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Abstract

Querying over disjunctive ASP with functions is a highly undecidable task in general. In this

paper we focus on disjunctive logic programs with stratified negation and functions under the

stable model semantics (ASPfs). We show that query answering in this setting is decidable,

if the query is finitely recursive (ASPfs
fr). Our proof yields also an effective method for query

evaluation. It is done by extending the magic set technique to ASPfs
fr. We show that the magic-

set rewritten program is query equivalent to the original one (under both brave and cautious

reasoning). Moreover, we prove that the rewritten program is also finitely ground, implying

that it is decidable. Importantly, finitely ground programs are evaluable using existing ASP

solvers, making the class of ASPfs
fr queries usable in practice.

KEYWORDS: answer set programming, decidability, magic sets, disjunctive logic programs

1 Introduction

Answer Set Programming (ASP), Logic Programming (LP) under the answer set or

stable model semantics, has established itself as a convenient and effective method

for declarative knowledge representation and reasoning over the course of the last

20 years (Baral 2003; Gelfond and Lifschitz 1991). A major reason for the success of

ASP has been the availability of implemented and efficient systems, which allowed

for the paradigm to be usable in practice.

This work is about ASP with stratified negation and functions under the stable

model semantics (ASPfs). Dealing with the introduction of function symbols in the

language of ASP has been the topic of several works in the literature (Bonatti 2002;

Bonatti 2004; Baselice et al. 2009; Calimeri et al. 2009; Syrjänen 2001; Gebser et al.

2007; Calimeri et al. 2008a; Lierler and Lifschitz 2009; Simkus and Eiter 2007; Eiter

and Simkus 2009; Lin and Wang 2008; Cabalar 2008). They have been motivated

by overcoming the major limitation of ASP systems with respect to traditional LP

systems, which is the possibility of representing only a finite set of individuals by

means of constant symbols. Most of the approaches treat function symbols in the

� This research has been partly supported by Regione Calabria and EU under POR Calabria FESR
2007-2013 within the PIA project of DLVSYSTEM s.r.l., and by MIUR under the PRIN project
LoDeN.
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traditional logic programming way, that is by considering the Herbrand universe. A

few other works treat function symbols in a way which is closer to classical logic (see,

e.g., (Cabalar 2008)). The fundamental problem with admitting function symbols in

ASP is that the common inference tasks become undecidable. The identification

of expressive decidable classes of ASP programs with functions is therefore an

important task, and has been addressed in several works (see Section 6).

Here, we follow the traditional logic programming approach, and study the rich

language of finitely recursive ASPfs(ASPfs
fr), showing that it is still decidable. In

fact, our work links two relevant classes of ASP with functions: finitely recursive

and finitely ground programs. We extend a magic set method for programs with

disjunctions and stratified negation to deal with functions and specialize it for finitely

recursive queries. We show that the transformed program is query equivalent to the

original one and that it belongs to the class of finitely ground programs. Finitely

ground programs have been shown to be decidable and therefore it follows that ASPfs
fr

queries are decidable, too. Importantly, by DLV-Complex (Calimeri et al. 2008b)

there is a system which supports query answering on finitely ground programs, so

the magic set method serves also as a means for effectively evaluating ASPfs
fr queries.

We also show that ASPfs
fr programs are maximally expressive, in the sense that each

computable function can be represented. In total, ASPfs
fr programs and queries are an

appealing formalism, since they are decidable, a computational system exists, they

provide a rich knowledge-modeling language, including disjunction and stratified

negation, and they can express any computable function.

Summarizing, the main contributions of the paper are the following:

� We prove that ASPfs
fr queries are decidable under both brave and cautious

reasoning.
� We show that the restrictions which guarantee the decidability of ASPfs

fr queries

do not limit their expressiveness. Indeed, we demonstrate that any computable

function can be expressed by an ASPfs
fr program.

� We provide an effective implementation method for ASPfs
fr queries, making

reasoning over ASPfs
fr programs feasible in practice. In particular,

- We design a magic-set rewriting technique for ASPfs
fr queries. The technique

is based on a particular sideways information passing strategy (SIPS) which

exploits the structure of ASPfs
fr queries, and guarantees that the rewritten

program has a specific shape.

- We show that the magic-set rewritten program is query equivalent to the

original one (under both brave and cautious reasoning).

- We prove that the rewritten program is finitely ground, implying that it is

computable (Calimeri et al. 2008a). Importantly, finitely ground programs

are evaluable using the existing ASP solver DLV-Complex (Calimeri et al.

2008b), making ASPfs
fr queries usable in practice.

