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We consider the problem of routing incoming airplanes to two runways of an air-
port+ Due to air turbulence, the necessary separation time between two successive
landing operations depends on the type of airplane+ When viewed as a queuing
problem, this means that we have dependent service times+ The aim is to minimize
the waiting times of aircrafts+ We consider here a model in which arrivals form a
stochastic process and the decision-maker does not know anything about future
arrivals+We formulate this as a problem of stochastic dynamic programming and
investigate the monotonicity of optimal routing strategies with respect to the work-
load of the runways, for example+ We show that an optimal strategy is monotone
~i+e+, of switching type! only in a restricted case where decisions depend on the
state of the runways only and not on the type of the arriving aircraft+ Surprisingly,
in the more realistic case where this type is also known to the decision-maker,
monotonicity need not hold+

1. INTRODUCTION

In modern air traffic, the efficient use of the available runway capacity is of grow-
ing importance, at least for major airports+ Airplanes are often queued when wait-
ing for a free runway on which to land+ While queuing and during the landing
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operations, the airplanes have to keep a large enough distance between each other
to avoid air turbulence from aircrafts flying ahead+ These separation times depend
on the weight~more generally, type! of the airplanes involved+ Typically, the nec-
essary separation between a light aircraft trailing a heavy one will be larger than
between the same types if the light one is flying in front+ Hence, one can expect to
increase the throughput of the runways by an efficient routing of arriving airplanes
to runways+

The general problem is quite involved, as many side constraints and airport
specific rules have to be considered+We restrict ourselves to a particular scenario,
which can be viewed as a step toward more realistic models that we cannot analyze
completely at present+

First, we assume that the arrival times of the aircrafts form a stochastic renewal
process+ This is in accordance with, for example, @6,8# + There, it is assumed that the
scheduled arrival times are highly disturbed~e+g+, by varying flight conditions, delays
on connecting flights, or technical problems! such that, in practice, the arrival times
might well be approximated by a Poisson process+

We further assume that the routing decision has to be made at the arrival instance
of the airplane at the airport~or at a certain threshold!+ The decision-maker might
use information on the state of the runways and the type of the presently arriving
aircraft but does not know anything about future arrivals+ Once an aircraft has been
assigned to a runway, it must stay in the queue of that runway+ The queues are
served on a first-come first-served basis+ The aim is to find a rule that assigns an
incoming aircraft to a runway given the state of the system and the type of arriving
aircraft, such that the long-term expected waiting times are minimized+

We formulate a stochastic dynamic programming model for this problem with
the total expected discounted waiting time of the aircrafts as the target function+We
investigate monotonicity properties of optimal routing strategies~policies! in this
model+ Monotonicity here means, for example, that when the observed workloadu
on runway I increases while everything else is kept fixed, then an assignment of an
arriving plane to runway I will only be made foru up to a certain levell+ Foru . l,
the aircraft will then be assigned to runway II+ Such policies are also called “switch-
ing policies,” as they are completely determined by switching levelsl+ This will be
made more precise by defining a partial order on the state space of the dynamic
programming model and by proving monotonicity of optimal routing policies with
respect to this ordering+

The following are our main findings:Optimal policies are monotone only if we
restrict ourselves to decisions that depend solely on the state of the runway and not
on the type of the presently arriving aircraft+ This result also yields conditions under
which a simple join-the-least-load strategy~JLL! is optimal+We give a rough bound
on the error made when using JLL in the general case, where it is not optimal+
Surprisingly, monotonicity with respect to workloads need not hold in the more
realistic model, where decisions might depend on the state of the runways as well
as on the type of the arriving airplane+ We show by a counterexample based on
realistic data that, in this case, it might be optimal to route to runway II for a small
workloadu on runway I and to route to runway I for a larger workloadu'+ This
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somewhat unexpected result could be explained by the fact that in the first restricted
case, we use a cost function~see definition~3+5!! where the dependency of waiting
times from the next arriving aircraft is “averaged out,” whereas in the second case,
we use as cost function the actual waiting time~see~6+2!!, leading to a more sen-
sitive criterion+

The proof of the main monotonicity result is based on the approach in@1# +
Nevertheless, our model does not fit into the framework of@1# +We had to change
the conditions at a minute but decisive point and to prove that the main assertions
of @1# still hold under the modified assumptions+

Optimal routing of airplanes has been treated, for example, in @3# , where also
a survey over different approaches is given+ Deterministic models as in@3# often
assume that a set of airplanes to be scheduled and routed is given+ This allows one
to take into account more than one arrival, and optimal schedules for a whole set of
aircrafts are obtained by mixed linear optimization+ The stochastic queuing models
in @6,8# do not take into account the dependency of the separation times from the
two types involved+ In @2# ,M0SM01 queuing models are used to deal with this depen-
dency+ In a somewhat complementary way to the present article, strategies that use
only the type of the arriving aircrafts are considered+ There, it is also shown that
neglecting the dependencies might lead to a strongly biased estimation of waiting
times under heavy traffic+ The general literature on the routing of parallel queues
~see, e+g+, @12# or @7# ! seems to be restricted to the case of independent service
times only+ Queues with dependent service times are treated, for example, in @9# ,
but without any reference to routing+

The article is organized as follows+ In Section 2, we collect a few results from
stochastic dynamic programming—in particular, about the optimality equations and
value iteration+ In Section 3, we use the dynamic programming framework to for-
malize the restricted model, where decisions depend on the state of the runways
alone+ Here, we also define the load of a runway and the ordering of the state space
and give the main monotonicity results+ We start with this restricted model, as it
takes most of the article to prove these results+ The rather technical proof is given
in Section 7+ A number of corollaries about JLL policies are collected in Section 5+
The model of Section 3 is then enlarged in Section 6 to include the type of arriving
airplane and a counterexample shows that the monotonicity property no longer holds+
In Section 8, we address the potential benefit of our results for the practical solution
of the problem and topics of our future research+

2. A DYNAMIC PROGRAMMING MODEL

We will first collect a few definitions and results from Markovian dynamic pro-
gramming~see, e+g+, @4,10,11# for a general discussion of dynamic programming!+
Here, we present only a simple type of dynamic programming model sufficient to
cover the aircraft routing problem formulated in Section 3+

The model describes a system that is observed at discrete points of time~stages!
n 5 1,2, + + + + At each stage, the system is observed to be in astate s[ S+ Then, an
action a[ A is taken and the system moves to a new states'5 g~s,a, z! [ S to be
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observed at the next stage+Here, z[ Z is anexternal event~disturbance! andg :S3
A 3 Z r S is thestate transition function+ The state–action pair~s,a! causes costs
c~s,a!, wherec :S3 A r R1 is thecost function+ Let ~Zn!n$1 be an independent
and identically distributed~i+i+d+! sequence of external random variables with val-
ues inZ and with a known distribution+

We will leave aside questions of measurability and assume, in particular, that
the action spaceA is finite+

If we observe the system for a finite numberN of stages~ finite-horizon case!,
actions are chosen according to a policyd 5 ~ fN , + + + , f1!, wherefn :Sr A is the
decision rule for the~N 2 n 1 1!st stage+ The reverse numbering of the decision
rules simplifies the description of the induction below+ Given a starting stateX1 5 s
from S and a policyd, the sequence of statesX2, + + + ,XN is then defined recur-
sively by

Xn11 :5 g~Xn, fN2n11~Xn!,Zn!, 1 # n # N 2 1+ (2.1)

With An :5 fN2n11~Xn!, for a measurable setB , S, we obtain the simple Marko-
vian dependency

P@Xn11 [ B6X1, + + + ,Xn 5 s,A1, + + + ,An 5 a# 5 P~g~s,a,Z1! [ B!+ (2.2)

The total expected discounted costs for policyd 5 ~ fN , + + + , f1! and starting state
s [ Sare given by

VN, d~s! :5 EF(
k51

N

bk21c~Xk,Ak!6X1 5 sG, (2.3)

whereb [ ~0,1# is a givendiscount factor+As our cost function is nonnegative and
the action space is finite, it is well known ~see, e+g+, @11# ! that an optimal policy
exists; that is, a policyd *, with

