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We consider the problem of routing incoming airplanes to two runways of an air-
port Due to air turbulencethe necessary separation time between two successive
landing operations depends on the type of airplaltben viewed as a queuing
problem this means that we have dependent service tiifies aim is to minimize

the waiting times of aircraftdNe consider here a model in which arrivals form a
stochastic process and the decision-maker does not know anything about future
arrivals We formulate this as a problem of stochastic dynamic programming and
investigate the monotonicity of optimal routing strategies with respect to the work-
load of the runwaysfor example We show that an optimal strategy is monotone
(i.e., of switching type only in a restricted case where decisions depend on the
state of the runways only and not on the type of the arriving aircgafitprisingly

in the more realistic case where this type is also known to the decision-maker
monotonicity need not hold

1. INTRODUCTION

In modern air traffi¢ the efficient use of the available runway capacity is of grow-
ing importanceat least for major airport\irplanes are often queued when wait-
ing for a free runway on which to lan&hile queuing and during the landing
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operationsthe airplanes have to keep a large enough distance between each other
to avoid air turbulence from aircrafts flying aheddhese separation times depend
on the weightmore generallytype) of the airplanes involvedrypically, the nec-
essary separation between a light aircraft trailing a heavy one will be larger than
between the same types if the light one is flying in frdfénce one can expect to
increase the throughput of the runways by an efficient routing of arriving airplanes
to runways

The general problem is quite involveds many side constraints and airport
specific rules have to be consider&de restrict ourselves to a particular scenario
which can be viewed as a step toward more realistic models that we cannot analyze
completely at present

First, we assume that the arrival times of the aircrafts form a stochastic renewal
processThis is in accordance wittior example[6,8]. Therg it is assumed that the
scheduled arrival times are highly disturldedy., by varying flight conditionsdelays
on connecting flightsor technical problemssuch thatin practice the arrival times
might well be approximated by a Poisson process

We further assume that the routing decision has to be made at the arrival instance
of the airplane at the airpofor at a certain thresholdThe decision-maker might
use information on the state of the runways and the type of the presently arriving
aircraft but does not know anything about future arriv@lace an aircraft has been
assigned to a runwayt must stay in the queue of that runwalyhe queues are
served on a first-come first-served badite aim is to find a rule that assigns an
incoming aircraft to a runway given the state of the system and the type of arriving
aircraft such that the long-term expected waiting times are minimized

We formulate a stochastic dynamic programming model for this problem with
the total expected discounted waiting time of the aircrafts as the target fundtgon
investigate monotonicity properties of optimal routing strate@pesicies in this
model Monotonicity here meangor example that when the observed workload
on runway | increases while everything else is kept fixbdn an assignment of an
arriving plane to runway | will only be made forup to a certain level Foru > |,
the aircraft will then be assigned to runway3luch policies are also called “switch-
ing policies” as they are completely determined by switching leveEhis will be
made more precise by defining a partial order on the state space of the dynamic
programming model and by proving monotonicity of optimal routing policies with
respect to this ordering

The following are our main finding©ptimal policies are monotone only if we
restrict ourselves to decisions that depend solely on the state of the runway and not
on the type of the presently arriving aircrafhis result also yields conditions under
which a simple join-the-least-load strate@y.L) is optimal We give a rough bound
on the error made when using JLL in the general cageere it is not optimal
Surprisingly monotonicity with respect to workloads need not hold in the more
realistic modelwhere decisions might depend on the state of the runways as well
as on the type of the arriving airpland/e show by a counterexample based on
realistic data thain this caseit might be optimal to route to runway Il for a small
workloadu on runway | and to route to runway | for a larger workload This
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somewhat unexpected result could be explained by the fact that in the first restricted
casewe use a cost functiofsee definition3.5)) where the dependency of waiting
times from the next arriving aircraft is “averaged Suthereas in the second case
we use as cost function the actual waiting tifsee(6.2)), leading to a more sen-
sitive criterion

The proof of the main monotonicity result is based on the approagh]in
Neverthelessour model does not fit into the framework [df]. We had to change
the conditions at a minute but decisive point and to prove that the main assertions
of [1] still hold under the modified assumptians

Optimal routing of airplanes has been treatied examplein [3], where also
a survey over different approaches is givBeterministic models as if3] often
assume that a set of airplanes to be scheduled and routed is ghisrallows one
to take into account more than one arrivahd optimal schedules for a whole set of
aircrafts are obtained by mixed linear optimizatidhe stochastic queuing models
in [6,8] do not take into account the dependency of the separation times from the
two types involvedin [2], M/SM/1 queuing models are used to deal with this depen-
dency In a somewhat complementary way to the present artttategies that use
only the type of the arriving aircrafts are consideré&€tere it is also shown that
neglecting the dependencies might lead to a strongly biased estimation of waiting
times under heavy trafficThe general literature on the routing of parallel queues
(see eg., [12] or [7]) seems to be restricted to the case of independent service
times only Queues with dependent service times are tredtacexamplein [9],
but without any reference to routing

The article is organized as follows Section 2we collect a few results from
stochastic dynamic programming—in particukvout the optimality equations and
value iterationIn Section 3we use the dynamic programming framework to for-
malize the restricted modelvhere decisions depend on the state of the runways
alone Here we also define the load of a runway and the ordering of the state space
and give the main monotonicity resulid/e start with this restricted modeds it
takes most of the article to prove these resdltse rather technical proof is given
in Section 7A number of corollaries about JLL policies are collected in Section 5
The model of Section 3 is then enlarged in Section 6 to include the type of arriving
airplane and a counterexample shows that the monotonicity property no longer holds
In Section 8we address the potential benefit of our results for the practical solution
of the problem and topics of our future research

2. A DYNAMIC PROGRAMMING MODEL

We will first collect a few definitions and results from Markovian dynamic pro-
gramming(see e.g., [4,10,11] for a general discussion of dynamic programming
Here we present only a simple type of dynamic programming model sufficient to
cover the aircraft routing problem formulated in Section 3

The model describes a system that is observed at discrete points ¢$tages
n=12,.... At each stagethe system is observed to be irstate s&€ S Then an
action a€ Ais taken and the system moves to a new stateg(s, a, z) € Sto be
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observed at the next staddere z € Zis anexternal eventdisturbancgandg: SX

A X Z — Sis thestate transition functionThe state—action paiss, a) causes costs
c(s,a), wherec:SX A — R, is thecost functionLet (Z,),~1 be an independent
and identically distributedi.i.d.) sequence of external random variables with val-
ues inZ and with a known distributian

We will leave aside questions of measurability and assumgarticular that
the action spach is finite.

