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Abstract
A classic hand-eye system involves hand-eye calibration and robot-world and hand-eye calibration. Insofar as hand-
eye calibration can solve only hand-eye transformation, this study aims to determine the robot-world and hand-eye
transformations simultaneously based on the robot-world and hand-eye equation. According to whether the rotation
part and the translation part of the equation are decoupled, the methods can be divided into separable solutions
and simultaneous solutions. The separable solutions solve the rotation part before solving the translation part, so
the estimated errors of the rotation will be transferred to the translation. In this study, a method was proposed
for calculation with rotation and translation coupling; a closed-form solution based on Kronecker product and
an iterative solution based on the Gauss–Newton algorithm were involved. The feasibility was further tested using
simulated data and real data, and the superiority was verified by comparison with the results obtained by the available
method. Finally, we improved a method that can solve the singularity problem caused by the parameterization of
the rotation matrix, which can be widely used in the robot-world and hand-eye calibration. The results show that
the prediction errors of rotation and translation based on the proposed method be reduced to 0.26◦ and 1.67 mm,
respectively.

1. Introduction
With the development of advanced vision technology and robotics [1], the application fields of robotics
are becoming more and more extensive [2, 3]. Vision-based robotic technology is widely used in many
fields [4]; typical examples include robotic-assisted minimally invasive surgery [5, 6], robotic object
catching [7], and on-orbit services [8]. Robot vision systems involve eye-in-hand, eye-to-hand, and
hybrid forms [9, 13], in which the robot uses image information as feedback to perform related tasks.
Such a system including a robot and a sensor (one or more cameras) equipped at the end of the robot is
a typical hand-eye system.

The determination of the robot-world transformation and the hand-eye transformation involved in the
hand-eye system is commonly known as hand-eye calibration problems. The mathematical models for
the hand-eye calibration problems can all be grouped into the hand-eye equation (AX = XB) [14] and the
robot-world and hand-eye equation (AX = YB) [15]. Despite the hand-eye equation can only determine
the hand-eye transformation, the dual equation of hand-eye equation can determine the robot-world
transformation [16]. The observation data involved in the robot-world and hand-eye equation consist of
absolute poses, while the observation data involved in the dual equations consist of relative motions.
Therefore, it is mandatory to compute the robot and camera relative motions before solving hand-eye
equation. In other words, simultaneous robot-world and hand-eye calibration based on the robot-world
and hand-eye equation (AX = YB) can reduce data generation errors.

Hand-eye calibration was proposed by Shiu et al. [14] and Tsai et al. [17] and was pointed out that
solving the hand-eye equation needs at least two motions with non-parallel rotation axes. Early research
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mainly focused on linear algorithms. The hand-eye equation can be decoupled into the rotation and trans-
lation parts. Estimating the rotation and translation parts sequentially is commonly referred to as the
separable solutions. The rotation part of the separable solutions was parameterized based on quaternion
[18, 20], Euclidean group [21], and Kronecker product [22], and then, the estimated value of rotation
was required as a priori information to calculate the translation. However, the separable solutions caused
a problem that the error of the rotation is inevitably transferred to the translation part. Obviously, calcu-
lating rotation and translation simultaneously can effectively avoid propagation errors. A screw motion
can represent rigid body motion based on Chasles theorem, and it is a geometric interpretation that
regards rotation and translation as an interdependent entirety [23]. Zhao and Liu [24] employed the
screw motion theory to establish a hand-eye equation based on quaternion and yielded a simultaneous
result for rotation and translation by solving linear equations. Dual quaternions as the algebraic counter-
part of screws facilitated a simultaneous solution for the hand-eye rotation and translation using singular
value decomposition (SVD) and were proposed in refs. [25, 26]. Furthermore, a probabilistic method
for hand-eye calibration [27] was feasible even without prior knowledge of the correspondence between
the data streams obtained via different systems. Since the linear algorithms are sensitive to possible
random noise, a lot of research has been carried out on iterative optimization as an effective method
to improve accuracy and robustness. Zhuang and Shiu [28] solved hand-eye problem based on Gauss–
Newton method, which the rotation parameters formulated in Euler angles. The nonlinear least square
method was proposed in ref. [19], where the rotation part was represented by quaternions. Furthermore,
Strobl and Hirzinger [29] proposed a novel physically based metric on SE(3) that can select the weight-
ing of the rotation part and the translation part automatically. The global optimal method proposed in
ref. [30] did not require initial estimates. The cost function constructed by minimizing the reprojection
error was proposed in ref. [31], which was lately developed by considering the hand pose errors [32].
There is an exponential mapping between Lie algebra so(3) and the rotation matrix as it belongs to the
special orthogonal group SO(3), which makes it easy to obtain the derivative of the rotation matrix. The
Jacobian matrix in the Gauss–Newton algorithm can be constructed with the partial derivative of Lie
algebra so(3). Yang and Zhao [33] applied Gauss–Newton algorithm to optimize the estimation, but the
estimation of translation was not accurate enough to be used in practice. Hand-eye calibration has been
conducted using extensive methods, but it can only determine the hand-eye transformation.