VN ~s! :5 VN, d* ~s! 5 min
d

VN,d~s! for all s [ S+ (2.4)

In fact, the min can be taken over a much larger class of policies than defined above+
For ~measurable! functionsw :Sr R1, we define the one-stage cost operatorL by

Law~s! :5 c~s,a! 1 b E@w~X2!6X1 5 s,A1 5 a#

5 c~s,a! 1 b Ew~g~s,a,Z1!!+ (2.5)

Problem~2+4! can be solved recursively with the help of the so-called optimality
equation for dynamic programs, which in the finite-horizon case reads

Vn~s! 5 min
a[A

LaVn21~s! for all s [ S, 1 # n # N+ (2.6)

We assume throughout thatV0 [ 0+ A policy d * 5 ~ fN
*, + + + , f1*! is optimal iff fn

*~s!
selects a minimizing action in~2+6! for s [ S,1 # n # N ~see, e+g+, @11, Cor+ 6+2# !+

536 N. Bäuerle, O. Engelhardt-Funke, and M. Kolonko

https://doi.org/10.1017/S0269964804184088 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964804184088


In the infinite-horizon case, we only consider stationary policiesd 5 ~ fn!n$1

with fn [ f, n $ 1, and we writed 5 f for short+With Ak 5 f ~Xk!, k $ 1, we define
the total expected discounted costs by

Vd~s! :5 EF(
k51

`

bk21c~Xk,Ak!6X1 5 sG + (2.7)

Again, d * is called optimal if

V~s! :5 Vd* ~s! 5 min
d

Vd~s!, s [ S+ (2.8)

It is shown in@11# that there exists an optimal stationary policy that can be obtained
from the infinite-horizon optimality equation

V~s! 5 min
a[A

LaV~s!, s [ S+ (2.9)

f * forms an optimal stationary policy ifff *~{! is a minimizer of~2+9!+ Moreover,
value iteration holds; that is,

lim
Nr`

VN ~s! 5 V~s!, s [ S+ (2.10)

For the remainder of the article, we use~2+6! to derive properties for the finite-
horizon case with arbitrary horizonN using inductive arguments+ These properties
then carry over to the infinite horizon case using~2+10!+

3. OPTIMAL AIRCRAFT ROUTING AS DYNAMIC
PROGRAMMING PROBLEM

We will now specify the elements of the dynamic programming model such that we
can deal with the problem of optimal aircraft routing+

We start with the external eventsZn+ Let Sn, n $ 1, denote the arrival times of
airplanes at the airport+We assume that theinterarrival times Tn :5 Sn 2 Sn21 $ 0
for n $ 1, with S0 :5 0 are i+i+d+; that is, the arrivals form a renewal process with
some distributionF+ Let J be the finite set of possibletypesof airplane and denote
by Jn the type of thenth arriving plane+We assume that theJn, n $ 1, are i+i+d+ and
independent of the arrival process, with

pi :5 P~Jn 5 i !, i [ J+

Then,

Zn :5 ~Jn,Tn11!, n $ 1, (3.1)

taking on values inZ :5 J 3 R1, describes the type of thenth arriving aircraft and
the following interarrival time+ ~Zn!n$1 is an i+i+d+ sequence; it is the external source
of randomness in our model+

We assume that if an aircraft of typej is to land immediately behind an aircraft
of type i on the same runway, then there must be a safety distance given assepa-
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ration time b~i, j ! $ 0, i, j [ J+ This means that the beginning of the two landing
operations~touchdowns! must beb~i, j ! time units apart+

In our model, routing decisions have to be made at the arrival instancesSn

of airplanes which define our decision epochs+ Let A :5 $I,II %, where actiona 5 I
~a 5 II ! means routing the present airplane to runway I~II !+ Once an airplane has
been routed to a queue, it has to wait there for its service+ The queues work on a
first-come first-served basis+

To define the “state” of our system, we first consider a single runway, say run-
way I+ Of course, things are completely analogous on runway II+ Let zn

I denote the
type of airplane that is at the tail of the queue of runway I immediately before the
nth arrival takes place+ If queue I is empty at that time, thenzn

I is the type of the last
airplane that landed on I+With z1

I :5 i0 ~an arbitrary type!, the formal definition of
zn

I is

zn11
I :5 HJn if Zn 5 ~Jn,Tn11! andAn 5 I

zn
I if An 5 II ,

n $ 1+ (3.2)

For n $ 2, zn
I is the type of plane that thenth plane will see as its predecessor if it

is routed to runway I+ Note that the indexn counts arrivals to the airport, not to the
particular runway+

Let Un
I denote theworkloadon runway I immediately before the arrival of the

nth airplane+ Un
I is the time that the last plane at the tail of the queue has to wait

until the beginning of its landing operation+ If the queue is empty at that time,
thenUn

I , 0 denotes the time that has passed since the last plane began its landing
on runway I+

Let b* :5 maxi, j[J b~i, j !+With U1
I :5 2b*, the formal definition of the work-

load is given by

Un11
I :5 H@Un

I 1 b~zn
I , Jn!#1 2 Tn11 if Zn 5 ~Jn,Tn11! andAn 5 I

Un
I 2 Tn11 if Zn 5 ~Jn,Tn11! andAn 5 II ,

n $ 1+

(3.3)

Note that

@Un
I 1 b~zn

I , Jn!#1

is the waiting time of thenth plane if it is routed to I+ Here, b~zn
I , Jn! can be re-

garded as the service time of this plane+ The definitions ofz1
I andU1

I guarantee that
the first aircrafts on each runway have waiting time 0+ In Figure 3+1 the load on
runwaya is shown at the arrival instance of thenth aircraft of typej4 when two
aircrafts of typesj 2 andj3 are already waiting+ The black triangles indicate the time
at which the landing operation of the aircraft begins+ Typej1 has already landed, but
j 2 still has to wait+

The state of runway I at the arrival instance of thenth plane is the pair
~zn

I ,Un
I ! taking on values inJ 3 R+ Note that it is possible to bound the workload
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from below, as we need not keep track of negative loads that are larger thanb* 5
maxi, j[J b~i, j !+

The state of the second runway is defined in a completely analogous way and
thestate of the systemat thenth arrival instance is then defined as

Xn :5 ~zn
I ,Un

I ,zn
II ,Un

II !,

taking on values in thestate space S:5 J 3 R 3 J 3 R+
Note that, in this model, the presently arriving typeJn is not part of the state but

part of the external eventZn 5 ~Jn,Tn11! that drives the system+ This follows from
our particular restriction that the typeJn is not known to the decision-maker+ In
Section 6, in the case whereJn is known, we will use ~Jn11,Tn11! as the external
event driving the system+

From ~3+2! and~3+3!, we now see how the state transition functiong :S3 A 3
Z r Smust be defined+ For s5 ~i,u, j, v! [ S,a [ A, andz5 ~l, t ! [ Z, let

g~~i,u, j, v!,a, ~l, t !! :5 H~l, @u 1 b~i, l !#1 2 t, j, v2 t ! if a 5 I

~i,u 2 t, l, @v1 b~ j, l !#1 2 t ! if a 5 II +
(3.4)

As one-stage cost function c:S3 A r R1 we define fors5 ~i,u, j, v! [ S,

c~s,a! :5 5 (
j '[J

pj ' @u 1 b~i, j ' !#1 if a 5 I

(
j '[J

pj ' @v1 b~ j, j ' !#1 if a 5 II +
(3.5)

If we denote by

Wn :5 @Un
An 1 b~zn

An, Jn!#1

the waiting time of thenth airplane, then we have

c~s,a! 5 E@Wn6Xn 5 s, An 5 a# +

Figure 3.1. The load on runwaya when aircrafts of typesj1, + + + , j4 are present+
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Note thatc~~i,u, j, v!,a! depends only on the state of runwaya @e+g+, on ~i,u! for
a 5 I# + The total discounted expected costs now read

VN, d~s! 5 EF(
k51

N

bk21c~Xk,Ak!6X1 5 sG
5 EF(

k51

N

bk21 @Un
An 1 b~zn

An, Jn!#1 6X1 5 sG (3.6)

and similarly for the infinite horizon+ Starting in an empty system means to have
X1 5 s0 :5 ~i0,2b*, i0,2b*!+ As we have only two actions, the optimality equations
~2+6! and~2+9! have a particularly simple structure:

Vn~s! 5 min$LIVn21~s!, LII Vn21~s!% and V~s! 5 min$LIV~s!, LII V~s!%+

(3.7)

Also, ~2+5! becomes

LI w~s! 5 c~s, I! 1 bEw~g~s, I,Z1!!

