model are depicted in figure 19. It is noticed that Qt−e_ions is so
low relative to the dominant terms (Qe−v_total, Qi−e) that Qt−e_ions can be ignored at
Ma∞ = 17. In figure 20(a), Q̄t−e_ions of the original cylinder is dissimilar to that of the
scaled cylinder, which is consistent with theoretical analysis. Nevertheless, ω̄e of two
cylinders still have good similarity from figure 20(b) because the contribution of Q̄t−e_ions
is negligible.

Figure 21 shows the dissimilarity property of Qt−e_ions at Ma∞ = 27. Similar to the
situation at Ma∞ = 17, Qt−e_ions is still too small to affect the total source term ωe from
figure 22.

As the number of ions and electrons increases at Ma∞ = 39, it can be found from
figure 23 that Qt−e_ions and Qi−e play the dominant role in the electron–electronic energy
source term. Figure 24(a) shows the obvious dissimilarity of Qt−e_ions and Qi−e between
the two cylinders at Ma∞ = 39. It is clear that the trend of Qt−e_ions is opposite to that of
Qi−e and the negative effects of the two on the similarity of the source term can be offset
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Figure 22. Dimensionless energy exchange between electrons and other mode along the stagnation line at
Ma∞ = 27 with ρ∞R = 1.3131 × 10−5 kg m−2. (a) Gupta model. (b) Park model.

in part to some extent. The effect of dissimilarity of electron–electronic energy source
term is directly embodied by the electron–electronic temperature Te. In figure 24(b), there
are relatively large differences in electron temperature between the two cylinders at some
regions. This means that the influence of Qt−e_ions on the binary scaling law cannot be
neglected at extremely high Mach number. Temperature Te is the controlling temperature
of some reactions (for example, the electron-impact ionization reactions), which affects
the formation of electrons and ions and the production of electrons and ions is directly
related to Qt−e_ions. As a result, Qt−e_ions and production of e− are coupled, which means
that the quantification of the effect on the dissimilarity of electron distribution caused by
Qt−e_ions is complicated.
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Figure 23. Dimensionless energy exchange between electrons and other mode along the stagnation line at
Ma∞ = 39 with ρ∞R = 1.3131 × 10−5 kg m−2 using the Park model.
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Figure 24. (a) Dimensionless energy exchange Q̄t−e_ions, Q̄i−e and ω̄e and (b) temperature Te along the
stagnation line at Ma∞ = 39 with ρ∞R = 1.3131 × 10−5 kg m−2 using the Park model.

5. Conclusions

The applicability of the binary scaling law to electron distribution in thermochemical
non-equilibrium flows at high altitude with high Mach number is investigated through
theoretical analysis and numerical simulation in the present study. The main results show
the following.

The binary scaling law is no longer applicable to electron distribution at extremely
high Mach number even though the density of free stream is very low. In addition
to the three-body reactions, the translation–electron energy exchange from collisions
between electrons and ions Qt−e_ions can theoretically lead to the invalidation of the binary
scaling law. The vibrational energy change caused by Qt−vm , Qv−vm and Qe−vm cannot
theoretically result in the failure of the binary scaling law.
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As the Mach number increases, electron-impact ionization reactions can result in the
failure of the binary scaling law. If the Gupta model is employed, O + e− � O+ +
e− + e− is the main factor which causes the invalidation of the binary scaling law for
electron distribution at Ma∞ = 27. If the Park model is used, N + e− � N+ + e− + e−
becomes the main factor for the failure of the binary scaling law at Ma∞ = 39. The root
cause is that the forward reaction rate coefficients of electron-impact ionization reactions
increase rapidly due to an increase of electron–electronic excitation temperature, which
further leads to an increase in concentration of electrons and ions. The increase in the
concentration of electrons and ions causes the reverse reaction rates of electron-impact
ionization reactions to increase to the same order of magnitude as those of the forward
reaction, which leads to the invalidation of the binary scaling law for distribution of
e−. Based on previous researches, the parameters for electron-impact ionization reactions
of the Park model might be more reliable than those of the Gupta model. The rates of
electron-impact ionization reactions need further study because they can strongly affect
the applicable range of the binary scaling law for modelling electron distribution.

The effect of dissimilarity caused by Qt−e_ions can be negligible though free-stream
velocity is at a high level (Ma∞ = 17, 27). However, as the Mach number increases
further (Ma∞ = 39), Qt−e_ions and Qi−e are dominant in the electron–electronic energy
source term, which means that the negative effect on the binary scaling law caused by
Qt−e_ions cannot be ignored. The trend of Qt−e_ions is opposite to that of Qi−e at Ma∞ = 39
and the negative effects of the two on the similarity of source term can be offset in part
to some extent. On the basis of understanding the mechanism for the failure of the binary
scaling law in electron distribution, future work will focus on developing a method to
quickly estimate the difference in peak electron number density between the scaled and
original models. Future work will also involve quantifying the effects of Qt−e_ions on the
dissimilarity of electron distribution.
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Appendix A. Method of normalization

The non-dimensional variables are expressed as follows:

x̄j = xj

L
, t̄ = t

L/U∞
, ūi = ui

U∞
, (A1a–c)

ρ̄ = ρ

ρ∞
, T̄, T̄vm, T̄e = T, Tvm, Te

T∞
, p̄ = p

ρ∞U2∞
, (A2a–c)

Ē, Ēvm, Ēe = E, Evm, Ee

U2∞
, H̄, H̄s, H̄e = H, Hs, He

U2∞
, (A3a,b)

μ̄ = μ

μ∞
= fμ(T, Te, y1, . . . , yns)

μ∞
, (A4)
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D̄s = Ds

μ∞/ρ∞
= f ′

Ds(T, Te, y1, . . . , yns)/ρ

μ∞/ρ∞
, (A5)

k̄tr = ktr

μ∞U2∞/T∞
= fktr(T, y1, . . . , yns)

μ∞U2∞/T∞
k̄vm = kvm

μ∞U2∞/T∞
= fkvm (T, Tvm, y1, . . . , yns)

μ∞U2∞/T∞
k̄e = ke

μ∞U2∞/T∞
= fke(T, Te, y1, . . . , yns)

μ∞U2∞/T∞

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (A6)

where the functions fμ, f ′
Ds

, fktr , fkvm and fke are described in § 2.5.
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