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Abstract We extend and apply the Galois theory of linear differential equations equipped with the

action of an endomorphism. The Galois groups in this Galois theory are difference algebraic groups,

and we use structure theorems for these groups to characterize the possible difference algebraic relations
among solutions of linear differential equations. This yields tools to show that certain special functions

are difference transcendent. One of our main results is a characterization of discrete integrability of linear

differential equations with almost simple usual Galois group, based on a structure theorem for the Zariski
dense difference algebraic subgroups of almost simple algebraic groups, which is a schematic version, in

characteristic zero, of a result due to Z. Chatzidakis, E. Hrushovski, and Y. Peterzil.
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1. Introduction

In [15], the authors developed a Galois theory for linear differential equations equipped
with the action of an endomorphism σ . Such actions occur, for example, when considering

linear differential equations depending on a parameter α, in which case the action of σ

is determined by σ(α) = α+ 1. In the p-adic analysis of differential equations one may

choose σ to be a Frobenius lift.

The Galois groups in this Galois theory are linear difference algebraic groups, i.e.,

subgroups of the general linear group defined by equations which involve powers of σ .

These Galois groups measure not only the algebraic relations among the solutions

of a linear differential equation, but also the difference algebraic relations, i.e., the

algebraic relations between all the transforms of the solutions under σ . For example,

the difference algebraic relation x Jα+2(x)− 2(α+ 1)Jα+1(x)+ x Jα(x) = 0 satisfied by the
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Bessel function Jα(x) will be reflected by our new Galois group, whereas the usual

(differential) Galois group of the Bessel equation does not take it into account.

In this article we prove structural results about difference algebraic groups to apply

them to characterize the possible difference algebraic relations among various types of

linear differential equation. Thereby we often obtain criteria to decide if certain functions

are transformally (i.e., difference algebraically) independent.

This Galoisian approach to transformal independence is analogous to the approaches

to differential independence of special functions via the Galois theories in [9, 20]. See [13]

for a survey and [2] for a recent example.

The usual Galois theory of linear differential equations (see, e.g., [44] for an

introduction) is aimed at studying the algebraic relations among the solutions of a linear

differential system δ(y) = Ay, A ∈ K n×n , over a differential field K , i.e., a field equipped

with a derivation δ : K → K . In order to study the difference algebraic properties of

the solutions, we enrich the situation with the action of a difference operator σ . Our

base field K is a differential–difference field; i.e., it is equipped with a derivation

δ : K → K and an endomorphism σ : K → K such that δ and σ commute (up to a

convenient factor). For example, K could be the field C(α, x) with derivation δ = d
dx and

endomorphism σ given by σ( f (α, x)) = f (α+ 1, x). One can also consider the δσ -field

K = C(x) endowed with the derivation δ(x) = 1 and the endomorphism σ(x) = x2. To

study the difference algebraic relations among the solutions we have to adjoin not only

the solutions to the base field but also all their transforms under σ . As in the usual

Galois theory of linear differential equations, it is crucial to do this without enlarging

the δ-constants K δ := {a ∈ K | δ(a) = 0}. A differential–difference field obtained in this

way is called a σ -Picard–Vessiot extension of K for δ(y) = Ay. The automorphism group

of a σ -Picard–Vessiot extension is naturally a linear difference algebraic group over the

difference field k = K δ, i.e., a subgroup of the general linear group Gln,k defined by

algebraic difference equations. These groups play the role of Galois groups in the Galois

theory developed in [15], and they encode valuable information about the difference

algebraic relations among the solutions. For example, the difference–transcendence degree

of a σ -Picard–Vessiot extension is the dimension (in the sense of difference algebra) of

the corresponding Galois group.

The basic idea of this article is to apply, via the Galois theory from [15], structural

results for difference algebraic groups to study the difference algebraic relations among the

solutions of linear differential equations. We will show that often some understanding of

the usual Galois group of δ(y) = Ay is already sufficient to obtain an explicit description

of the possible difference algebraic relations among the solutions. For example, if A
is a diagonal matrix, one knows that the usual Galois group is an algebraic subgroup

of Gn
m , and since the difference algebraic subgroups of Gn

m are well understood, a

description of the possible difference algebraic relations among the solutions can be

obtained.

Our explicit descriptions of the possible difference algebraic relations among the

solutions often lead to criteria for transformal independence. For example, we prove

the following statement (cf. Corollary 6.5).
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Let L be a differential–difference field extension of K such that Lδ = K δ

is algebraically closed and σ : K → K is surjective. For Y ∈ Gln(L) with

δ(Y ) = AY for some A ∈ K n×n, let T ⊂ L be a transcendence basis of K (Y )|K ,

and assume that the usual Galois group of δ(y) = Ay is an almost simple

algebraic group. If, for every d > 1, the linear differential equation δ(B)+
B A = σ d(A)B over K has no non-zero solution B which is algebraic over K ,

then T is transformally independent over K ; i.e., T, σ (T ), . . . are algebraically

independent over K .

Applying the above criterion to the Airy equation δ2(y)− xy = 0 yields the

transformally independence of the Airy functions (see Corollary 6.10).

Let Ai(x) and Bi(x) be two C-linearly independent solutions of the

Airy equation. Then the functions Ai(x),Bi(x),Bi′(x),Ai(x + 1),Bi(x + 1),
Bi′(x + 1),Ai(x + 2), . . . are algebraically independent over C(x).

Let us describe the content of the article in more detail. In § 2, we fix the notation

and recall the basic definitions and results from the σ -Galois theory of linear differential

equations developed in [15]. In § 3, we study three different classes of linear differential

systems: first, systems of the form

δ(y1) = b1, . . . , δ(yn) = bn,

where the usual Galois group is a subgroup of Gn
a ; second, systems of the form

δ(y1) = a1 y1, . . . , δ(yn) = an yn,

where the usual Galois group is a subgroup of Gn
m ; and finally an equation of the form

δ(y) = ay+ b,

where the usual Galois group is a subgroup of Ga oGm .

In § 4, we investigate the inverse problem for difference algebraic subgroups of the

additive group Ga . The inverse problem for a continuous parameter was discussed in [51],

where it is proved that having Ga or Gm as quotient is an obstruction for a differential

algebraic group to be a parameterized Galois group in the sense of [9]. In this section,

we show that, unlike the continuous parameter case, one can realize Ga as well as its

non-reduced subgroups as a σ -Galois group.

In § 5, we introduce and study discrete integrability, also called discrete isomonodromy.

A linear differential system δ(y) = Ay over a differential–difference field K is called

σ d -integrable for an integer d > 0 if there exists B ∈ Gln(K ) such that δ(B)+ B A =
σ d(A)B. Note that σ -integrability is a necessary condition for the existence of a

fundamental solution matrix Y of δ(y) = Ay with σ(Y ) = BY derived from the identity

σ(δ(Y )) = δ(σ (Y )). The main result here is a characterization of σ d -integrability via

the σ -Galois group (Theorem 5.11): the differential system δ(y) = Ay is σ d -integrable if

and only if, up to extension of the constants and conjugation inside Gln , the associated

σ -Galois group G 6 Gln satisfies σ d(g) = g for all g ∈ G. In § 5.2, we give examples of
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σ d -integrability as contiguity relations and Frobenius structures for p-adic differential

equations.

Then, in § 6, we combine this characterization of σ d -integrability with a classification

result for the Zariski dense difference algebraic subgroups of almost simple algebraic

groups to obtain a strong dichotomy for the possible difference algebraic relations among

the solutions of linear differential systems δ(y) = Ay, whose usual Galois group is an

almost simple algebraic group. The philosophy of the result is that either the system

is σ d -integrable for some d > 1 or there are no (proper) difference algebraic relations

among the solutions; i.e., all the difference algebraic relations can be derived from

algebraic relations. We present two versions of this result, one for simple algebraic groups

(Proposition 6.1) and the other for almost simple algebraic groups (Theorem 6.4).

The relevant structure results for difference algebraic groups have been collected in

Appendix. Difference algebraic groups are the group objects in the category of difference

varieties. A difference variety in the classical sense (see § 2.6 in [34]) is determined

by its points in difference fields. There is a one-to-one correspondence between the

difference subvarieties of affine n-space and the so-called perfect difference ideals in

the difference polynomial ring in n difference variables (Theorem 2.6.4 in [34]). In this

article we have to employ a more general notion of difference variety, which one might

term a difference scheme. We consider points in arbitrary difference algebras. There is

a one-to-one correspondence between the difference subschemes of affine n-space and all

difference ideals in the difference polynomial ring in n difference variables. The difference

schemes corresponding to the classical difference varieties we call perfectly σ -reduced.

Difference algebraic groups which are not perfectly σ -reduced occur rather frequently as

σ -Galois groups. For example, if the system δ(y) = Ay has a solution z whose coordinates

z1, . . . , zn are algebraic over K , then a σ -Picard–Vessiot extension L for δ(y) = Ay will

contain all the σ j (zi ) ( j > 1, 1 6 i 6 n). Unless σ is of a rather special nature, the field

extension generated by all the σ j (zi ) will be an infinite algebraic extension of K . Thus

the relative algebraic closure of K in L is of infinite degree over K . This shows that the

σ -Galois group of L|K is not perfectly σ -reduced, since a perfectly σ -reduced difference

algebraic group can have only finitely many components. (cf. Lemma 6.4 in [15].)

The majority of the appendix is concerned with a classification result for the Zariski

dense difference algebraic subgroups of almost simple algebraic groups. In [5], the authors

proved this result for perfectly σ -reduced difference algebraic groups. We show that a

naive generalization of [5] does not hold. Thus, we adapt their arguments to our schematic

framework and introduce new techniques to obtain Theorems A.20 and A.25 as structure

theorem. (See § A.4.2 for a detailed discussion). A further benefit of our version is that it

is expected to be applicable (via the Galois theory in [41]) to linear difference equations

as well.

2. Difference Galois theory of linear differential equations

In this section, we quickly recall some basic facts of difference/differential algebra as well

as some very basic notions of difference algebraic geometry, mainly in the affine case.

We recall also some fundamental results from [15] that we will need in what follows.
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More precise notions will be recalled in the paper when needed. We largely use standard

notation of difference and differential algebra, as can be found in [7, 29, 34].

2.1. Differential algebra

All rings considered in this work are commutative with identity and contain the field of

rational numbers. In particular, all fields are of characteristic zero. A differential ring (or

δ-ring for short) is a ring R together with a derivation δ : R→ R. A δ-ring R is said to

be δ-simple if it does not contain any proper δ-ideals, i.e, proper ideals invariant under

the action of δ. The ring of δ-constants is Rδ = {r ∈ R| δ(r) = 0}. We will use more than

once the following lemma on δ-simple δ-rings.

Lemma 2.1 (Lemma 2.3 in [15]). Let R be a δ-simple δ-ring, k := Rδ, and S a k-algebra,

considered as a constant δ-algebra; i.e., Sδ = S. Then (R⊗k S)δ = S and the assignments

a 7→ R⊗k a and b 7→ S ∩ b define mutually inverse bijections between the set of ideals of

S and the set of δ-ideals of R⊗k S. In particular, every δ-ideal b of R⊗k S is generated

by b∩ S as an ideal.

2.2. Difference algebra

A difference ring (or σ -ring for short) is a ring R together with a ring endomorphism

σ : R→ R. We do not assume that σ is an automorphism or injective. A σ -ring with σ

injective is called σ -reduced. If σ is an automorphism, the σ -ring is called inversive. The

ring of σ -constants is Rσ = {r ∈ R| σ(r) = r}.
A σ -ideal of a σ -ring R is an ideal a of R such that σ(a) ⊂ a. A σ -ideal a ⊂ R is

called reflexive if σ−1(a) ⊂ a, which is equivalent to saying that R/a is σ -reduced. A

σ -ideal q of R is said to be σ -prime if it is prime and reflexive. Finally, a σ -ideal a is

called perfect if σα1(r) · · · σαn (r) ∈ a implies r ∈ a, for all r ∈ R and α1, . . . , αn ∈ N. This

is equivalent to saying that R/a is perfectly σ -reduced; that is, if f ∈ R/a, α1, . . . , αn ∈ N
and σα1( f ) · · · σαn ( f ) = 0, then f = 0.