If we observe the system for a finite numbof stageq finite-horizon casg
actions are chosen according to a pol&y ( fy,..., f1), wheref,,: S— Ais the
decision rule for th&N — n + 1)st stage The reverse numbering of the decision
rules simplifies the description of the induction bel@wen a starting staté; = s
from S and a policys, the sequence of states,..., Xy is then defined recur-
sively by

Xnt1 = 9(Xn, fucnia(Xn), Zn), l=n=N-1 (2.1)

With A, := fy_n:1(Xn), for a measurable s& C S we obtain the simple Marko-
vian dependency

P[Xn+1 € B[ Xq,..., Xy = s Ay,... Ay =a] = P(d(s a,Z;) € B). (2.2)

The total expected discounted costs for policy: ( fy,..., f1) and starting state
s € Sare given by

W s(S) :=E 2 B¥ e (X, A Xy = s, (2.3)

k=1

whereg € (0,1] is a givendiscount factorAs our cost function is nonnegative and
the action space is finitét is well known (see e.g., [11]) that an optimal policy
exists that is a policy §*, with

Vn(8) i= Vy 5+(8) = mﬁinVN,a(s) forallse S (2.4)

In fact, the min can be taken over a much larger class of policies than defined.above
For (measurablefunctionsw: S— R, we define the one-stage cost operdtday
Law(s) := c(s,a) + B E[W(X;)[ X, = s, A; = a]
= c(s,a) + B Ew(g(s,a, Z1)). (2.5)

Problem(2.4) can be solved recursively with the help of the so-called optimality
equation for dynamic programwhich in the finite-horizon case reads

V,(s) = miQ L.V,_i(s) forallseSl=n=N. (2.6)
ae

We assume throughout theg = 0. A policy 6* = (fy,..., f;") is optimal iff f; (s)
selects a minimizing action i2.6) fors&€ S1=n= N (seeeg., [11 Cor 6.2]).
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In the infinite-horizon casgwe only consider stationary policigs= ( f,)n=1
with f,=f,n =1, and we writed = f for short With A, = f(Xy),k = 1, we define
the total expected discounted costs by

[ee]

Vs(s) := E| X, B tc( Xy, A Xy = s|. (2.7)

k=1

Again, 6 is called optimal if
V(s) := Vs+(s) = mainvﬁ(s), SES (2.8)

Itis shown in[11] that there exists an optimal stationary policy that can be obtained
from the infinite-horizon optimality equation

V(s) = I’TEQ L.V(s), seES (2.9)

f* forms an optimal stationary policy iff*(-) is a minimizer of(2.9). Moreover
value iteration holdsthat is

'Lim Wy (S) = V(s), SES (2.10)

For the remainder of the articleve use(2.6) to derive properties for the finite-
horizon case with arbitrary horizdd using inductive argument$hese properties
then carry over to the infinite horizon case usi2dL0).

3. OPTIMAL AIRCRAFT ROUTING AS DYNAMIC
PROGRAMMING PROBLEM

We will now specify the elements of the dynamic programming model such that we
can deal with the problem of optimal aircraft routing

We start with the external evenfs. Let S,,n = 1, denote the arrival times of
airplanes at the airpartVe assume that thaterarrival times J,:= §,— S,.1 =0
for n = 1, with & := 0 are ii.d.; that is the arrivals form a renewal process with
some distributiorf. Let J be the finite set of possibliypesof airplane and denote
by J, the type of thenth arriving planeWe assume that th&,n = 1, are ii.d. and
independent of the arrival procesgith

pi=P,=i), i€J.
Then
Zn = (Jn, Tasn), n=1, (31)

taking on values ir£ := J X R, describes the type of th#h arriving aircraft and
the following interarrival time(Z,,),,~1 is an ii.d. sequencgit is the external source
of randomness in our model

We assume that if an aircraft of typés to land immediately behind an aircraft
of typei on the same runwayhen there must be a safety distance givesegsa-
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ration time Ki,j) = 0, i,] € J. This means that the beginning of the two landing
operationgtouchdowng must beb(i, j) time units apart

In our mode) routing decisions have to be made at the arrival instais;es
of airplanes which define our decision epochst A := {11}, where actiora = |
(a=1l) means routing the present airplane to runwail J. Once an airplane has
been routed to a quepi has to wait there for its servicdhe queues work on a
first-come first-served basis

To define the “state” of our systgme first consider a single runwagay run-
way |. Of course things are completely analogous on runwaylLit /! denote the
type of airplane that is at the tail of the queue of runway | immediately before the
nth arrival takes placdf queue | is empty at that tim¢hen(}. is the type of the last
airplane that landed on With {1 := iy (an arbitrary typg the formal definition of

{his

n=1. (3.2)

C (3 Zy= (3 Then) andA, = |
fie = it A =

Forn= 2, /! is the type of plane that thath plane will see as its predecessor if it
is routed to runway.INote that the index counts arrivals to the airpgnot to the
particular runway

Let U} denote thavorkloadon runway | immediately before the arrival of the
nth airplane U, is the time that the last plane at the tail of the queue has to wait
until the beginning of its landing operatioif the queue is empty at that time
thenU. < 0 denotes the time that has passed since the last plane began its landing
on runway |

Letb” := max jesb(i,j). With U{ := —b", the formal definition of the work-
load is given by

Ut o [TUE BRI = To i 2= (3, Toi) andA, =
e {un' ~ T if Z.=(J,,T.,) andA, = I,
(3.3)
Note that
[Un + b(Zh, 31"

is the waiting time of thenth plane if it is routed to.IHerg b(Z}, J,) can be re-
garded as the service time of this plafibe definitions of} andU, guarantee that
the first aircrafts on each runway have waiting timerm Figure 31 the load on
runwaya is shown at the arrival instance of timéh aircraft of typej, when two
aircrafts of typeg, andj are already waitingThe black triangles indicate the time
at which the landing operation of the aircraft begifigej, has already landedut
j2 still has to wait

The state of runway | at the arrival instance of thi plane is the pair
(£),U)) taking on values i X R. Note that it is possible to bound the workload
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Ficure 3.1. The load on runway when aircrafts of typeg, ..., j, are present

from below as we need not keep track of negative loads that are largemthan
max_je;b(i, j).

The state of the second runway is defined in a completely analogous way and
the state of the systeit thenth arrival instance is then defined as

X 1= (£n,Un, o', Unh),

taking on values in thetate space &= J X R X J X R.

Note thafin this modeJ the presently arriving typ&, is not part of the state but
part of the external eveidt, = (J,, T, 1) that drives the systenThis follows from
our particular restriction that the typk is not known to the decision-makedn
Section §in the case wherég, is known we will use(J,.1, T,+1) as the external
event driving the system

From(3.2) and(3.3), we now see how the state transition funct@prSx A X
Z — Smust be definedFors = (i,u,j,v) € Sa€ A andz= (I,t) € Z, let

o I (L[u+b@,nH]* =t jo—t) ifa=I
9.2 (.t [(i,u St ab(L -t ifa=n. O

As one-stage cost function:& X A — R, we define fors= (i,u,j,v) € §

S pelu+b(i,jH]* ifa=|
j’ed

c(sa):= (3.5)
2 prlo+b()j0" ifa=1.
j'ed
If we denote by
Wi := [Ug + b(Z3n, 3]

the waiting time of thenth airplane then we have

c(s,a) = E[W,[X,=s A,=a].

https://doi.org/10.1017/50269964804184088 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964804184088

540 N. Bauerle, O. Engelhardt-Funke, and M. Kolonko

Note thatc((i,u, j,v),a) depends only on the state of runwaye.g., on (i,u) for
a = I]. The total discounted expected costs now read