The robot-world and hand-eye calibration was proposed by Zhuang et al. [15], and a separable solu-
tion based on quaternion was implemented. A new robot-world and hand-eye calibration algorithm based
on Kronecker product, which could separably determine the rotation and translation by applying the SVD
approach, was presented in ref. [34]. Typically, separate solution based on Kronecker product has good
rotation accuracy; however, the position accuracy is often compromised [35], while the Kronecker prod-
uct and the dual quaternions can also be applied to solve rotation and translation simultaneously [36].
The probabilistic method was also applied on robot-world and hand-eye calibration [37]. A nonlinear
least square method was presented in robot-world and hand-eye calibration [38], where the rotation part
was represented by a matrix without parameterization. Different parameterization methods of rotation
matrices based on Euler angle, axial angle, or quaternion were compared in ref. [39]. Zhao and Weng
proposed a joint method that gives the solutions of the cameras’ parameters and the hand-eye parameters
simultaneously using nonlinear optimization [40]. The global optimal methods [41, 42] were also found
to be instrumental in determining robot-world and hand-eye calibration. Gauss–Newton algorithm in
which the Jacobian matrix is constructed by Lie algebra was applied for dual robots [10], hybrid sys-
tem [9], and other conditions [43]. However, these methods only optimized the rotation part and did
not consider rotation and translation simultaneously. In addition, Gauss–Newton algorithm in which
the Jacobian matrix is constructed by Lie algebra has not been applied to the classic robot-world and
hand-eye calibration. Hence, this study gave a detailed process of optimizing classic robot-world and
hand-eye calibration based on the Gauss–Newton algorithm and realized simultaneous estimation of the
rotation and the translation.

In this paper, a simultaneous solution for the robot-world and hand-eye equation was proposed. The
simultaneous solution includes a closed-form solution that serves as an initial value and an iterative
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Figure 1. The robot-world and hand-eye kinematics loop

solution. The overdetermined linear equation system corresponding to the closed-form solution was
constructed based on the Kronecker product, and such problem was converted into linear null space
calculations. Applying SVD on the linear equation system led to the closed-form solution. The Gauss–
Newton algorithm is based on Lie algebra to calculate the Jacobian matrix to implement the iterative
solution. The contributions of this paper can be listed as:

(1) A Jacobian matrix based on Lie algebra that can optimize rotation and translation simultaneously
was derived and refined a closed-form solution, thus forming a more complete method.

(2) An improved method to solve the singularity problem caused by the parameterization of the
rotation matrix was proposed, which can be widely used in the robot-world and hand-eye
calibration.

(3) The feasibility of the Jacobian matrix has been verified that it can also converge to a better
accuracy when other linear method is used as the initial value.

The rest of this article is organized as follows. In Section 2, we derived the left perturbation model of
the rotation matrix and constructed the Jacobian matrix based on this model, forming a complete solution
including the initial value and the iterative solution. Experiments with simulated data and real data are
performed and the results of which are discussed in Section 3. Conclusions are given in Section 4.