5 (
l[J

plS@u 1 b~i, l !#1 1 bE
0

`

w~~l, @u 1 b~i, l !#1 2 t, j, v2 t !!F~dt!D,
whereF is the distribution of the interarrival times+

4. MONOTONICITY PROPERTIES OF OPTIMAL POLICIES

In this section, we show that optimal routing policies are monotone with respect to
a particular~partial! ordering of the state space+As usual, “increasing” and “decreas-
ing” are used in the nonstrict sense+

Let us first define a partial ordering on the set of typesJ+ For i, j [ J, define

i aJ j :m b~i, k! # b~ j, k! for all k [ J+ (4.1)

In the aircraft setting, i aJ j could indicate thatj is a heavier plane that requires
more separation thani+ We do not make any assumptions on the ordering of the
separation times; hence, in the extreme case, it could happen thati aJ j only holds
for i 5 j+

Now, let s5 ~i,u, j, v! and Ss5 ~ Ni, Su, Nj, Sv! [ S; then, we define

s a Ss :m i aJ Ni, u # Su, j sJ Nj, v$ Sv+ (4.2)

If s a Ss holds, then, in state Ss, the load on runway I is at least as high as in states,
and at its tail, there is an aircraft that requires at least as much separation time as in
s+ For runway II, the opposite relation holds+ Hence, the balance of the two queues
is more favorable for I in states than it is in Ss+

A function f :S r M, where ~M, #! is a ~partially! ordered set, is called
s-increasingif sa Ss impliesf ~s! # f ~ Ss!+ For fn :Sr A, we define the order “#” on
A by I # II + Note thatf :Sr R is s-increasing if and only if
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u, i ° f ~i,u, j, v! are increasing for fixedj andv

and

v, j ° f ~i,u, j, v! are decreasing for fixedi andu+

(4.3)

Here, monotonicity ini and j is defined w+r+t+ the ordering~4+1!, whereas mono-
tonicity in u andv is w+r+t+ the usual ordering onR+

The following theorem is the main result of this section+ It shows that optimal
policies are monotone w+r+t+ to the ordering~4+2! of the state space+ Some implica-
tions are described below+

Theorem 4.1:

(a) ( finite-horizon case) For any horizon N, there is an optimal policyd 5
~ fN , + + + , f1! such that s° fn~s! is s-increasing for n5 1, + + + ,N.

(b) (infinite-horizon case) There is an optimal stationary policyd 5 f such that
s ° f ~s! is s-increasing.

In fact, any optimal policy is monotone in this sense if we agree to choose the
smaller action I in cases where both actions are minimizing the optimality equa-
tions+ Theorem 4+1 states that if it is optimal to route the next airplane to runway II
in a states5 ~i,u, j, v!, then we should do the same in all statesSs with s a Ss+

Note thatfn is s-increasing if and only if there exists a “level” functionl n : J2 3
R r R with i ° l n~i, j, v! decreasing andj, v ° l n~i, j, v! increasing such that for
s5 ~i,u, j, v! [ S,

fn~s! 5 HI if u , l n~i, j, v!

II if u . ln~i, j, v!
(4.4)

~for the “only if” part, put l n~i, j, v! :5 inf $u6 fn~i,u, j, v! 5 II %!+ In this sense, an
s-increasing policy is a “switching policy+”

The proof of Theorem 4+1 is quite lengthy and only its main steps are given
here; the remainder is split into several technical lemmata given in Section 7+

Proof:

~a! For the finite-horizon case, define

Dn~s! :5 LIVn~s! 2 LIIVn~s!, n $ 1+

From the optimality equation~2+6!, it follows that ~ fN , fN21, + + + , f1!, with

fn~s! :5 HI if Dn21~s! # 0

II if Dn21~s! . 0,
1 # n # N,
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forms an optimal policy for theN-stage problem+ In Lemma 7+3, it is shown
thats° Dn~s! is s-increasing; hence, it follows thats° fn~s! is s-increasing
as well+

~b! For the infinite horizon, we conclude from the value iteration~2+10! that if
s ° Dn~s! is s-increasing for alln $ 1, then

D~s! :5 LIV~s! 2 LIIV~s! 5 lim
nr`

Dn~s!

is an s-increasing function, too+ Here, limnr`LIVn 5 LIV is shown in@11,
Thm+ 4+4# + Now, part ~b! follows as in part~a!+ n

5. WHEN IS JOIN-THE-LEAST-LOAD OPTIMAL?

A natural simple policy would be to route the next arriving airplane to the runway
with the least load; that is, for s5 ~i,u, j, v!, to decide according toNd 5 ~ NfN , + + + , Nf1!,
where

Nfn~s! :5 Nf ~s! :5 HI if u # v

II if u . v+
(5.1)

However, due to the structure of the service timesb~i, j !, one cannot expect this
policy to be optimal in general+We now examine some special cases where JLL is
optimal+ First, we state a simple consequence of the symmetry of the two runways+

Lemma 5.1: Let s:5 ~i,u, j, v! [ S and Ss :5 ~ j, v, i,u!; then, we have

Vn~s! 5 Vn~ Ss! for all n $ 1 and V~s! 5 V~ Ss!.

For finite and infinite horizon it holds that action I is optimal in state s iff action II
is optimal in state Ss.

Proof: From ~3+5!, we see thatc~s, I! 5 c~ Ss, II !+ Starting withV0 [ 0, we obtain
inductively, using~3+4!,

L IVn21~s! 5 c~s, I! 1 bEVn21~g~s, I,Z1!!

5 c~ Ss, II ! 1 bEVn21~g~ Ss, II ,Z1!! 5 L II Vn21~ Ss!;

hence,

Vn~s! 5 max$LIVn21~s!, LII Vn21~s!% 5 max$LII Vn21~ Ss!, LIVn21~ Ss!% 5 Vn~ Ss!

and

L IVn21~s! # LII Vn21~s! m LII Vn21~ Ss! # L IVn21~ Ss!+

The corresponding results for the infinite horizon follow from~2+10! and~2+9!+ n
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The following theorem is a direct consequence of Theorem 4+1 and the sym-
metry of the runways+ It shows, in particular, that it is optimal to use JLL in states
where both runways have identical types waiting at their tails+ Note that we use the
ordering defined by~4+1! on the setJ of types+

Theorem 5.2:

(a) Let s5 ~i,u, j, v! [ S+ If u # v and i aJ j, then it is optimal to use action I,
and if u$ v and i sJ j, then it is optimal to use action II.

(b) For any state s5 ~i,u, i, v! [ S, it is optimal to choose a5 I if and only if
u # v.

(c) For any state s5 ~i,u, j,u! [ S, it is optimal to choose a5 I if i aJ j and
a 5 II if j aJ i.

These statements hold for the finite-horizon as well as for the infinite-horizon
problem.