2 Preliminaries

In this section, we recall the basics of ASP with function symbols, and the

decidable classes of finitely ground (Calimeri et al. 2008a) and finitely recursive

programs (Baselice et al. 2009).
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2.1 ASP syntax and semantics

A term is either a variable or a functional term. A functional term is of the form

f(t1, . . . , tk), where f is a function symbol (functor) of arity k � 0, and t1, . . . , tk
are terms1. A functional term with arity 0 is a constant. If p is a predicate of arity

k � 0, and t1, . . . , tk are terms, then p(t1, . . . , tk) is an atom2. A literal is either an

atom p(t̄) (a positive literal), or an atom preceded by the negation as failure symbol

not p(t̄) (a negative literal). A rule r is of the form

p1(t̄1) v · · · v pn(t̄n) :− q1(s̄1), . . . , qj(s̄j), not qj+1(s̄j+1), . . . , not qm(s̄m).

where p1(t̄1), . . . , pn(t̄n), q1(s̄1), . . . , qm(s̄m) are atoms and n � 1, m � j � 0. The

disjunction p1(t̄1) v · · · v pn(t̄n) is the head of r, while the conjunction q1(s̄1), . . . ,

qj (̄sj), not qj+1(̄sj+1), . . . , not qm (̄sm) is the body of r. Moreover, H(r) denotes the

set of head atoms, while B(r) denotes the set of body literals. We also use B+(r) and

B−(r) for denoting the set of atoms appearing in positive and negative body literals,

respectively, and Atoms(r) for the set H(r) ∪ B+(r) ∪ B−(r). A rule r is normal (or

disjunction-free) if |H(r)| = 1, positive (or negation-free) if B−(r) = ∅, a fact if both

B(r) = ∅, |H(r)| = 1 and no variable appears in H(r).

A program P is a finite set of rules; if all the rules in it are positive (resp. normal),

then P is a positive (resp. normal) program. In addition, P is function-free if each

functional term appearing in P is a constant. Stratified programs constitute another

interesting class of programs. A predicate p appearing in the head of a rule r depends

on each predicate q such that an atom q(s̄) belongs to B(r); if q(s̄) belongs to B+(r),

p depends on q positively, otherwise negatively. A program is stratified if there is

no cycle of dependencies involving a negative dependency. In this paper we focus

on the class of stratified programs.

Given a predicate p, a defining rule for p is a rule r such that some atom p(t̄)

belongs to H(r). If all defining rules of a predicate p are facts, then p is an EDB

predicate; otherwise p is an IDB predicate.3 Given a program P, the set of rules

having some IDB predicate in head is denoted by IDB(P), while EDB(P) denotes

the remaining rules, that is, EDB(P) = P \ IDB(P). In addition, the set of all facts

of P is denoted by Facts(P).

The set of terms constructible by combining functors appearing in a program P is

the universe of P and is denoted by UP, while the set of ground atoms constructible

from predicates in P with elements of UP is the base of P, denoted by BP. We

call a term (atom, rule, or program) ground if it does not contain any variable. A

ground atom p(t̄) (resp. a ground rule rg) is an instance of an atom p(t̄′) (resp. of a

rule r) if there is a substitution ϑ from the variables in p(t̄′) (resp. in r) to UP such

that p(t̄) = p(t̄′)ϑ (resp. rg = rϑ). Given a program P, Ground(P) denotes the set of

all the instances of the rules in P.

An interpretation I for a program P is a subset of BP. A positive ground literal

p(t̄) is true w.r.t. an interpretation I if p(t̄) ∈ I; otherwise, it is false. A negative

1 We also use Prolog-like square-bracketed list notation as in (Calimeri et al. 2008a).
2 We use the notation t̄ for a sequence of terms, for referring to atoms as p(t̄).
3 EDB and IDB stand for Extensional Database and Intensional Database, respectively.
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ground literal not p(t̄) is true w.r.t. I if and only if p(t̄) is false w.r.t. I . The body of

a ground rule rg is true w.r.t. I if and only if all the body literals of rg are true w.r.t.

I , that is, if and only if B+(rg) ⊆ I and B−(rg) ∩ I = ∅. An interpretation I satisfies

a ground rule rg ∈ Ground(P) if at least one atom in H(rg) is true w.r.t. I whenever

the body of rg is true w.r.t. I . An interpretation I is a model of a program P if I

satisfies all the rules in Ground(P).

Given an interpretation I for a program P, the reduct of P w.r.t. I , denoted

Ground(P)I , is obtained by deleting from Ground(P) all the rules rg with B−(rg)∩I =

∅, and then by removing all the negative literals from the remaining rules. The

semantics of a program P is then given by the set SM(P) of the stable models

of P, where an interpretation M is a stable model for P if and only if M is a

subset-minimal model of Ground(P)M .

Given a program P and a query Q = g(t̄)? (a ground atom),4 P cautiously (resp.

bravely) entails Q, denoted P |=c Q (resp. P |=b Q) if and only if g(t̄) ∈ M for all

(resp. some) M ∈ SM(P). Two programs P and P′ are cautious-equivalent (resp.

brave-equivalent) w.r.t. a query Q, denoted by P≡c
QP′ (resp. P≡b

QP′), whenever

P |=c Q iff P′ |=c Q (resp. P |=b Q iff P′ |=b Q).

2.2 Finitely ground programs

The class of finitely ground (FG) programs (Calimeri et al. 2008a) constitutes a

natural formalization of programs which can be finitely evaluated bottom-up. We

recall the key concepts, and refer to (Calimeri et al. 2008a) for details and examples.

The dependency graph G(P) of a program P is a directed graph having a node

for each IDB predicate of P, and an edge q → p if there is a rule r ∈ P such

that p occurs in H(r) and q occurs in B+(r).5 A component C of P is then a set of

predicates which are strongly connected in G(P).