W 5(S) = E[E B¥ e (X, A Xy = 5]

k=1

N

= E[E BE U + b(&hn, I)] T [ Xy = S} (3.6)
k=1

and similarly for the infinite horizonStarting in an empty system means to have

X1 =5 := (ig,—b*ip,—b*). As we have only two actionshe optimality equations

(2.6) and(2.9) have a particularly simple structure

Va(s) = min{L,V,_1(s),L;Va_1(s)} and V(s)=min{L,V(s),L,V(s)}.
(3.7)
Also, (2.5) becomes
Liw(s) = c(s1) + BEW(Y(s |, Z1))

=P <[U +b(i, D" +,8fo w((l,[u+b(i, D" = t,j,v— t))F(dt)>,

leJ

whereF is the distribution of the interarrival times

4. MONOTONICITY PROPERTIES OF OPTIMAL POLICIES

In this sectionwe show that optimal routing policies are monotone with respect to
a particular(partial) ordering of the state spadss usua) “increasing” and “decreas-
ing” are used in the nonstrict sense

Let us first define a partial ordering on the set of tydebori, j € J, define

i <;j:=b(i,k) =Db(j,k) foralkeJ. (4.1)

In the aircraft settingi <;j could indicate thaj is a heavier plane that requires
more separation than We do not make any assumptions on the ordering of the
separation timedhencein the extreme casé could happen that<;j only holds
fori=j.
Now, lets = (i,u,j,v) ands= (1,0, ],0) € S, then we define
s<3s:=i<yl, U=0,j>; j,v=10. 4.2)

If s < sholds then in states, the load on runway | is at least as high as in stte
and at its tailthere is an aircraft that requires at least as much separation time as in
s. For runway Il the opposite relation holdslence the balance of the two queues
is more favorable for | in statethan it is inS.

A function f: S — M, where (M, =) is a (partially) ordered setis called
s-increasingf s < simpliesf(s) = f(5). Forf,: S— A, we define the order<” on
A by I =1l. Note thatf: S— R is s-increasing if and only if
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u,i — f(i,u, j,v) are increasing for fixegandv
and (4.3)
v,j— f(i,u,j,v) are decreasing for fixedandu.

Here monotonicity ini andj is defined wr.t. the ordering(4.1), whereas mono-
tonicity in u andv is w.r.t. the usual ordering oR.

The following theorem is the main result of this sectitrshows that optimal
policies are monotone.wt. to the ordering4.2) of the state spac&ome implica-
tions are described below

THEOREM 4.1:

(a) (finite-horizon case) For any horizon N, there is an optimal pobicy
(fn,-..., f1) such that s— f,(s) is s-increasing for n=1,...,N.

(b) (infinite-horizon case) There is an optimal stationary pobicy f such that
s~ f(s) is s-increasing.

In fact any optimal policy is monotone in this sense if we agree to choose the
smaller action | in cases where both actions are minimizing the optimality equa-
tions Theorem 41 states that if it is optimal to route the next airplane to runway |l
in a states = (i, u, j,v), then we should do the same in all stagesith s < &.

Note thatf, is s-increasing if and only if there exists a “level” functilgpn J2 X
R — R with i — I,(i,],v) decreasing angdv — |,(i, j,v) increasing such that for
s=(i,u,j,v) €S

Iif us> 14, j,0) (4-4)

it u<l ()
fa(s) = [

(for the “only if” part, putl,(i,j,v) := inf{u| f,(i,u,j,v) = I}). In this sensgan
s-increasing policy is a “switching policy
The proof of Theorem 4 is quite lengthy and only its main steps are given
here the remainder is split into several technical lemmata given in Section 7
PrOOF:
(a) For the finite-horizon caselefine
An(8) = LiVi(s) = LyVu(s), n=1

From the optimality equatiof2.6), it follows that ( fy, fy_1,..., f1), with

I ifA,_1(5)=0
fa(s) := {

=n=<N
Il if Ap_1(s) >0, ’
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forms an optimal policy for th&l-stage problemin Lemma 73, it is shown
thats— A, (s) is s-increasinghenceit follows thats— f,,(s) is s-increasing
as well

(b) For the infinite horizonwe conclude from the value iteratid®.10) that if
s— A,(s) is s-increasing for alh = 1, then

A(s) :=LV(s) —L,V(s) = lim A,(s)

is an s-increasing functiomoo. Herg lim,_,..L,V,, = L,V is shown in[11,
Thm. 4.4]. Now, part(b) follows as in parta). u

5. WHEN IS JOIN-THE-LEAST-LOAD OPTIMAL?

A natural simple policy would be to route the next arriving airplane to the runway
with the least loagthat is for s= (i, u, j,v), to decide according td = ( fy,..., f;),
where

| ifu=sv

A
I if u>o. -1

fo(s) := f(s) := {

However due to the structure of the service tima@, j), one cannot expect this
policy to be optimal in generalMe now examine some special cases where JLL is
optimal First, we state a simple consequence of the symmetry of the two runways

LemMma 5.1: Let s:= (i,u,j,v) € S ands:= (j,v,i,u); then, we have
V. (s) = V,(5) foralln=1andWs)=V(5).

For finite and infinite horizon it holds that action | is optimal in state s iff action Il
is optimal in states.

Proor: From (3.5), we see that(s,|) = c(51l). Starting with\j, = 0, we obtain
inductively using(3.4),

LiVa-1(s) = c(s ) + BEV,_1(9(s,1,Z;))

c(S1) + BEV,_1(9(511,Z1)) = Ly Vo-1(9);

hence
Vi(s) = max{L,V,_1(s), Ly Vo-1(s)} = max{Ly Vi-1(5), LiVo-1(5)} = Vi (S)
and
LiVao1(s) = Ly Vo1(s) © Ly Vih_1(5) = L V,_1(9).

The corresponding results for the infinite horizon follow fr¢&n10) and(2.9). &
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The following theorem is a direct consequence of Theoretraéd the sym-
metry of the runwayslt shows in particular that it is optimal to use JLL in states
where both runways have identical types waiting at their thitste that we use the
ordering defined by4.1) on the set] of types

THEOREM 5.2:

(@) Lets=(i,u,j,v) € SIfu=wvandi<,;j, thenitis optimal to use action |,
and if u=wv and i > |, then it is optimal to use action Il.

(b) For any state s= (i,u,i,v) € S, itis optimal to choose & | if and only if
u<o.

(c) For any state s= (i,u,j,u) € S, it is optimal to choose & | ifi <;jand
a=Ilifj <ji.

These statements hold for the finite-horizon as well as for the infinite-horizon
problem.

ProoF: (a) Let5:= (j,v,i,u); then using Lemma 8., we have
An(S) = LiVi(s) = Ly Via(s) = Ly Va(S) — LiVi(5) = —An(S). (5.2)

The assumptions = v andi <; j imply s < §, and from Lemma B, we obtain
An(s) = A,(5) = —An(s). Hence A, (s) = 0 (i.e., action | is optimal. An analogous
argument holds for the infinite-horizon casghe assertion concerning action Il
follows from symmetry

Parts(b) and(c) follow from part(a). |

A degenerate special case is obtained if the separation times do not depend on
the leading aircrafti.e., b(i,j) =d(j) for alli,j € J]. In this situationit is unnec-
essary to keep track of the type of the last airplanes on the runways and the state
space of the problem could be reduced to the lagd) on the two runwaysTheo-
rem 41 then implies that the JLL policy is optimal

CoroLLARY 5.3: Ifb(i,j)=d(j)foralli,j € J, then it is always optimal to route
the next airplane to the runway with least load (for finite as well as infinite
horizons).