Given two σ -rings (R, σ ) and (R′, σ ′), a morphism ψ : R→ R′ of σ -rings is a morphism

of rings such that ψσ = σ ′ψ . A σ -field is a field that is also a σ -ring. A σ -field extension

is an extension of σ -fields such that the inclusion is also a morphism of σ -rings.

Let k be a σ -field and R a k-σ -algebra, i.e., a k-algebra such that the morphism k → R is

a morphism of σ -rings. We say that R is σ -separable (respectively, perfectly σ -separable)

over k if the zero ideal in R⊗k k′ is reflexive (respectively, perfect), for every σ -field

extension k′ of k.

If R is a k-σ -algebra over a σ -field k and B a subset of R, then k{B}σ denotes the

smallest k-σ -subalgebra of R that contains B. If R = k{B}σ for some finite subset B of R,

we say that R is finitely σ -generated over k. If K |k is an extension of σ -fields and B ⊂ K ,

then k〈B〉σ denotes the smallest σ -field extension of k inside K that contains B. The

k-σ -algebra k{x}σ = k{x1, . . . , xn}σ of σ -polynomials over k in the σ -variables x1, . . . , xn
is the polynomial ring over k in the countable set of algebraically independent variables

x1, . . . , xn, σ (x1), . . . , σ (xn), . . . , with an action of σ as suggested by the names of the

variables.
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Definition 2.2 (Definition 4.1.7 in [34]). Let L|K be a σ -field extension. Elements

a1, . . . , an ∈ L are called transformally (or σ -algebraically) independent over K if

the elements a1, . . . , an, σ (a1), . . . , σ (an), . . . are algebraically independent over K .

Otherwise, they are called transformally dependent over K . A σ -transcendence basis

of L over K is a maximal transformally independent over K subset of L. Any two

σ -transcendence bases of L|K have the same cardinality, and so we can define the

σ -transcendence degree of L|K , or σ -trdeg(L|K ) for short, as the cardinality of any

σ -transcendence basis of L over K .

2.3. Difference algebraic geometry

In [15], we work with the formalism of difference group schemes. They are defined as

follows.

Definition 2.3. Let k be a σ -field. A group k-σ -scheme is a (covariant) functor G from the

category of k-σ -algebras to the category of groups which is representable by a k-σ -algebra.

That is, there exists a k-σ -algebra k{G} such that G ' Algσk (k{G},−), where Algσk stands

for morphisms of k-σ -algebras. If k{G} is finitely σ -generated over k, we say that G is a

σ -algebraic group over k.

By a σ -closed subgroup H of G we mean a group k-σ -scheme H such that H(S) is a

subgroup of G(S) for every k-σ -algebra S. We call H normal if H(S) is a normal subgroup

of G(S) for every k-σ -algebra S.

As in the classical setting, the Yoneda lemma implies that the algebra k{G} is a

k-σ -Hopf algebra, i.e., a k-σ -algebra equipped with the structure of a Hopf algebra

over k such that the Hopf algebra structure maps are morphisms of difference rings.

It also follows immediately that the category of group k-σ -schemes is anti-equivalent to

the category of k-σ -Hopf algebras. We are not giving further details on this point (see

Appendices A.2 and A.8 in [15]).

A σ -closed subgroup H of G corresponds to a σ -Hopf-ideal I(H) of k{G}, i.e., a

Hopf-ideal which is a difference ideal, which we will call the vanishing ideal of H
inside G. Then k{H} ∼= k{G}/I(H). Normal σ -closed subgroups of G correspond to normal

σ -Hopf-ideals, i.e., σ -Hopf-ideals which are normal Hopf-ideals.

Difference algebraic properties of the vanishing ideal of a difference group scheme G
translate into geometric properties of the difference group scheme G. For instance, the

difference analog of irreducibility is that the zero ideal of k{G} is σ -prime. The difference

analog of reduced scheme is more subtle, and it admits two definitions. First of all,

we say that a group k-σ -scheme G is perfectly σ -reduced if the zero ideal in k{G} is

perfect. Perfectly σ -reduced difference schemes correspond to difference varieties in the

classical sense [7, 34] or in the model theoretic sense [4, 5, 21], . . .), where it suffices to

focus on the solution set of a system of difference equations with values in a sufficiently

big field, i.e., a σ -closed field. In the present work, we encounter a broader class of

difference schemes, so we need a weaker notion. Thus, we say that a group k-σ -scheme G
is σ -reduced if the zero ideal in k{G} is reflexive. If one requires that these two notions

remain unchanged by base field extension, we say absolutely perfectly σ -reduced and
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absolutely σ -reduced. Of course, absolutely (respectively, absolutely perfectly) σ -reduced

difference group schemes are in one-to-one correspondence with (respectively, perfectly)

σ -separable k-σ -Hopf algebras.

The forgetful functor from the category of k-σ -algebras to the category of

k-algebras admits a right adjoint. This functor allows us to attach to any group k-scheme

G̃ over k, a group k-σ -scheme, denoted [σ ]k G̃ (see § A.4 in [15]). Let us recall the

construction. Let d > 0 be a positive integer. For any k-algebra R, we set σ
d

R = R⊗k k,

where the tensor product is formed by using σ d : k → k on the right-hand side. We

consider σ
d

R as k-algebra via the right factor. We define

Rd = R⊗k
σ R⊗k · · · ⊗k

σ d
R

and [σ ]k R as the limit (i.e., the union) of the Rd (d > 0). Let G̃ = Spec(k[G̃]) be a

group k-scheme. Then we denote by σ d
G̃ the group k-scheme represented by σ d

k[G̃], i.e.,

the group k-scheme obtained from G̃ by extension of scalar via σ d : k → k. We also let

G̃d = G̃× σ G̃× . . .× σ d
G̃ be the group k-scheme represented by k[G̃]d . Finally, we define

the group k-σ -scheme [σ ]k G̃ associated with G̃ as the group k-σ -scheme represented by

[σ ]kk[G̃]. Notice that, if S is a k-σ -algebra and S] is the underlying k-algebra, then we

have the following (see the end of § A.4 in [15]):

[σ ]k G̃(S) = G̃(S]). (2.1)

By abuse of notation, we will say that H is a σ -closed subgroup of the algebraic group

G̃ to mean that H is a σ -closed subgroup of [σ ]k G̃.

For instance, let G̃ = Ga be the additive group k-scheme whose k-Hopf algebra is k[x],
the k-algebra of polynomials over k in the variable x . Its comultiplication sends x to

1⊗ x + x ⊗ 1. Then [σ ]k G̃ is represented by the k-σ -Hopf algebra k{x}σ , the k-σ -algebra

of σ -polynomials over k in the σ -variable x . Its comultiplication sends σ i (x) to 1⊗
σ i (x)+ σ i (x)⊗ 1. The closed subgroups of G̃ are the trivial group and G itself, whereas

the σ -closed subgroups of [σ ]k G̃ are given by linear homogeneous σ -polynomials (see

Theorem A.1).

On the other hand, if G is a group k-σ -scheme, one can define its dth-order Zariski

closure G[d] as follows (see Definition A.11 in [15]). Let G̃ be a group scheme over k
and G be a σ -closed subgroup of G̃. We denote by G] the group k-scheme defined by

G](S) = Algk(k{G}, S) for any k-algebra S, where Algk stands for morphism of k-algebra.

For d > 0, we consider the group k-scheme G̃d represented by k[G̃]d . Then the smallest

closed subscheme G[d] of G̃d such that G]→ G̃d factors through G[d] ↪→ G̃d is called

the dth-order Zariski closure of G inside G̃. If I(G) is the vanishing ideal of G inside G̃,

then the vanishing ideal of G[d] inside G̃d is nothing other than I(G)∩ k[G̃]d .

2.4. σ -Picard–Vessiot extensions

A δσ -ring is a ring R that is simultaneously a δ-ring and a σ -ring, such that for some

unit } ∈ Rδ we have

δ(σ (r)) = }σ(δ(r)), for all r ∈ R. (2.2)

We set }0 = 1 and } j = }σ(} j−1), for all integers j > 1, so that δ(σ j (r)) = } jσ
j (δ(r)),

for all r ∈ R and all non-negative integers j . The element } is understood to be part of
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the data of a δσ -ring. So a morphism ψ : R→ R′ of δσ -rings is a morphism of rings such

that ψσ = σ ′ψ , ψδ = δ′ψ , and ψ(}) = }′. Note that condition (2.2) implies that Rδ is a

σ -ring. The definitions of k-δσ -algebra, δσ -extension, and δσ -ideal are the intuitive ones.

They are given in detail in [15].

Let K be a δσ -field and A ∈ K n×n . We consider the differential system δ(y) = Ay. If R
is a K -δσ -algebra, then a matrix Y ∈ Gln(R) such that δ(Y ) = AY is called a fundamental

solution matrix for δ(y) = Ay. Notice that if Y, Y ′ ∈ Gln(R) are two fundamental solution

matrices for δ(y) = Ay in some K -δσ -algebra then δ(Y−1Y ′) = 0. Thus, there exists C ∈
Gln(Rδ) such that Y ′ = Y C .

Definition 2.4. A σ -Picard–Vessiot extension of K for δ(y) = Ay is a δσ -field extension

L of K , σ -generated by the entries of a fundamental solution matrix and without new

δ-constants, i.e., such that Lδ = K δ. A K -δσ -algebra R is called a σ -Picard–Vessiot ring

for δ(y) = Ay if it is σ -generated by the entries of a fundamental solution matrix and

the inverse of its determinant and it is δ-simple. A δσ -field extension L of K is called

a σ -Picard–Vessiot extension if it is a σ -Picard–Vessiot extension for some differential

equation δ(y) = Ay with A ∈ K n×n ; similarly for σ -Picard–Vessiot rings.

We recall the following two fundamental results about σ -Picard–Vessiot extensions.

Proposition 2.5 (Corollary 1.13 in [15]). Let K be a δσ -field and A ∈ K n×n. Assume that

K δ is an algebraically closed field. Then there exists a σ -Picard–Vessiot extension for

δ(y) = Ay over K .

Proposition 2.6 (Proposition 1.5 in [15]). Let K be a δσ -field and A ∈ K n×n. If L|K is a

σ -Picard–Vessiot extension for δ(y) = Ay, with fundamental solution matrix Y ∈ Gln(L),
then R := K {Y, 1

det(Y ) }σ is a σ -Picard–Vessiot ring for δ(y) = Ay. Conversely, if R is a

σ -Picard–Vessiot ring for δ(y) = Ay with Rδ = K δ, then the field of fractions of R is a

σ -Picard–Vessiot extension for δ(y) = Ay.

2.5. The σ -Galois group and its properties

If R ⊂ S is an inclusion of δσ -rings, we denote by Autδσ (S|R) the automorphisms of S
over R in the category of δσ -rings; i.e., the automorphisms are required to be the identity

on R and to commute with δ and σ .

Definition 2.7. Let L|K be a σ -Picard–Vessiot extension with σ -Picard–Vessiot ring R ⊂
L. Set k = K δ. We define σ -Gal(L|K ) to be the functor from the category of k-σ -algebras

to the category of groups given by

σ -Gal(L|K )(S) := Autδσ (R⊗k S|K ⊗k S)

for every k-σ -algebra S. Notice that the action of δ on S is trivial; i.e., δ(r ⊗ s) = δ(r)⊗ s
for r ∈ R and s ∈ S. On morphisms, σ -Gal(L|K ) is given by base extension. We call

σ -Gal(L|K ) the σ -Galois group of L|K .
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Proposition 2.8 (Proposition 2.5 in [15]). Let L|K be a σ -Picard–Vessiot extension with

σ -Picard–Vessiot ring R ⊂ L. Then σ -Gal(L|K ) is a σ -algebraic group over k = K δ. More

precisely, σ -Gal(L|K ) is represented by the finitely σ -generated k-σ -algebra (R⊗K R)δ.
The choice of matrices A ∈ K n×n and Y ∈ Gln(L) such that L|K is a σ -Picard–Vessiot

extension for δ(y) = Ay with fundamental solution matrix Y defines a σ -closed embedding

σ -Gal(L|K ) ↪→ Gln,k
of σ -algebraic groups.