2. Proposed method
2.1. Problem formulation
The classic robot-world and hand-eye calibration has the setup similar to the one described in Fig. 1(a),
and the corresponding kinematic loop illustrated in Fig. 1(b) can be mapped to the robot-world and
hand-eye equation:

AX = YB. (1)

where A represents the absolute pose of the robot; B represents the absolute pose of the camera; X repre-
sents the hand-eye transformation; and Y represents the robot-world transformation. The camera moves
around the calibration checkerboard and collects n images of the checkerboard with the corresponding
robot poses, thus leading to the calibration equation system.

2.2. Closed-form solution
The Kronecker product [44], usually denoted by ⊗, can construct a linear equation system for the
nonlinear robot-world and hand-eye equation (Eq. (1)). Using an m × n matrix A and a p × q matrix
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B, a larger matrix with the dimension of mp × nq can be defined as:

A ⊗ B = [
aijB

] =

⎡
⎢⎢⎣

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

⎤
⎥⎥⎦ . (2)

In the linear equation system, another linear operator, denoted by vec, can vectorize a matrix by
reordering the coefficients into a single column vector as:

vec(A) = [a11, · · · , a1n, a21, · · · , amn]T . (3)

According to the fundamental principle of the Kronecker product [44]:

vec(AX) = (A ⊗ I4)vec(X);

vec(YB) = (I4 ⊗ BT)vec(Y),
(4)

Eq. (1) can be represented as the following linear equation system:

[
A ⊗ I4 − I4 ⊗ BT

]
16×32

{
vec(X)

vec(Y)

}
32×1

= 016×1. (5)

Each set of data constructs a linear equation of the form Kx = 0, and stacking n linear equations can
obtain an overdetermined equation system as follows:

K̃x = 0, (6)

in which

K̃ = [KT
1 , KT

2 , . . . , KT
n ]T |16n×32. (7)

The robot-world and hand-eye calibration problem is transformed into a linear null space calculation,
which generates a unique solution based on the constraints of the orthogonal matrix. Applying SVD on
the matrix K̃ leads to the right singular vector vK , which is corresponding to the minimum singular
value. Consequently, the matrices VX and VY extracted from the null space of K̃ are proportional to the
matrices X and Y , which can be obtained as

X̃ = ϕVX;

Ỹ = ϕVY .
(8)

where VX = vec−1(vK(1:16)) and VY = vec−1(vK(17:32)). The proportionality factor ϕ of the solution x
is

ϕ = sign(det(VX(1:3, 1:3)))
3
√|det(VX(1:3, 1:3))| (9)

since ϕ is determined by the orthogonal constraint: det(RX) = 1.
Meanwhile, it is necessary to go through a re-orthogonalization procedure to guarantee the orthog-

onality of solutions RX and RY as the presence of noise. The best re-orthogonalization can be obtained
by applying SVD on the approximate matrix as:

R̃i = USVT ;

Ri = sign (det (S)) UVT ,
(10)

and i stands for the unknown X, Y .
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2.3. Iterative solution
The closed-form solution obtained above can be used as the initial value of the Gauss–Newton algorithm
iteration. In turn, the Gauss–Newton algorithm can improve the accuracy and robustness of the closed-
form solution. The Gauss–Newton algorithm proposed in this study aims to optimize the rotation and
translation parts simultaneously.

Since a rotation matrix belongs to the special orthogonal group SO(3) [45], there is an exponential
mapping from the ‘axis-angle’ representation of the rotation vector to the rotation matrix as:

R = exp
(
[ω]∧) = I3 + [ω]∧

‖ω‖ sin(‖ω‖) + [ω]∧2

‖ω‖2 (1 − cos(‖ω‖)). (11)

where I3 is a three order identify matrix; [ω]∧ is the skew-symmetric matrix corresponding to the vector
ω and is given by:

[ω]∧ =
⎡
⎢⎣

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎥⎦ . (12)

ω is the three independent variables of the rotation matrix based on the ‘axis-angle’ representation and
ω = kθ , where k is the normalized unit axis of the rotation matrix and θ is the angle of the rotation
matrix.

