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In this paper, we consider the asymptotic behaviour for the non-local parabolic problem

ut = Δu +
λf(u)

(
∫
Ω
f(u)dx)p

, x ∈ Ω, t > 0,

with a homogeneous Dirichlet boundary condition, where λ > 0, p > 0 and f is non-

increasing. It is found that (a) for 0 < p � 1, u(x, t) is globally bounded and the unique

stationary solution is globally asymptotically stable for any λ > 0; (b) for 1 < p < 2, u(x, t)

is globally bounded for any λ > 0; (c) for p = 2, if 0 < λ < 2|∂Ω|2, then u(x, t) is globally

bounded; if λ = 2|∂Ω|2, there is no stationary solution and u(x, t) is a global solution and

u(x, t) → ∞ as t → ∞ for all x ∈ Ω; if λ > 2|∂Ω|2, there is no stationary solution and u(x, t)

blows up in finite time for all x ∈ Ω; (d) for p > 2, there exists a λ∗ > 0 such that for λ > λ∗,

or for 0 < λ � λ∗ and u0(x) sufficiently large, u(x, t) blows up in finite time. Moreover, some

formal asymptotic estimates for the behaviour of u(x, t) as it blows up are obtained for p � 2.

1 Introduction

In this paper we study the asymptotic behaviour for the non-local parabolic problem

ut = Δu +
λf(u)

(
∫
Ω
f(u)dx)p

, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0, (1.1)

u(x, 0) = u0(x), x ∈ Ω,

where Ω ⊂ �n is a smoothly bounded domain, λ > 0 and p > 0.

Problem (1.1) arises, for example, in the analytical study of phenomena associated with

the occurrence of shear bands in metals being deformed under high strain rates [2, 12],

in modelling the phenomena of Ohmic heating [1, 10, 11], in the investigation of the fully

turbulent behaviour of a real flow, using invariant measures for Euler equation [3], and

in the theory of gravitational equilibrium of polytropic stars [9]. If p = 2 and n = 1, 2,

problem (1.1) models Ohmic heating (see [5, 10, 14]), where u(x, t) = u(x, t; λ) stands for
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the dimensionless temperature of a conductor when an electric current flows through it,

and f(s) represents, depending on the problem, either the electrical conductivity or the

electrical resistance of the conductor, satisfying the condition

f(s) > 0, f′(s) < 0, s � 0,

∫ ∞

0

f(s) ds < ∞. (1.2)

Condition (1.2) permits us to use comparison methods (see [10, 11, 13, 14]). Also, for

simplicity, we assume u0(x) is continuous with u0(x) = 0, x ∈ ∂Ω and u0(x) � 0, x ∈ Ω.

Without loss of generality, we may assume that
∫ ∞

0
f(s)ds = 1.

For problem (1.1) with p = 2, Lacey [10, 11] and Tzanetis [14] proved the occurrence of

blow-up for the one-dimensional problem and for the two-dimensional radially symmetric

problem, respectively. First they estimated the supremum λ∗ of the spectrum of the related

steady-state equations and then they proved the blow-up, for λ > λ∗, by constructing some

blowing-up lower solutions. In [1], Bebernes and Lacey considered problem (1.1) and its

associated steady-state equations with p > 0, n � 1 and f(s) positive and locally Lipschitz

continuous. Existence/non-existence results were proven when f(s) = es or e−s and Ω

is a ball or star-shaped domain. Using some ideas of [1], Kavallaris and Nadzieja [8]

generalized the blow-up results for λ > λ∗ and n � 2 if u0 is sufficiently large and f(s)

satisfies ∫ ∞

0

(sf(s) − s2f′(s))ds < ∞. (1.3)

Kavallaris et al. [7] showed that the solution u∗(x, t) = u(x, t; λ∗) is global in time and

diverges in the sense that ‖u∗(·, t)‖∞ → ∞ as t → ∞ when n = 1, Ω = (−1, 1) and f(s)

satisfies (1.2) or n = 2, Ω = {(x, y) ∈ �2 : x2 + y2 < 1} and f(s) = e−s. Moreover, it was

proved that this divergence is global, i.e. u∗(x, t) → ∞ as t → ∞ for all x ∈ Ω.

The main purpose of this paper is to generalize and improve the results for dimensions

n � 2 and p > 0 obtained in [7, 8, 10, 11, 14]. Throughout this paper, we have assumed

that the domain Ω satisfies the following condition:

(H) for any point y0 ∈ ∂Ω, there exist two balls B1 and B2 such that B1 ⊂ Ω ⊂ B2 and

∂B1 ∩ ∂Ω ∩ ∂B2 = {y0}.

Our main results read as follows:

• If 0 < p � 1, then u(x, t) is globally bounded and there exists a unique stationary

solution which is globally asymptotically stable for any λ > 0.

• If 1 < p < 2, then u(x, t) is globally bounded for any λ > 0.

• Assume p = 2, and let λ∗ = 2|∂Ω|2. If 0 < λ < λ∗, u(x, t) is globally bounded. If λ = λ∗,

there is no stationary solution and u∗(x, t) is a global-in-time solution and u∗(x, t) → ∞
as t → ∞ for all x ∈ Ω. If λ > λ∗, there is no stationary solution and u(x, t) blows up

globally in finite time T without requiring (1.3) and u0 sufficiently large.

• If p > 2, then there exists a critical value λ∗ such that for λ > λ∗ or for any 0 < λ � λ∗

and u0(x) sufficiently large, u(x, t) blows up globally in finite time T .

• We also obtain some formal asymptotic estimates for the local behaviour of u(x, t) as it

blows up for p � 2.
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This paper is organized as follows. In Section 2 we consider the steady-state problem

corresponding to (1.1). In Section 3, we investigate the asymptotic behaviour of some

critical solutions of (1.1) for p = 2. Section 4 is devoted to some formal asymptotic

estimates for the local behaviour of u(x, t) as it blows up in finite time for p � 2.