In the notation of the proposition above, we will identify σ -Gal(L|K ) with its image

in Gln,k . For S a k-σ -algebra and τ ∈ σ -Gal(L|K )(S), we will usually denote by [τ ]Y the

image under the above morphism, i.e., the matrix [τ ]Y in Gln(S) such that τ(Y ⊗ 1)
= (Y ⊗ 1)[τ ]Y . Another choice of fundamental solution matrix yields a conjugated

representation of σ -Gal(L|K ) in Gln,k . Therefore, sometimes, we will consider σ -Gal(L|K )
as a σ -closed subgroup of Gln,k without mentioning the fundamental solution matrix Y .

The σ -dimension σ -dimk(G) of a σ -algebraic group G over a σ -field k can be defined

by tracking the growth rate of the algebraic dimension of the Zariski closures of G (inside

some suitable algebraic group). We refer to Appendix A.7 in [15] for a precise definition

(cf. [57, Definition 3.6]). As one may expect, for a group k-scheme G̃, we have dimk(G̃) =
σ -dimk([σ ]k G̃).

Proposition 2.9 (Proposition 2.17 in [15]). Let L|K be a σ -Picard–Vessiot extension with

σ -Galois group G and constant field k = K δ. Then

σ -trdeg(L|K ) = σ - dimk(G).

Proposition 2.10 (Proposition 2.15 in [15]). Let L|K be a σ -Picard–Vessiot extension

with σ -field of δ-constants k = K δ. Let A ∈ K n×n and Y ∈ Gln(L) such that L|K is

a σ -Picard–Vessiot extension for δ(y) = Ay with fundamental solution matrix Y . We

consider the σ -Galois group G of L|K as a σ -closed subgroup of Gln,k via the embedding

associated with the choice of A and Y . Set L0 = K (Y ) ⊂ L.

Then L0|K is a (classical) Picard–Vessiot extension for the linear system δ(y) = Ay.

The (classical) Galois group of L0|K is naturally isomorphic to G[0], the Zariski closure

of G inside Gln,k .

2.6. Galois correspondence

In the notation of Proposition 2.10, let S be a k-σ -algebra, τ ∈ G(S), and a ∈ L. By

definition, τ is an automorphism of R⊗k S. If we write a = r1
r2

with r1, r2 ∈ R, r2 6= 0,

then we say that a is invariant under τ if and only if τ(r1⊗ 1) · r2⊗ 1 = r1⊗ 1 · τ(r2⊗ 1)
in R⊗k S.

If H is a subfunctor of G, we say that a ∈ L is invariant under H if a is invariant

under every element of H(S) ⊂ G(S), for every k-σ -algebra S. The set of all elements in

L, invariant under H , is denoted with L H . Obviously L H is an intermediate δσ -field of

L|K .

If M is an intermediate δσ -field of L|K , then it is immediately clear from Definition 2.4

that L|M is a σ -Picard–Vessiot extension with σ -Picard–Vessiot ring M R, the ring
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compositum of M and R inside L. There is a natural σ -closed embedding σ -Gal(L|M) ↪→
σ -Gal(L|K ) whose image consists of precisely those automorphisms that leave invariant

every element of M .

Theorem 2.11 (σ -Galois correspondence; Theorem 3.2 in [15]). Let L|K be a

σ -Picard–Vessiot extension with σ -Galois group G = σ -Gal(L|K ). Then there is an

inclusion reversing bijection between the set of intermediate δσ -fields M of L|K and

the set of σ -closed subgroups H of G given by

M 7→ σ -Gal(L|M) and H 7→ L H .

Theorem 2.12 (Second fundamental theorem of σ -Galois theory; Theorem 3.3 in [15]).

Let L|K be a σ -Picard–Vessiot extension with σ -Galois group G. Let K ⊂ M ⊂ L be an

intermediate δσ -field and H 6 G a σ -closed subgroup of G such that M and H correspond

to each other in the σ -Galois correspondence.

Then M is a σ -Picard–Vessiot extension of K if and only if H is normal in G. If this

is the case, the σ -Galois group of M |K is the quotient G/H . (See Definition A.41 and

Theorem A.43 in [15] for the definition and the existence of the quotient G/H in the

category of group k-σ -schemes.)

3. Transformally dependent solutions of first-order linear differential

equations

In this section, we study the existence of algebraic relations over a δσ -field K, satisfied by

solutions of a differential equation with coefficients in K and their transforms of all order

with respect to σ . We show that these relations reflect the structure of the σ -Galois group

of the equation. More precisely, we use the σ -Galois correspondence and the classification

of the σ -closed subgroups of Ga,Gm and Gl2 (see the appendix) to characterize the

transformal algebraic relations satisfied by solutions of differential equations.

We focus on two special cases: the field C(x) equipped with the usual derivation

and with either the shift operator σ : x 7→ x + 1 or a q-difference operator σ : x 7→ qx ,

for some q ∈ C. Notice that these two operators cover all the possible non-trivial

automorphisms of C(x), up to a Möbius transformation.

Analogous results for differential relations among solutions of linear difference equations
are proved in § 3.1 of [20].

3.1. The additive case

As above, let K be a δσ -field, with δσ = }σδ and } ∈ k := K δ. We remind the reader

that } j ∈ k is defined so that δσ j = } jσ
jδ for any integer j > 1. It is convenient to set

}0 = 1.

We consider a system of first-order inhomogeneous linear differential equations

δ(y1) = b1, . . . , δ(yn) = bn, with b1, . . . , bn ∈ K . (3.1)

We are going to prove a result on the transformal dependence of a set of solutions of (3.1).

It can be considered as a σ -analog of the following theorem by Ostrowski [40].
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Theorem 3.1. Let M be a field of meromorphic functions, containing C and stable by the

derivation δ = d
dx . Let z1, . . . , zn be meromorphic functions such that δ(zi ) ∈ M, for all

i = 1, . . . , n. Then z1, . . . , zn are algebraically dependent over M if and only if there exist

λ1, . . . , λn ∈ C, not all equal to zero, such that
∑n

i=1 λi zi ∈ M.

The theorem below relies on the classification of σ -closed subgroups of Gn
a (see § A.1

below).

Theorem 3.2. Let L|K be a δσ -field extension containing a solution z1, . . . , zn ∈ L
of (3.1) and having the property that Lδ = k(:= K δ). Then z1, . . . , zn are transformally

dependent over K if and only if there exist a non-zero homogeneous linear σ -polynomial

L(X1, . . . , Xn) ∈ k{X1, . . . , Xn}σ and an element g of K such that L(b1, . . . , bn) = δ(g).

Remark 3.3. Since Lδ = K δ and δσ = }σδ, one can show that there exist a non-zero

homogeneous linear σ -polynomial L(X1, . . . , Xn) ∈ k{X1, . . . , Xn}σ and an element g of

K such that L(b1, . . . , bn) = δ(g) if and only if there exists a non-zero homogeneous linear

σ -polynomial L̃(X1, . . . , Xn) ∈ k{X1, . . . , Xn}σ such that L̃(z1, . . . , zn) ∈ K (We give a

detailed proof of an analogous fact in Remark 3.11). This remark emphasizes the analogy

between our result and Ostrowski’s theorem.

Proof. Let us first assume that there exist L(X1, . . . , Xn) =∑n
i=1

∑s
j=0 λi, jσ

j (X i ) ∈
k{X1, . . . , Xn}σ and g ∈ K such that

n∑
i=1

s∑
j=0

λi, jσ
j (bi ) = δ(g). (3.2)

Then a direct calculation shows that

δ

∑
i, j

}−1
j λi, jσ

j (zi )− g

 = 0.

Since Lδ = K δ, we conclude that
∑

i, j }
−1
j λi, jσ

j (zi ) ∈ K . Hence z1, . . . , zn are

transformally dependent over K .

To prove the inverse implication, we consider the differential system

δ(y) = Ay, where A = diag
((

0 b1
0 0

)
, . . . ,

(
0 bn
0 0

))
∈ K 2n×2n is a diagonal block matrix, (3.3)

and its fundamental solution Y := diag
((

1 z1
0 1

)
, . . . ,

(
1 zn
0 1

))
∈ Gl2n(L).

First of all, we construct the σ -Galois group of δ(y) = Ay. Since Lδ = K δ, the δσ -field

K 〈z1, . . . , zn〉σ ⊂ L is a σ -Picard–Vessiot extension for (3.3), and it is not restrictive

to assume that L = K 〈z1, . . . , zn〉σ . The corresponding σ -Picard–Vessiot ring is R =
K {z1, . . . , zn}σ . So let G = σ -Gal(L|K ) denote the σ -Galois group of L|K , seen as a

σ -closed subgroup of Gl2n,k via the representation associated to Y .
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We claim that G is a proper σ -closed subgroup of Gn
a , where we have identified the

vector group Gn
a with a σ -closed subgroup of Gl2n,k via the embedding Gn

a ↪→ Gl2n,k
defined by

Gn
a(S)(= Sn) −→ Gl2n(S)

(c1, . . . , cn) 7−→ diag
((

1 c1
0 1

)
, . . . ,

(
1 cn
0 1

))
, for any k-σ -algebra S.

Indeed, for any k-σ -algebra S and τ ∈ G(S), the automorphism τ commutes with δ,

so that in R⊗k S we have δ(τ (zi ⊗ 1)) = bi ⊗ 1, for all i = 1, . . . , n, and hence δ(τ (zi ⊗
1)− zi ⊗ 1) = 0. So τ(zi ⊗ 1) = zi ⊗ 1+ 1⊗ ci for some ci ∈ S, which identifies G to a

σ -closed subgroup of Gn
a . Since z1, . . . , zn are transformally dependent over K ; i.e., since

σ -trdeg(L|K ) < n, Proposition 2.9 implies that

σ - dimk(G) = σ -trdeg(L|K ) < n = σ - dimk(Gn
a),

and therefore that G is a proper σ -closed subgroup of Gn
a .

The group G being a proper σ -closed subgroup of Gn
a , there exists a non-zero linear

σ -polynomial in n variables, say
∑

i, j µi, jσ
j (X i ) ∈ k{X1, . . . , Xn}σ (see Theorem A.1

below), which belongs to the vanishing ideal of G inside Gn
a . This means that, for any

k-σ -algebra S and any τ = (c1, . . . , cn) ∈ G(S), we must have
∑

i, j µi, jσ
j (ci ) = 0. We set

g =∑i, j µi, jσ
j (zi ) ∈ R. Then, for any k-σ -algebra S and any τ = (c1, . . . , cn) ∈ G(S), in

R⊗k S we have

τ(g⊗ 1) =
∑
i, j

µi, jσ
j (zi ⊗ 1+ 1⊗ ci ) = g⊗ 1.

The Galois correspondence (see Theorem 2.11 above) implies that g ∈ K . Taking the

derivative of g, we find that
∑

i, j } jµi, jσ
j (bi ) = δ(g). To conclude, it is enough to choose

L(X1, . . . , Xn) =
∑

i, j } jµi, jσ
j (X i ).