The frame transformations and absolute poses involved in the equations (Eq. (1)) have the same
mathematical representation, that is, a homogeneous matrix including a rotation matrix and a transla-
tion vector. Therefore, Eq. (1) can decouple the rotation part and the translation part, and each can be
expressed as a function as follows:

F1(ωX , ωY) = RAexp
(
[ωX]∧) − exp

(
[ωY]∧)

RB;

F2(ωY , tX , tY) = exp
(
[ωY]∧)

tB + tY − RAtX − tA.
(13)

The basic method of the theory of Lie groups, which makes it possible to obtain deep results with
striking simplicity, consists in reducing questions concerning Lie groups to certain problems of linear
algebra [46]. It is not convenient to take the derivative of a rotation matrix because the perturbation of a
rotation matrix is a multiplication operation. Therefore, taking the derivative of the vector corresponding
to the rotation matrix can simplify the problem. The Jacobian matrix of the Gauss–Newton algorithm
can be easily calculated by the addition operation of Lie algebra. We use the symbol J to represent the
Jacobian matrix, and the iterative formula is J�x = f . Let ( )i represents the ith column vector in the
bracket, and the Jacobian matrix can be determined by the equation as follows:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂(F1)1

∂ωX

∂(F1)2

∂ωX

∂(F1)3

∂ωX

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂(F1)1

∂ωY

∂(F1)2

∂ωY

∂(F1)3

∂ωY

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

0 0

0
∂F2

∂ωY

∂F2

∂tX

∂F2

∂tY

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

The key task of obtaining the Jacobian matrix is to calculate the left perturbation model of the rotation
matrix. Taking the first-order approximation of the exponential function, we have

∂R = exp([∂ω]∧) ≈ I3 + [∂ω]∧. (15)

And the principle of cross product: [a]∧b = a × b = −b × a = −[b]∧a, which is also instrumental in the
calculation of the left perturbation model of the rotation matrix.
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The left perturbation model of the rotation matrix in the help of the operation of Lie algebra is
constructed by the following processes:

∂(RARX)

∂ωX

= lim
∂ωX→0

RA∂RXRX − RARX

∂ωX

= lim
∂ωX→0

RA[∂ωX]∧RX

∂ωX

= lim
∂ωX→0

RA[∂ωX]∧[(RX)1, (RX)2, (RX)3]

∂ωX

= lim
∂ωX→0

−RA[[(RX)1]∧∂ωX , [(RX)2]∧∂ωX , [(RX)3]∧∂ωX]

∂ωX

.

(16)

According to the left perturbation model of the rotation matrix, a complete and concrete expression
of the Jacobian iteration formula J�x = f can be obtained as:⎡

⎢⎢⎢⎣
⎡
⎢⎣

−RA[(RX)1]∧

−RA[(RX)2]∧

−RA[(RX)3]∧

⎤
⎥⎦

⎡
⎢⎣

[(RYRB)1]∧

[(RYRB)2]∧

[(RYRB)3]∧

⎤
⎥⎦ 09×3 09×3

03×3 −[RY tB]∧ −RA I3

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ωX

∂ωY

∂tX

∂tY

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= −

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(RARX − RYRB)1

(RARX − RYRB)2

(RARX − RYRB)3

RY tB + tY − RAtX − tA

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (17)

Stacking n sets of Eq. (17) leads to

J̃�x = f̃ , (18)

in which

J̃ = [JT
1 , JT

2 , . . . , JT
n ]T |12n×12; (19)

f̃ = [f T
1 , f T

2 , . . . , f T
n ]T |12n×1. (20)

Then, the solution can be obtained as:

�x = (J̃
T
J̃)−1J̃

T
f̃ . (21)

�x is subsequently used to update J̃ and f̃ , and the process should be repeated until the limit of �x is
reached.