2 Steady-state problem

The steady states of the problem (1.1) play an important role in the description of the

asymptotic behaviour of the solutions of (1.1), and hence we first consider the stationary

problem of (1.1). The stationary problem corresponding to (1.1) is

Δw +
λf(w)

(
∫
Ω
f(w)dx)p

= 0, x ∈ Ω; w = 0, x ∈ ∂Ω. (2.1)

In order to study the non-local problem (2.1), let us first consider the following local

problem:

Δw + μf(w) = 0, x ∈ Ω; w = 0, x ∈ ∂Ω, (2.2)

where μ � 0 and f(s) satisfies (1.2). It is well known that the basic theory of monotone

schemes can be carried out for the problem (2.2). Therefore, there exists a solution in

H1
0 (Ω). Moreover, the straightforward argument, based on the coercivity of −Δ with

Dirichlet boundary condition, implies that (2.2) has a unique positive solution wΩ
μ in

H1
0 (Ω). The above arguments are classical and known in the literature [6]. In order to

establish a relationship between the local problem (2.2) and the non-local problem (2.1),

we define a real function λ(μ) by

λ(μ) = μ

(∫
Ω

f
(
wΩ
μ

)
dx

)p

(2.3)

for any μ � 0. This function is well defined due to the positive character of wΩ
μ . From the

analyticity of the solutions wΩ
μ on μ, we deduce that the function λ(μ) is analytic on μ. It

is easy to see the relation between the solutions of problem (2.2) and problem (2.1).

Theorem 2.1 If w is a solution of problem (2.1) for λ = λ0, then w is a solution of problem

(2.2) for μ = λ0 / (
∫
Ω
f(w)dx)p. Conversely, if w is a solution of problem (2.2) for μ = μ0,

then w is a solution of problem (2.1) for λ = λ(μ0).

Theorem 2.1 allows us to study problem (2.1) by analysing the behaviour of the function

λ(μ). Now we give some qualitative properties of the profile of the bifurcation diagram of

the local problem (2.2).

Lemma 2.2 Let wΩ
μ be the solution of (2.2), then

(1) ∂wΩ
μ /∂μ > 0 for x ∈ Ω.

(2) limμ→∞ wΩ
μ (x)/ΦΩ

1 (x) → ∞, uniformly in Ω, where ΦΩ
1 (x) is the first normalized ei-

genfunction of −Δ in H1
0 (Ω).
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The proof follows the same lines as in [4] so we omit it.

Now we prove that the solution of (2.1) is unique for any 0 < p � 1.

Theorem 2.3 For any 0 < p � 1, there exists a unique solution of the problem (2.1) for

any λ � 0.

Proof Let us prove that λ(μ) is strictly increasing. Integrating (2.2) over Ω, we have∫
∂Ω

∂w

∂ν
ds + λ

1
p μ

p−1
p = 0,

where ∂/∂ν is the outward normal derivative, which implies

λ(μ) = μ1−p

(
−

∫
∂Ω

∂w

∂ν
ds

)p

. (2.4)

By 0 < p � 1, wμ = ∂wΩ
μ /∂μ = 0 on ∂Ω and Lemma 2.2, we get

λ′(μ) > 0 for μ > 0 and lim
μ→∞

λ(μ) = ∞.

The proof is completed. �

The following results give us a way to construct a sub-solution of wΩ
μ in order to

estimate from the above function λ(μ).

Lemma 2.4 Let Ω′ ⊂ Ω. Then wΩ′
μ � wΩ

μ on Ω′ for any μ > 0.

We omit the proof.

We need a lemma concerning the solution to the problem in a ball

Δw + μf(w) = 0, x ∈ B; w = 0, x ∈ ∂B. (2.5)

Lemma 2.5 (see [14, Lemma 5.1 ]). Let f(s) satisfy (1.2),
∫ ∞

0 f(s)ds = 1 and wB
μ be a

solution of (2.5); then we have

− 1
√
μ

dwB
μ

dr

∣∣∣
∂B

<
√

2, − lim
μ→∞

1
√
μ

dwB
μ

dr

∣∣∣
∂B

=
√

2, (2.6)

where B = {x ∈ Rn :| x − x0 |< R}, r = |x − x0|.

Theorem 2.6 Let f(s) satisfy (1.2),
∫ ∞

0 f(s)ds = 1 and Ω be a bounded domain satisfying

(H). Then the following assertions hold:

(1) For 1 < p < 2, there exists at least one solution of the problem (2.1) for any value

λ > 0.

(2) For p = 2, let λ∗ = 2|∂Ω|2; then there exists at least one solution of the problem

(2.1) for 0 < λ < λ∗ and no solution for λ � λ∗. Moreover, λ(μ) < 2|∂Ω|2 for μ > 0

and limμ→∞ λ(μ) = 2|∂Ω|2.
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(3) For p > 2, there exists a critical value λ∗ > 0 such that there exist at least two

solutions of the problem (2.1) for 0 < λ < λ∗, at least one solution for λ = λ∗ and

no solution for λ > λ∗. Moreover, limμ→∞ λ(μ) = 0.

Proof Let y0 ∈ ∂Ω. Without loss of generality we assume that y0 = 0. By (H), there exist

two balls Ω1, Ω2 (Ω1 ⊂ Ω ⊂ Ω2) which are tangent to Ω at y0, where Ωi = {x ∈ Rn :

|x − yi| < Ri, yi = (Li, 0
′)}. Lemma 2.4 implies that wΩ

μ � wΩ1
μ on Ω1 and wΩ2

μ � wΩ
μ on Ω.

Applying Lemma 2.5, we conclude that

√
2 > − 1

√
μ

dwΩ2
μ (0)

dx1
� − 1

√
μ

dwΩ
μ (0)

dx1
� − 1

√
μ

dwΩ1
μ (0)

dx1
, μ > 0,

and

√
2 = − lim

μ→∞

1
√
μ

dwΩ2
μ (0)

dx1
� − lim

μ→∞

1
√
μ

dwΩ
μ (0)

dx1
� − lim

μ→∞

1
√
μ

dwΩ1
μ (0)

dx1
=

√
2,

which imply

− 1
√
μ

dwΩ
μ (0)

dx1
<

√
2 and − lim

μ→∞

1
√
μ

dwΩ
μ (0)

dx1
=

√
2.