Proor: We have for alli,j € J,

i <;je 0ked bi,k) =d(k) =b(j,k) =d(k);

henceall types inJ are equal with respect to the ordering given(#yl). However
then the assertion follows from Theoren2hb u
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Finally, we give a crude error bound on how much the waiting times under
policy JLL can deviate from the optimum in the general mod#&ith b* =
max je;b(i,]) as earlier and, := min; ;e;b(i, ), let

B:=b"—b,
be the span of separation times
THEOREM 5.4: Let§ be the JLL policy as defined in (5.1). For allss S, it holds
that

N—1
0=Vu(s)—Vy(s)=B 2:1 Bk, (5.3)

and for the infinite horizon ang < 1,

B
1-p*
For the proof we have to consider auxiliary systems with the only difference

being modified separation timéxi, j ). Note that in these systemsve not only

have a different cost functioé(s, a) (related to the separation times as given by
(3.5)) but also a different transition functiaghand a different state process

Xo = (£3,Un, &, 00",

0=Vs(s)—V(s)=B (5.4)

The value functions for the modified system are denoted/}fg) and so on
LEmMA 5.5:
(@) Letb(i,j) = b(i,j) for alli,j € J; then, for any == S, we have
Vn(s) = Vy(s), N=1landV(s)=V(s).

(b) Letb(i,j) := b*; then, we have for the JLL policywith 8 < 1,

N—1

0= Vas(s) — Vas(s) = B D B, N=1
k=1

=\ — V- =B B
0= Vs(s) Va(s)_B(l_B)z.

Proor: (@) The proof is done by induction oX. For N = 0, the statement is triv-

ially true. Now, suppose it holds fon € N; that is V,(s) = V,(s) is valid for all
s € S We know that

Vhi1(8) = min{L,V,(s), L Vi (s)}
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and similarly forV. From our assumptions and the induction hypothesésobtain
(note thats — V,(s) is obviously increasing im andv, which can be shown by
induction

LiVa(s) = €(s 1) + BE[Va(d(s 1, Z4))]
= c(s 1) + BE[Va(g(s ], Z1))]
=c(s ) + BE[Vh(9(s1,Z,))]
=L,V,(s)

and similarIyL||\7n(§) = L, V,(s), which implies the result
(b) Let A, andA, be thekth action under the JLL policy in the original model
and in the hat modeNote that we may hava, # A, and that

UM = min{U,, UM and U= min{U,, 0"
We first prove
min{U.,U"} = min{U},U)"} and maxU,, U} = maxU/,0)"}. (5.5)

Again, for k = 1, nothing has to be showiNow, assume tha5.5) holds for some
k, we have

min{Uy; 1, Ut 1}
= min{[min{U},U)'} + b(f*, J)]H — T 1, max{U, UM} — T 1}
= min{[min{U, 0"} + b*]* — T, max{Uy, 0"} — Tt}
= min{U,,,,0 ). (5.6)

We see that5.6) also holds if the outer min is replaced by mdrence (5.5) is
proven From this we obtain for allk,

c(Xi, A) = 2 pr[min{U, UL + b(£ex, 301"

=)

=2 p[min{U/, 0"} + b*]"

jed
= (X, A, (5.7)
which, in turn, implies
Vi s(8) = Vi 5(9). (5.8)

To complete the proof of pafb), we have to show that

N—1

Vas(S) = Vus(s) + B gl BXk. (5.9)
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Similar to (5.6), we first show that

min{U), 0"} = min{u,,U)'} + (k — 1)B,

o _ (5.10)
max{U.,U/'} = max{u),u}'} + (k—1)B
which, as in(5.7), implies
¢(Xe, A) = c(Xi A + (k—1)B, (5.11)

and hence (5.9) follows. To prove(5.10), we first observe that fok = 1, nothing
has to be showrNow, assumég5.10) holds for somek; then

min{U/ 1, Ugk 1}
= min{[min{U}, 0"} + b*]* — Tyr.q, max{U,, 0"} — s}
= min{[min{U},U)"} + (k—1)B + b*]* — T,,.1, max{U., U,
+(k=1)B = Tra}
min{[min{U,U"} + b(Zf*, J) + (k— 1B + b* — b(£e%, J)] " — Tesn,
max{U,,U!"} + (k—1)B — Ty, 1}
min{[min{U.,Ul'} + b(Z*, o) + KB]" — T 1, max{u,,u,'}
+ KB — Tyiq}
= min{[min{U., U} + b(£8, J)]T — Tesr, max{U., U} — T 1} + kB
min{UJ 1, UM} + kB.

I\

Again, the same inequalities hold when the outer min is replaced by kemnce
(5.10) holds and the proof of the lemma is complete for finite horizdme infinite-
horizon case again follows froii2.10). u

For theproofof Theorem 54, we consider first an auxiliary system wiiki, j ) :=
b, = min; je; b(i, j) whose value function will be denoted bYy (s). Similarly, the
system withb(i, j) = b* has value functioriVy(s). From Corollary 53, we know
that JLL is optimal in these systetrsence from Lemma 55, we see

W5 (S) = LW (S) = V() = Vs (s) = *Vis(9). (5.12)

Now, we apply Lemma B5b to the two value functiongVys and *Vy;s with fixed
separation timed\Ne obtain

Vos(9) — Vas(9) = B S Bk (5.13)

which, together with(5.12), implies the assertion of Theoremd5or the finite hori-
zon, the infinite-horizon case again follows fro(@.10).
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6. THE CASE OF COMPLETE INFORMATION: A COUNTEREXAMPLE

In this sectionwe assume that the controller knows the type of the airplane that has
to be routedin addition to the state of the runways this casethe control prob-

lem is much more complicated simple switching policy as in Section 4 need not
be optimal any longels we will show by a counterexample

6.1. The Model

To model the new situatigithe type of the newly arrived airplane is now included
in the state spac¢é¢hat is we put

Xni=(Jn,Zn,Un, &0 Un) and Si=JIX (IXR) X (IXR),

where a stat& € Sis denoted bys = (k,i,u,j,v). k gives the type of the newly
arrived airplane ang u, j, andv are as earlieAs in Section 3we have an external
eventz = (I,t), but nowl is the type of the airplane to arrive after thextinter-
arrival timet [i.e., Z, = (Jy:+ 1, Thr1)]. Using the notation of Section @e can write
the transition functiorg: SX A X Z — Sfor 8= (k,i,u,j,v) andz = (I,t) as

(Lk [u+b(,k]*—tjv—t) ifa=I

9sa2= {(I, bu—tk[o+b(LK]*—1) ifa=I. -

For the cost functiorg(s,a), we now take thédeterministig waiting time of the
newly arrived airplane when routed to runwaythat is