2.4. Singular value processing
For an arbitrary rotation matrix R, rotation axis k is not unique. The results in this study were normalized
based on the fact that rotation about an axis k by an angle of θ (0 ≤ θ ≤ π ) is equivalent to rotation about
the axis −k by the rotation angle of (2π − θ ). Therefore, if the rotation angle satisfies 0 ≤ θ ≤ π , then
ω = kθ , and if π ≤ θ ≤ 2π , then ω = −k(2π − θ ). A more detailed method for extracting the rotation
axis k from rotation matrix R is presented in refs. [45, 47]. But the problem is that the rotation axis k
cannot be extracted when θ is equal to 0 or π . In another words, when the unknown rotation angle of
RX or RY is close to 0 or π , singular phenomenon occurs.

Song et al. [48] proposed a method to solve the singularity for the closed-form solutions of the hand-
eye calibration, which expressed the unknown hand-eye rotation matrix by two non-singular rotation
matrices. However, the singularity of robot-world and hand-eye calibration has not been discussed yet.

The singularity in robot-world and hand-eye calibration is more complicated because both unknown
matrices have possible singular values. This study improves a method to solve the singularity problem,
which can be widely used for simultaneous robot-world and hand-eye calibration. The specific process
is as follows:
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Figure 2. Singular value processing flowchart: only RX is singular value.

Figure 3. Singular value processing flowchart: only RY is singular value.

Figure 4. Singular value processing flowchart: both RX and RY are singular values.

(1) Firstly, determine whether the angle of the linear estimated rotation matrices RX and RY is close
to the singular value or not. Singularity can be divided into three types of results: only RX is
singular value; only RY is singular value; both RX and RY are singular values.

(2) According to the result of the first step, select the corresponding processing method.

Only RX is singular value, and the singular value processing process is shown in Fig. 2.
Only RY is singular value, the singular value processing is shown in Fig. 3.
Both RX and RY are singular values, and the singular value processing is shown in Fig. 4.
Note that the angle of the rotation of Xuser or Yuser is between 0 and 2π/3 according to ref. [48].

2.5. Error metrics
For the calculated values R̂X and R̂Y , the error metric is defined as:

θerror = Rodrigues(R̂
−1

i Ri), i = X, Y . (22)

where Ri is the ground truth. Rodrigues(•) means to extract the ‘axis-angle’ from the homogeneous
matrix, more detailed method in ref. [45].

For the calculated values t̂X and t̂Y , the error metrics are defined as:

terror =
∥∥t̂i − ti

∥∥
2

, i = X, Y . (23)

In order to compare the accuracy of all methods, root mean square was suggested to use,

Error of R = RMS(θ 1
error, θ

1
error, . . . , θN

error);

Error of t = RMS(t1
error, t1

error, . . . , tN
error).

(24)
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Figure 5. Distribution of robot configurations.

where N refers to the number of simulations in the simulation test and the number of verification datasets
in the real experimental test.

3. Verification and discussions
In this section, comprehensive tests have been conducted to verify the feasibility and effectiveness of
the closed-form solution and the iterative solution. Li et al. [36] constructed a linear equation system
for robot-world and hand-eye calibration based on Kronecker product, which converted such problem
into least square calculations. Same as the closed-form solution proposed in this study, Li’s method can
solve the rotations and translations problem simultaneously and serve as an initial value for the iterative
solution. On the one hand, the Li’s method can verify the feasibility of the closed-form solution as
proposed in this study. On the other hand, the iterative solution requires an initial value as a nonlinear
method, and the Li’s method can be used to test the convergence efficiency of the iterative solution.
The mnemonics ‘Li’ and ‘I-Li’, respectively, indicate the Li’s method and the iterative method with the
Li’s method as the initial value. The closed-form solution and the iterative solution proposed in this
study, respectively, denote as ‘closed-form’ and ‘iterative’. In order to further improve the credibility
of the method proposed in this study, two methods based on dual quaternion are added as reference in
the real experiment. One method [26] (denotes as ‘DQ’) solves the rotation and translation problems
simultaneously, and the other method [20] (denotes as ‘IDQ’) is to solve the rotation and translation
problems separately.

An industrial robot (GSK RB03) with 6-degree-of-freedom (6-DOF) and a CMOS camera
(Photonfocus MV1 − D2048 ∗ 1088 − 240 − CL) with an 8 mm lens installed at the end of the robot
have been employed for experimentation. The same settings were simulated in the synthesis experiment
to closely integrate the simulated and real test results.