Since y0 is arbitrary, it follows that

− 1
√
μ

∫
∂Ω

∂wΩ
μ

∂ν
ds <

√
2|∂Ω| for μ > 0 and − lim

μ→∞

1
√
μ

∫
∂Ω

∂wΩ
μ

∂ν
ds =

√
2|∂Ω|.

By (2.4), we obtain the following:

(i) If 0 < p < 2, then limμ→∞ λ(μ) = ∞.

(ii) If p = 2, then λ(μ) < 2|∂Ω|2 for μ > 0 and limμ→∞ λ(μ) = 2|∂Ω|2.
(iii) If p > 2, then limμ→∞ λ(μ) = 0.

The proof is completed. �

Using Theorems 2.3 and 2.6, similarly as in [11], we can prove the following global

existence results.

Theorem 2.7

(i) If 0 < p � 1, then u is globally bounded and the unique steady state is globally

asymptotically stable for any λ > 0.

(ii) If 1 < p < 2 and
∫ ∞

0 f(s)ds = 1, then u(x, t) is globally bounded for any λ > 0.

(iii) If p = 2,
∫ ∞

0 f(s)ds = 1 and 0 < λ < 2|∂Ω|2, then u is globally bounded for any initial

data.
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3 Asymptotic behaviour of solutions of problem (1.1) for p = 2

In this section, we study the asymptotic behaviour of solutions of the following non-local

parabolic problem:

ut = Δu +
2|∂Ω|2f(u)

(
∫
Ω
f(u)dx)2

, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

where f satisfies (1.2) and
∫ ∞

0
f(s)ds = 1. By Theorem 2.6, it follows that λ(μ) < 2|∂Ω|2 for

all μ > 0; then we can find an increasing lower solution v = w(x; μ(t)) with μ(t) → ∞ as

t → T � ∞. Thus u(x, t) is unbounded. Moreover, u(x, t) is globally unbounded. Indeed,

if T = ∞, from Lemma 2.2, u(x, t) is globally unbounded; if T < ∞, u(x, t) blows up

globally (see the proof of Theorem 4.1 for details).

Now we prove that ||u(·, t)||∞ → ∞ as t → ∞, i.e. T = ∞. It is sufficient to construct an

upper solution V (x, t) to problem (3.1) which is global in time and unbounded. Without

loss of generality, we assume that the hyperplane {x : x1 = 1} is tangent to Ω at (1, 0′),

and Ω lies in the half-space {x : x1 < 1}. Let d(x) = dist(x, ∂Ω). Set

V (x, t) = w(y(x, t); μ(t)), 0 � d(x) � ε(t), x ∈ Ω, t > 0,
(3.1)

V (x, t) = M(t) = max0�d(x)�ε(t) w(y(x, t); μ(t)), d(x) � ε(t), x ∈ Ω, t > 0,

where 0 � y(x, t) = d(x)/ε(t) � 1, ε(t) > 0 is a function to be chosen later and w(y; μ(t))

satisfies

wyy + μ(t)f(w) = 0, 0 < y < 1, t > 0; w(0; μ(t)) = w′(1; μ(t)) = 0, (3.2)

or equivalently

wrr +
μ(t)

ε2(t)
f(w) = 0, r = d(x), 0 � r � ε(t), t > 0; w(0) =

dw

dr
|r=ε(t) = 0, (3.3)

which implies

Δw − Δd

ε

dw

dy
+

μ

ε2
f(w) = 0, 0 � d(x) � ε(t), t > 0,

(3.4)

w(y(x, t); μ(t)) = 0, x ∈ ∂Ω, t > 0,
dw

dr
|r=ε(t) = 0,

and

d2w(y((x1, 0
′), t); μ(t))

dx2
1

+
μ

ε2
f(w(y((x1, 0

′), t); μ(t))) = 0, δ(t) < x1 < 1, t > 0,

(3.5)

w(y((1, 0′), t); μ(t)) = 0,
dw(y((δ(t), 0′), t); μ(t))

dx1
= 0,

where ε(t) = 1 − δ(t).

https://doi.org/10.1017/S0956792509007803 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792509007803


Asymptotic behaviour for a non-local parabolic problem 253

From the definition of w, it is obvious that w, wr are continuous at r = ε(t). We can

choose μ(0) (or equivalently M(0)) sufficiently large so that V (x, 0) � u0(x) (such a choice

is possible since w → ∞ as μ → ∞ and provided that u0(x), u′
0(x) are bounded).

For any ε > 0, set Ωε = {x ∈ Ω : 0 < d(x) < ε(t)}. To prove that V (x, t) is an upper

solution, we need some preliminary results.

Problems (3.3) and (3.5) imply that

wr(0) =

√
2μ

ε

√∫ M

0

f(s)ds (3.6)

and ∫ 1

δ(t)

f(w(y((x1, 0
′), t); μ(t)))dx1 = − ε2

μ

dw(y((1, 0′), t); μ(t))

dx1
. (3.7)

From (3.3), we get

wr√
F(w) − F(M)

=

√
2μ

ε
, (3.8)

where F(s) =
∫ ∞
s

f(σ)dσ > 0. Relation (3.8) gives

√
μ(M) =

√
2

2

∫ M

0

ds√
F(s) − F(M)

. (3.9)

For s � M, we have F(s) −F(M) = f(θ)(M − s), θ ∈ [s,M] and due to f′(s) < 0 for s � 0,

we get

(M − s)f(M) � F(s) − F(M) � (M − s)f(s). (3.10)

Then √
μ(M) �

√
2

2

∫ M

0

(M − s)− 1
2 f− 1

2 (M)ds �

√
2M

f(M)
,

and hence

μ(M)f(M) � 2M for M > 0. (3.11)

However,

Mf(M) � 2

∫ M

M/2

f(s)ds � 2

∫ ∞

M/2

f(s)ds and

∫ ∞

M/2

f(s)ds → 0 as M → ∞,

so Mf(M) → 0 as M → ∞ and due to (3.11) we finally get√
μ(M)f(M) → 0 as M → ∞. (3.12)

Next we claim that limμ→∞
√

2μ/M = ∞. Indeed, by (1.2) and (3.9), we obtain

√
2μ

M
�

∫ M

0 (M − s)− 1
2 f− 1

2 (s)ds

M
=

∫ 1

0

s
1
2 (1 − s)− 1

2

(Msf(Ms))
1
2

ds.
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Taking into account sf(s) → 0 as s → ∞, we deduce that limμ→∞
√

2μ/M = ∞, i.e.

lim
M→∞

M/
√

2μ = 0. (3.13)

As indicated in [1], d(x) is smooth and, more precisely, |Δd| � K , for some K , in a

neighbourhood of the boundary if ∂Ω is smooth. In particular, such a neighbourhood Ωε

consists of all x ∈ Ω such that d(x, ∂Ω) � ε(t), where ε(t) is chosen small enough.