¢(81) :=[u+b(i, k)]
¢ Il :=[v+b(j,k]*

As in the model of Section,3he optimality equation of the finite-horizon dynamic
program is given by

(6.2)

\7n+1(s) = mel,Q I:avn(s) = min{l:|\7n(S), I:II\A/Jn(S)},

where fors = (k,i,u,j,v) andw: S— R,

Ciw(3):=c(s)+B>p me(l,k,[u +b(i,k]" —tj,v—t)F(dt)  (6.3)
leJ 0
and

Cow(®:=cIh+8> p foow(l,i,u—t,k,[v+ b(j, k)] —t)F(dt). (6.4)

ISN)

6.2. A Counterexample

The following example shows that a monotonicity result similar to that of Theo-
rem 41 cannot hold in the present scenaiitore preciselyif routing the airplane
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to runway | in states = (k,i,u, j,v) is optimal then it need not be optimal to route
the airplane to runway | in a stase= (k, i, 0, j,v), wheret < u. Hence with respect
to any(partia) ordering “<” of S which hass < sfor the above statesnonotonic-
ity as in Theorem 4 need not holdAs a consequenc&heorem 22, Corollary 53,
and Theorem 3 are no longer validalthough Lemmas.% and 55 hold

The counterexample has a very smalk 0; that is the last touchdown on
runway | was a long time agd’hen if the current airplane needs only a small
safety distance to the preceding orenight be better to save runway | for a future
airplane that needs a larger separation time

Example: We assume that there are three types of airciaft{1,2,3}, and that the
matrix of separation times is as given[if:

96 120 14
(b(i,j))i,jzl ..... 3= 7272 96 |.
72 72 72

LetF(t) := 1— e %; thatis we assume that the arrivals form a Poisson stream with
rateAr = 1.

For a planning horizon of @.e., N = 2), we obtain from(6.3) and(6.4) for the
difference of the expected cost between routing to | and routing to Il in State
(ki,u,j,v)

&2(9) = I:|\71(3) - Ellvl(g)
=[u+b(i,k]*" —[v+b(j,k)]"
+B82> p foo re M (min{[[u+ b(i,k)]" —t+ bk, )],
leJ 0
[v—t+Db(j,1)]"}
— min{[u—t+b(i,]" [+ b(j,K]* —t+bkD]*Hdt  (6.5)

Now, assume that we are in stage= (k,i,u,j,v) := (1,1,—96,2,—72). Then we
havec(s,1) = ¢(511) = 0, and from(6.5), singling out type 3

24 48
Ay(8) = Bp3<f0 (—24)et dt—f24 (48— t)e‘dt) +B8(1-p3)C,

= Bps(—24)(1—-e ") + B(1—p3)C,

for a constaniC,; not depending orms. For ps; large enoughwe therefore have
A,(8) < 0; that is it is optimal to route to runway. |
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Now, lets:= (1,1,—1442,—72); then 0 = —144< —96 = u, but

24
Ay(3) = Bpsj; (24—t)e 'dt+ B(1—p3)C,

= Bps(23+ e + B(1 - ps)Cy,

again for a constart, not depending oms. This time we havel,(s) > 0 for p;
large enoughthat is in states, it is optimal to route to Il Hence for any ordering
< onSwhereu < aimplies(k, i,u, j,v) < (k,i,0,j,v), A,(3) need not be s-increasing

7. THE MONOTONICITY OF s— A,(s)

In this sectionwe complete the proof of Theoreml4We are using the model of
Section 3thatis s= (i,u, j,k) andZ, = (J,, Ths1)-

Let us first introduce some notation that allows one to describe the behavior of
the system under fixed sequences of actions and external effents= 0, let

gkiSX AKX 2K S
be defined by
9°(s) ==+,
gl(s,a,2):=9g(s,a,z) as definedin3.4),
9K (s, (Ag ooy Ai1)s (21,05 Zirn)) = 9(94(S, (Ag, s ),

(21’ [RRE) Zk))’ A+15 Zk+l)~

(7.1)

Leta= (ay,...,ay) € AXandz = (z,,..., z) € ZX We denote the components of
the stateg“(s, a, ) in the following way

g(s,a,2) =: (7, hi, 7, hif) (s & 2); (7.2)

gX(s,a,z) is the state aftek stagesstarting in states € S applying actions € A,
and given that the external everes= Z* were observedThen for example
hk = hf(s,a,z) denotes the load on runway | anfl = 7/(s,a,2) is the type of
airplane at the tail of queue Il at that time

We make extensive use of ideas fri. In[1], a more general state transition
mechanism is considere@ihere the transition functiorg depends on the actian
only via an additional random evepntvhose distributior, is controlled bya. Our
approach is the special case wherandq, are distinct one-point measurés.
Lemma 23(i) in [1]). In [1] it is shown inductively that — A,(s) is increasing
with respect to some partial order &under a number of condition3ranslated
into our context the following conditions are used

C.1. s—c(sl) —c(sll) is s-increasing
C.2. s—g(sa, z) is s-increasing
C3. g%(s1,I,z,2) = g?(sl,l,z,2') forall z, 2 € Z.

https://doi.org/10.1017/50269964804184088 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964804184088

550 N. Bauerle, O. Engelhardt-Funke, and M. Kolonko

C.4. s—[c(sl)+ Bc(g(s,1,2),1l) —c(s 1) — Bc(g(s I, 2),1)] is s-increasing
forallze Z.

C5. s~ [c(g"(g%(s1,11,z,2),a,2),a) — c(g*(g3(sl,1,z,2'),a,2),a)] is
s-increasing foralh € Az € ZXa€ A, z,z € Z, andk = 0.

Note that conditions @ and C5 examine the permutation of actions | and Il in the
first two stageswith the rest of the actions and all external events fixed

It turns out that these assumptions do not hold in our contestead we need
slightly modified conditions B—C5 which differ from the above only in that we
permute the two first actions as well as the two first external ev&wstherefore
use C1, C.2, and the following

C.3*. g?(s1,ll,z,2') = g?(s l,1,Z,z) forall z, 2’ € Z.

C.4*. s—[c(s]) +Bc(g(sl, 2),1l) —c(sIl) —Bc(g(sll, z’),1)]is s-increasing
forallz,z € Z.

C5*. s~ [c(g4(g?(s1,I1,z,2),a,2),a) — c(g"(g?(s I, I,Z,2),a,2),a)] is
s-increasing foralh € A z€ 2K a€ A, 2,z € Z, andk = 0.

We will refer to the sefC.1, C.2, C.3*, C.4*, C.5*} of modified conditions aéC*).
We now have to shovia) that the condition$C*) hold in our model andb) that the
conclusions of 1], namely thats — A, (s) is s-increasinghold under(C*).

7.1. Verifying the Conditions (C*)
We start with a lemma

LemmMma 7.1: With the preceding notation, we have forgi, u, j,v) € S and for any
ae AS ze 2K k=0, the following:

(a) i~ 7¥(s,a,2) is increasing (with respect to the ordering defined in (4.1)),
7 does not depend on i, andu.