Remark 3.4. Theorem 3.2 can be deduced from a more algebraic version of Ostrowski’s

theorem, involving instead of differential fields of meromorphic functions a differential

field extension L of K with Lδ = k (see § 2 in [28]). If L is a δσ -field extension of

K , with Lδ = k, containing solutions z1, . . . , zn of δ(yi ) = bi , it is enough to apply

Ostrowski’s theorem to z1, . . . , zn, σ (z1), . . . , σ (zn), . . . , σ
l(z1), . . . , σ

l(zn), for some large

enough integer l, to get Theorem 3.2. However, we want to point out that the existence of

such a δσ -field extension L is a very strong hypothesis, which is a priori not guaranteed

by classical Picard–Vessiot theory. Indeed, for the differential equations

δ(yi, j ) = } jσ
j (bi )yi, j (3.4)

with i = 1, . . . , n and j = 1, . . . , l, classical Picard–Vessiot theory provide us with a δ-field

L with Lδ = k containing the solutions of (3.4). However, nothing guarantees that L is

also a σ -field. The strength of our approach is to show that, if one assumes k to be

algebraically closed, one can solve any linear differential equation in a δσ -field L with

Lδ = k (see Proposition 2.5). Moreover, we also prefer to give here a proof of Theorem 3.2

relying on the classification of the σ -closed subgroups of Ga and parameterized Galois
correspondence, in preparation of the more complicated applications to come.
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In the special case K = C(x), we consider the following two situations:

δ = d
dx

and σ(x) = x + 1; (3.5)

δ = d
dx

and σ(x) = qx, where q ∈ Cr {0, 1, roots of unity}. (3.6)

Notice that, in the first case, σ and δ commute, so } = 1, while in the second case we

have δσ = qσδ, and therefore } = q. In both cases, } j = } j , for any integer j > 0.

Example 3.5. We consider the situation (3.5). Let L be the field of meromorphic function

over CrR60, and let z = log(x) ∈ L be the principal branch of the logarithm. Since

Lδ = C and δ(z) = 1
x , the assumptions of Theorem 3.2 are verified. If z was transformally

dependent over C(x), then there would exist a non-zero homogeneous linear σ -polynomial

L(X) =∑s
j=0 λ jσ

j (X) ∈ C{X}σ and g ∈ C(x), such that

s∑
j=0

λ j

x + j
= δ(g).

Writing the fractional expansion of δ(g), we see that δ(g) can never satisfy such a relation.

This means that log(x), log(x + 1), . . . , log(x + n), . . . are algebraically independent

over C(x).

This example illustrates the following more general criterion.

Corollary 3.6. Let b ∈ C(x), and let L|C(x) be a δσ -field extension, with Lδ = C,

containing a solution z of δ(y) = b. Then, in the situation (3.5) (respectively, (3.6)),

z is transformally dependent over C(x) if and only if b has no simple poles (respectively,

b has no non-zero simple poles).

Proof. It follows from Theorem 3.2 that z is transformally dependent over C(x) if and

only if there exists a non-zero homogeneous linear σ -polynomial L(X) =∑s
j=0 λ jσ

j (X) ∈
C{X}σ and g ∈ C(x), such that L(b) = δ(g). Writing the fractional expansion of δ(g), we

find that z is transformally dependent over C(x) if and only if there exists a non-zero

homogeneous linear σ -polynomial L(X) ∈ C{X}σ , such that L(b) has no simple poles.

We consider the case (3.5). We claim that b has no simple poles if and only if there

exists a non-zero homogeneous linear σ -polynomial L(X) =∑s
j=0 λ jσ

j (X) ∈ C{X}σ such

that L(b) has no simple poles. In fact, one implication is trivial. So let us assume that

such an L exists and that γ is a simple pole of b. Then, let n be the largest integer

such that γ − n is a simple pole of b. Then γ − n− s is a simple pole of
∑s

j=0 λ jσ
j (b),

contradicting the assumption.

In the situation (3.6), we are going to prove that b has no non-zero simple poles if and

only if there exists a non-zero homogeneous linear σ -polynomial L(X) =∑s
j=0 λ jσ

j (X) ∈
C{X}σ such that L(b) has no simple poles. If b has no non-zero simple poles, then we can

write b as the sum c
x + g, where c ∈ C and g ∈ C(x) has no simple poles. It follows that

qσ(b)− b = qg(qx)− g has no simple poles. The same reasoning as in case (3.5) proves

the inverse implication.
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The above corollary allows us to describe precisely which σ -closed subgroups of Ga
occur as σ -Galois groups of an equation δ(y) = b in the situations (3.5) and (3.6),

anticipating the content of § 4.

Corollary 3.7. In the situation (3.5), let L|K be a σ -Picard–Vessiot extension for δ(y) = b
with b ∈ K = C(x), and let G be the σ -Galois group of L|K .

(i) If b has no simple poles then G is trivial; i.e., L = K .

(ii) If b has a simple pole then G = Ga.

Proof. Since the proof is quite similar to the proof of the q-difference case (see

Corollary 3.8 below), we refer to the q-difference case below for the proof.

Corollary 3.8. In the situation (3.6), let L|K be a σ -Picard–Vessiot extension for δ(y) = b
with b ∈ K = C(x), and let G be the σ -Galois group of L|K .

(i) If b has no simple poles then G is trivial.

(ii) If b has a simple pole at zero but no other simple poles then G = Gσ
a ; i.e., G(S) =

{c ∈ S| σ(c) = c} 6 Ga(S) for every k-σ -algebra S.

(iii) If b has a simple pole distinct from zero then G = Ga.

Proof. Let z ∈ L be a solution of δ(y) = b. Assume that b has no simple poles. Then there

exists a solution of δ(y) = b in K . Therefore z ∈ K and L = K 〈z〉σ = K . This proves (i).

If b has a simple pole in zero but no other simple poles, qσ(b)− b = δ(h) for some

h ∈ K . Then δ(σ (z)− z) = δ(h), which implies that σ(z)− z ∈ K . We identify G with a

σ -closed subgroup of Ga via its action on z. Then, for any k-σ -algebra S and τ ∈ G(S),
there exists cτ ∈ S such that τ(z⊗ 1) = z⊗ 1+ 1⊗ cτ . Since σ(z)− z ∈ K , the element

σ(z⊗ 1)− z⊗ 1 is left invariant by τ . This is equivalent to saying that σ(cτ ) = cτ . It

follows that G 6 Gσ
a . Since z /∈ K , we must have G = Gσ

a (as Gσ
a has no non-trivial

σ -closed subgroups). This proves (ii).

If b has a simple pole distinct from zero, then z is transformally independent over K
by Corollary 3.6. Therefore G = Ga in this case.

3.2. The multiplicative case

Inspired by Ostrowski’s theorem 3.1 above, Kolchin proved the following statement

(see [28], p. 1156).

Theorem 3.9. Let L|K be a δ-field extension, with Lδ = K δ, and assume that z1, . . . , zn ∈
L× satisfy δ(z1)

z1
, . . . ,

δ(zn)
zn
∈ K×. Then z1, . . . , zn are algebraically dependent over K if and

only if there exist r1, . . . , rn ∈ Z, not all equal to zero, such that zr1
1 · · · zrn

n ∈ K .

We are going to prove a σ -analog of Kolchin’s theorem.

Theorem 3.10. Let L|K be a δσ -field extension with Lδ = K δ. Let a1, . . . , an ∈ K× and

z1, . . . , zn ∈ L× be such that

δ(zi ) = ai zi for i = 1, . . . , n.
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Then z1, . . . , zn are transformally dependent over K if and only if there exist

a non-zero homogeneous linear σ -polynomial L(X1, . . . , Xn) =
∑n

i=1
∑s

j=0 ri, jσ
j (X i ) ∈

Z{X1, . . . , Xn}σ and a non-zero element g ∈ K such that

n∑
i=1

s∑
j=0

ri, j} jσ
j (ai ) = δ(g)

g
. (3.7)

Remark 3.11. During our proof of Theorem 3.10, we are going to show that (3.7) is

equivalent to
∏

i, j σ
j (zi )

ri, j ∈ K , which makes clear that the theorem above is the analog

of Kolchin’s result. This equivalence only relies on the fact that L contains no new

constants.

Proof. Assume that (3.7) is satisfied. Then the element

z := 1
g

∏
i, j

σ j (zi )
ri, j ∈ L×

satisfies δ(z)
z = 0. Since Lδ = K δ, we have z ∈ K . Hence, we conclude that z1, . . . , zn are

transformally dependent over K .

Conversely, assume that z1, . . . , zn are transformally dependent over K . The proof

is quite similar to the proof of Theorem 3.2, and therefore we will skip some details.

Since Lδ = k(:= K δ), the δσ -field K 〈z1, . . . , zn〉σ is a σ -Picard–Vessiot extension for

the differential system δ(y) = Ay, where A = diag(a1, . . . , an). We can assume that

L = K 〈z1, . . . , zn〉σ . Let G = σ -Gal(L|K ). Via the fundamental solution matrix Y :=
diag(z1, . . . , zn), the σ -Galois group G is naturally a σ -closed subgroup of Gn

m . Now,

since z1, . . . , zn are transformally dependent over K , we find that σ -trdeg(L|K ) < n.

Proposition 2.9 allows us to conclude that

σ - dimk(G) = σ -trdeg(L|K ) < n = σ - dimk(Gn
m),

and hence that G is a proper σ -closed subgroup of Gn
m . It follows from Theorem A.7 that

there exists a non-trivial multiplicative function ψ ∈ k{Gn
m} = k{x1, . . . , xn,

1
x1
, . . . , 1

xn
}σ ,

of the form

ψ(x1, . . . , xn) = xr1,0
1 · · · x

rn,0
n σ(x1)

r1,1 · · · σ(xn)
rn,1 · · · σ s(x1)

r1,s · · · σ s(xn)
rn,s , (3.8)

where s ∈ Z>0 and ri, j ∈ Z, for 1 6 i 6 n, 0 6 j 6 s, such that ψ(c1, . . . , cn) = 1, for all

k-σ -algebra S and all τ = (c1, . . . , cn) ∈ G(S) 6 Gn
m(S). Consider the non-zero element

g := ψ(z1, . . . , zn) =
∏

i, j σ
j (zi )

ri, j of L. For any k-σ -algebra S and any τ = (c1, . . . , cn) ∈
G(S) ⊂ Gn

m(S), in the δσ -algebra R⊗k S, we have

τ(g⊗ 1) = ψ(z1⊗ c1, . . . , zn ⊗ cn) = ψ(z1, . . . , zn)⊗ψ(τ) = g⊗ 1.

It follows from the Galois correspondence (see Theorem 2.11 above) that g ∈ K . Taking

the logarithmic derivative of g, we find that

δ(g)
g
=
δ
(∏

i, j σ
j (z

ri, j
i )

)
∏

i, j σ
j (z

ri, j
i )

=
∑
i, j

ri, j} jσ
j
(
δ(zi )

zi

)
=
∑
i, j

ri, j} jσ
j (ai ).
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As in the previous section, we are going to give a more detailed description of the

case K = C(x), under assumptions (3.5) and (3.6). It is an elementary observation that

a rational function g ∈ C(x) is the logarithmic derivative of a rational function if and

only if it is of the form g =∑k
i=1

ci
x−αi

with c1 . . . ck ∈ Z and α1, . . . , αk ∈ C. Therefore,

the following corollaries yield a very direct and easy to use criterion to decide whether or

not a meromorphic solution of δ(y) = ay, with a ∈ C(x)×, is transformally dependent.

Corollary 3.12. In the situation (3.5), let L|C(x) be a δσ -field extension, with Lδ = C,

and assume that z ∈ L× satisfies δ(z) = az, with a ∈ C(x)×. Then z is transformally

dependent over C(x) if and only if there exist P ∈ C[x], f ∈ C(x)× and N ∈ Z× such

that a = P + 1
N
δ( f )

f .

Proof. We remind the reader that Theorem 3.10 implies that the solution z is

transformally dependent over C(x) if and only if there exist a non-zero homogenous

σ -polynomial L(X) =∑s
j=0 r jσ

j (X) ∈ Z{X}σ and g ∈ C(x)× such that

s∑
j=0

r jσ
j (a) = δ(g)

g
. (3.9)

Notice that the rational function δ(g)
g has only simple poles and that the residue at each

pole is an integer.

We claim that if the solution z is transformally dependent over C(x) then a has no

poles of order greater than or equal to 2; i.e., the rational function a has the form

P +∑k
h=1

dh
x−γh

, for some P ∈ C[x] and γh, dh ∈ C. Suppose that γ is a pole of maximal

order m > 2 of a and that γ − n is not a pole of order m of a for any positive integer n.

Notice that γ − j is a pole of order m of σ j (a), and hence γ − s is a pole of order m of∑s
j=0 r jσ

j (a) = δ(g)
g , which is impossible, proving the claim.