Integrating (3.4) over Ωε we obtain∫
Ωε

f(w)dx = − ε2

μ

∫
∂Ω

∂w

∂ν
ds +

ε

μ

∫
Ωε

Δd
dw

dy
dx

=
ε2|∂Ω|

μ
wr(0) +

ε

μ

∫
Ωε

Δd
dw

dy
dx

= ε|∂Ω|

√
2

μ

√∫ M

0

f(s)ds +
ε

μ

∫
Ωε

Δd
dw

dy
dx

� ε|∂Ω|

√
2

μ

√∫ M

0

f(s)ds − εK

μ

∫
Ωε

dw

dy
dx

(
using

dw

dy
� 0

)

� ε|∂Ω|

√
2

μ

√∫ M

0

f(s)ds +
ε2|∂Ω|K

μ

∫ 1

δ(t)

dw((x1, 0
′); μ(t))

dx1
dx1

= ε|∂Ω|

√
2

μ

√∫ M

0

f(s)ds − ε2|∂Ω|KM

μ
,

which implies∫
Ω

f(V )dx =

∫
Ω\Ωε

f(M)dx +

∫
Ωε

f(w)dx

� |Ω \ Ωε|f(M) + ε|∂Ω|

√
2

μ

√∫ M

0

f(s)ds − ε2|∂Ω|KM

μ
. (3.14)

Our construction of the upper solution V depends strongly on the behaviour of the

function

g(s) =
f(s)

√
μ(s)

F(s)
> 0.

Since (3.12) holds and F(M) → 0 as M → ∞, we distinguish two cases for the behaviour

of g(M). More precisely the following holds:

Theorem 3.1 Let f(s) satisfy (1.2),
∫ ∞

0
f(s)ds = 1, Ω satisfy (H) and

lim inf
s→∞

g(s) = C > 0.
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If

lim
s→∞

μ(s)f(s) = C0 > 0 (e.g. f(s) = e−s)

or

lim inf
s→∞

μ(s)f(s)/s = C1 > 0 (C1 � 2, e.g. f(s) = b(1 + s)−1−b, b > 0).

Then the function V (x, t) is an upper solution to problem (3.1) and exists for all t > 0.

In order to prove Theorem 3.1, we first derive a number of preliminary facts on d(x).

Lemma 3.2 Assume x0 = (x10, x20, . . . , xn0), Ωi = {x ∈ �n : |x − x0| < Ri}(i = 1, 2) and

R1 > R2. Let d(x) = dist(x, ∂Ω1), x ∈ Ω1 \ Ω2. Then Δd(x) = (1 − n)/(|x − x0|).

Lemma 3.3 Ω is a bounded domain satisfying (H). Then there exists ε > 0 such that

Δd � 0 for x ∈ Ωε.

Proof Here we only consider the case of n = 2. As for n = 1 or n � 3, the proof is

very similar. Divide ∂Ω into m parts and take m large enough such that the largest arc

is sufficiently small. Let A1, A2, . . . , Am be the division points. For any arc ÂiAi+1 (1 � i �
m − 1), choose C ∈ ÂiAi+1 such that |AiC| = |ĈAi+1|. By the definition of Ω, there exists

a circle Ω1 = {x ∈ R2 : |x − x0| < R1} such that Ω1 (Ω ⊂ Ω1) is tangent to Ω at the

point C . Take A′
i, A

′
i+1 ∈ ∂Ω1 such that the segments A′

ix0, A
′
i+1x0 intersect ∂Ω at Ai, Ai+1,

respectively. Since ÂiAi+1 is sufficiently small, we have ÂiAi+1 ∼ Â
′
iA

′
i+1. From Lemma 3.2,

there exists a constant ε
ÂiAi+1

> 0 such that

Δd(x) �
−1

2|x − x0| < 0, x ∈ {x ∈ Ω : d(x, ÂiAi+1) < ε
ÂiAi+1

}.

Set ε = min{ε
ÂiAi+1

, ε
Â1Am

, i = 1, 2, . . . , m − 1}. Then

Δd(x) � 0, x ∈ Ωε = {x ∈ Ω : d(x, ∂Ω) < ε} .

The proof is completed. �

Now we give the proof of Theorem 3.1.

Proof Case 1 : We assume f(s) to be such that lim infs→∞ g(s) > C > 0 and

lims→∞ μ(s)f(s) = C0 > 0. Then taking into account the relation (3.14), for d(x) � ε(t), we
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get

F(V ) ≡ Vt − ΔV − 2|∂Ω|2f(V )

(
∫
Ω
f(V )dx)2

� Ṁ(t) − 2|∂Ω|2f(M)(
|Ω \ Ωε|f(M) + ε|∂Ω|

√
2
μ

√∫ M

0 f(s)ds − ε2|∂Ω|KM
μ

)2

� Ṁ(t) − μ(M)f(M)

ε2
(

|Ω\Ωε|
√
μf(M)√

2ε|∂Ω| +
∫ M

0 f(s)ds − KεM√
2μ

)2

� Ṁ(t) − μ(M)f(M)

ε2
(

|Ω|√μf(M)

2
√

2ε|∂Ω| +
∫ M

0
f(s)ds − KεM√

2μ

)2
for ε(t) � 1.

Choosing K1 = (C0|Ω|)/(8K|∂Ω|) and ε(t) = (K1/M)1/2, we have 0 < ε(M) � 1 for

M � 1. Moreover, from (3.12), (3.13) and limM→∞ μ(M)f(M) = C0, we obtain

|Ω|√μf(M)

2
√

2ε|∂Ω|
+

∫ M

0

f(s)ds − KεM√
2μ

�
|Ω|√μf(M)

2
√

2ε|∂Ω|
+

∫ M

0

f(s)ds −
√

2K1K
√
μf(M)

C0ε

=
|Ω|√μf(M)

4
√

2ε|∂Ω|
+

∫ M

0

f(s)ds for M � 1.