(b) i,u— hf(s a,z) are increasing hf does not depend on j and

(c) j— 7i(s,a,2) is increasing (with respect to the ordering defined in (4.1));
7 does not depend oni, andw.

(d) j,v — hk(s,a,z) are increasing hl{ does not depend on i and u.

Note thatu — h(s,a,z) andv — hf{(s,a,z) are also convex
Proor: (a) With s= (i,u,j,v), we haver’(s,a,z) =i, and fork = 1,

i ifa=--=a=I

7(sa2) = {

Il ifm=max{rv|l=v=Kka,=I}andz,= (I, tm).

Hencei — 7is increasing and independentwfj, andv for fixed a andz.
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To prove partb), we proceed by induction ok= 0. Let k = 0. We put

[u+b]*—t ifa=|I

H(u,b,t,a) := .
u—t ifa=1lI.

Then u,b — H(u,b,t,a) are increasing and convex functioremd withz, =

(ls1, tes 1), We see from(7.1) and(3.4) that

hi“ (s, @, 8+ 1,2, k1) = H(DK(S,2,2),b(7¥(S,8,2), Ik 1), tr1, Bk 1)
{[hl‘(s,a,Z) +b(rf(sa,2), lkr)] " —terr if aer =1

hi(sa,2) = tis1 if &g =11
(7.3)

Assume that parta) holds fork. Then u,i — h¥ andu,i — b(7(s,a,2),1,,,) are
increasing mappings that do not depend@nFrom (7.3), it is then obvious that
part(b) holds fork + 1.

Parts(c) and(d) follow in the same way n

Now we can show that conditiof€*) hold in our model
LEMMA 7.2:

(@) s— c(s,]) — c(sl) is s-increasing.

(b) s— g(s,a,z)is s-increasing.

(c) g’(saa,zz)=g?%sa,az,z)foralla,a € Aandzz € Z.

(d) s—[c(sl)+ Bc(g(sI,2),ll) —c(sll)—Bc(g(sll, z'),1)]is s-increasing
forall z,z' € Z.

(e) s— [c(g*(g?(s1,11,2,2'),a,2),a) — c(g“(g%(sIl,1,Z,2),a,2),a)] is
s-increasing foralla € A z€ ZXa€ A 2,z € Z and k= 0.

PRrOOF:

(8 We have thau,i — [u + b(i,j’)]* are increasing for ali’ € J; hence
from (4.3),

s—c(sl) —c(sll)
= > p([u+b(i,j)]" —[v+b(i,j)")
j'ed

is s-increasing

(b) This follows from Lemma 71.

(c) To prove part(c), we look at the components a@f(s,1,1l,z,z’) and
g2(s 11,1,z 2). With z= (I,t) andz’ = (I',t"), we haver? =l andr? ="
in both casesand agx]* —t =[x —t]*, we obtain
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h2(sI,Il,z,z’) = [u+b(i,)]"—t—t’
=[u—t' +b@i,N]"—t
= h2(sl, 1,2, 2).

In the same wayone show$i (s, 1,11,z z') = ha(s ll,1,2', z). Hence part
(c) (i.e., C.3*) follows. Note thath?(s,11,1,z,2’) =[u—t+ b(i,1")] " —t’,
which we cannot relate tb?(s, 1,11, z, z’) without serious restrictions on
the separation timdx(i, - ). Hence the original condition G3 as used ifi1]
need not hold in our model

(d) From the definition of the one-stage cost functiori3rb), we have fors =

(i,uj,0), z= (L), 2 = (I, "),

c(s ) —c(sl) + B(c(g(s 1, 2),11) —c(g(s 1, 2'),1))
= E P [[u+bG,j)]" —[v+Db(j,i)]" +Blo—t+b(j,j)]"
- —Blu—t" +b(i,j)]"]
= 2 pyr[(fu+bGi, )17 = Blu—t +b(i,j)]")
@b Bl -t b (7.4

Itis not difficult to see that an expression of the foxm> r (x) — Br(x—t)
with r increasing and convex and0B = 1isincreasing ix. Asu,i — u+
b(i,j’)andv, j—v +b(],]j’) are increasingve see froni{4.3) that part(d)
holds

(e) Fixs=(i,u,j,v) € Sandz= (I,t) andz’ = (I',t’) € Z. Define

oy =09%(sI,1,z,2)=(I,[u+b@,)]" —t
—t, 1 [v—t+b(j,1")]" =t
o,:=0g%(s I, 1,2,2) = (IL[u—t" + b(i,)]"
—t,1,[v+Db(j,1)]" =t —1).
Let us assume that = |. From Lemma 7Lb, we see that
hi(o,8,2) = hi((1, [u+ b(i, D] — t
—t, 1 [v—t+b(j,I")]"—1),az2)

is increasing in the first two coordinates@f and does not depend on the
last twa henceit is increasing in andu and does not depend ¢manduv.
Similarly, hf(o,a,2) is increasing in andu and is independent ¢fandu.
Using Lemma 7la we therefore have
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c(g*(g®(s1,11,2,2'),a,2),1) — c(g(g?(s I, 1, 2,2),a,2),1)
= > pr([hKoy,a,2) + b(r(01,8,2),]")]F

j'ed
— [hi(0o2,8,2) + b(7/(02,8,2),j")] ")
= 2 pj’([hlk(l’[u + b(lal):l+ —t- t’a'7') + b(TIk(I""a')?j,)]+

j’ed
- [hlk(l’[u —t'+ b('?')]+ - talla'7') + b(TIk(la"'a')aj,)]+)~
(7.5)
It is not difficult to show that ifr : R — R is an increasing function and
de R,t >0, then
X—=>r([x]T+d—t)—r([x—t]" +d)

is increasingWith x = u + b(i, ), we obtain tha(7.5) is increasing in
andu and independent gfandv, hence it is s-increasingSimilarly, for
a = Il, we see that

c(g(g?(s 1, 11,2,2'),a,2),11) — c(g(g?(s Il, 1,7, 2),a,2),Il)
= > p([hf(o1,a,2) + b(r(01,8,2),]")]"

j'ed

= [hii(02,8,2) + b(7{{(02,8,2),j)]")
= 2 pj'([hlkl('aUl”[U —t+ b(JaI’)]Jr _t’) + b(Tllf("'9|,")’j’)]+

j'ed
- [hlkl('f’lrv[v + b(J"’):l+ _t_t) + b(Tllf("'ylra'),j,)]Jr)
(7.6)
is independent of andu and decreasing ipandv, hence s-increasing
[ ]

7.2. Monotonicity of s+ A ,(s) Under Conditions (C*)

We now show thad,(s) is s-increasing under our modified conditioRer the sake
of completenesave give a streamlined version of the proofg of here

LeEmmMmA 7.3: Let (C*) hold. For any s= Sn= 0,
s— A,(s) is s-increasing.