3.1. Experiments with simulated data
This section presents a detailed account of the number of datasets and the noise effect on the calibration
accuracy. The accuracy of the robot-world and hand-eye calibration is affected by the robot configura-
tions distribution [43], and some data selection methods were elaborated in refs. [49, 50]. Therefore,
the robot configurations are selected within the field of view of the monocular camera to maintain
consistency with the real experiment.

Ai (i = 1, 2, . . . , 50) came from 50 different robot configurations, which were obtained from the robot
control system. Figure 5 shows the distribution of Ai. Figure 5(a) is the distribution of the normalized
rotation axis. The histograms of the rotation angle and translation norm are shown in Fig. 5(b) and (c),
respectively, where the red line refers to the median. Assume that the ground truth of the robot-world
and hand-eye transformations are shown in Table I. Bi (i = 1, 2, . . . , 50) were obtained through equation:
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Table I. The ground truth for the robot-world and hand-eye transformations

Parameter RY RX tY (mm) tX (mm)
Value kY = [1, 0, 0]T kX = [1/

√
3, 1/

√
3, 1/

√
3]T [200, 200, 200]T [100, 100, 100]T

θY = π/4 θX = π/3

Figure 6. Accuracy comparison based on different number of datasets.

Bi = Y−1AiX. All methods were implemented based on MATLAB2019a. One hundred simulations were
performed for each method.

Gaussian noise was added to all simulation data as the following equations:

Rnoise
m = Rot (k, (θm + θnoise)) ;

tnoise
m = tm + tnoise,

(25)

where θnoise and tnoise were the amplitude of the rotational noise and the translational noise, both were
zero-mean-value. tnoise was created by adding noises with the same standard deviation on three direc-
tions, respectively. The subscript m denoted Ai and Bj. The synthetic experiment verifies the superiority
of the method proposed in this study in terms of accuracy convergence and noise sensitivity. In the accu-
racy convergence test part, the standard deviation of the rotation noise was σθnoise = 0.1(◦) and the noise
standard deviation of the translation noise was σtnoise = [0.1, 0.1, 0.1]T(mm). In the noise sensitivity test
part, the noise standard deviation σθnoise and σtnoise were set with a maximum amplitude of 2(◦) in rotation
and [2, 2, 2]T(mm) in translation and were evenly divided into 10 levels.

It is noted that the dataset number for the accuracy convergence test ranges from 4 to 50, since the
overdetermined system is formed when the dataset number is greater than 3. Figure 6 shows the error
curves corresponding to the four methods with different number of datasets, where the errors of RX , tX ,
RY , and tY are illustrated in Fig. 6(a), (b), (c), and (d), respectively. Note that the error curves have similar
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Figure 7. Accuracy comparison based on different noise level.

trends, and the accuracy of four methods grows with the number of datasets. However, the numerical
value of accuracy and the speed of accuracy convergence are different. The results from ‘closed-form’
and ‘Li’ methods have similar trends, while the results from ‘I-Li’ and ‘iterative’ methods have almost
the same trends. This means that the iterative method proposed in this study is suitable for the case
where two linear solutions are used as initial values. Figure 6(a) shows that the accuracy of the RX

estimated by four methods converges to a stable value when the number of datasets exceeds 30. When
the number of datasets is less than 10, the accuracy of two iterative methods converges faster. In other
words, the iterative process can obtain a high-precision solution with data from limited number of robot
configurations. Moreover, the accuracy of the iterative methods is better than that of the linear methods.
Figure 6(c) shows the error curves of RY estimated by four methods, and the results are mostly the same
as RX . Figure 6(b) shows the error curves of tX estimated by four methods. The accuracy of the four
methods converges a stable value as the number of datasets increases. When the number of datasets is
less than 10, the accuracy of two iterative methods is superior to that of two linear methods. Moreover,
the accuracy superiority of the iterative methods has not disappeared as the number of datasets increases.
Figure 6(d) shows the error curves of tY estimated by the four methods, and the downward trends of error
curves are similar to that of tX , but the numerical values are different, which is related to the different
amplitudes of tX and tY [43]. It can be seen that the iterative methods had faster convergence rate and
higher accuracy compared with the linear methods.