Since

|Ω|√μf(M)

4
√

2ε|∂Ω|F(M)
=

|Ω|√μf(M)

4
√

2ε|∂Ω|
(
1 −

∫ M

0
f(s)ds

) �
|Ω|C

4
√

2ε|∂Ω|
> 1 for M � 1,

it implies that

|Ω|√μf(M)

4
√

2ε|∂Ω|
+

∫ M

0

f(s)ds > 1 for M � 1. (3.15)

Taking M(t) to satisfy

Ṁ(t) =
μ(M)f(M)

ε2(M)
, t > 0, (3.16)

we obtain

F(V ) > Ṁ(t) − μ(M)f(M)

ε2(M)
= 0 for d(x) � ε(t) (x ∈ Ω) and M � 1.

By integrating (3.16), we have ∫ M(t)

M(0)

ε2(s)

μ(s)f(s)
ds = t,
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and taking into account lims→∞ μ(s)f(s) = C0, we obtain

K1

1 + C0

∫ M(t)

M(0)

1

s
ds < t for M(0) � 1.

The last inequality implies that if M(t) → ∞ then t → ∞.

Also for 0 < d(x) � ε(t) (x ∈ Ω), we have

F(V ) ≡ wμ(y(x, t); μ(t))μ̇(t) +
dw(y(x, t); μ(t))

dy
ẏ(t) − Δw − 2|∂Ω|2f(w)

(
∫
Ω
f(V )dx)2

= wμ(y(x, t); μ(t))μ̇(t) − dw(y(x, t); μ(t))

dy

d(x)

ε2
ε̇(t)

−Δd

ε

dw

dy
+

μ

ε2
f(w) − 2|∂Ω|2f(w)

(
∫
Ω
f(V )dx)2

.

Since wμ > 0, μ̇(t) > 0, ε̇(t) < 0, dw/dy � 0 and Δd(x) � 0 for M � 1, we have

F(V ) �
μf(w)

ε2
− 2|∂Ω|2f(w)

(
∫
Ω
f(V )dx)2

�
μf(w)

ε2

⎛⎜⎝1 − 1(
|Ω|√μf(M)

4
√

2ε|∂Ω| +
∫ M

0
f(s)ds

)2

⎞⎟⎠ > 0 for M � 1.

Case 2 : Now let f be such that lim infs→∞ μ(s)f(s)/s = C1 > 0 (C1 � 2) and

lim infs→∞ g(s) > C > 0. For this case it is enough to consider ε(t) to be constant

such that Δd � 0 for x ∈ Ωε. Moreover, we choose ε to satisfy

|Ω \ Ωε|√
2ε|∂Ω|

−
√

2Kε

C1
>

1

C
.

For d(x) � ε (x ∈ Ω), we have

F(V ) � Ṁ(t) − 2|∂Ω|2f(M)(
|Ω \ Ωε|f(M) + ε|∂Ω|

√
2
μ

√∫ M

0 f(s)ds − ε2|∂Ω|KM
μ

)2

� Ṁ(t) − μ(M)f(M)

ε2
(

|Ω\Ωε|
√
μf(M)√

2ε|∂Ω| +
∫ M

0 f(s)ds − KεM√
2μ

)2

� Ṁ(t) − μ(M)f(M)

ε2
(

|Ω\Ωε|
√
μf(M)√

2ε|∂Ω| +
∫ M

0 f(s)ds −
√

2Kεf(M)
√
μ

C1

)2

� Ṁ(t) − f(M)μ(M)

ε2
(

f(M)
√
μ(M)

C
+

∫ M

0 f(s)ds
)2

for M � 1.
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Since

f(M)
√
μ(M)

CF(M)
=

f(M)
√
μ(M)

C
(
1 −

∫ M

0
f(s)ds

) >
1

C
C = 1,

it implies that

f(M)
√
μ(M)

C
+

∫ M

0

f(s)ds > 1.

Hence F(V ) > 0 for d(x) � ε and M � 1, provided that M(t) satisfies

Ṁ(t) =
μ(M)f(M)

ε2
, t > 0. (3.17)

By integrating (3.17), we have ∫ M(t)

M(0)

ε2

μ(s)f(s)
ds = t,

and taking into account (3.11) we obtain

ε2

2

∫ M(t)

M(0)

1

s
ds � t,

which implies that if M(t) → ∞ then t → ∞.

For 0 � d(x) � ε, we have

F(V ) ≡ wμ

(
y(x, t); μ(t)

)
μ̇(t) − Δd

ε

dw

dy
+

μ

ε2
f(w) − 2|∂Ω|2f(w)

(
∫
Ω
f(V )dx)2

�
μ(M)f(w)

ε2
− f(w)μ(M)

ε2
(

f(M)
√
μ(M)

C
+

∫ M

0 f(s)ds
)2

> 0 for M � 1.

Therefore, we finally get that, in each case, V (x, t) is an upper solution to problem (3.1)

for all t > 0. The proof is completed. �

Thus we formulate this main result of this section in the following theorem.

Theorem 3.4 If f(s) satisfies the hypotheses of Theorem 3.1, and Ω satisfies (H), then

u(x, t) is a global-in-time solution to problem (3.1) and u(x, t) → ∞ as t → ∞, i.e. u(x, t)

diverges globally in Ω.

4 Asymptotic behaviour of the blow-up solutions

In this section, we deal with the blow-up solutions of problem (1.1). We do calculations

similar to those for the one-dimensional case (see [11], and also [14]).