Proof: ~a! Let Ss :5 ~ j, v, i,u!; then, using Lemma 5+1, we have

Dn~s! 5 LIVn~s! 2 LII Vn~s! 5 LII Vn~ Ss! 2 LIVn~ Ss! 5 2Dn~ Ss!+ (5.2)

The assumptionsu # v and i aJ j imply s a Ss, and from Lemma 7+3, we obtain
Dn~s! # Dn~ Ss! 5 2Dn~s!+ Hence, Dn~s! # 0 ~i+e+, action I is optimal!+An analogous
argument holds for the infinite-horizon case+ The assertion concerning action II
follows from symmetry+

Parts~b! and~c! follow from part ~a!+ n

A degenerate special case is obtained if the separation times do not depend on
the leading aircraft@i+e+, b~i, j ! [ d~ j ! for all i, j [ J# + In this situation, it is unnec-
essary to keep track of the type of the last airplanes on the runways and the state
space of the problem could be reduced to the load~u, v! on the two runways+ Theo-
rem 4+1 then implies that the JLL policyNd is optimal+

Corollary 5.3: If b~i, j ! [ d~ j ! for all i , j [ J, then it is always optimal to route
the next airplane to the runway with least load ( for finite as well as infinite
horizons).

Proof: We have for alli, j [ J,

i aJ j m ∀k [ J b~i, k! 5 d~k! # b~ j, k! 5 d~k!;

hence, all types inJ are equal with respect to the ordering given by~4+1!+ However,
then the assertion follows from Theorem 5+2b+ n
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Finally, we give a crude error bound on how much the waiting times under
policy JLL can deviate from the optimum in the general model+ With b* 5
maxi, j[J b~i, j ! as earlier andb* :5 mini, j[J b~i, j !, let

OB :5 b* 2 b*

be the span of separation times+

Theorem 5.4: Let Nd be the JLL policy as defined in (5.1). For all s[ S, it holds
that

0 # VN Nd~s! 2 VN ~s! # OB (
k51

N21

bkk, (5.3)

and for the infinite horizon andb , 1,

0 # V Nd~s! 2 V~s! # OB
b

~12 b!2 + (5.4)

For the proof, we have to consider auxiliary systems with the only difference
being modified separation timesZb~i, j !+ Note that, in these systems, we not only
have a different cost function[c~s,a! ~related to the separation times as given by
~3+5!! but also a different transition function[g and a different state process

ZXn 5 ~ Zzn
I , ZUn

I , Zzn
II , ZUn

II !+

The value functions for the modified system are denoted byZVn~s! and so on+

Lemma 5.5:

(a) Let Zb~i, j ! # b~i, j ! for all i , j [ J; then, for any s[ S, we have

ZVN ~s! # VN ~s!, N $ 1 and ZV~s! # V~s!+

(b) Let Zb~i, j ! :5 b*; then, we have for the JLL policyNd with b , 1,

0 # ZVN Nd~s! 2 VN Nd~s! # OB (
k51

N21

bkk, N $ 1

0 # ZV Nd~s! 2 V Nd~s! # OB
b

~12 b!2 +

Proof: ~a! The proof is done by induction onN+ For N 5 0, the statement is triv-
ially true+ Now, suppose it holds forn [ N; that is, ZVn~s! # Vn~s! is valid for all
s [ S+We know that

Vn11~s! 5 min$LIVn~s!, LII Vn~s!%
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and similarly for ZV+ From our assumptions and the induction hypothesis, we obtain
~note thats ° Vn~s! is obviously increasing inu andv, which can be shown by
induction!

LI ZVn~s! 5 [c~s, I! 1 bE@ ZVn~ [g~s, I,Z1!!#

# c~s, I! 1 bE@ ZVn~g~s, I,Z1!!#

# c~s, I! 1 bE@Vn~g~s, I,Z1!!#

5 L IVn~s!

and similarlyLII ZVn~s! # LII Vn~s!, which implies the result+
~b! Let Ak and ZAk be thekth action under the JLL policy in the original model

and in the hat model+ Note that we may haveAk Þ ZAk and that

Uk
Ak 5 min$Uk

I ,Uk
II % and ZUk

ZAk 5 min$ ZUk
I , ZUk

II %+

We first prove

min$Uk
I ,Uk

II % # min$ ZUk
I , ZUk

II % and max$Uk
I ,Uk

II % # max$ ZUk
I , ZUk

II %+ (5.5)

Again, for k 5 1, nothing has to be shown+ Now, assume that~5+5! holds for some
k, we have

min$Uk11
I ,Uk11

II %

5 min$@min$Uk
I ,Uk

II % 1 b~zk
Ak, Jk!#1 2 Tk11, max$Uk

I ,Uk
II % 2 Tk11%

# min$@min$ ZUk
I , ZUk

II % 1 b* #1 2 Tk11, max$ ZUk
I , ZUk

II % 2 Tk11%

5 min$ ZUk11
I , ZUk11

II %+ (5.6)

We see that~5+6! also holds if the outer min is replaced by max; hence, ~5+5! is
proven+ From this, we obtain for allk,

c~Xk,Ak! 5 (
j[J

pj @min$Uk
I ,Uk

II % 1 b~zk
Ak, Jk!#1

# (
j[J

pj @min$ ZUk
I , ZUk

II % 1 b* #1

5 [c~ ZXk, ZAk!, (5.7)

which, in turn, implies

VN, Nd~s! # ZVN, Nd~s!+ (5.8)

To complete the proof of part~b!, we have to show that

ZVN, Nd~s! # VN, Nd~s! 1 OB (
k51

N21

bkk+ (5.9)
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Similar to ~5+6!, we first show that

min$ ZUk
I , ZUk

II % # min$Uk
I ,Uk

II % 1 ~k 2 1! OB,

max$ ZUk
I , ZUk

II % # max$Uk
I ,Uk

II % 1 ~k 2 1! OB
(5.10)

which, as in~5+7!, implies

[c~ ZXk, ZAk! # c~Xk,Ak! 1 ~k 2 1! OB, (5.11)

and, hence, ~5+9! follows+ To prove~5+10!, we first observe that fork 5 1, nothing
has to be shown+ Now, assume~5+10! holds for somek; then,

min$ ZUk11
I , ZUk11

II %

5 min$@min$ ZUk
I , ZUk

II % 1 b* #1 2 Tk11, max$ ZUk
I , ZUk

II % 2 Tk11%

# min$@min$Uk
I ,Uk

II % 1 ~k 2 1! OB 1 b* #1 2 Tk11, max$Uk
I ,Uk

II %

1 ~k 2 1! OB 2 Tk11%

5 min$@min$Uk
I ,Uk

II % 1 b~zk
Ak, Jk! 1 ~k 2 1! OB 1 b* 2 b~zk

Ak, Jk!#1 2 Tk11,

max$Uk
I ,Uk

II % 1 ~k 2 1! OB 2 Tk11%

# min$@min$Uk
I ,Uk

II % 1 b~zk
Ak, Jk! 1 k OB#1 2 Tk11, max$Uk

I ,Uk
II %

1 k OB 2 Tk11%

# min$@min$Uk
I ,Uk

II % 1 b~zk
Ak, Jk!#1 2 Tk11, max$Uk

I ,Uk
II % 2 Tk11% 1 k OB

5 min$Uk11
I ,Uk11

II % 1 k OB+

Again, the same inequalities hold when the outer min is replaced by max+ Hence,
~5+10! holds and the proof of the lemma is complete for finite horizons+ The infinite-
horizon case again follows from~2+10!+ n

For theproofof Theorem 5+4,we consider first an auxiliary system withZb~i, j ! :5
b*5 mini, j[J b~i, j ! whose value function will be denoted by*VN~s!+ Similarly, the
system with Zb~i, j ! [ b* has value function*VN~s!+ From Corollary 5+3, we know
that JLL is optimal in these systems; hence, from Lemma 5+5, we see

*VN Nd~s! 5 *VN ~s! # VN ~s! # VN Nd~s! # *VN Nd~s!+ (5.12)

Now, we apply Lemma 5+5b to the two value functions*VN Nd and *VN Nd with fixed
separation times+We obtain

*VN Nd~s! 2 *VN Nd~s! # OB (
k51

N21

kbk, (5.13)

which, together with~5+12!, implies the assertion of Theorem 5+4 for the finite hori-
zon; the infinite-horizon case again follows from~2+10!+
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6. THE CASE OF COMPLETE INFORMATION: A COUNTEREXAMPLE