We have proven that a = P +∑k
h=1

dh
x−γh

. To conclude that there exist N ∈ Z× and f ∈
C(x)× such that

∑k
h=1

dh
x−γh
= 1

N
δ( f )

f , it suffices to show that dh ∈ Q, for all h = 1, . . . , k.

To this purpose, let us consider a set 0 of representatives of the classes of the poles of a
modulo Z, and write

∑k
h=1

dh
x−γh

as∑
γ∈0

∑
n∈Z

dn(γ )

x − (γ − n)
. (3.10)

Only a finite number of dn(γ ) ∈ C in the expression above are non-zero. We know from

(3.9) that
∑s

j=0 r jσ
j (a) is the logarithmic derivative of a rational function, and hence

s∑
j=0

r jσ
j

(∑
n∈Z

dn(γ )

x − (γ − n)

)
=
∑
n∈Z

∑s
j=0 dn− j (γ )r j

x − (γ − n)
, for any γ ∈ 0,

is also the logarithmic derivative of a rational fraction. Thus, for any γ ∈ 0 and all n ∈ Z
we have

s∑
j=0

dn− j (γ )r j ∈ Z. (3.11)
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For a fixed γ ∈ 0, we denote by n0 the smallest integer such that dn0(γ ) 6= 0 and by j0
the smallest integer such that r j0 6= 0. The linear relation (3.11) for n = n0+ j0 implies

that dn0(γ )r j0 ∈ Z and hence that dn0(γ ) ∈ Q. We assume recursively that dk(γ ) ∈ Q for

all n0 6 k 6 p. Expression (3.11) for n = p+ 1+ j0 yields

dp+1(γ )r j0 +
s− j0∑
j=1

dp+1− j (γ )r j+ j0 ∈ Z,

which implies that dp+1(γ )r j0 ∈ Z and hence that dp+1(γ ) ∈ Q. We have proved the

forward direction of the corollary.

Conversely, let us assume that there exist P ∈ C[x], f ∈ C(x)× and N ∈ Z×, such that

a = P + 1
N
δ( f )

f . Let d be the degree of P, and let us denote by Q[x]6d the Q-vector space

of polynomials of degree less than or equal to d. It is a Q-vector space of finite dimension,

on which σ : Q[x]6d → Q[x]6d , f (x) 7→ f (x + 1) induces a Q-linear bijection. By the

Cayley–Hamilton theorem the characteristic polynomial of σ annihilates σ . So there

exists a polynomial µ(X) =∑s
j=0 r j X j ∈ Z[X ] with rs 6= 0 such that

∑s
j=0 r jσ

j = 0 on

Q[x]6d . Thus
∑s

j=0 r jσ
j annihilates every monomial of P, and therefore

∑s
j=0 r jσ

j (P)
= 0. The following calculation allows us to conclude the proof:

N
s∑

j=0

r jσ
j (a) =

s∑
j=0

r j
δ(σ j ( f ))
σ j ( f )

=
δ
(∏s

j=0 σ
j ( f r j )

)
∏s

j=0 σ
j ( f r j )

.

Case (3.6) is slightly more complicated than the previous one, since one has to

distinguish the case when q is an algebraic or a transcendental number. We start with

an example illustrating the problem.

Example 3.13. Consider the equation δ(y) = y, with the notation (3.6). Since δ ◦ σ =
qσ ◦ δ, Theorem 3.10 above says that exp(q j x), for j > 0, are algebraically dependent if

and only if there exist a non-zero polynomial
∑s

j=0 r j X j ∈ Z[X ] and g ∈ C(x) such that∑s
j=0 q jr j = δ(g)g−1. The latter holds if and only if δ(g)g−1 ∈ C, and therefore if and

only if
∑s

j=0 q jr j = 0. We deduce that exp(q j x), for j > 0, are algebraically dependent

if and only if q is an algebraic number.

In general, we have the following.

Corollary 3.14. In the case of (3.6), let a ∈ C(x)×, and let L|C(x) be a δσ -field extension

with Lδ = C, containing a non-zero solution z of δ(y) = ay. We have the following.

• If q is a transcendental number then z is transformally dependent over C(x) if and

only if there exist f ∈ C(x)×, N ∈ Z×, and c ∈ C such that a = c
x + 1

N
δ( f )

f .

• If q is an algebraic number then z is transformally dependent over C(x) if and only if

there exist f ∈ C(x)×, N ∈ Z×, P ∈ C[x], and Q ∈ C[ 1x ] such that a = P + Q+ 1
N
δ( f )

f .

Proof. As in the previous corollary, Theorem 3.10 implies that the solution z is

transformally dependent over C(x) if and only if there exist a non-zero homogeneous
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linear σ -polynomial L(X) =∑s
j=0 r jσ

j (X) ∈ Z{X}σ and a non-zero element g ∈ K such

that
s∑

j=0

q jr jσ
j (a) = δ(g)

g
. (3.12)

Once more, notice that the rational function δ(g)
g has only simple poles and that the

residue at each pole is an integer. Moreover, the fractional expansion of a is the sum of

P(x) ∈ C[x] and some polar terms of order greater than or equal to 1.

We suppose that z is transformally dependent over C(x). Then the non-zero poles of a
must be of order 1. In fact, suppose that there exists a pole γ 6= 0 of a, of order m > 2.

We can choose γ such that q−nγ is not a pole of a of order m, for any integer n > 1. Then∑s
j=0 r j q jσ j (a) has a pole of order m in q−sγ , which is impossible because of (3.12).

This implies that

a = P + Q+
k∑

h=1

dh

x − γh
,

with P ∈ C[x], Q ∈ C[ 1x ], γh ∈ C×, and dh ∈ C. A reasoning analogous to the one in

Corollary 3.12 shows that dh ∈ Q for h = 1, . . . , k. So we have proved that a = P + Q+
1
N
δ( f )

f , for some f ∈ C(x)× and N ∈ Z×. If q is algebraic there is nothing more to prove. If

q is transcendental, we have to show that there exists c ∈ C such that P + Q = c
x . If not,

there exists n ∈ Z not equal to −1 such that xn appears in P + Q. Tracking the coefficient

of xn in (3.12), we find that
∑s

j=0 q j (1+n)r j = 0, which contradicts the assumption on q.

We have now proved the forward direction of the corollary both under the assumption

that q is algebraic and that q is transcendental.

Now we assume that q is transcendental and that a = c
x + 1

N
δ( f )

f , for some c ∈ C,

N ∈ Z× and f ∈ C(x)×. Then

Nqσ(a)− Na = δ(σ ( f )/ f )
σ ( f )/ f

,

which, by Theorem 3.10, implies that z is transformally dependent over C(x).
Finally, let q be an algebraic number, and suppose that there exist f ∈ C(x)×, N ∈ Z×,

P ∈ C[x], and Q ∈ C[ 1x ] such that a = P + Q+ 1
N
δ( f )

f . Let d denote the maximum of the

degree of P in x and of the degree of Q in 1
x and

Q(q)[x±1]6d := Q(q)+
d∑

i=1

Q(q)x i +
d∑

i=1

Q(q)
1
x i .

The set Q(q)[x±1]6d is a finite-dimensional Q-vector space, and the Q(q)-linear map qσ :
f (x) 7→ q f (qx) is a Q-linear endomorphism of Q(q)[x±1]6d . By the Cayley–Hamilton

theorem the characteristic polynomial of qσ annihilates qσ . So there exists a polynomial

µ(X) =∑s
j=0 r j X j ∈ Z[X ] with rs 6= 0 such that

∑s
j=0 r j q jσ j = 0 on Q(q)[x±1]6d . Thus∑s

j=0 r j q jσ j annihilates every monomial of P + Q, and therefore
∑s

j=0 r j q jσ j (P + Q)

= 0. So
∑s

j=0 Nr j q jσ j (a) = δ(
∏s

j=0 σ
j ( f r j ))∏s

j=0 σ
j ( f r j ))

.
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3.3. An analog of a result of Ishizaki

In 1998, Ishizaki proved a result of differential independence of meromorphic solutions

of order-1 linear inhomogeneous q-difference equations (see Theorem 1.2 in [23]).

Theorem 3.15. Let q ∈ C, with |q| 6= 1, and let z(x) be a meromorphic function over C,

not in C(x), such that z(qx) = a(x)z(x)+ b(x), for some non-zero a(x), b(x) ∈ C(x). Then

z(x) is differentially transcendental over C(x); i.e., the meromorphic function z(x) and

all its derivatives are algebraically independent over C(x).
A Galoisian proof of Ishizaki’s result is given in Proposition 3.5 in [20]. In this section we

are going to prove a similar result on transformal independence of solutions of differential

equations of the form δ(y) = ay+ b. The ingredients of our proof are also difference

analogs of the ones used in [20]. For a general difference operator σ , Propositions 3.17

and 3.20 give partial answers to the difference version of Ishizaki’s result, whereas in

the case of a q-difference operator with transcendental q, Corollary 3.21 together with

Proposition 3.17 gives a complete solution.

First we prove a lemma which does not involve σ .

Lemma 3.16. Let L|K be an extension of δ-fields, and assume that v ∈ L satisfies δ(v) =
av, for some a ∈ K . If the equation δ(y)− cy = b, for b, c ∈ K , has a solution in K (v),
then it already has a solution in K .

Proof. First assume that v is transcendental over K . Let g ∈ K (v) be a solution of

δ(y)− cy = b, and let us write g = P
Q + R, where P, Q, R ∈ K [v], Q 6= 0, and degv(P) <

degv(Q). Then b = δ(g)− cg = P̃
Q̃
+ δ(R)− cR, where P̃, Q̃ ∈ K [v] and degv(P̃) <

degv(Q̃). Comparing the degree in v, we find that δ(R)− cR = b. This last equality implies

that the constant term r0 ∈ K of R ∈ K [v], as a polynomial in v, satisfies δ(r0)− cr0 = b.

Now assume that v is algebraic over K . Let N denote the normal closure of K (v)|K .

The derivation δ : K (v)→ K (v) extends uniquely to a derivation δ : N → N . Moreover,

δ : N → N commutes with every automorphism of N |K . The operator R : N → K given

by R(d) = 1
[N :K ]

∑
τ τ(d), where τ ranges over all elements in the Galois group of N |K ,

is K -linear, the identity on K , and commutes with δ. Thus, if z ∈ K (v) ⊂ M is a solution

of δ(y)− cy = b, then R(z) ∈ K is a solution of δ(y)− cy = b.

Let K be a δσ -field, and let k := K δ. We consider a differential equation δ(y) = ay+ b,

with a, b ∈ K , and the associated differential system

δ

(
y1
y2

)
=
(

a b
0 0

)(
y1
y2

)
. (3.13)

By a σ -Picard–Vessiot extension L|K for δ(y) = ay+ b, we mean a σ -Picard–Vessiot

extension L|K for (3.13). So let Z :=
(

z1 z2
c1 c2

)
be a fundamental solution of (3.13) with

coefficients in L. It follows directly from (3.13) and the fact that L|K is a σ -Picard–Vessiot

extension that c1, c2 ∈ k and that z1c2− z2c1 6= 0. Then, when c1c2 6= 0, the matrix(
z1c−1

1 − z2c−1
2 z2c−1

2

0 1

)
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is a fundamental solution matrix of (3.13). So we can consider a fundamental solution

matrix of (3.13), with coefficients in L, of the form

Y :=
(
v z
0 1

)
, with δ(v) = av, v 6= 0, and δ(z) = az+ b. (3.14)

(The case c1c2 = 0 is similar and yields immediately to the existence of a fundamental

solution matrix Y of the same form as the one above.) Notice that the δσ -field extension

K 〈v〉σ ⊂ L does not depend on the particular choice of the non-zero solution v ∈ L× of

δ(v) = av; in fact two such solutions coincide up to a multiplicative factor in k ⊂ K .