Theorem 4.1 Let f(s) satisfy (1.2),
∫ ∞

0 f(s)ds = 1, p = 2 and Ω satisfy (H). If λ > λ∗ =

2|∂Ω|2, the solution of the problem (1.1) blows up globally in finite time T .

https://doi.org/10.1017/S0956792509007803 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792509007803


Asymptotic behaviour for a non-local parabolic problem 259

Proof By Theorem 2.6, in the case of λ > λ∗ = 2|∂Ω|2 and
∫ ∞

0
f(s)ds = 1, there is no

steady solution to (2.2). Since λ(μ) < λ for any μ > 0, we can find an increasing lower

solution v(x, t) = w(x; μ(t)) with μ and v → ∞ for all x ∈ Ω as t → T � ∞. Thus u(x, t) is

globally unbounded. We shall show that T < ∞. Therefore, we look for a lower solution

V (x, t) which blows up at a finite time (V (x, t) satisfy (3.1)−(3.5)). From (3.5) and (3.7),

we have ∫
Ω

f(V )dx =

∫
Ω\Ωε

f(M)dx +

∫
Ωε

f(w)dx

� |Ω|f(M) + |∂Ω|
∫ 1

δ(t)

f(w(y((x1, 0
′), t); μ(t)))dx1

� |Ω|f(M) + |∂Ω|ε

√
2

μ
=

√
2|∂Ω|f(M)

(
|Ω|√
2|∂Ω|

+ α

)
,

on choosing α = ε/(
√
μf(M)), where α is a suitable chosen constant; in particular choose

α > |Ω|/(
√
λ −

√
2|∂Ω|) for λ > λ∗ = 2|∂Ω|2. Such an α gives

3Λ =
λ

(|Ω| +
√

2α|∂Ω|)2
− 1

α2
> 0.

From (3.12), we also note that with such a fixed α, ε → 0 as M → ∞. Integrating (3.8) on

(0, r), we get ∫ w

0

ds√
F(s) − F(M)

=

√
2μr

ε
=

√
2r

αf(M)
. (4.1)

For x ∈ Ω \ Ωε,

F(V ) = Ṁ − λf(M)

(
∫
Ω
f(V )dx)2

� Ṁ − λ

2|∂Ω|2f(M)
(

|Ω|√
2|∂Ω| + α

)2
� Ṁ − Λ

f(M)
� 0,

on choosing Ṁ � Λ/f(M).

For x ∈ Ωε, we first differentiate (4.1) with respect to t and get

wt = −f′(M)

f(M)
Ṁ(t)

√
F(w) − F(M)

∫ w

0

ds√
F(s) − F(M)

+
1

2
f(M)Ṁ(t)

√
F(w) − F(M)

∫ w

0

ds

(F(s) − F(M))3/2

:= A + B.

For A, from (3.10) we have

A = −f′(M)

f(M)
Ṁ(t)

√
F(w) − F(M)

∫ w

0

ds√
F(s) − F(M)

� − 2f′(M)

f3/2(M)
MṀ(t)f1/2(w) �

Λf(w)

f2(M)
,
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provided that

Ṁ(t) � − Λ

2Mf′(M)

and taking into account that f′(s) � 0 so that f(w)/f(M) � 1 for w � M. For B we have

B =
1

2
f(M)Ṁ(t)

√
F(w) − F(M)

∫ w

0

ds

(F(s) − F(M))3/2

�
f1/2(w)

f1/2(M)
Ṁ(t) �

Λf(w)

f2(M)
,

provided that

Ṁ(t) �
Λ

f(M)
.

Also, using (3.4) and (3.8), we have the estimate

−Δw = −wrΔd +
μ

ε2
f(w) � Kwr +

μ

ε2
f(w) (using |Δd| � K)

=
K

√
2μ

ε

√
F(w) − F(M) +

f(w)

α2f2(M)

�

√
2K

α

(Mf(M))1/2f(w)

f2(M)
+

f(w)

α2f2(M)

�
Λf(w)

f2(M)
+

f(w)

α2f2(M)
, for M � 1,

since Mf(M) → 0 as M → ∞. Thus for x ∈ Ωε if

0 � Ṁ(t) = min

{
Λ

f(M)
, − Λ

2Mf′(M)

}
, (4.2)

and using the previous estimate, we obtain

F(V ) = wt − Δw − λf(w)

(
∫
Ω
f(V )dx)2

= A + B − wrΔd +
μ

ε2
f(w) − λf(w)

(
∫
Ω
f(V )dx)2

�
3Λf(w)

f2(M)
+

f(w)

α2f2(M)
− λf(w)

2|∂Ω|2f2(M)
(

|Ω|√
2|∂Ω| + α

)2
= 0.

Also V (x, t) = u(x, t) = 0 on the boundary ∂Ω and taking V (x, 0) � u0(x), the function

V (x, t) is a lower solution to the problem (1.1). Hence u(x, t) � V (x, t) for M large enough

(after some time at which u(x, t) is sufficiently large if T = ∞).

Now we show that u(x, t) blows up in finite time. Indeed, from (4.2) we have

Λ
dt

dM
= max{f(M), −2Mf′(M)} � f(M) − 2Mf′(M) (f′(s) � 0)

https://doi.org/10.1017/S0956792509007803 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792509007803


Asymptotic behaviour for a non-local parabolic problem 261

or

Λt �

∫ M

(f(s) − 2sf′(s))ds < ∞,

since Mf(M) → 0 as M → ∞ and
∫ ∞

0
f(s)ds = 1. Hence V (x, t) blows up at t∗ < ∞, and

u(x, t) must blow up at T � t∗ < ∞.

The global blow-up is due to∫
Ω

f(u)dx → 0 as t → T .

Indeed,

Ṁ �
λf(M)

(
∫
Ω
f(u)dx)2

= h(t),

giving

M(t) − M(0) �

∫ t

0

h(s)ds → ∞ as t → T .

This implies
∫
Ω
f(u)dx → 0 as t → T since f(s) is bounded. Thus, for λ > λ∗ = 2|∂Ω|2,

u(x, t) blows up globally. The proof is completed. �

Now we examine the case p > 2 and we have:

Theorem 4.2 Let f(s) satisfy (1.2),
∫ ∞

0
f(s)ds = 1, p > 2 and Ω satisfy (H). Then there

exists a critical value λ∗ such that for λ > λ∗ or for any 0 < λ � λ∗ but with initial data

sufficiently large, the solution of the problem (1.1) blows up globally in finite time T .