In this section, we assume that the controller knows the type of the airplane that has
to be routed, in addition to the state of the runways+ In this case, the control prob-
lem is much more complicated+ A simple switching policy as in Section 4 need not
be optimal any longer, as we will show by a counterexample+

6.1. The Model

To model the new situation, the type of the newly arrived airplane is now included
in the state space; that is, we put

FXn :5 ~Jn,zn
I ,Un

I ,zn
II ,Un

II ! and DS :5 J 3 ~J 3 R! 3 ~J 3 R!,

where a stateIs [ DS is denoted by Is 5 ~k, i,u, j, v!+ k gives the type of the newly
arrived airplane andi, u, j, andv are as earlier+As in Section 3, we have an external
eventz 5 ~l, t !, but now l is the type of the airplane to arrive after thenext inter-
arrival timet @i+e+, Zn 5 ~Jn11,Tn11!# + Using the notation of Section 3, we can write
the transition functionIg : DS3 A 3 Z r DS for Is5 ~k, i,u, j, v! andz5 ~l, t ! as

Ig~ Is,a, z! :5 H~l, k, @u 1 b~i, k!#1 2 t, j, v2 t ! if a 5 I

~l, i, u 2 t, k, @v1 b~ j, k!#1 2 t ! if a 5 II +
(6.1)

For the cost functionIc~s,a!, we now take the~deterministic! waiting time of the
newly arrived airplane when routed to runwaya; that is,

Ic~ Is, I! :5 @u 1 b~i, k!#1,

Ic~ Is, II ! :5 @v1 b~ j, k!#1+
(6.2)

As in the model of Section 3, the optimality equation of the finite-horizon dynamic
program is given by

FVn11~ Is! 5 min
a[A

ELa FVn~ Is! 5 min$ ELI FVn~ Is!, ELII FVn~ Is!%,

where for Is5 ~k, i,u, j, v! andw : DSr R1,

EL I w~ Is! :5 Ic~ Is,I ! 1 b (
l[J

plE
0

`

w~l, k, @u 1 b~i, k!#1 2 t, j, v2 t !F~dt! (6.3)

and

ELII w~ Is! :5 Ic~ Is,II ! 1 b (
l[J

plE
0

`

w~l, i,u 2 t, k, @v1 b~ j, k!#1 2 t !F~dt!+ (6.4)

6.2. A Counterexample

The following example shows that a monotonicity result similar to that of Theo-
rem 4+1 cannot hold in the present scenario+ More precisely, if routing the airplane
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to runway I in stateIs5 ~k, i,u, j, v! is optimal, then it need not be optimal to route
the airplane to runway I in a stateSs5 ~k, i, Su, j, v!, where Su , u+ Hence, with respect
to any~partial! ordering “a” of DS, which has Isa Ss for the above states,monotonic-
ity as in Theorem 4+1 need not hold+As a consequence, Theorem 5+2, Corollary 5+3,
and Theorem 5+4 are no longer valid, although Lemmas 5+1 and 5+5 hold+

The counterexample has a very smallSu , 0; that is, the last touchdown on
runway I was a long time ago+ Then, if the current airplane needs only a small
safety distance to the preceding one, it might be better to save runway I for a future
airplane that needs a larger separation time+

Example: We assume that there are three types of aircraft, J5 $1,2,3% , and that the
matrix of separation times is as given in@6#:

~b~i, j !!i, j51, + + + ,3 5 1
96 120 144

72 72 96

72 72 72
2 +

Let F~t ! :5 12 e2t; that is, we assume that the arrivals form a Poisson stream with
ratel 5 1+

For a planning horizon of 2~i+e+, N5 2!, we obtain from~6+3! and~6+4! for the
difference of the expected cost between routing to I and routing to II in stateIs 5
~k, i,u, j, v!

DD2~ Is! 5 ELI FV1~ Is! 2 ELII FV1~ Is!

5 @u 1 b~i, k!#1 2 @v1 b~ j, k!#1

1 b (
l[J

plE
0

`

le2lt ~min$@@u 1 b~i, k!#1 2 t 1 b~k, l !#1,

@v2 t 1 b~ j, l !#1%

2 min$@u 2 t 1 b~i, l !#1, @@v1 b~ j, k!#1 2 t 1 b~k, l !#1%! dt+ (6.5)

Now, assume that we are in stateIs 5 ~k, i,u, j, v! :5 ~1,1,296,2,272!+ Then, we
have Ic~ Is, I! 5 Ic~ Is, II ! 5 0, and from~6+5!, singling out type 3,

D2~ Is! 5 bp3SE
0

24

~224!e2t dt 2E
24

48

~482 t !e2t dtD1 b~12 p3!C1

# bp3~224!~12 e224! 1 b~12 p3!C1

for a constantC1 not depending onp3+ For p3 large enough, we therefore have
DD2~ Is! , 0; that is, it is optimal to route to runway I+
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Now, let Ss :5 ~1,1,2144,2,272!; then, Su 5 2144, 2965 u, but

DD2~ Ss! 5 bp3E
0

24

~242 t !e2t dt 1 b~12 p3!C2

5 bp3~231 e224! 1 b~12 p3!C2,

again for a constantC2 not depending onp3+ This time we have DD2~ Ss! . 0 for p3

large enough; that is, in state Ss, it is optimal to route to II+ Hence, for any ordering
a on DSwhereu , Su implies~k, i,u, j, v! a ~k, i, Su, j, v!, DDn~ Is! need not be s-increasing+

7. THE MONOTONICITY OF s °°° Dn(s)

In this section, we complete the proof of Theorem 4+1+We are using the model of
Section 3; that is, s5 ~i,u, j, k! andZn 5 ~Jn,Tn11!+

Let us first introduce some notation that allows one to describe the behavior of
the system under fixed sequences of actions and external events+ For k $ 0, let

gk :S3 Ak 3 Z k r S

be defined by

g0~s! :5 s,

g1~s,a, z! :5 g~s,a, z! as defined in~3+4!,

gk11~s, ~a1, + + + ,ak11!, ~z1, + + + , zk11!! 5 g~gk~s, ~a1, + + + ,ak!,

~z1, + + + , zk!!,ak11, zk11!+

(7.1)

Let a 5 ~a1, + + + ,ak! [ Ak andz 5 ~z1, + + + , zk! [ Z k+We denote the components of
the stategk~s,a,z! in the following way:

gk~s,a,z! 5: ~tI
k, hI

k,tII
k , hII

k !~s,a,z!; (7.2)

gk~s,a,z! is the state afterk stages, starting in states [ S, applying actionsa [ Ak,
and given that the external eventsz [ Z k were observed+ Then, for example,
hI

k 5 hI
k~s,a,z! denotes the load on runway I andtII

k 5 tII
k~s,a,z! is the type of

airplane at the tail of queue II at that time+
We make extensive use of ideas from@1# + In @1# , a more general state transition

mechanism is considered+ There, the transition functiong depends on the actiona
only via an additional random eventy whose distributionqa is controlled bya+ Our
approach is the special case whereqI andqII are distinct one-point measures~cf+
Lemma 2+3~i! in @1# !+ In @1# it is shown inductively thats ° Dn~s! is increasing
with respect to some partial order onS under a number of conditions+ Translated
into our context the following conditions are used:

C+1+ s ° c~s,I ! 2 c~s,II ! is s-increasing+

C+2+ s ° g~s,a, z! is s-increasing+

C+3+ g2~s, I, II , z, z'! $ g2~s, II , I, z, z'! for all z, z' [ Z+
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C+4+ s° @c~s, I! 1 bc~g~s, I, z!, II ! 2 c~s, II ! 2 bc~g~s, II , z!, I!# is s-increasing
for all z [ Z+

C+5+ s ° @c~gk~g2~s, I, II , z, z' !,a,z!,a! 2 c~gk~g2~s, II , I, z, z' !,a,z!,a!# is
s-increasing for alla [ Ak,z [ Z k,a [ A, z, z' [ Z, andk $ 0+

Note that conditions C+3 and C+5 examine the permutation of actions I and II in the
first two stages, with the rest of the actions and all external events fixed+