We consider G := σ -Gal(L|K ) as a σ -closed subgroup of Gl2,k via the fundamental

solution matrix (3.14) (That is, we identify G with its image in Gl2,k , via τ 7→ [τ ]Y ). The

action of an element τ ∈ G(S) on R⊗k S, where R = K {v, v−1, z}σ is the σ -Picard Vessiot

ring of L, is given by τ(v⊗ 1) = v⊗α and τ(z⊗ 1) = v⊗β + z⊗ 1, for some α, β ∈ S. Let

G denote the algebraic subgroup of Gl2,k given by

G(S) =
{(

α β

0 1

)∣∣∣∣α ∈ S×, β ∈ S
}
, for any k-σ -algebra S.

For τ ∈ G(S) 6 Gl2(S) we have τ(Y ⊗ 1) = (Y ⊗ 1)[τ ]Y . We see that [τ ]Y ∈ G(S).
Therefore G is contained in G. As in § A.3, let Gu denote the algebraic subgroup of

G given by

Gu(S) =
{(

1 β
0 1

)∣∣∣∣β ∈ S
}
, for any k-σ -algebra S,

and set Gu = G ∩Gu . Since τ(v⊗ 1) = v⊗α, it is clear from the Galois

correspondence that Gu = σ -Gal(L|K 〈v〉σ ). Moreover, we have δ( z
v
) = b

v
, so L|K 〈v〉σ is a

σ -Picard–Vessiot extension for δ(y) = b
v
. The action of an element τ =

(
1 β

0 1

)
∈ Gu(S) =

σ -Gal(L|K 〈v〉σ )(S) on L is given by τ( z
v
⊗ 1) = z

v
⊗ 1+ 1⊗β. The situation is summarized

in the following picture:

L

Gu

GK 〈v〉σ

K

We remind the reader that, if Gu is properly contained in Gu , it follows from Theorem A.9

that we only have two possible cases.

(i) There exists an integer n > 0 such that σ n(β) = 0 for all
(

1 β

0 1

)
∈ Gu(S) and all

k-σ -algebras S.

(ii) There exist integers n > m > 0 such that σ n(α) = σm(α) for all
(
α β

0 1

)
∈ G(S) and

all k-σ -algebras S.
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Proposition 3.17. Let L|K be a δσ -field extension such that k := K δ = Lδ. We fix v, z ∈
L, v 6= 0, such that δ(z) = az+ b and δ(v) = av, with a, b ∈ K . We assume that z /∈ K
and K is inversive. If v is transformally independent over K , then z is transformally

independent over K .

Remark 3.18. Let us suppose that z is transformally dependent over K , and hence over

K 〈v〉σ . Since δ( z
v
) = b

v
, Theorem 3.2 implies that there exist a non-zero homogeneous

linear σ -polynomial
∑s

j=0 λ jσ
j (X) ∈ k{X}σ and g ∈ K 〈v〉σ such that

s∑
j=0

λ jσ
j
(

b
v

)
= δ(g).

The expression above, if non-trivial, provides a σ -relation for v, with coefficients in K ,

and proves that v is transformally dependent over K . The problem of this argument is

that there is no reason for the expression above to be non-trivial, so it does not provide

a proof of Proposition 3.17.

Proof. As we have already done in several proofs, we can assume that L is

a σ -Picard–Vessiot extension for δ(y) = ay+ b. First assume that Gu = Gu . Then

Proposition 2.9 implies that σ -trdeg(L|K 〈v〉σ ) = σ - dim(Gu) = 1. It follows that z is

transformally independent over K 〈v〉σ . In particular, z is transformally independent

over K .

If Gu is a proper σ -closed subgroup of Gu , we have to consider the two cases above. In

the first case, we have

τ
(
σ n
( z
v
⊗ 1

))
= σ n

( z
v
⊗ 1+ 1⊗β

)
= σ n

( z
v
⊗ 1

)
, for any τ =

(
1 β
0 1

)
∈ Gu(S) and any k-σ -algebra S.

The Galois correspondence implies that σ n( z
v
) ∈ K 〈v〉σ , and thus σ n(z) ∈ K 〈v〉σ . Since

z /∈ K and K is inversive, we get that σ n(z) /∈ K . Since v is transformally independent

over K , every element of the field K 〈v〉σ which does not belong to K is transformally

independent over K . Hence z is transformally independent over K .

In the second case,

τ

(
σ n(v)

σm(v)
⊗ 1

)
= σ n(v⊗α)
σm(v⊗α)

= σ n(v)

σm(v)
⊗ 1, for any τ =

(
α β

0 1

)
∈ G(S) and any k-σ -algebra S.

Therefore σ n(v) = f σm(v) for some f ∈ K×. This contradicts the assumption that v is

transformally independent over K , so the second case cannot occur.

When we specialize Proposition 3.17 to K = C(x) endowed with the shift or the

q-difference operator, we find the following.
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Corollary 3.19. Let L|C(x) be a δσ -field extension with Lδ = C, and assume that z ∈
L satisfies δ(z) = az+ b with a, b ∈ C(x), a 6= 0. If one of the following hypotheses is

satisfied, then z is transformally independent over C(x).

(i) Assumption (3.5) and a 6= P + 1
N
δ( f )

f for any P ∈ C[x], f ∈ C(x)× and N ∈ Z×.

(ii) Assumption (3.6), q is transcendental and a 6= c
x + 1

N
δ( f )

f , for any c ∈ C, N ∈ Z×

and f ∈ C(x)×.

(iii) Assumption (3.6), q is algebraic and a 6= P + Q+ 1
N
δ( f )

f , for any P ∈ C[x], Q ∈
C[ 1x ], N ∈ Z× and f ∈ C(x)×.

Proof. We can assume without loss of generality that there exists a non-zero v ∈ L
with δ(v) = av. Indeed, since Lδ = C is algebraically closed we can replace L with a

σ -Picard–Vessiot extension for δ(y) = ay of L. It then suffices to combine Proposition 3.17

above with Corollary 3.12 and Corollary 3.14.

When v is transformally dependent, we have only a partial result.

Proposition 3.20. Let K be a δσ -field, with σδ = δσ and k := K δ. Let L|K be a

σ -Picard–Vessiot extension for the equation δ(y) = ay+ b, with a, b ∈ K . Let z ∈ L, with

z 6∈ K , such that δ(z) = az+ b.

If there exist f ∈ K× and λ ∈ kσ such that a = λ+ δ( f )
f , then z is transformally

dependent over K if and only if there exist a non-zero homogenous linear σ -polynomial

L(X) ∈ k{X}σ and an element g ∈ K such that L( b
f ) = δ(g)− λg.

Proof. The assumption that there exist f ∈ K× and λ ∈ kσ such that a = λ+ δ( f )
f implies

that any solution v of δ(y) = ay in L is transformally dependent over K . We fix a non-zero

solution v 6= 0 of δ(y) = ay in L, and we set ṽ = v
f and z̃ = z

f . Then ṽ and z̃ satisfy the

differential equations

δ(̃v) =
(

a− δ( f )
f

)
ṽ = λṽ and δ(̃z) = λ̃z+ b

f
.

Since δ and σ commute to each other and σ(λ) = λ, we have that δ(σ (̃v)) = σ(λ)σ (̃v) =
λσ (̃v). Therefore ṽ and σ (̃v) satisfy the same differential equation, and there exists µ ∈ k×
such that σ (̃v) = µṽ. Hence K 〈v〉σ = K (v).

Assume that there exist a non-zero homogeneous linear σ -polynomial L ∈ k{X}σ and

g ∈ K such that L( b
f ) = δ(g)− λg. Then

δ(L(̃z)− g) = L
(
λ̃z+ b

f

)
− δ(g) = λ(L(̃z)− g).

Consequently, there exists κ ∈ k such that L(̃z)− g = κṽ. Since ṽ is transformally

dependent over K , this shows that z is transformally dependent over K .

Conversely, assume that z is transformally dependent over K . Since L|K 〈v〉σ is a

σ -Picard–Vessiot extension for δ(y) = b
v

and z
v

is transformally dependent over K 〈v〉σ ,

Theorem 3.2 implies that there exist a non-zero homogeneous linear σ -polynomial

L ∈ k{X}σ and g ∈ K 〈v〉σ such that L( b
v
) = δ(g). Since b

v
= b/ f

ṽ
and σ (̃v) = µṽ, there
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exists a non-zero homogeneous linear σ -polynomial L̃ ∈ k{X}σ such that L̃( b
f ) = ṽL( b

v
).

Then

L̃
(

b
f

)
= δ(g)̃v = δ(gṽ)− λgṽ.

So the equation δ(y)− λy = L̃( b
f ) has a solution in K 〈v〉σ = K (v). Now Lemma 3.16

provides an element g̃ ∈ K such that L̃( b
f ) = δ(g̃)− λg̃.

In order to apply Proposition 3.20, we want σ and δ to commute: to ensure that this

hypothesis is satisfied in the q-difference case, we take δ = x d
dx , rather than δ = d

dx .

Moreover, we assume q ∈ C to be a transcendental number.

Notice that, if dy
dx = by, with b ∈ C(x), then δ(y) = xby. Therefore a solution v of

δ(y) = ay, in a convenient extension of C(x), is transformally dependent over C(x) if and

only if a = c+ 1
N
δ( f )

f for some c ∈ C, N ∈ Z× and f ∈ C(x)× (see Corollary 3.14).

Corollary 3.21. Let L|C(x) be a δσ -field extension, with δ = x d
dx , Lδ = C, and σ :

f (x) 7→ f (qx), for some transcendental q ∈ C, and assume that z ∈ L, z /∈ C(x), satisfies

δ(z) = az+ b, with a, b ∈ C(x). If a = c+ 1
N
δ(g)

g for some c ∈ C, N ∈ Z×, and g ∈ C(x)×,

then there are two cases.

(i) If 1
N
δ(g)

g = δ( f )
f , for some f ∈ C(x)×, then z is transformally dependent over C(x)

if and only if there exist a non-zero homogeneous linear σ -polynomial L ∈ C{X}σ
and h ∈ C(x) such that L( b

f ) = δ(h)− ch.

(ii) If 1
N
δ(g)

g 6= δ( f )
f , for all f ∈ C(x)×, then z is transformally dependent over C(x) if

and only if there exists h ∈ C(x) such that b = δ(h)− ah.

Remark 3.22. For a general difference operator σ , we only have a partial answer to

the question of transformal dependencies of solutions of δ(y) = ay+ b. On the other

hand, for a q-difference operator with q transcendent, Corollary 3.21 together with

Corollary 3.19(ii) describes completely the transformal relations of the solutions in terms

of relations satisfied by the coefficients a and b.

Proof. As in the proof of Corollary 3.19, we can assume that there exists a non-zero v ∈ L
with δ(v) = av. The first assertion follows immediately from Proposition 3.20 above.

Let us prove the second one. Suppose that a = c+ 1
N
δ(g)

g , with 1
N
δ(g)

g 6= δ( f )
f , for all

f ∈ C(x)×, so that v is transformally dependent over C(x). If there exists h ∈ C(x), such

that b = δ(h)− ah, then z− h is a solution of δ(y) = ay. Hence there exists λ ∈ C such

that z− h = λv, which proves that z is transformally dependent over C(x).
Conversely, let us assume that z is transformally dependent over K = C(x). With no loss

of generality, we can assume that L = K 〈v, z〉σ is a σ -Picard–Vessiot extension for δ(z) =
az+ b. We refer to the discussion and the notation at the beginning of the section about

the devissage of G = σ -Gal(L|K ). We remind the reader that the action of an element

τ ∈ G(S) on R⊗k S, where R = K {v, v−1, z}σ is the σ -Picard Vessiot ring of L and S is a

k-σ -algebra, is given by τ(v⊗ 1) = v⊗α and τ(z⊗ 1) = v⊗β + z⊗ 1, for some α, β ∈ S.
Since L|K 〈v〉σ is a σ -Picard–Vessiot extension for δ(y) = b

v
and z

v
is transformally
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dependent over K 〈v〉σ , we know that Gu = G ∩Gu is properly contained in Gu . According

to Theorem A.9 we have to study two cases: for all τ ∈ G(S), and all k-σ -algebras S, either

there exists an integer n > 0 such that σ n(β) = 0 or there exist integers n > m > 0 such

that σ n(α) = σm(α).