All 50 sets of data were used in the noise sensitivity test part. Figure 7 shows the error curves cor-
responding to the four methods with different noise level, where the errors of RX , tX , RY , and tY are
illustrated in Fig. 7(a), (b), (c), and (d), respectively. Generally, the solution errors of the four methods
are roughly linearly correlated with the noise level. Figure 7(a) shows the error curves of RX , and the
iterative methods yield a better performance in robustness. The result of RY illustrated in Fig. 7(c) has
similar trends and amplitudes with the result of RX . The results of tX illustrated in Fig. 7(b) are slightly
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Figure 8. Experimental setup.

different from the result of tX illustrated in Fig. 7(d) in amplitude of errors, which is still related to the
different amplitudes of tX and tY [43]. In addition, the slight perturbation of the rotation matrices will
cause a larger error in the translation part according to the translation part of Eq. (2.3). Therefore, robot
calibration may be an effective method to improve the accuracy of translation estimation. The above
results show that iterative optimization can effectively reduce the influence of random noise.

3.2. Experiments with real data
The experimental setup corresponding to the robot-world and hand-eye calibration, as shown in Fig. 8,
including an industrial robot (GSK RB03) with 6-DOF and a CMOS camera with a 8 mm lens installed
at the end of the robot. The intrinsic parameters of the camera were obtained by the Camera Calibration
Toolbox for MATLAB [51] and Zhang’s method [52], which was achieved by a checkerboard with
7 × 10 calibration grid (each calibration grid is a 25 mm × 25 mm square).

The experiment process is carried out through the following steps:

(1) Camera calibration. Keep the robot fixed and move the checkerboard, and select the poses of the
checkerboard in the field of view of the camera based on Zhang’s method [52]. Enter the images
into Camera Calibration Toolbox for MATLAB, and the intrinsic parameters of camera are listed
in Table II.

(2) Measurement and calibration. Keep the checkerboard fixed and move the robot to obtain the
n configurations for calibration, and the N (N = 100) configurations for verification. Ai (i =
1, 2, . . . , n) were obtained from the robot control system. Bi (i = 1, 2, . . . , n) were calculated
by Zhang’s method [52]. The verification data Ai (i = 1, 2, . . . , N) and Bi (i = 1, 2, . . . , N) were
obtained in the same way.
In order to solve the robot-world and hand-eye calibration, at least three different poses are
required [34]. Consistent with the simulated experiment, take n (n = 4, 5, . . . , 10) datasets to
form an overdetermined system for calibration. Run the algorithms and get the calibration results
based on all methods.

(3) Verify the results. Since there is no ground truth in the real experiment, the calibration accuracy
can be verified in an indirect way. Calibration accuracy was quantitatively assessed by comparing
Ai (i = 1, 2, . . . , N), using the following equation:

Âi = YBiX−1. (26)

The Âi and Ai (i = 1, 2, . . . , N) were compared and the errors of all poses (from 4 to 10) in
rotation and translation were computed.
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Table II. Intrinsic parameters of the camera

Intrinsic Value (pixels)
Image size 960 × 1680
Focal length [1.4935e + 03, 1.4944e + 03]
Principal point [445.6785,828.2813]
Mean reprojection error 0.1152

Figure 9. Real experiment results: (a) rotation error; (b) translation error.

Figure 10. Real experiment results: Error distributions.