Proor: We proceed by induction on = 0. For n = 0, we have withVy = 0 and
s=(i,u,j,v)

Ao(s) = LiVo(s) — Ly Vo(s) =c(s,) —c(s ), (7.7)
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which is s-increasing by condition.C Now, assume thag— A,(s) is s-increasing
for all k = n — 1. We will show that the same holds far,(s). Note that for any
a,b € R, we have

min{a,b} =b—-[b—a]*=a+[b—a]_, (7.8)
where we denote

[a]_ := min{0,a}. (7.9)
We now obtain forang € Sn=1,
An(s) = LiVia(s) — LyVi(s)
=c(s ) + BE[VA(X) Xy =s A =1]—c(sI)
— BEIVL(X) Xy =5 A, = 1]

= o(s1) + BE| min LoV 1(Xo) Xy =S A =1 |

- C(S,II)—,BE[mln L.V (X)X, =S A, = ||]

c(s1) + BE[L; Va—1(Xz) + [LiVa-1(Xz) — Ly Vo1 (X2)] -

Xy =8 A =1]
—c(s, 1) = BE[LVo-1(X3) = [LiVa1(X2) = Ly Voo (X)]F
Xy =8 A =1l]

c(s1) + BE[LyVa-2(X2)[Xi = s Ay = 1]

+BE[[An-1(X)]-[Xi =5 A = 1]

—c(sll) = BE[L,V,_1(Xy)[ Xy = s, A = 1I]

+ BE[[An-1(X)] " [X1 =5 A = 11]

c(s1) + BE[LyVa-1(9(s 1, Z))] + BE[An-1(9(s 1, Z1))] -

—c(sl) = BE[LVa-1(9(s 11, Z1))] + BE[Aq-1(g(s 11, Z1))] . (7.10)

From the induction hypotheses and conditior2,Cwe now infer thats —
An_1(g(s a, 2)) is s-increasingAs[ -] and[ - ] _ are monotone functionse obtain
that

s— E[A,_1(g(s1,Z1))]- + E[A,_1(9(s11,Z1))]"
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is s-increasingFor the proof of the lemmt is therefore sufficient to show that the
remainder of(7.10) is s-increasingthat is

s—c(s1) + BELyVi-1(9(s 1, Z4)) — c(s, 1) = BELVi-1(9(s 11, Z,))
= E[c(s) + Be(g(s,1,Z1),11) + B2V, 1(9%(s 1, 11,24, Z,))
—c(sll) = Be(g(s 11, Z,),1) = B2V, -1(9?(s 11, 1,25, Z4))]
= E£(S,Z4,Z,), (7.12)

whereé is defined in(7.12).

Note that in the second equation(@f11), we have exchanged, andZ,, which
is possible because they aried. . This is a minor change from the derivation[it)]
and allows one to use conditions32-C.5*. As Z, andZ, are also independent of
the restthe monotonicity 0f7.11) follows if s— £(s, z4, z,) is s-increasing for all
71,2, € Z, which is shown in the next lemma |

LemmMmaA 7.4: If s — Ay(s) is s-increasing for all k= n, then the following expres-
sion is s-increasing for all,z' € Z:

£(sz,2'):=c(s 1) + Be(g(s1,2),11) + B2Va(g3(s 1,11,2,2'))
—c(sI) = Be(g(s 1, 2'),1) = B2Va(g?(s I, 1,2,2).  (7.12)

For the proof of this lemmawe need the following definitian_et Ry(s) := 0, and
fora=(ay,...,a,) € AXandz = (zy,...,z) € ZX let
k—1

Rd(saz) = >, Bmc(9™(s,a,2), amr1)-

m=0

Then R(s,a,2) is the discounted cost ovérstages when starting in staseand
following a fixed routing policya, with fixed external events. Note thatig™ depends
only on part of the sequencesandz.

PrOOF OF LEMMA 7.4:

1. We follow the lines of the proof of Lemma2in[1]. For 0= k = n and
2,7 € Z let

i (s,a,2) := c(s 1) + Be(g(s 1, 2),11) + BZRA(G*(s 1,11,2,2),8,2)
+ B2V, (g*(g%(s 1, 11,2,2'),8,2))
—c(sll) = Be(g(s I, z'),1) — B2Ru(g*(s 11,1,7, 2),8,2)

- Bk+2Vn—k(gk(gz(Sall7laZ,’ Z),a,Z)), (713)

wherea = (ay,...,a) € AXandz = (z,,...,z) € Z¥ are arbitrary fixed
sequencesThe first half of®,(-) describes the cost from+ 2 stages start-
ing in states; when in the firsk + 2 stages the fixed policil,ll, a,, ..., ay)
is used the external eventiz, 7/, z,, ..., z,) occur and an optimal policy is
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used for the remaining — k stagesThe second half ob,(-) interchanges
actions | and Il and the first two external eveatandz’.

2. The main step of the proof is to show th@ is s-increasing for alk =
0,...,nby downward induction ok = n,...,0. The lemma then followsas

Do(s) = £(9).

2.1. Fork = n, ®, reduces to the expressidid.21) in Lemma 75. It is
proven there that this expression is s-increasing forraryl.

2.2. Now, assume thab, (-) is increasing irsfor any sequencese A<?
andz € ZK*1 We want to show that the analogous result holds for
®,(-). Lets < s’ and put

oy = g*(g?(s,1,11,2,2'),a,2),
o, = g¥(g3(s, 111,27, 2),8,2),
os:=gX(g%(s1,11,2,2'),8,2),
o, = g4g%(s1,1,7,2),8,2).

From C2 and C3*, we obtain thab; < o, andosz < 4. Again, from
C.2 follows o3 < 071 ando, < 05; hencewe have

03< 01,04 and o,04 < 05. (7.14)
Then
&y (s, ay,...,a, Zy,...,2) — Pu(S,ay,..., 8, 21, ..., Z)
= c¢(s,) + Bc(g(s,l1, 2),1)
+ B2R(g?(s,1,11,2,2"),a,2)
—c(s,1l) — Be(g(s,11,2'),1)
— B?Re(g?(s,1,1,2, 2),a,2)
—c(sh) —Be(g(sl,2),I) - B?Rg*(s1,11,2,2'),a,2)
+ c(s 1) + Be(g(sl, z'),1) + B2R(9?(s 11, 1,2, 2),8,2)
+ B2 (Vo i(01) = Vai(02) = Vo i(03) + Vi i(0)).