In the first case, we have

τ
(
σ n
( z
v
⊗ 1

))
= σ n

( z
v
⊗ 1+ 1⊗β

)
= σ n

( z
v
⊗ 1

)
, for any τ ∈ Gu(S) and any k-σ -algebra S.

The Galois correspondence implies that σ n( z
v
) ∈ K 〈v〉σ and thus that σ n(z) ∈ K 〈v〉σ .

This means that δ(y)− σ n(a)y = σ n(b) has a solution σ n(z) ∈ K 〈v〉σ . There exists

a non-negative integer m such that σ n(z) ∈ K (v, . . . , σm(v)). Applying recursively

Lemma 3.16, we find that there already exists a solution h̃ ∈ K of δ(y)− σ n(a)y = σ n(b).
So, if h ∈ K with σ n(h) = h̃, then δ(h)− ah = b.

Now consider the second case. Since K is inversive, we know that G is σ -reduced. So

we can assume that m = 0 (see Proposition 4.3 in [15]). Since for any τ ∈ G(S) we have

τ

(
σ n(v)

v
⊗ 1

)
= σ n(τ (v⊗ 1))

τ (v⊗ 1)
= σ n(v)

v
⊗ 1,

we conclude that σ n(v) = hv for some h ∈ C(x)×. This implies that σ n( δ(v)
v
) = δ(h)

h + δ(v)
v

,

which yields σ n(a)− a = δ(h)
h = 1

N
δ(σ n(g)/g)
σ n(g)/g . So there exists µ ∈ C× such that σ n(g)

g =
µhN . It is now easy to see that this last equality implies that there exists f ∈ C(x)× with

g = f N . But then 1
N
δ(g)

g = δ( f )
f . So the second case cannot occur.

Remark 3.23. The existence of a non-zero homogeneous linear σ -polynomial L ∈ C{X}σ
such that L(b) = δ(y)− ay has a solution in C(x) does not imply that b = δ(y)− ay has

a solution C(x), differently from the case of linear difference equations with a differential

parameter. See Lemma 6.4 in [20]. Take for example a = 1 and b = x . Then 1
q σ(x)−

x = 0, but the differential equation x d
dx y− y = x has no solution in C(x).

4. Inverse problem for σ -closed subgroups of Ga

Let k(x) be a differential field with δ(x) = 1 and k = k(x)δ algebraically closed. In the

classical Galois theory of linear differential systems with coefficients in k(x), the inverse

problem consists in determining all the linear algebraic groups, that occur as Galois

group of a linear differential system over k(x). This question, which is also connected

to the Riemann–Hilbert correspondence, has been addressed by many mathematicians,

including recently J. Hartman, J. Kovacic, C. Mitschi, J.P. Ramis, and M.F. Singer.

In [19], many references are given, and it is proved that any linear algebraic group over

k is the Galois group of a linear differential system over k(x).
Recently, Cassidy and Singer developed in [9] a parameterized Galois theory of linear

differential systems which takes into account continuous actions on auxiliary parameters.
For instance, if k above is a ‘sufficiently large’ d

dt -field extension of C(t), Cassidy and
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Singer are able to attach to a differential system δ(y) = A(x, t)y, a parameterized Galois

group, which is a linear d
dt -differential algebraic group in the sense of Kolchin. In this

setting, an inverse problem was also addressed. The first answers were given in [12]

and [39]. Using transcendental descriptions via monodromy and Stokes matrices, the

authors were able to show, for instance, that a linear d
dt -differential algebraic group occurs

as parameterized Galois group in the sense of [9] if and only if it contains a Kolchin dense

finitely generated subgroup. A purely algebraic characterization was then given in [51],

where it is proved that a linear algebraic group G over k is a parameterized Galois group

if and only if its identity component has no quotients isomorphic to Ga or Gm . Further

progress on the inverse (and the direct) problem for the parameterized Galois theory

of linear differential systems has recently been made in [37] and [36]. Related results,

dealing with more general Galois theories, can also be found in [33] and [38, 45].

The aim of the present section is to investigate some similar questions for a discrete

action on the parameter. Since Ga appears as an obstruction in the continuous parameter

case, we restrict our study of the inverse problem to σ -closed subgroups of Ga . We show

that one can realize Ga itself over some k(x) and, thereby, that any of the σ -closed

subgroups of Ga is a σ -Galois group over some δσ -field extension of k(x), by σ -Galois

correspondence.

In this section, we assume that we are in the following situation.

(H1) Let K be a δσ -field, with k = K δ algebraically closed and aperiodic

with respect to σ ; i.e., for any positive integer n, there exists a ∈ k such that

σ n(a) 6= a. We consider a σ -Picard–Vessiot extension L|K , having σ -Galois

group isomorphic to a σ -closed subgroup of the additive group Ga .

In the first subsection, we give a decomposition theorem of such extensions

(Proposition 4.3) into a ‘σ -infinitesimal’ and a perfectly σ -reduced part. Moreover, under

additional assumptions on K , we show that L is the σ -Picard–Vessiot extension of some

differential equation of the form δ(y) = g. In the second subsection, we restrict ourselves

to the case when K = k(x), where k(x) is a δσ -field extension of C(t, x) endowed with

δ(x) = 1, σ (x) = x and δ(t) = 0, σ (t) = t + 1. This situation can be seen as the discrete

counterpart of the one studied in [51]. Assuming that k is linearly σ -closed, we show

that any perfectly σ -reduced σ -closed subgroup of Ga is a σ -Galois group over k(x) (see

Proposition 4.6).

4.1. Some structure theorems

The next lemma is a first step in the description of the structure of the extension L|K .

Lemma 4.1. Assume that we are in situation (H1). Then there exist t1, . . . , ts ∈ L such

that L = K 〈t1, . . . , ts〉σ , and δ(t1), . . . , δ(ts) ∈ K .

Proof. We can suppose that L = K 〈Y 〉σ , where Y ∈ Gln(L) is a fundamental solution

matrix of a linear differential system δ(y) = Ay of order n, with coefficients in K .

We denote by σ -Gal(L|K )[0] the Zariski closure of σ -Gal(L|K ) inside Gln,k , and by

k[σ -Gal(L|K )[0]] its k-Hopf algebra.
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Let G ′ be a σ -closed subgroup of Ga , and let φ : G ′→ σ -Gal(L|K ) be an isomorphism

of group k-σ -schemes (see § A.8 in [15]), so that

φ∗ : k{σ -Gal(L|K )} → k{G ′}

is an isomorphism of k-σ -Hopf algebras. We consider the σ -Picard–Vessiot ring

R = K {Y, 1
det(Y ) }σ inside L (see Proposition 2.6). Following Proposition 2.8 and [15,

Lemma 1.8], we can identify k{σ -Gal(L|K )} with (R⊗K R)δ = k{Z , 1
det(Z) }σ , where Z =

(Y ⊗ 1)−1(1⊗ Y ) ∈ (R⊗ R)δ. Moreover, k{G ′} is a quotient of the ring of σ -polynomials in

one variable; i.e., it has the form k{x}σ . Therefore, there exists r ∈ Z>0 such that φ∗(Z)
is an element of the ring k[x, σ (x), . . . , σ r (x)]. This means in particular that the map φ∗
injects k[σ -Gal(L|K )[0]] in a sub-k-algebra of k[x, σ (x), . . . , σ r (x)]; i.e., σ -Gal(L|K )[0]
can be identified with a quotient of some Gr

a . The quotients of an algebraic vector

group are algebraic vector groups; hence there exists s ∈ Z>0 such that σ -Gal(L|K )[0] is

isomorphic to Gs
a .

We have proved that σ -Gal(L|K )[0] ∼= Gs
a is the differential Galois group of

the Picard–Vessiot ring R0 := K [Y, 1
det(Y ) ] ⊂ R, over K . Finally, Gs

a has a trivial

first Galois cohomology group; therefore the σ -Gal(L|K )[0]-torsor R0 is trivial (see

Theorem 1.28 [44]). In other words, there exist t1, . . . , ts ∈ R0 such that

• R0 = K [t1, . . . , ts],
• for all τ ∈ σ -Gal(L|K )[0](k) = Autδ(R0|K ), we have τ(ti ) = ti + ci (τ ) with ci (τ ) ∈ k.

For any τ ∈ σ -Gal(L|K )[0](k) and any i = 1, . . . , s, we have τ(δ(ti )) = δ(ti + ci (τ )) =
δ(ti ). The differential Galois theory (see Proposition 1.34 in [44]) implies that δ(ti ) ∈ K ,

for all i = 1, . . . , s.

To summarize, we have found t1, . . . , ts ∈ L such that K [Y, 1
det Y ] = K [t1, . . . , ts], and

hence such that L = K 〈t1, . . . , ts〉σ , with δ(ti ) ∈ K for all i = 1, . . . , s.

Now, we treat the case where the σ -Galois group is the whole Ga .

Proposition 4.2. Under assumption (H1), suppose that σ -Gal(L|K ) is isomorphic to Ga.

Then there exists θ ∈ L such that L = K 〈θ〉σ and δ(θ) ∈ K .

Proof. It follows from Lemma 4.1 that we can find t1, . . . , ts ∈ L such that L =
K 〈t1, . . . , ts〉σ , with δ(ti ) ∈ K . Moreover, R = K {t1, . . . , ts}σ is a σ -Picard–Vessiot ring

of L. For every k-σ -algebra S and every τ ∈ σ -Gal(L|K )(S), there exist c1(τ ), . . . , cs(τ ) ∈
Ss , such that in R⊗k S we have τ(ti ⊗ 1) = ti ⊗ 1+ 1⊗ ci (τ ) for all i = 1, . . . , s. This

induces a σ -morphism φ : σ -Gal(L|K )→ Gs
a , such that φ(τ) = (c1(τ ), . . . , cs(τ )), for

every k-σ -algebra S and every τ ∈ σ -Gal(L|K )(S). If τ ∈ σ -Gal(L|K )(S) is the identity on

t1⊗ 1, . . . , ts ⊗ 1, then it is the identity on R⊗ S. This proves that φ has a trivial kernel.

Now, we identify σ -Gal(L|K ) with Ga and τ ∈ σ -Gal(L|K ) with its image, say c(τ ),
in Ga . Then, since φ is a morphism of σ -algebraic groups from Ga to Gs

a ,1 there exist

1In zero characteristic, morphisms of σ -algebraic groups from Ga to Ga are given by linear σ -polynomials.
This can be proved as in the algebraic case [56, Theorem 8.4]. We omit this proof here.

https://doi.org/10.1017/S1474748015000080 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000080


Difference algebraic relations among solutions of linear differential equations 85

homogeneous linear σ -operators L1, . . . , Ls , i.e., elements of the skew euclidean ring k[σ ],
such that, for any k-σ -algebra S, we have

φ : Ga(S) −→ Gs
a(S)

τ 7−→ (L1(c(τ )), . . . , Ls(c(τ ))).

Since φ is injective, the σ -operators L1, . . . , Ls do not annihilate simultaneously,

and hence 1 belongs to the ideal k[σ ]L1+ · · ·+ k[σ ]Ls of k[σ ]. Therefore there exist

N1, . . . , Ns ∈ k[σ ] such that N1L1+ · · · Ns Ls = 1 in k[σ ]. We set θ :=∑s
i=1 Ni (ti ) ∈

L. Then, for every k-σ -algebra S and every τ ∈ σ -Gal(L|K )(S), we have τ(θ ⊗ 1) =∑s
i=1 Ni (ti ⊗ 1+ 1⊗ L i (c(τ ))) =∑s

i=1 Ni (ti ⊗ 1)+ 1⊗ c(τ ) = θ ⊗ 1+ 1⊗ c(τ ) in R⊗k S.

This means that the only element of σ -Gal(L|K ) that fixes θ is the identity. By the

σ -Galois correspondence, we finally get that L = K 〈θ〉σ . It follows from the construction

itself that we have δ(θ) ∈ K .

The situation is more complicated when σ -Gal(L|K ) is isomorphic to a proper σ -closed

subgroup of Ga .