It turns out that these assumptions do not hold in our context+ Instead, we need
slightly modified conditions C+3–C+5 which differ from the above only in that we
permute the two first actions as well as the two first external events+We therefore
use C+1, C+2, and the following:

C+3*+ g2~s, I, II , z, z'! $ g2~s, II , I, z', z! for all z, z' [ Z+
C+4*+ s° @c~s, I!1bc~g~s, I, z!, II !2c~s, II !2bc~g~s, II , z'!, I!# is s-increasing

for all z, z' [ Z+
C+5*+ s ° @c~gk~g2~s, I, II , z, z'!,a,z!,a! 2 c~gk~g2~s, II , I, z', z!,a,z!,a!# is

s-increasing for alla [ Ak, z [ Z k, a [ A, z, z' [ Z, andk $ 0+

We will refer to the set$C+1, C+2, C+3*, C+4*, C+5*% of modified conditions as~C*!+
We now have to show~a! that the conditions~C*! hold in our model and~b! that the
conclusions of@1# , namely thats ° Dn~s! is s-increasing, hold under~C*!+

7.1. Verifying the Conditions (C*)

We start with a lemma+

Lemma 7.1: With the preceding notation, we have for s5 ~i,u, j, v! [ S and for any
a [ Ak, z [ Z k, k $ 0, the following:

(a) i ° tI
k~s,a,z! is increasing (with respect to the ordering defined in (4.1)),

tI
k does not depend on u, j, and v.

(b) i,u ° hI
k~s,a,z! are increasing; hI

k does not depend on j andv.
(c) j ° tII

k~s,a,z! is increasing (with respect to the ordering defined in (4.1));
tII

k does not depend on i, u, andv.
(d) j, v° hII

k ~s,a,z! are increasing; hII
k does not depend on i and u.

Note thatu ° hI
k~s,a,z! andv° hII

k ~s,a,z! are also convex+

Proof: ~a! With s5 ~i,u, j, v!, we havetI
0~s,a,z! 5 i , and fork $ 1,

tI
k~s,a,z! 5 Hi if a1 5 {{{ 5 ak 5 II

lm if m5 max$n61 # n # k,an 5 I% andzm 5 ~lm, tm!+

Hence, i ° tI
k is increasing and independent ofu, j, andv for fixed a andz+

550 N. Bäuerle, O. Engelhardt-Funke, and M. Kolonko

https://doi.org/10.1017/S0269964804184088 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964804184088


To prove part~b!, we proceed by induction onk $ 0+ Let k 5 0+ We put

H~u,b, t,a! :5 H@u 1 b#1 2 t if a 5 I

u 2 t if a 5 II +

Then, u,b ° H~u,b, t,a! are increasing and convex functions, and with zk11 5
~l k11, tk11!, we see from~7+1! and~3+4! that

hI
k11~s,a,ak11,z, zk11! 5 H~hI

k~s,a,z!,b~tI
k~s,a,z!, l k11!, tk11,ak11!

5 H@hI
k~s,a,z! 1 b~tI

k~s,a,z!, l k11!#1 2 tk11 if ak11 5 I

hI
k~s,a,z! 2 tk11 if ak11 5 II +

(7.3)

Assume that part~a! holds fork+ Then, u, i ° hi
k andu, i ° b~tI

k~s,a,z!, l k11! are
increasing mappings that do not depend onj, v+ From ~7+3!, it is then obvious that
part ~b! holds fork 1 1+

Parts~c! and~d! follow in the same way+ n

Now we can show that conditions~C*! hold in our model+

Lemma 7.2:

(a) s° c~s, I! 2 c~s, II ! is s-increasing.
(b) s° g~s,a, z! is s-increasing.
(c) g2~s,a,a', z, z'! $ g2~s,a',a, z', z! for all a,a' [ A and z, z' [ Z.
(d) s° @c~s, I! 1 bc~g~s, I, z!, II ! 2 c~s, II ! 2 bc~g~s, II , z'!, I!# is s-increasing

for all z, z' [ Z.
(e) s ° @c~gk~g2~s, I , II , z, z' !,a, z!,a! 2 c~gk~g2~s, II , I , z', z!,a, z!,a!# is

s-increasing for alla [ Ak, z [ Z k, a [ A, z, z' [ Z, and k$ 0.

Proof:

~a! We have thatu, i ° @u 1 b~i, j '!#1 are increasing for allj ' [ J; hence,
from ~4+3!,

s ° c~s, I! 2 c~s, II !

5 (
j '[J

pj ' ~ @u 1 b~i, j ' !#1 2 @v1 b~i, j ' !#1!

is s-increasing+
~b! This follows from Lemma 7+1+
~c! To prove part~c!, we look at the components ofg2~s, I , II , z, z' ! and

g2~s, II , I, z', z!+With z5 ~l, t ! andz'5 ~l ', t '!, we havetI
2 5 l andtII

2 5 l '

in both cases, and as@x#1 2 t # @x 2 t #1, we obtain
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hI
2~s, I, II , z, z' ! 5 @u 1 b~i, l !#1 2 t 2 t '

# @u 2 t ' 1 b~i, l !#1 2 t

5 hI
2~s, II , I, z', z!+

In the same way, one showshII
2 ~s, I, II , z, z' ! $ hII

2 ~s, II , I, z' , z!+ Hence, part
~c! ~i+e+, C+3*! follows+ Note thathI

2~s, II , I, z, z' ! 5 @u2 t 1 b~i, l '!#1 2 t ' ,
which we cannot relate tohI

2~s, I, II , z, z' ! without serious restrictions on
the separation timesb~i,{!+ Hence, the original condition C+3 as used in@1#
need not hold in our model+

~d! From the definition of the one-stage cost function in~3+5!, we have fors5
~i,u, j, v!, z5 ~l, t !, z' 5 ~l ', t '!,

c~s, I! 2 c~s, II ! 1 b~c~g~s, I, z!, II ! 2 c~g~s, II , z' !, I!!

5 (
j '[J

pj ' @@u 1 b~i, j ' !#1 2 @v1 b~ j, j ' !#1 1 b@v2 t 1 b~ j, j ' !#1

2 b@u 2 t ' 1 b~i, j ' !#1#

5 (
j '[J

pj ' @~ @u 1 b~i, j ' !#1 2 b@u 2 t ' 1 b~i, j ' !#1!

2 ~ @v1 b~ j, j ' !#1 2 b@v2 t 1 b~ j, j ' !#1!# + (7.4)

It is not difficult to see that an expression of the formx ° r ~x! 2 br ~x2 t !
with r increasing and convex and 0, b #1 is increasing inx+As u, i ° u1
b~i, j '! andv, j ° v1 b~ j, j '! are increasing,we see from~4+3! that part~d!
holds+

~e! Fix s5 ~i,u, j, v! [ Sandz5 ~l, t ! andz' 5 ~l ', t '! [ Z+ Define

s1 :5 g2~s, I, II , z, z' ! 5 ~l, @u 1 b~i, l !#1 2 t

2 t ', l ', @v2 t 1 b~ j, l ' !#1 2 t ' !

s2 :5 g2~s, II , I, z', z! 5 ~l, @u 2 t ' 1 b~i, l !#1

2 t, l ', @v1 b~ j, l ' !#1 2 t ' 2 t !+

Let us assume thata 5 I+ From Lemma 7+1b, we see that

hI
k~s1,a,z! 5 hI

k~~l, @u 1 b~i, l !#1 2 t

2 t ', l ', @v2 t 1 b~ j, l ' !#1 2 t ' !,a,z!

is increasing in the first two coordinates ofs1 and does not depend on the
last two; hence, it is increasing ini andu and does not depend onj andv+
Similarly, hI

k~s2,a,z! is increasing ini andu and is independent ofj andv+
Using Lemma 7+1a, we therefore have
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c~gk~g2~s, I, II , z, z' !,a,z!, I! 2 c~gk~g2~s, II , I, z', z!,a,z!, I!

5 (
j '[J

pj ' ~ @hI
k~s1,a,z! 1 b~tI

k~s1,a,z!, j ' !#1

2 @hI
k~s2,a,z! 1 b~tI

k~s2,a,z!, j ' !#1!