The component graph of P, denoted GC(P), is a labelled directed graph having

(i) a node for each component of G(P), (ii) an edge C ′ →+ C if there is a rule r ∈ P
such that a predicate p ∈ C occurs in H(r) and a predicate q ∈ C ′ occurs in B+(r),

and (iii) an edge C ′ →− C if (a) C ′ →+ C is not an edge of GC(P), and (b) there

is a rule r ∈ P such that a predicate p ∈ C occurs in H(r) and a predicate q ∈ C ′

occurs in B−(r). A path in a component graph GC(P) is weak if at least one of its

edges is labelled with “−”, otherwise it is strong.

A component ordering γ = 〈C1, . . . , Cn〉 is a total ordering of all the components

of P such that, for any Ci, Cj with i < j, both (a) there is no strong path from

Cj to Ci in GC(P), and (b) if there is a weak path from Cj to Ci, then there must

be a weak path also from Ci to Cj . A module P (Ci) of a program P is the set of

rules defining predicates in Ci, excluding those that define also some other predicate

belonging to a lower component in γ, that is, a component Cj with j < i.

Given a rule r and a set A of ground atoms, an instance rg of r is an A-

restricted instance of r if B+(rg) ⊆ A. The set of all A-restricted instances of all

4 More complex queries can still be expressed using appropriate rules. We assume that each functor
appearing in Q also appears in P; if this is not the case, then we can add to P a fact p(t̄) (where p is
a predicate that occurs neither in P nor Q) and t̄ are the arguments of Q.

5 In literature, G(P) is also referred as positive dependencies graph.
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the rules of a program P is denoted by InstP(A). Note that, for any A ⊆ BP,

InstP(A) ⊆ Ground(P). Intuitively, this identifies those ground instances that may

be supported by a given set A.

Let P be a program, Ci a component in a component ordering 〈C1, . . . , Cn〉, T
a set of ground rules to be simplified w.r.t. another set R of ground rules. Then

the simplification Simpl(T ,R) of T w.r.t. R is obtained from T by: (a) deleting

each rule rg such that H(rg) ∪ B−(rg) contains some atom p(t̄) ∈ Facts(R); (b)

eliminating from each remaining rule rg the atoms in B+(rg) ∩ Facts(R), and each

atom p(t̄) ∈ B−(rg) such that p ∈ Cj , with j < i, and there is no rule in R with

p(t̄) in its head. Assuming that R contains all ground instances obtained from the

modules preceding Ci, Simpl(T ,R) deletes from T the rules whose head is certainly

already true w.r.t. R or whose body is certainly false w.r.t. R, and simplifies the

remaining rules by removing from the bodies all literals true w.r.t. R. We define now

the operator Φ, combining Inst and Simpl.

Let P be a program, Ci a component in a component ordering 〈C1, . . . , Cn〉, R
and S two sets of ground rules. Then ΦP (Ci),R(S) = Simpl(InstP (Ci)(A), R), where A is

the set of atoms belonging to the head of some rule in R∪S . The operator Φ always

admit a least fixpoint Φ∞P (Ci),R
(∅). We can then define the intelligent instantiation Pγ

of a program P for a component ordering γ = 〈C1, . . . , Cn〉 as the last element Pγ
n

of the sequence Pγ
0 = EDB(P), Pγ

i = Pγ
i−1 ∪ Φ∞

P (Ci),Pγ
i−1

(∅). P is finitely ground (FG)

if Pγ is finite for every component ordering γ for P. The main result for this class

of programs is that reasoning is effectively computable.

Theorem 2.1

Cautious and brave reasoning over FG programs are decidable.

2.3 Finitely recursive queries

We next provide the definition of finitely recursive queries (Calimeri et al. 2009) and

programs (Baselice et al. 2009).

Let P be a program and Q a query. The relevant atoms for Q are: (a) Q itself,

and (b) each atom in Atoms(rg), where rg ∈ Ground(P) is such that some atom in

H(rg) is relevant for Q. Then (i) Q is finitely recursive on P if only a finite number

of ground atoms is relevant for Q, and (ii) P is finitely recursive if every query is

finitely recursive on P.

Example 2.2

Consider the query greaterThan(s(s(0)), 0)? for the following program:

r1 : lessThan(X, s(X)).

r2 : lessThan(X, s(Y)) :− lessThan(X, Y).

r3 : greaterThan(s(X), Y) :− not lessThan(X, Y).

The program cautiously and bravely entails the query. The query is clearly finitely

recursive; also the program is finitely recursive. �
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3 Magic-set techniques

The Magic Set method is a strategy for simulating the top-down evaluation of a

query by modifying the original program by means of additional rules, which narrow

the computation to what is relevant for answering the query. In this section we first

recall the magic set technique for disjunctive programs with stratified negation

without function symbols, as presented in (Alviano et al. 2009), we then lift the

technique to ASPfs
fr queries, and formally prove its correctness.

3.1 Magic sets for function-free programs

The method of (Alviano et al. 2009)6 is structured in three main phases.