Proof Using Theorem 2.6, we know that for λ > λ∗ or for any 0 < λ � λ∗ but with initial

data u0 more than the greater steady state u(x, t) is globally unbounded (see [11]). In

order to prove u(x, t) blows up in finite time T < ∞, we also look for a lower solution

V (x, t) to satisfy (3.1)−(3.5). Then∫
Ω

f(V )dx =

∫
Ω\Ωε

f(M)dx +

∫
Ωε

f(w)dx

� |Ω|f(M) + |∂Ω|
∫ 1

δ(t)

f(w(y((x1, 0
′), t); μ(t)))dx1

� |Ω|f(M) + |∂Ω|ε

√
2

μ
=

√
2|∂Ω|f(M)

(
|Ω|√
2|∂Ω|

+ 1

)
,

on choosing ε =
√
μf(M). From (3.12), we also note that ε → 0 as M → ∞.

For x ∈ Ω \ Ωε,

F(V ) = Ṁ − λf(M)

(
∫
Ω
f(V )dx)p

� Ṁ − λ

(
√

2|∂Ω|)pfp−1(M)
(

|Ω|√
2|∂Ω| + 1

)p

� Ṁ − 1

f(M)
� 0 for M � 1,
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on choosing Ṁ � 1/f(M) and taking into account p > 2 and f(M) → 0 as M → ∞.

For x ∈ Ωε, similar to the proof of Theorem 4.1, we have wt = A + B. For A, from

(3.10) we have

A = −f′(M)

f(M)
Ṁ(t)

√
F(w) − F(M)

∫ w

0

ds√
F(s) − F(M)

� − 2f′(M)

f3/2(M)
MṀ(t)f1/2(w) �

f(w)

f2(M)
,

provided that

Ṁ(t) � − 1

2Mf′(M)
.

For B we have

B =
1

2
f(M)Ṁ(t)

√
F(w) − F(M)

∫ w

0

ds

(F(s) − F(M))3/2

�
f

1
2 (w)

f
1
2 (M)

Ṁ(t) �
f(w)

f2(M)
,

provided that

Ṁ(t) �
1

f(M)
.

Also, using (3.4) and (3.8), we have the estimate

−Δw = −wrΔd +
μ

ε2
f(w) � Kwr +

μ

ε2
f(w) (using |Δd| � K)

=
K

√
2μ

ε

√
F(w) − F(M) +

f(w)

f2(M)

�
√

2K
(Mf(M))1/2f(w)

f2(M)
+

f(w)

f2(M)

�
2f(w)

f2(M)
, for M � 1,

since Mf(M) → 0 as M → ∞. Thus for x ∈ Ωε if

0 � Ṁ(t) = min

{
1

f(M)
, − 1

2Mf′(M)

}
,

and using the previous estimate, we obtain

F(V ) = wt − Δw − λf(w)

(
∫
Ω
f(V )dx)p

= A + B − wrΔd +
μ

ε2
f(w) − λf(w)

(
∫
Ω
f(V )dx)p

�
4f(w)

f2(M)
− λf(w)

(2|∂Ω|)pfp(M)
(

|Ω|√
2|∂Ω| + 1

)p � 0 for M � 1,

since p > 2 and f(M) → 0 as M → ∞.
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Also V (x, t) = u(x, t) = 0 on the boundary ∂Ω and taking V (x, 0) � u0(x), the function

V (x, t) is a lower solution to the problem (1.1). Hence u(x, t) � V (x, t) for M large enough

(after some time at which u is sufficiently large if T = ∞).

The rest of the proof is similar to that of Theorem 4.1. We omit it. �

We now consider the Dirichlet problem, in which we rewrite (1.1) as

ut = Δu + g(t)f(u), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

where g(t) = λ/(
∫
Ω
f(u)dx)p.

We seek a formal asymptotic approximation for u(x, t) near the blow-up time T , still

taking f to be decreasing and to satisfy
∫ ∞

0
f(s)ds = 1. Set M(t) = maxx∈Ω u(x, t).

As in [11], we obtain that limt→T g(t) = ∞ and u(x, t) ∼ M except in some boundary

layers near ∂Ω. In the main core (outer) region we neglect Δu, so

dM

dt
∼ g(t)f(M)

and significant contributions to the integral
∫
Ω
f(u)dx can come from the largest (core)

region which has volume ∼ |Ω| (contribution ∼ |Ω|f(M)) and from the boundary layers

where f is large, f(u) is O(1) where u(x, t) is O(1). If the boundary layers have volume

O(δ), for some small δ, then to obtain a balance involving Δu, either δ−2 = O(g) or

δ−2 = O((T − t)−1), whichever is the larger, see [11].

Supposing that g(t) � (T − t)−1 for t → T the contribution to the integral from the

boundary layer is O(δ) = O(
√
T − t), whereas∫

Ω

f(u)dx = O(g(t)−1/p) � (T − t)1/p �
√
T − t as t → T .

This suggests that the core dominates and∫
Ω

f(u)dx ∼ |Ω|f(M).

Then

g(t) ∼ λ

|Ω|pfp(M)
, f(M) ∼ 1

|Ω|

(
λ

g

)1/p

,

and
dM

dt
∼ g(t)f(M) ∼ 1

|Ω|λ
1/pg(p−1)/p � (T − t)(1−p)/p for t → T .

This would indicate that M is actually bounded as t → T , contradicting the occurrence

of blow-up.

Next we suppose that g(t) = O
(
(T − t)−1

)
for t → T . Since

|Ω|f(M) �

∫
Ω

f(u)dx =

(
λ

g

)1/p

,
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we must have f(M) � O((T − t)1/p). Again,

dM

dt
∼ g(t)f(M) � O

(
(T − t)(1−p)/p

)
,

which contradicts the assumption of blow-up. There remains only one possibility:

g(t) � (T − t)−1 for t → T .

The boundary layer has volume O(g(t)−1/2) �
√
T − t, where u(x, t) is O(1) and ut is

negligible compared to Δu. There has to be a balance between Δu and g(t)f(u), that is,

−Δu ∼ g(t)f(u).