5 (
j '[J

pj ' ~ @hI
k~l, @u 1 b~i, l !#1 2 t 2 t ',{,{! 1 b~tI

k~l,{,{,{!, j ' !#1

2 @hI
k~l, @u 2 t ' 1 b~i, l !#1 2 t, l ',{,{! 1 b~tI

k~l,{,{,{!, j ' !#1!+

(7.5)

It is not difficult to show that ifr :R r R is an increasing function and
d [ R, t . 0, then

x ° r ~ @x#1 1 d 2 t ! 2 r ~ @x 2 t #1 1 d!

is increasing+ With x 5 u 1 b~i, l !, we obtain that~7+5! is increasing ini
andu and independent ofj andv, hence, it is s-increasing+ Similarly, for
a 5 II , we see that

c~gk~g2~s, I, II , z, z' !,a,z!, II ! 2 c~gk~g2~s, II , I, z', z!,a,z!, II !

5 (
j '[J

pj ' ~ @hII
k ~s1,a,z! 1 b~tII

k~s1,a,z!, j ' !#1

2 @hII
k ~s2,a,z! 1 b~tII

k~s2,a,z!, j ' !#1!

5 (
j '[J

pj ' ~ @hII
k ~{,{, l ', @v2 t 1 b~ j, l ' !#1 2 t ' ! 1 b~tII

k~{,{, l ',{!, j ' !#1

2 @hII
k ~{,{, l ', @v1 b~ j, l ' !#1 2 t 2 t ! 1 b~tII

k~{,{, l ',{!, j ' !#1!

(7.6)

is independent ofi andu and decreasing inj and v, hence s-increasing+
n

7.2. Monotonicity of s °°° Dn(s) Under Conditions (C*)

We now show thatDn~s! is s-increasing under our modified conditions+ For the sake
of completeness, we give a streamlined version of the proofs of@1# here+

Lemma 7.3: Let (C*) hold. For any s[ S, n $ 0,

s ° Dn~s! is s-increasing.

Proof: We proceed by induction onn $ 0+ For n 5 0, we have withV0 [ 0 and
s5 ~i,u, j, v!

D0~s! 5 LIV0~s! 2 LII V0~s! 5 c~s, I! 2 c~s, II !, (7.7)
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which is s-increasing by condition C+1+ Now, assume thats° Dk~s! is s-increasing
for all k # n 2 1+ We will show that the same holds forDn~s!+ Note that for any
a,b [ R, we have

min$a,b% 5 b 2 @b 2 a#1 5 a 1 @b 2 a#2 , (7.8)

where we denote

@a#2 :5 min$0,a%+ (7.9)

We now obtain for anys [ S, n $ 1,

Dn~s! 5 LIVn~s! 2 LIIVn~s!

5 c~s, I! 1 bE@Vn~X2!6X1 5 s,A1 5 I# 2 c~s, II !

2 bE@Vn~X2!6X1 5 s,A1 5 II #

5 c~s, I! 1 bEFmin
a5I,II

LaVn21~X2!6X1 5 s,A1 5 IG
2 c~s, II ! 2 bEFmin

a5I,II
LaVn21~X2!6X1 5 s,A1 5 IIG

5 c~s, I! 1 bE@LII Vn21~X2! 1 @L IVn21~X2! 2 L II Vn21~X2!#2

6X1 5 s,A1 5 I#

2 c~s, II ! 2 bE@LIVn21~X2! 2 @L IVn21~X2! 2 L II Vn21~X2!#1

6X1 5 s,A1 5 II #

5 c~s, I! 1 bE@LII Vn21~X2!6X1 5 s,A1 5 I#

1 bE@@Dn21~X2!#2 6X1 5 s,A1 5 I#

2 c~s, II ! 2 bE@LIVn21~X2!6X1 5 s,A1 5 II #

1 bE@@Dn21~X2!#1 6X1 5 s,A1 5 II #

5 c~s, I! 1 bE@LII Vn21~g~s, I,Z1!!# 1 bE@Dn21~g~s, I,Z1!!#2

2 c~s, II ! 2 bE@LIVn21~g~s, II ,Z1!!# 1 bE@Dn21~g~s, II ,Z1!!#1+ (7.10)

From the induction hypotheses and condition C+2, we now infer thats °
Dn21~g~s,a, z!! is s-increasing+As @{#1 and@{#2 are monotone functions,we obtain
that

s ° E@Dn21~g~s, I,Z1!!#2 1 E@Dn21~g~s, II ,Z1!!#1
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is s-increasing+ For the proof of the lemma, it is therefore sufficient to show that the
remainder of~7+10! is s-increasing; that is,

s ° c~s, I! 1 bELII Vn21~g~s, I,Z1!! 2 c~s, II ! 2 bELIVn21~g~s, II ,Z1!!

5 E@c~s, I! 1 bc~g~s, I,Z1!, II ! 1 b2Vn21~g2~s, I, II ,Z1,Z2!!

2 c~s, II ! 2 bc~g~s, II ,Z2!, I! 2 b2Vn21~g2~s, II , I,Z2,Z1!!#

5 Ej~s,Z1,Z2!, (7.11)

wherej is defined in~7+12!+
Note that in the second equation of~7+11!,we have exchangedZ1 andZ2,which

is possible because they are i+i+d+ + This is a minor change from the derivation in@1#
and allows one to use conditions C+3*–C+5*+ As Z1 andZ2 are also independent of
the rest, the monotonicity of~7+11! follows if s ° j~s, z1, z2! is s-increasing for all
z1, z2 [ Z, which is shown in the next lemma+ n

Lemma 7.4: If s ° Dk~s! is s-increasing for all k# n, then the following expres-
sion is s-increasing for all z, z' [ Z:

j~s, z, z' ! :5 c~s, I! 1 bc~g~s, I, z!, II ! 1 b2Vn~g2~s, I, II , z, z' !!

2 c~s, II ! 2 bc~g~s, II , z' !, I! 2 b2Vn~g2~s, II , I, z', z!!+ (7.12)

For the proof of this lemma, we need the following definition: Let R0~s! :5 0, and
for a 5 ~a1, + + + ,ak! [ Ak andz 5 ~z1, + + + , zk! [ Z k, let

Rk~s,a,z! 5 (
m50

k21

bmc~gm~s,a,z!,am11!+

Then, Rk~s,a,z! is the discounted cost overk stages when starting in states and
following a fixed routing policya,with fixed external eventsz+Note thatgm depends
only on part of the sequencesa andz+

Proof of Lemma 7.4:

1+ We follow the lines of the proof of Lemma 2+2 in @1# + For 0# k # n and
z, z' [ Z, let

Fk~s,a,z! :5 c~s, I! 1 bc~g~s, I, z!, II ! 1 b2Rk~g2~s, I, II , z, z' !,a,z!

1 bk12Vn2k~gk~g2~s, I, II , z, z' !,a,z!!

2 c~s, II ! 2 bc~g~s, II , z' !, I! 2 b2Rk~g2~s, II , I, z', z!,a,z!

2 bk12Vn2k~gk~g2~s, II , I, z', z!,a,z!!, (7.13)

wherea 5 ~a1, + + + ,ak! [ Ak andz 5 ~z1, + + + , zk! [ Z k are arbitrary fixed
sequences+ The first half ofFk~{! describes the cost fromn1 2 stages start-
ing in states; when in the firstk 1 2 stages the fixed policy~I,II ,a1, + + + ,ak!
is used, the external events~z, z', z1, + + + , zk! occur and an optimal policy is
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used for the remainingn 2 k stages+ The second half ofFk~{! interchanges
actions I and II and the first two external eventsz andz' +

2+ The main step of the proof is to show thatFk is s-increasing for allk 5
0, + + + , n by downward induction onk5 n, + + + ,0+ The lemma then follows, as
F0~s! 5 j~s!+

2+1+ For k 5 n, Fn reduces to the expression~7+21! in Lemma 7+5+ It is
proven there that this expression is s-increasing for anyn $ 1+

2+2+ Now, assume thatFk11~{! is increasing ins for any sequencesa [ Ak11

andz [ Z k11+ We want to show that the analogous result holds for
Fk~{!+ Let s a s' and put

s1 :5 gk~g2~s', I, II , z, z' !,a,z!,

s2 :5 gk~g2~s', II , I, z', z!,a,z!,

s3 :5 gk~g2~s, I, II , z, z' !,a,z!,

s4 :5 gk~g2~s, II , I, z', z!,a,z!+

From C+2 and C+3*, we obtain thats1 a s2 ands3 a s4+ Again, from
C+2 follows s3 a s1 ands4 a s2; hence, we have

s3 a s1,s4 and s1,s4 a s2+ (7.14)

Then,

Fk~s
',a1, + + + ,ak, z1, + + + , zk! 2 Fk~s,a1, + + + ,ak, z1, + + + , zk!