(1) Adornment. The key idea is to materialize the binding information for IDB

predicates that would be propagated during a top-down computation, like for

instance the one adopted by Prolog. According to this kind of evaluation, all

the rules r such that g(t̄′) ∈ H(r) (where g(t̄′)ϑ = Q for some substitution ϑ)

are considered in a first step. Then the atoms in Atoms(rϑ) different from Q are

considered as new queries and the procedure is iterated.

Note that during this process the information about bound (i.e. non-variable)

arguments in the query is “passed” to the other atoms in the rule. Moreover, it is

assumed that the rule is processed in a certain sequence, and processing an atom may

bind some of its arguments for subsequently considered atoms, thus “generating”

and “passing” bindings. Therefore, whenever an atom is processed, each of its

arguments is considered to be either bound or free.

The specific propagation strategy adopted in a top-down evaluation scheme is

called sideways information passing strategy (SIPS), which is just a way of formalizing

a partial ordering over the atoms of each rule together with the specification of how

the bindings originated and propagate (Beeri and Ramakrishnan 1991; Greco 2003).

Thus, in this phase, adornments are first created for the query predicate. Then each

adorned predicate is used to propagate its information to the other atoms of the

rules defining it according to a SIPS, thereby simulating a top-down evaluation.

While adorning rules, novel binding information in the form of yet unseen adorned

predicates may be generated, which should be used for adorning other rules.

(2) Generation. The adorned rules are then used to generate magic rules defining

magic predicates, which represent the atoms relevant for answering the input query.

Thus, the bodies of magic rules contain the atoms required for binding the arguments

of some atom, following the adopted SIPS.

(3) Modification. Subsequently, magic atoms are added to the bodies of the adorned

rules in order to limit the range of the head variables, thus avoiding the inference of

facts which are irrelevant for the query. The resulting rules are called modified rules.

The complete rewritten program consists of the magic and modified rules (together

with the original EDB). Given a function-free program P, a query Q, and the

rewritten program P′, P and P′ are equivalent w.r.t. Q, i.e., P≡b
QP′ and P≡c

QP′
hold (Alviano et al. 2009).

6 For a detailed description of the standard technique we refer to (Ullman 1989).
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Input: A program P, and a query Q = g(t̄)?
Output: The optimized program DMS(Q,P).
var S , D: set of predicates; modifiedRulesQ,P , magicRulesQ,P: set of rules;
begin

1. D := ∅; modifiedRulesQ,P := ∅; magicRulesQ,P := {magic g(t̄).}; S := {g};
2. while S �= ∅ do
3. take an element p from S ; remove p from S ; add p to D;
4. for each rule r ∈ P and for each atom p(t̄) ∈ H(r) do
5. r′ := r;
6. for each atom q(s̄) ∈ H(r) do add magic q(s̄) to B(r′); end for
7. add r′ to modifiedRulesQ,P;
8. for each atom q(s̄) ∈ Atoms(r) \ {p(t̄)} such that q is an IDB predicate do
9. add magic q(s̄) :− magic p(t̄). to magicRulesQ,P; add q to S if q �∈ D;

10. end for
11. end for
12. end while
13. DMS(Q,P) := magicRulesQ,P ∪ modifiedRulesQ,P ∪ EDB(P);
14. return DMS(Q,P);

end.

Fig. 1. Magic Set algorithm (DMS) for ASPfs
fr queries.

3.2 A rewriting algorithm for ASPfs
fr programs

Our rewriting algorithm exploits the peculiarities of ASPfs
fr queries, and guarantees

that the rewritten program is query equivalent, that it has a particular structure and

that it is bottom-up computable. In particular, for a finitely recursive query Q over

an ASPfs program P, the Magic-Set technique can be simplified due to the following

observations:

• For each (sub)query g(t̄) and each rule r having an atom g(t̄′) ∈ H(r), all the

variables appearing in r appear also in g(t̄′). Indeed, if this is not the case,

then an infinite number of ground atoms would be relevant for Q (the query

would not be finitely recursive)7. Therefore, each adorned predicate generated

in the Adornment phase has all arguments bound.

• Since all variables of a processed rule are bound by the (sub)query, the body

of a magic rule produced in the Generation phase consists only of the magic

version of the (sub)query (by properly limiting the adopted SIPS).

We assume the original program has no predicate symbol that begins with the

string “magic ”. In the following we will then use magic p for denoting the magic

predicate associated with the predicate p. So the magic atom associated with p(t̄)

will be magic p(t̄), in which, by previous considerations, each argument is bound.

The algorithm DMS implementing the Magic-Set technique for ASPfs
fr queries is

reported in Figure 1. Given a program P and a query Q, the algorithm outputs a

rewritten and optimized program DMS(Q,P), consisting of a set of modified and magic

rules, stored by means of the sets modifiedRulesQ,P and magicRulesQ,P, respectively

(together with the original EDB). The algorithm exploits a set S for storing all the

predicates to be processed, and a set D for storing the predicates already done.