Without loss of generality, we assume that the hyperplane {x ∈ �n : x1 = 1} is tangent

to Ω at y0 (y0 = (1, 0′)), and Ω lies in the half-space {x : x1 < 1}. Writing x1 = 1 − g−1/2y

(g−1/2y � 1) gives

−uyy(y, 0
′) ∼ f(u(y, 0′)), y > 0,

u(y, 0′) = 0, y = 0, (4.3)

u(y, 0′)) � 1 � uy(y, 0
′), y � 1.

Multiplying both sides of (4.3) by uy(y, 0
′) and integrating, we get

u2
y(y, 0

′) ∼ 2F(u(y, 0′)),

where F(u(y, 0′)) =
∫ ∞
u(y,0′) f(s)ds. Integrating again gives u(y, 0′) ∼ U(y), where

√
2y =

∫ U(y)

0

F−1/2(s)ds. (4.4)

Since y0 is arbitrary, it follows from (4.4) that the boundary layers contribute to a total

amount ∫
d(x,∂Ω)�y/

√
g

f(u)dx ∼ |∂Ω|
∫ 1

x1

f(u(x1, 0
′))dx1 ∼ |∂Ω|

√
g

∫ ∞

0

f(U(y))dy,

this is automatically of the correct size g(t) = λ/(
∫
Ω
f(u)dx)p. It should also be observed

that ∫ ∞

0

f(U(y))dy = U ′(0).

Now look at the following steady problem:

w′′ + μf(w) = 0, −1 < x < 1; w(±1) = 0.

Set M(μ) = max−1<x<1 w(x) = w(0) and x = 1 − y/
√
μ, then

d2w

dy2
+ f(w) = 0, w(0) = 0,

dw

dy
|y=√

μ = 0, w(
√
μ) = M.
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From Lemma 2.5 (in case of n = 1), we have

lim
μ→∞

− 1
√
μ

dw(1)

dx
=

√
2,

which implies that

lim
μ→∞

dw(0)

dy
=

√
2,

and it appears that the problem in limit for large μ is the same as the asymptotic problem

(4.3). Thus, ∫ ∞

0

f(U(y))dy = U ′(0) = lim
μ→∞

dw(0)

dy
=

√
2.

We deduce that the contribution to
∫
Ω
f(u)dx from the boundary layers ∼

√
2|∂Ω|/√

g.

Now ∫
Ω

f(u)dx ∼ |Ω|f(M) +
√

2|∂Ω|/√
g

and

g ∼ λ

(|Ω|f(M) +
√

2|∂Ω|/√
g)p

for t → T (g,M → ∞).

We see that

λ1/p ∼ g1/p(|Ω|f(M) +
√

2|∂Ω|/√
g) = |Ω|f(M)g1/p +

√
2|∂Ω|g(2−p)/(2p),

i.e.,

(i) If p = 2, then f(M) ∼
√
λ −

√
2|∂Ω|

|Ω|√g
.

(ii) If p > 2, then f(M) ∼ 1

|Ω|

(
λ

g

)1/p

.

Therefore, in the core region u(x, t) ∼ M, which satisfies

dM

dt
∼ g(t)f(M) ∼ Λ2

1

f(M)
if p = 2, (4.5)

where Λ1 = (
√
λ −

√
2|∂Ω|)/|Ω|, and

dM

dt
∼ g(t)f(M) ∼ Λ2

fp−1(M)
if p > 2, (4.6)

where Λ2 = λ/|Ω|p.

Remark 4.3 By (4.5) and (4.6), we obtain that the significant contributions to integral∫
Ω
f(u)dx come from the largest core region and the boundary layers where f is large if

p = 2, but the core dominates for p > 2.

Let us consider two examples.
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Example 1 Suppose f(s) is decreasing,
∫ ∞

0
f(s)ds = 1, f(s) ∼ B/s1+b as s → ∞ for some

positive constants b and B.

For p = 2,

dM

dt
∼ Λ2

1

f(M)
,

which implies

M ∼
(
bΛ2

1

B

)−1/b

(T − t)−1/b.

For p > 2,

dM

dt
∼ Λ2

fp−1(M)
,

which follows that

M ∼
(

(1 + b)(p − 1) − 1

Bp−1
Λ2

) 1
1−(1+b)(p−1)

(T − t)
1

1−(1+b)(p−1) .

Example 2 f(s) = e−s.

For p = 2,

dM

dt
∼ Λ2

1

e−M
,

which implies

M ∼ − ln(T − t) − 2 lnΛ1.

For p > 2,

dM

dt
∼ Λ2

e(1−p)M
,

that is,

M ∼ 1

1 − p
ln ((p − 1)Λ2) +

1

1 − p
ln(T − t).

5 Discussion

We have considered the multi-dimensional problem

ut = Δu +
λf(u)

(
∫
Ω
f(u)dx)p

, x ∈ Ω, t > 0,

with a homogeneous Dirichlet boundary condition, which arises, for example, in the

analytical study of phenomena associated with the occurrence of shear bands in metals

being deformed under high strain rates [2, 12], in modelling the phenomena of Ohmic

heating [1, 10, 11], in the investigation of the fully turbulent behaviour of a real flow, using

invariant measures for Euler equation [3], and in the theory of gravitational equilibrium

of polytropic stars [9].

We have seen that in a physically important case of p = 2 with Ω satisfying (H), the

critical value of λ for the non-local elliptic problem (2.1) is λ∗ = 2|∂Ω|2 in the sense that

there exists at least one solution of (2.1) for 0 < λ < λ∗ and no solution for λ � λ∗.
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This critical value was suggested but was not verified in [1, Theorem 2.2]. However, for

general domain without assumption (H), we are now unable to verify λ∗ = 2|∂Ω|2. Next,

we saw that for p = 2, the solution u of (1.1) is globally bounded if 0 < λ < λ∗, u is a

global-in-time solution and u → ∞ as t → ∞ for all x ∈ Ω if λ = λ∗ and u blows up

globally in finite time if λ > λ∗.

We also proved that for 0 < p � 2, u is globally bounded for any λ > 0. For p > 2,

which is also of practical significance, there exists a critical value λ∗ such that for λ > λ∗

or for any 0 < λ � λ∗ and u0(x) sufficiently large, u(x, t) blows up globally in finite time.

We obtained some formal asymptotic estimates for the local behaviour of u as it blows

up for p � 2.
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