5 c~s', I! 1 bc~g~s', I, z!, II !

1 b2Rk~g2~s', I, II , z, z' !,a,z!

2 c~s', II ! 2 bc~g~s', II , z' !, I!

2 b2Rk~g2~s', II , I, z', z!,a,z!

2 c~s, I! 2 bc~g~s, I, z!, II ! 2 b2Rk~g2~s, I, II , z, z' !,a,z!

1 c~s, II ! 1 bc~g~s, II , z' !, I! 1 b2Rk~g2~s, II , I, z', z!,a,z!

1 bk12~Vn2k~s1! 2 Vn2k~s2! 2 Vn2k~s3! 1 Vn2k~s4!!+

(7.15)

2+2+1+ We will now show that there isa' [ A with

G :5 Vn2k~s1! 2 Vn2k~s2! 2 Vn2k~s3! 1 Vn2k~s4!

$ La'Vn2k21~s1! 2 La'Vn2k21~s2!

2 La'Vn2k21~s3! 1 La'Vn2k21~s4! + (7.16)
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To simplify the notation, we put w~s! :5 Vn2k21~s!+ Assume
thata [ A is optimal ins1 andb [ A is optimal ins4+ If a 5 b,
then~7+16! holds fora' 5 a+ If a Þ b, then

G $ Law~s1! 2 L II w~s2! 2 L I w~s3! 1 Lbw~s4!

5 LI w~s1! 2 L I w~s2! 2 L I w~s3! 1 L I w~s4!

2 ~L I w~s1! 2 Law~s1!! 1 L I w~s2!

2 L II w~s2! 2 ~LI w~s4! 2 Lbw~s4!!

5 LI w~s1! 2 L I w~s2! 2 L I w~s3! 1 L I w~s4!

2 1@a5II # Dn2k21~s1! 1 Dn2k21~s2!

2 1@b5II # Dn2k21~s4!

$ LI w~s1! 2 L I w~s2! 2 L I w~s3! 1 L I w~s4!+ (7.17)

Here, the last inequality follows, as it is assumed in this lemma
that s ° Dl ~s! is increasing for alll # n; hence, we see from
~7+14! that

Dn2k21~s2! 2 Dn2k21~s1! $ 0

and

Dn2k21~s2! 2 Dn2k21~s4! $ 0+

In the same way, we obtain

G $ L II w~s1! 2 L II w~s2! 2 L II w~s3! 1 L II w~s4!

1 1@a5I# Dn2k21~s1! 2 Dn2k21~s3!

1 1@b5I# Dn2k21~s4!

$ LII w~s1! 2 L II w~s2! 2 L II w~s3! 1 L II w~s4!+

2+2+2+ Inserting the definition ofLa into ~7+16!, we obtain

G $ c~s1,a' ! 2 c~s2,a' ! 2 c~s3,a' ! 1 c~s4,a' !

1 bE~Vn2k21~g~s1,a',Zk11!!

2 Vn2k21~g~s2,a',Zk11!!

2 Vn2k21~g~s3,a',Zk11!! 1 Vn2k21~g~s4,a',Zk11!!!+ (7.18)
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As Fk depends only on the firstk components ofa 5
~a1, + + + ,ak11!, we can chooseak11 5 a' to obtain

Rk11~g2~s, I, II , z, z' !,a,z!

5 Rk~g2~s, I, II , z, z' !,a,z!

1 bkc~gk~g2~s, I, II , z, z' !,a,z!,ak11!

5 Rk~g2~s, I, II , z, z' !,a,z! 1 bkc~s3,ak11! (7.19)

and similarly fors1,s2, ands4+
2+2+3+ Returning to~7+15!, we obtain from~7+18! and~7+19!,

Fk~s
',a,z! 2 Fk~s,a,z!

$ c~s', I! 1 bc~g~s', I, z!, II !

1 b2Rk11~g2~s', I, II , z, z' !,a,z!

2 c~s', II ! 2 bc~g~s', II , z' !, I!

2 b2Rk11~g2~s', II , I, z', z!,a,z!

2 c~s, I! 2 bc~g~s, I, z!, II !

2 b2Rk11~g2~s, I, II , z, z' !,a,z!

1 c~s, II ! 1 bc~g~s, II , z' !, I!

1 b2Rk11~g2~s, II , I, z', z!,a,z!

1 bk13 E~Vn2k21~g~s1,ak11,Zk11!!

2 Vn2k21~g~s2,ak11,Zk11!!

2 Vn2k21~g~s3,ak11,Zk11!!

1 Vn2k21~g~s4,ak11,Zk11!!!

5 E~Fk11~s
',a1, + + + ,ak11, z1, + + + , zk,Zk11!

2 Fk11~s,a1, + + + ,ak11, z1, + + + , zk,Zk11!!

$ 0, (7.20)

where the last step follows from the induction hypotheses+ n

Lemma 7.5: Let C.4* and C.5* hold. Then, for all k$ 0, a [ Ak, andz [ Z k, the
following expression is s-increasing:

z~s! 5 c~s, I! 1 bc~g~s, I, z!, II ! 1 b2Rk~g2~s, I, II , z, z' !,a,z!

2 c~s, II ! 2 bc~g~s, II , z' !, I! 2 b2Rk~g2~s, II , I, z', z!,a,z!+ (7.21)
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Proof: We have from the definition ofRk

z~s! 5 ~c~s, I! 2 c~s, II !! 1 b~c~g~s, I, z!, II ! 2 c~g~s, II , z' !, I!!

1 b2 (
m50

k21

bm~c~gm~g2~s, I, II , z, z' !,a,z!,am11!

2 c~gm~g2~s, II , I, z', z!,a,z!,am11!!+ (7.22)

The first part of this expression is s-increasing by condition C+4*, the second is a
sum of terms which are s-increasing by C+5*+ n

8. CONCLUSION

In this article, we have investigated optimal assignment rules in a particular model
of aircraft arrivals+We have shown that optimal policies are of switching type only
if we restrict the information on which decisions are based to the state of the two
runways~i+e+, to the workload and the types of aircraft waiting at the end of the
queues!+

Determining the optimal assignment policy explicitly is a most difficult task+
Classical approaches such as policy iteration or value iteration~see@10# ! are of
limited use here due to the complex search space of possible decision rules+ Recent
approaches to incorporate numerical approximation techniques are presented, for
example, in @5# +

Our results narrow the space of possible decision rules+ If we restrict the search
to monotone rules~i+e+, to switching levels!, we are sure to cover policies that are
optimal among those that depend only on the state of the runways+

The authors of the present article have some experience with the optimization
of assignment policies using heuristic search methods as genetic algorithms for which
the expected waiting times are estimated by discrete event simulation+ Monotone
policies or, rather, the switching levels are easily stored and manipulated on a com-
puter+ Although our results show that these rules need not be optimal in general,
they perform quite well in practice+

Our future research will focus on two topics+ First, we will investigate models
that take into account more than just one arrival+ Even in the random environment
assumed here, airport controllers usually know about the next few arrivals and can
base their decision on that information+ Second, we will work on approximation
techniques, as for example in@5#, by making use of structural properties as proven
in this article+
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