The computation starts by initializing D and modifiedRulesQ,P to the empty set

(step 1 ). Then the magic seed magic g(t̄). (a fact) is stored in magicRulesQ,P and the

7 We assume the general case where there is some functor with arity greater than 0.
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predicate g is inserted in the set S (step 1 ). The core of the algorithm (steps 2–12 )

is repeated until the set S is empty, i.e., until there is no further predicate to be

propagated. In particular, a predicate p is moved from S to D (step 3 ), and each rule

r ∈ P having an atom p(t̄) in the head is considered (note that one rule r is processed

as often as p occurs in its head; steps 4–11 ). A modified rule r′ is subsequently

obtained from r by adding an atom magic q(s̄) (for each atom q(s̄) in the head of

r) to its body (steps 5–7 ). In addition, for each atom q(s̄) in Atoms(r) \ {p(t̄)} such

that q is an IDB predicate (steps 8–10 ), a magic rule magic q(s̄) :− magic p(t̄). is

generated (step 9 ), and the predicate q is added to the set S if not already processed

(i.e., if q �∈ D; step 9 ). Note that the magic rule magic q(s̄) :− magic p(t̄). is added

also if q(s̄) occurs in the head or in the negative body, since bindings are propagated

in a uniform way to all IDB atoms.

Example 3.1

The result of the application of the DMS algorithm to the program and query in

Example 2.2 is:

r′1 : lessThan(X, s(X)) :− magic lessThan(X, s(X)).

r′2 : lessThan(X, s(Y)) :− magic lessThan(X, s(Y)), lessThan(X, Y).

r′3 : greaterThan(s(X), Y) :− magic greaterThan(s(X), Y), not lessThan(X, Y).

r∗2 : magic lessThan(X, Y) :− magic lessThan(X, s(Y)).

r∗3 : magic lessThan(X, Y) :− magic greaterThan(s(X), Y).

rQ : magic greaterThan(s(s(0)), 0). �

3.3 Query equivalence result

We conclude the presentation of the DMS algorithm by formally proving its cor-

rectness. This section essentially follows (Alviano et al. 2009), to which we refer

for the details, while here we highlight the necessary considerations for generalizing

the results of (Alviano et al. 2009) to ASPfs
fr queries, exploiting the considerations

described in Section 3.2. Throughout this section, we use the well established notion

of unfounded set for disjunctive programs with negation defined in (Leone et al.

1997). Since we deal with total interpretations, represented as the set of atoms

interpreted as true, the definition of unfounded set can be restated as follows.

Definition 3.2 (Unfounded sets)

Let I be an interpretation for a program P, and X ⊆ BP be a set of ground atoms.

Then X is an unfounded set for P w.r.t. I if and only if for each ground rule

rg ∈ Ground(P) with X ∩H(rg) �= ∅, either (1.a) B+(rg) �⊆ I , or (1.b) B−(rg) ∩ I �= ∅,
or (2) B+(rg) ∩X �= ∅, or (3) H(rg) ∩ (I \X) �= ∅.

Intuitively, conditions (1.a), (1.b) and (3) check if the rule is satisfied by I regardless

of the atoms in X, while condition (2) assures that the rule can be satisfied by taking

the atoms in X as false. Therefore, the next theorem immediately follows from the

characterization of unfounded sets in (Leone et al. 1997).

Theorem 3.3

Let I be an interpretation for a program P. Then, for any stable model M ⊇ I of

P, and for each unfounded set X of P w.r.t. I , M ∩X = ∅ holds.
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We now prove the correctness of the DMS strategy by showing that it is sound and

complete. In both parts of the proof, we exploit the following set of atoms.

Definition 3.4 (Killed atoms)

Given a model M for DMS(Q,P), and a model N ⊆ M of Ground(DMS(Q,P))M , the

set killedMQ,P(N) of the killed atoms w.r.t. M and N is defined as:

{ p(t̄) ∈ BP \N | either p is an EDB predicate, or magic p(t̄) ∈ N }.

Thus, killed atoms are either false instances of some EDB predicate, or false atoms

which are relevant for Q (since a magic atom exists in N). Therefore, we expect that

these atoms are also false in any stable model for P containing M ∩ BP.

Proposition 3.5

Let M be a model for DMS(Q,P), and N ⊆M a model of Ground(DMS(Q,P))M . Then

killedMQ,P(N) is an unfounded set for P w.r.t. M ∩ BP.

We can now prove the soundness of the algorithm.

Lemma 3.6

Let Q be an ASPfs
fr query over P. Then, for each stable model M ′ of DMS(Q,P), there

is a stable model M of P such that Q ∈M if and only if Q ∈M ′.

Proof

We can show that there is M ∈ SM(P) such that M ⊇ M ′ ∩ BP. Since Q belongs

either to M ′ or to killedM
′

Q,P(M ′), the claim follows by Proposition 3.5. �

For proving the completeness of the algorithm we provide a construction for

passing from an interpretation for P to one for DMS(Q,P).

Definition 3.7 (Magic variant)

Let I be an interpretation for an ASPfs
fr query Q over P. We define an interpretation

variantQ,P(I) for DMS(Q,P), called the magic variant of I w.r.t. Q and P, as follows:

variantQ,P(I) = EDB(P) ∪M∗ ∪ {p(t̄) ∈ I | magic p(t̄) ∈M∗},

where M∗ is the unique stable model of magicRulesQ,P.