(7.15)
2.2.1. We will now show that there ia’ € A with
r:= ank(o'l) - ank(a'z) - ank(o'a) + ank(0'4)
= La'ankfl(O'l) - La'ankfl(O'Z)
- La’ank71(0'3) + La'ank71(0'4)- (716)
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To simplify the notationwe putw(s) := V,_,_1(s). Assume
thata € Aiis optimal ino; andb € Ais optimal ing,. If a = b,
then(7.16) holds fora’ = a. If a # b, then

I'=L,w(oy) — Lyw(oz) — Liw(os) + Lyw(oy)

= Liw(oy) — Liw(o,) — Liw(os) + Liw(oy)
— (Liw(oy) — Law(oy)) + Liw(o)
=~ Luw(oz) = (Liw(os) — Lyw(os))

= Liw(oy) — Liw(oz) — Liw(os) + Liw(oy)
=~ Lra-mAn-k-1(01) + Apy-a(02)
= Loy An-k-1(0a)

= Lw(oy) — Liw(oy) — Liw(os) + Liw(oy).  (7.17)

Herg the last inequality followsas it is assumed in this lemma
thats — A(s) is increasing for all = n; hence we see from
(7.14) that

An1(02) = Ap o 4(0) =0
and
Ank-1(02) = Ay 1(0y) = 0.
In the same waywe obtain
IF=L,w(oy) — Lyw(o,) — Lyw(os) + Lyw(o,)
+ LacnAn—k-1(01) — Ap_k-1(03)
+ Lip=1)An—k-1(04)
=Lyw(oy) — Lyw(o,) — Lyw(os) + Lyw(oy).
2.2.2. Inserting the definition of_, into (7.16), we obtain
' =c(oy,a") — c(oy,a’) — c(os,@’) + c(oy4,a")
+ BE(Vh-«-1(9(01, @, Z.1))
= Vo-k-1(9(02, @', Zis1))
— Vok-1(9(05, @), Zii 1) + Voo 1(9(04, @, 2y 1)), (7.18)

https://doi.org/10.1017/50269964804184088 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964804184088

558 N. Bauerle, O. Engelhardt-Funke, and M. Kolonko

As ®, depends only on the firsk components ofa =
(a,...,a¢4+1), We can choose,,; = a’ to obtain

Re1(g%(s1,11,2,2'),8,2)
= R(g3%(s,1,1l,2,2"),8,2)
+B*c(g*(g®(s1,11,2,2'),8,2), ay.1)
= R(g?%(s 1,11,z 2'),a,2) + Bc(os,a1)  (7.19)

and similarly foro, o, ando,.
2.2.3. Returning to(7.15), we obtain from(7.18) and(7.19),

Oy (s,a,2) — P (s,a,2)
= c(g,1) + Bc(g(s,l, 2),1l)
+ B2Ri1(0%(s,1,11,2,2'),a,2)
—c(s,Il) — Bc(g(s,Il,z'),I)
— B?Re1(9%(s, 11,1, 2, 2),8,2)
—c(s 1) —Be(g(s 1, 2),11)
— B?Re1(9%(s1,11,2,2'),8,2)
+ c(sll) + Be(g(s I, 2'),1)
+ B%Re1(9%(s 11,1, 2, 2),8,2)
+ B E(Va-k-1(9(01, A1, Zicr 1)
— Vo-k-1(9(02, 41, Zir 1))
— Va-k-1(9(03, A+ 1, Zi+1))
+ Va-k-1(9(04, 811, Zis 1))
= E(®y1(S, 815+« Q15 Z1y -+ v s Zis L 1)
— @ 1(S, Q1,00 Q15 Z1y - e es Zis L 1))
=0, (7.20)
where the last step follows from the induction hypothesd®

Lemma 7.5: Let C.4* and C.5* hold. Then, for all k& 0, a € A¥, andz € 2, the
following expression is s-increasing:

{(s) =c(s 1)+ Be(g(s 1, 2),11) + B*R(9%(s 1, 11,2,2'),8,2)
—c(sll) = Be(g(sll,z'),1) — B*R(9*(s II, 1,7, 2),a,2).  (7.21)
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Proor: We have from the definition oRy
£(s) = (c(s1) —c(s ) + B(c(g(s, 1, 2),11) — c(g(s11,2'),1))

k—1
+ BZ 2 Bm(c(gm(gz(s’ I’ ” ’ Z’ Z/),a7z)’ am+1)
m=0

- C(gm(gz(syllyl’Z,7 Z)’aez)’ am+1))- (722)
The first part of this expression is s-increasing by conditiofi*Cthe second is a
sum of terms which are s-increasing byp€ u

8. CONCLUSION

In this article we have investigated optimal assignment rules in a particular model
of aircraft arrivals We have shown that optimal policies are of switching type only
if we restrict the information on which decisions are based to the state of the two
runways(i.e., to the workload and the types of aircraft waiting at the end of the
queues

Determining the optimal assignment policy explicitly is a most difficult task
Classical approaches such as policy iteration or value iterétiea[10]) are of
limited use here due to the complex search space of possible decisiarRetent
approaches to incorporate numerical approximation techniques are pregented
examplein [5].

Our results narrow the space of possible decision rifl@se restrict the search
to monotone rulesi.e., to switching levely we are sure to cover policies that are
optimal among those that depend only on the state of the runways

The authors of the present article have some experience with the optimization
of assignment policies using heuristic search methods as genetic algorithms for which
the expected waiting times are estimated by discrete event simuldimmotone
policies or rather the switching levels are easily stored and manipulated on a com-
puter Although our results show that these rules need not be optimal in general
they perform quite well in practice

Our future research will focus on two topidarst, we will investigate models
that take into account more than just one arri€alen in the random environment
assumed herairport controllers usually know about the next few arrivals and can
base their decision on that informatioBecond we will work on approximation
techniquesas for example ii5], by making use of structural properties as proven
in this article

Acknowledgment
The authors would like to thank the referee of a former version of this article for useful suggestions

concerning the monotonicity with respect to the types
References

1. Altman, E. & Stidham S., Jr. (1995. Optimality of monotonic policies for two-action Markovian
decision processewith applications to control of queues with delayed informatiQneueing Sys-
tems21: 267-291

https://doi.org/10.1017/50269964804184088 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964804184088

560 N. Bauerle, O. Engelhardt-Funke, and M. Kolonko

2. Bauerle N., Engelhardt-FunkeO., & Kolonko, M. (2002. Routing of airplanes to two runways
Stability and bounds for the waiting timesubmitted
3. Beasley JE., Krishnamoorty M., SharaihaY.M., & Abramson D. (2000. Scheduling aircraft
landings—The static cas&ransportation Sciencg4: 180—197
4. BertsekasD. (1987). Dynamic programming: Deterministic and stochastic modetgylewood Cliffs
NJ: Prentice-Hall
5. BertsekasD. & Tsitsiklis, JN. (1996. Neuro-dynamic programmingenglewood Cliffs NJ:
Prentice-Hall
6. Bolender M.A. & Slater, G.L. (2000. Evaluation of scheduling methods for multiple runways
Journal of Aircrafts37: 410—416
7. Hordijk, A., Koole, G.M., & Loeve, JA. (1994). Analysis of a customer assignment model with no
state informationProbability in the Engineering and Information Scien@<119-429
8. Horonjeff, R. & McKelvey, FX. (1994). Planning and design of airporfs4th ed Boston
McGraw-Hill.
9. Neuts M.F. (1977. Some explicit formulas for the steady-state behaviour of the queue with semi-
Markovian service timesAdvances in Applied Probability: 141-157
10. PutermanM.L. (1994. Markov decision processes. Discrete stochastic dynamic programvitey
Series in Probability and Mathematical Statistidew York: Wiley.
11 Schal M. (1975. Conditions for the optimality in dynamic programming and for the limiheftage
optimal policies to be optimaEeitschrift fir Wahrscheinlichkeitstheorie und verwandte Gebiete
32 179-196
12. Stidham S., Jr. & Weber, R. (1993. A survey of Markov decision models for control of networks of
queuesQueueing Systenis3: 291-314

https://doi.org/10.1017/50269964804184088 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964804184088