The results are shown in Fig. 9. It can be seen that the solutions of Li and closed-form as the initial
value of the iterative solution have a faster convergence rate after optimization, which is consistent with
the simulation results. In other words, the proposed method can effectively reduce the negative influ-
ence of random noise, especially when the measurement information is limited. IDQ method obtains an
optimal rotation estimate. This may be due to avoiding the negative effect of translation noise, but the
propagation error caused by rotation cannot be ignored. Especially, Fig. 9(b) shows that the translational
accuracy estimated by iterative methods outperforms that of the linear methods, and this advantage may
be due to the fact that optimizing robot-world and hand-eye calibration with rotation and translation
coupling can effectively reduce the propagation error. The proposed method combines the best perfor-
mance and minimal errors in both rotation and translation using 10 poses. The error is 0.2632◦ in rotation
and 1.6887 mm in translation. The calibration error still exists because of the error in robot and vision
measuring system.
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Table III. Comparison of calculational
efficiency

Method Run time (s)
DQ 0.2582
IDQ 0.1987
Li 0.0574
I-Li 0.1033
Closed-form 0.0267
Iterative 0.0771

The calibration accuracy can also be estimated by a global perspective. According to Chasles’s
theorem [23], a rigid transformation can be modeled as a rotation with the same angle about an axis
not through the origin and a translation along this axis. A screw represented by a vector specified by
six independent parameters is exactly equal to the number of degrees of freedom of a rigid body in 3D
Euclidean space, which is the most compact representation of a rigid body motion. Therefore, the screw
is a better global error evaluation index. The error is denoted as

Errori =
∥∥Screw((AiX)−1YBi)

∥∥
2

, (27)

where i = 1, 2, . . . , 100; Screw(•) means conversion from homogeneous matrix to screw, more detailed
method in ref. [23]. The box plots (Fig. 10) show the error distributions. The iterative methods outper-
form the linear methods in terms of the median error. Meanwhile, the iterative method based on the Li
method as the initial value is better, which may be due to the fact that a better initial value can converge
to a better iteration result.

In this study, MATLAB R2019a was used to the program implementation of the above four methods,
while the hardware used featured Intel(R) Core(TM) i5-10210U CPU @1.60GHz, 8G RAM. Ten poses
were used in this test. Table III lists the running time values of the four methods and the number of
iterations of the two iterative methods. The runtime data presented in Table III indicate that the iterative
solution with the closed-form solution as the initial value is faster than the iterative solution with the
reference solution as the initial value.

4. Conclusion
This paper proposes a method to solve rotation and translation simultaneously for robot-world and hand-
eye calibration. A closed-form initial estimation is originally derived based on Kronecker product for the
simultaneous method. Then, the Gauss–Newton algorithm in which the Jacobian matrix is constructed
by Lie algebra is applied to the closed-form solution. Additionally, a method to the problem of singu-
larity that can be widely applied to robot-world and hand-eye calibration is elaborated. A comparative
analysis with the reference method shows that the proposed method outperforms the later ones in terms
of accuracy and robustness, and the proposed method can significantly reduce the propagation error and
obtain a higher-precision translation estimation.
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A. Appendix
According to the left perturbation model of the rotation matrix (Eq. (16)), the Jacobian matrix rep-
resented by Eq. (14) is derived to Eq. (17). The partial derivative of F1 with respect to ωX can be
represented as ⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂(F1)1

∂ωX

∂(F1)2

∂ωX

∂(F1)3

∂ωX

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

−RA[(RX)1]∧

−RA[(RX)2]∧

−RA[(RX)3]∧

⎤
⎥⎥⎦ . (A1)

Similarly, the partial derivative of F1 with respect to ωY can be obtained as⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂(F1)1

∂ωY

∂(F1)2

∂ωY

∂(F1)3

∂ωY

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

[(RYRB)1]∧

[(RYRB)2]∧

[(RYRB)3]∧

⎤
⎥⎥⎦ . (A2)
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∂F2/∂ωY can be calculated easily based on the left perturbation model as
∂F2

∂ωY

= ∂(RY tB)

∂ωY

= lim
∂ωY →0

∂RYRY tB − RY tB

ωY

= lim
∂ωY →0

[∂ωY]∧RY tB

ωY

= lim
∂ωY →0

−[∂RY tB]∧ωY

ωY

= lim
∂ωY →0

−[∂RY tB]∧.

(A3)

Meanwhile, ∂F2/∂tX and ∂F2/∂tY can be calculated as
∂F2

∂tX

= −RA;

∂F2

∂tY
= I3.

(A4)
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