In this definition, we exploit the fact that magicRulesQ,P has a unique and finite

stable model for ASPfs
fr queries (see Lemma 4.2 for a detailed proof). By definition, for

a magic variant variantQ,P(I) of an interpretation I for P, variantQ,P(I)∩BP ⊆ I

holds. More interesting, the magic variant of a stable model for P is in turn a

stable model for DMS(Q,P) preserving truth/falsity of Q. The following formalizes

the intuition above.

Lemma 3.8

If M is a stable model of an ASPfs program P with a finitely recursive query Q,

then M ′ = variantQ,P(M) is a stable model of DMS(Q,P) and Q ∈M ′ if and only if

Q ∈M.
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Proof

Consider a modified rule r′g ∈ Ground(DMS(Q,P)) having B+(r′g) ⊆ M ′ and B−(r′g) ∩
M ′ = ∅:

r′g : p1(t̄1) v · · · v pn(t̄n) :− magic p1(t̄1), . . . , magic pn(t̄n),

q1(s̄1), . . . , qj(s̄j), not qj+1(s̄j+1), . . . , not qm(s̄m).

We can show that

rg : p1(t̄1) v · · · v pn(t̄n) :− q1(s̄1), . . . , qj(s̄j), not qj+1(s̄j+1), . . . , not qm(s̄m).

belongs to Ground(P). Since B+(r′g) ⊆ M ′ and B−(r′g) ∩M ′ = ∅, we have B+(rg) ⊆
M, B−(rg) ∩M = ∅, and H(r′g) ∩M ′ = H(rg) ∩M. Thus, H(r′g) ∩M ′ = H(rg) ∩
M �= ∅ because M is a model of P. Moreover, if there is a model N ′ ⊂ M ′ of

Ground(DMS(Q,P))M
′
, then M \ (M ′ \N ′) is a model for Ground(P)M , contradicting

the assumption that M is a stable model of P.

Thus, M ′ = variantQ,P(M) is a stable model of DMS(Q,P). Since Q belongs either

to M ′ or to killedM
′

Q,P(M ′), the claim follows by Proposition 3.5. �

From the above lemma, together with Lemma 3.6, the correctness of the Magic

Set method with respect to query answering directly follows.

Theorem 3.9

If Q is an ASPfs
fr query over P, then both DMS(Q,P)≡b

QP and DMS(Q,P)≡c
QP hold.

4 Decidability result

In this section, we prove that ASPfs
fr queries are decidable. To this end, we link finitely

recursive queries to finitely ground programs. More specifically, we show that the

Magic-Set rewriting of a finitely recursive query is a finitely ground program, for

which querying is known to be decidable.

We first show some properties of the rewritten program due to the particular

restrictions applied to the adopted SIPS.

Lemma 4.1

If Q is an ASPfs
fr query over P, then DMS(Q,P) is stratified.

Proof

Each cycle of dependencies in DMS(Q,P) involving predicates of P is also present in

P. Indeed, each magic rule has exactly one magic atom in the head and one in the

body, and each modified rule is obtained by adding only magic atoms to the body of a

rule belonging to P. Since P is stratified by assumption, such cycles have no negative

dependencies. Any new cycle stems only from magic rules, which are positive. �

Now consider the program consisting of the magic rules produced for a finitely

recursive query. We can show that this program has a unique and finite stable model,

that we will denote M∗.

Lemma 4.2

Let Q be an ASPfs
fr query over P. Then the program magicRulesQ,P has a unique and

finite stable model M∗.

https://doi.org/10.1017/S1471068410000244 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000244


Disjunctive ASP with functions: Decidable queries and effective computation 507

Proof

Since magicRulesQ,P is positive and normal, M∗ is unique. If we show that M∗

contains all and only the relevant atoms for Q, then we are done because Q is

finitely recursive on P. To this end, note that the only fact in magicRulesQ,P
is the query seed magic g(t̄)., and each magic rule magic q(s̄)ϑ :− magic p(t̄)ϑ.

in Ground(DMS(Q,P)) (ϑ a substitution) is such that q(s̄)ϑ is relevant for p(t̄)ϑ.

Indeed, magic q(s̄) :− magic p(t̄). has been produced during the Generation phase

involving a rule r ∈ P with p(t̄) ∈ H(r) and q(s̄) ∈ Atoms(r) \ {p(t̄)}; since each

variable in r appears also in p(t̄), rϑ ∈ Ground(P) is such that p(t̄)ϑ ∈ H(rϑ) and

q(s̄)ϑ ∈ Atoms(rϑ), i.e., q(s̄)ϑ is relevant for p(t̄)ϑ. �

We can now link ASPfs
fr queries and finitely ground programs.

Theorem 4.3

Let Q be an ASPfs
fr query over P. Then DMS(Q,P) is finitely ground.

Proof

Let γ = 〈C1, . . . , Cn〉 be a component ordering for DMS(Q,P). Since each cycle of

dependencies in DMS(Q,P) involving predicates of P is also present in P, components

with non-magic predicates are disjoint from components with magic predicates. For

a component Ci with magic predicates, DMS(Q,P)γi is a subset of M∗, which is finite

by Lemma 4.2.

For a component Ci with a non-magic predicate pu, we consider a modified rule

r′ ∈ P (Ci) with an atom pu(t̄u) ∈ H(r′):

r′ : p1(t̄1) v · · · v pn(t̄n) :− magic p1(t̄1), . . . , magic pn(t̄n),

q1(s̄1), . . . , qj(s̄j), not qj+1(s̄j+1), . . . , not qm(s̄m).

Thus, the component containing magic pu precedes Ci in γ. Moreover, since Q is

finitely recursive on P, each variable appearing in r′ appears also in magic pu(t̄u).

Therefore, DMS(Q,P)γi is finite also in this case. �

We are now ready for proving the decidability of brave and cautious reasoning

for the class of finitely recursive queries on ASPfs programs.

Theorem 4.4

Let Q be an ASPfs
fr query over P. Deciding whether P cautiously/bravely entails Q

is computable.

Proof

From Theorem 3.9, DMS(Q,P)≡b
QP and DMS(Q,P)≡c

QP hold. Since DMS(Q,P) is

finitely ground by Theorem 4.3, decidability follows from Thereom 2.1. �

5 Expressiveness result

In this section, we show that the restrictions which guarantee the decidability of

ASPfs
fr queries do not limit their expressiveness. Indeed, any computable function

can be encoded by an ASPfs
fr program (even without using disjunction and negation).

To this end, we show how to encode a deterministic Turing Machine as a positive

program with functions and an input string by means of a query. In fact it is
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well-known that Horn clauses (under the classic first-order semantics) can represent

any computable function (Tärnlund 1977), so we just have to adapt these results for

ASPfs
fr programs and queries.

A Turing Machine M with semi-infinite tape is a 5-tuple 〈Σ,S, si, sf, δ〉, where

Σ is an alphabet (i.e., a set of symbols), S is a set of states, si, sf ∈ S are

two distinct states (representing the initial and final states of M, respectively), and

δ : S × Σ −→ S × Σ × {←,→} is a transition function. Given an input string

x = x1 · · · xn, the initial configuration of M is such that the current state is si, the

tape contains x followed by an infinite sequence of blank symbols � (a special tape

symbol occurring in Σ; we are assuming x does not contain any blank symbol),

and the head is over the first symbol of the tape. The other configurations assumed

by M with input x are then obtained by means of the transition function δ: If s

and v are the current state and symbol, respectively, and δ(s, v) = (s′, v′, m), thenM
overwrites v with v′, moves its head according to m ∈ {←,→}, and changes its state

to s′.M accepts x if the final state sf is reached at some point of the computation.

A configuration of M can be encoded by an instance of conf(s, L, v, R), where

s is the current state, v the symbol under the head, L the list of symbols on the

left of the head in reverse order, and R a finite list of symbols on the right of the

head containing at least all the non-blank symbols. The query QM(x) representing

the initial configuration of M with input x is

conf(si, [ ], x1, [x2, . . . , xn])? if n > 0;

conf(si, [ ], �, [ ])? otherwise.

The program PM encodingM contains a rule conf(sf, L, V, R). representing the final

state sf, and a set of rules implementing the transition function δ. For each state

s ∈ S \ {sf} and for each symbol v ∈ Σ, PM contains the following rules:

conf(s, [V|L], v, R) :− conf(s′, L, V, [v′|R]). if δ(s, v) = (s′, v′,←);

conf(s, L, v, [V|R]) :− conf(s′, [v′|L], V, R). if δ(s, v) = (s′, v′,→);

conf(s, L, v, [ ]) :− conf(s′, [v′|L], �, [ ]). if δ(s, v) = (s′, v′,→).

Note that we do not explicitly represent the infinite sequence of blanks on the right

of the tape; the last rule above effectively produces a blank whenever the head moves

right of all explicitly represented symbols. The atoms therefore represent only the

effectivley reached tape positions. We now show the correctness of PM and QM(x).

Theorem 5.1

The program PM bravely/cautiously entails QM(x) if and only if M accepts x.

Proof Sketch

PM bravely/cautiously entails QM(x) if and only if the unique stable model of

PM contains a sequence of atoms conf(t̄1), . . . , conf(t̄m) such that conf(t̄1) is the

query atom, conf(t̄m) is an instance of conf(sf, L, V, R), and there is a rule in

Ground(PM) (implementing the transition function of M) having conf(t̄i) in head

and conf(t̄i+1) in the body, for each i = 1, . . . , m − 1. Since instances of conf(t̄)

represent configurations of M, the claim follows. �

We can now link computable sets (or functions) and finitely recursive queries.
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Theorem 5.2

Let L be a computable set (or function). Then, there is an ASPfs programP such that,

for each string x, the query Qx is finitely recursive on P, and P cautiously/bravely

entails Qx if and only if x ∈ L.

Proof

Let M be a Turing Machine computing L and PM be the program encoding M.

Program PM is clearly in ASPfs (actually, it is even negation-free). By Theorem 5.1,

it only remains to prove that QM(x) is finitely recursive on PM. By construction of

PM, for each ground atom conf(t̄) in BPM , there is exactly one rule in Ground(PM)

having conf(t̄) in head. This rule has at most one atom conf(t̄′) in its body, and

implements either the transition function or the final state of M. Thus, the atoms

relevant for QM(x) are exactly the atoms representing the configurations assumed by

M with input x. The claim then follows becauseM halts in a finite number of steps

by assumption. �

We note that when applying magic sets on the Turing machine encoding, the

magic predicates effectively encode all reachable configurations, and a bottom-up

evaluation of the magic program corresponds to a simulation of the Turing machine.

Hence only encodings of Turing machine invocations that visit all (infinitely many)

tape cells are not finitely recursive. We also note that recognizing whether an ASPfs

query or a program is finitely recursive is RE-complete8.

6 Related work

The extension of ASP with functions has been the subject of intensive research in

the last years. The main proposals can be classified in two groups:

1. Syntactically restricted fragments, such as ω-restricted programs (Syrjänen 2001),

λ-restricted programs (Gebser et al. 2007), finite-domain programs (Calimeri et al.

2008a), argument-restricted programs (Lierler and Lifschitz 2009), ���� programs

(Simkus and Eiter 2007), bidirectional programs (Eiter and Simkus 2009), and the

proposal of (Lin and Wang 2008); these approaches introduce syntactic constraints

(which can be easily checked at small computational cost) or explicit domain

restrictions, thus allowing computability of answer sets and/or decidability of

querying;

2. Semantically restricted fragments, such as finitely ground programs (Calimeri et al.

2008a), finitary programs (Bonatti 2002; Bonatti 2004), disjunctive finitely-recursive

programs (Baselice et al. 2009) and queries (Calimeri et al. 2009); with respect to

syntactically restricted fragments, these approaches aim at identifying broader classes

of programs for which computational tasks such as querying are decidable. However,

the membership of programs in these fragments is undecidable in general.

There have been a few other proposals that treat function symbols not in the

traditional LP sense, but as in classical logic, where most prominently the unique

names assumption does not hold. We refer to (Cabalar 2008) for an overview.

8 That is, complete for the class of recursively enumerable decision problems.
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Our work falls in the group 2. It is most closely related to (Bonatti 2002), (Baselice

et al. 2009), and especially (Calimeri et al. 2009), which all focus on querying for

disjunctive programs.

The work in (Bonatti 2002) studies how to extend finitary programs (Bonatti

2004) preserving decidability for ground querying in the presence of disjunction.

To this end, an extra condition on disjunctive heads is added to the original

definition of finitary program of (Bonatti 2004). Interestingly, the class of ASPfs
fr

programs, which features decidable reasoning (as proved in Theorem 4.4), enlarges

the stratified subclass of disjunctive finitary programs of (Bonatti 2002). Indeed,

while all stratified finitary programs trivially belong to the class of ASPfs
fr programs,

the above mentioned extra condition on disjunctive heads is not guaranteed to

be fulfilled by ASPfs
fr programs (even if negation is stratified or forbidden at all).

Instead, in (Baselice et al. 2009), a redefinition (including disjunction) of finitely

recursive programs is considered, initially introduced in (Bonatti 2004) as a super-

class of finitary programs allowing function symbols and negation. The authors show

a compactness property and semi-decidability results for cautious ground querying,

but no decidability results are given.

Our paper extends and generalizes the work (Calimeri et al. 2009), in which the

decidability of querying over finitely recursive negation-free disjunctive programs is

proved via a magic-set rewriting. To achieve the extension, we had to generalize the

magic set technique used in (Calimeri et al. 2009) to deal also with stratified negation.

The feasibility of such a generalization was not obvious at all, since the magic set

rewriting of a stratified program can produce unstratified negation (Kemp et al.

1995), which can lead to undecidability in the presence of functions. We have proved

that, thanks to the structure of ASPfs
fr programs and the adopted SIPS, the magic set

rewriting preserves stratification. The presence of negation also complicates the proof

that the rewritten program is query-equivalent to the original one. To demonstrate

this result, we have exploited the characterization of stable models via unfounded

sets of (Leone et al. 1997), and generalized the equivalence proof of (Alviano et al.

2009) to the case of programs with functions.

Finally, our studies on computable fragments of logic programs with functions

are loosely related to termination studies of SLD-resolution for Prolog programs

(see e.g. (Bruynooghe et al. 2007)).

7 Conclusion

In this work we have studied the language of ASPfs
fr queries and programs. By

adapting a magic set technique, any ASPfs
fr query can be transformed into an

equivalent query over a finitely ground program, which is known to be decidable

and for which an implemented system is available. We have also shown that the

ASPfs
fr language can express any decidable function. In total, the proposed language

and techniques provide the means for a very expressive, yet decidable and practically

usable logic programming framework.

Concerning future work, we are working on adapting an existing implementation

of a magic set technique to handle ASPfs
fr queries as described in this article,
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integrating it into DLV-Complex (Calimeri et al. 2008b), thus creating a useable

ASPfs
fr system. We also intend to explore practical application scenarios; promising

candidates are query answering over ontologies and in particular the Semantic Web,

reasoning about action and change, or analysis of dynamic multi-agent systems.
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