Proposition 4.3. Under assumption (H1), suppose that σ -Gal(L|K ) is isomorphic to a

proper subgroup of Ga. Then we have the following.

(i) There exist θ ∈ L and n ∈ Z>0, such that σ n(L) ⊂ K 〈θ〉σ and δ(θ) ∈ K .

(ii) The δσ -field K 〈θ〉σ is a σ -Picard–Vessiot extension of K for δ(y) = δ(θ), and we

have a short exact sequence

0→ σ -Gal(L|K 〈θ〉σ )→ σ -Gal(L|K )→ σ -Gal(K 〈θ〉σ |K )→ 0. (4.1)

Moreover, the group σ -Gal(L|K 〈θ〉σ ) is σ -infinitesimal; i.e., σ -Gal(L|K 〈θ〉σ )(S) is

trivial for any σ -reduced k-σ -algebra S. In addition, we can choose θ such that

σ -Gal(K 〈θ〉σ |K ) is perfectly σ -reduced.

Remark 4.4. The previous proposition gives a decomposition of the σ -Picard–Vessiot

extension L|K , with σ -Galois group isomorphic to a proper subgroup of Ga , in a tower

of σ -field extensions such that K 〈θ〉σ |K is perfectly σ -separable and L|K 〈θ〉σ is what we

could call a ‘purely σ -inseparable extension’.

Proof. Lemma 4.1 implies that there exist t1, . . . , ts ∈ L such that L = K 〈t1, . . . , ts〉σ ,

and δ(t1), . . . , δ(ts) ∈ K . Notice that the assumption on σ -Gal(L|K ) and Proposition 2.9

imply that

σ -trdeg(L|K ) = σ - dimk(σ -Gal(L|K )) = 0.

Therefore, it follows from Theorem 4.5.4 in [34] that there exist c1, . . . , cs ∈ k and n ∈ Z>0
such that, if we take θ =∑s

i=1 ci ti , then σ n(L) ∈ K 〈θ〉σ . By construction, δ(θ) ∈ K . This

proves (i).

Notice that K 〈θ〉δσ ⊂ Lδ = k, which implies that K 〈θ〉σ is a σ -Picard–Vessiot extension

for δ(y) = δ(θ). The second fundamental theorem of the σ -Galois correspondence (see

Theorem 2.12) gives immediately the exact sequence of group k-σ -schemes (4.1).

Now, we show that σ -Gal(L|K 〈θ〉σ ) is σ -infinitesimal. Let S be a σ -reduced k-σ -algebra,
let R be the σ -Picard–Vessiot ring inside L, and let τ ∈ σ -Gal(L|K 〈θ〉σ )(S). Since σ n(L) ∈
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K 〈θ〉σ , the action of τ on σ n(R)⊗ S is trivial. Since τ commutes with σ and σ is injective

on S, we deduce that τ is the identity by looking at its action on a fundamental solution

matrix for L|K .

It remains to prove that we can choose θ such that σ -Gal(K 〈θ〉σ |K ) is perfectly

σ -reduced. The δσ -field extension K 〈θ〉σ |K is a σ -Picard–Vessiot extension for δ(y) =
δ(θ), with fundamental solution matrix 2 :=

(
1 θ

0 1

)
. We can embed σ -Gal(K 〈θ〉σ |K ) into

Ga via 2 (we identify Ga with its image in Gl2,k via a 7→
(

1 a
0 1

)
). If σ -Gal(K 〈θ〉σ |K ) = Ga ,

we are done. Otherwise, Theorem A.1 implies that I(σ -Gal(K 〈θ〉σ |K )) ⊂ k{x}σ = k{Ga} is

generated, as σ -ideal, by a σ -polynomial of the form
∑s

i=0 λiσ
i (x), for some λ0, . . . , λs ∈ k

with λs 6= 0. Let r = min{i = 0, . . . , s|λi 6= 0} be minimal. We set θ1 := σ r (θ). Then

δ(θ1) ∈ K and σ n+r (L) ⊂ K 〈θ1〉σ . The σ -Galois correspondence for the σ -Picard–Vessiot

extension K 〈θ〉σ |K implies that
∑s−r

i=0 λi+rσ
i (θ1) belongs to K . Using again the σ -Galois

correspondence for the σ -Picard–Vessiot extension K 〈θ1〉σ |K , we see that
∑s−r

i=0 λi+rσ
i ∈

I(σ -Gal(K 〈θ1〉σ |K )). The classification of the σ -closed subgroups of Ga (Corollary A.3)

implies that I(σ -Gal(K 〈θ1〉σ |K )) is generated by a σ -polynomial of the form
∑l

i=0 µiσ
i

with µ0 6= 0 and that σ -Gal(K 〈θ1〉σ |K ) is perfectly σ -reduced.

Now, we consider a more restrictive hypothesis on K ; namely, we show that, if K is

inversive, then only perfectly σ -reduced σ -closed subgroups of Ga can be realized as

σ -Galois groups.

Proposition 4.5. Assume that the extension L|K verifies (H1) and moreover that the

σ -field K is inversive. Then σ -Gal(L|K ) is perfectly σ -reduced and there exists θ ∈ L
such that

• δ(θ) ∈ K , and

• L is a σ -Picard–Vessiot extension for δ(y) = δ(θ).
Proof. If σ -Gal(L|K ) is isomorphic to Ga , then there is nothing to prove (see

Proposition 4.2). If σ -Gal(L|K ) is isomorphic to a proper σ -closed subgroup of Ga , then,

by Proposition 4.3, there exist θ ∈ L and n ∈ Z>0 such that δ(θ) ∈ K and σ n(L) ∈ K 〈θ〉σ .

Moreover, we can choose n and θ such that σ -Gal(K 〈θ〉σ |K ) is a perfectly σ -reduced

proper σ -closed subgroup of Ga .

To conclude, it suffices to prove that K 〈θ〉σ is inversive. In fact, this immediately implies

that L = K 〈θ〉σ . Embedding σ -Gal(K 〈θ〉σ |K ) into Ga (via θ), we see that there exist

λ0, . . . , λs ∈ k with λ0 6= 0 such that
∑s

i=0 λiσ
i (x) ∈ k{x}σ generates I(σ -Gal(K 〈θ〉σ |K )).

Using the σ -Galois correspondence, we see that
∑s

i=0 λiσ
i (θ) ∈ K . Since K is inversive

and λ0 6= 0, this implies that K 〈θ〉σ is inversive and therefore that L = K 〈θ〉σ .

4.2. A discrete parameter inverse problem over C(x, t)

We now restrict our attention to the following situation.

(H2) Let C(t) be the σ -field with σ |C = id and σ(t) = t + 1. Let k be an

algebraically closed inversive linearly σ -closed σ -field extension of C(t). We

now assume that K = k(x) endowed with the derivation δ(x) = 1, δ(c) = 0 for

https://doi.org/10.1017/S1474748015000080 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000080


Difference algebraic relations among solutions of linear differential equations 87

all c ∈ k and the endomorphism extending the action of σ on k to K with

σ(x) = x .

Since assumption (H2) satisfies the hypothesis of Proposition 4.5, we know that only

perfectly σ -reduced σ -closed subgroups of Ga can occur as σ -Galois groups for differential

equations of the form δ(y) = g over K . The following proposition shows that any of these

subgroups can appear.

Proposition 4.6. Suppose that K verifies (H2). Let G be a perfectly σ -reduced σ -closed

subgroup of Ga. Then there exists g ∈ K such that δ(y) = g has σ -Galois group G.

Proof. First of all, let us realize Ga itself. Let L|K be a σ -Picard–Vessiot extension for

δ(y) = 1
x+t . Reasoning as in Corollary 3.7, we see that σ -Gal(L|K ) = Ga . Notice that the

coefficients of the equation lie in Q(x, t).
Now, let G be a proper perfectly σ -reduced σ -closed subgroup of Ga . Since G is

perfectly σ -reduced, we know that there exist λ0, . . . , λs ∈ k, with λ0λs 6= 0, such that

I(G) ⊂ k{x}σ = k{Ga} is generated by L :=∑s
i=0 λiσ

i (x). Since k is linearly σ -closed, we

can find c1, . . . , cs ∈ k, linearly independent over kσ , whose kσ -span is the group G(k)
(see Corollary A.6).

Let us consider the differential equation

δ(y) =
s∑

i=1

ci

x + i
=: g.

Let L|K be a σ -Picard–Vessiot extension for δ(y) = g, z ∈ L be a solution, and R =
K {z}σ its σ -Picard–Vessiot ring, in the sense of § 3.3. We have

L(δ(z)) = L(g) =
s∑

i=1

L(ci )

x + i
= 0,

so that δ(L(z)) = 0, and hence L(z) ∈ k. We embed σ -Gal(L|K ) into Ga , via its action on

the solution z; i.e., for any k-σ -algebra S and any τ ∈ σ -Gal(L|K )(S), there exists c(τ ) ∈ S
such that τ(z⊗ 1) = z⊗ 1+ 1⊗ c(τ ) ∈ R⊗k S. We write τ(z) = z+ c(τ ) to simplify the

notation. Since L(z) ∈ k, we have L(z) = τ(L(z)) = L(τ (z)) = L(z)+L(c(τ )), and hence

L(c(τ )) = 0, which means that σ -Gal(L|K ) ⊂ G. To conclude, we have to prove the

inverse inclusion. Let L1 be a homogeneous linear σ -polynomial in k{x}σ , generating

the vanishing ideal of σ -Gal(L|K ) inside Ga , and let z be a solution of δ(y) = g, as above.

By σ -Galois correspondence we find that L1(z) belongs to K and, thus, that

δ(L1(z)) = L1(δ(z)) = L1(g) =
s∑

i=1

L1(ci )

x + i
∈ δ(K ).

Reasoning as in Corollary 3.6, we find that L1(ci ) = 0, for all i = 1, . . . , s. This implies

that L1(c) = 0 for every c ∈ G(S) and any k-σ -algebra S (Corollary A.6). Thus G ⊂
σ -Gal(L|K ).
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5. Discrete integrability

The terminology of this section is borrowed from differential equations depending

on a differential parameter. Indeed, Y. Sibuya proves the equivalence between the

differential analog of the definition below, usually called integrability, and the notion

of isomonodromy. See Theorem A.5.2.3 in [49].

Integrability has been studied from a Galoisian point of view in [9, 18, 20] for equations

depending on differential parameters (see also [12, 39]). Here we consider the dependence

on a difference parameter. We prove some results that are analogous to the ones in

the papers above. However, our result on the descent of integrability is not inspired by

any results in the previous literature and could actually be reproduced in the case of a

differential parameter, improving some applications in the papers cited above.

5.1. Definition, first properties

First of all, we introduce the notion of σ d -integrability that we are going to discuss in

this section.

Definition 5.1. Let K be a δσ -field, A ∈ K n×n , for some positive integer n, and d ∈ Z>0.

We say that δ(y) = Ay is σ d-integrable (over K ), if there exists B ∈ Gln(K ), such that{
δ(y) = Ay
σ d(y) = By

(5.1)

is compatible; i.e.,

δ(B)+ B A = }dσ
d(A)B, (5.2)

where }d = }σ(}) · · · σ d−1(}).

The following proposition interprets the compatibility relation (5.2) in terms of

solutions of the system (5.1).

Proposition 5.2. Let K be a δσ -field, δ(y) = Ay be a linear differential equation with

A ∈ K n×n, and L be a δσ -field extension of K .

(i) If there exist B ∈ Gln(K ) and Y ∈ Gln(L) such that δ(Y ) = AY and σ d(Y ) = BY
(i.e., Y is a fundamental solution of (5.1)), then B satisfies (5.2).

(ii) Conversely, assume that L is a σ -Picard–Vessiot extension for δ(y) = Ay such

that k = K δ is linearly σ d-closed (see Definition A.4). If there exists a matrix

B ∈ Gln(K ) verifying (5.2), then there exists a fundamental solution Y ∈ Gln(L)
of (5.1).

Proof. For (i), observe that

σ d(δ(Y )) = σ d(A)σ d(Y ) = σ d(A)BY

and

δ(σ d(Y )) = δ(BY ) = δ(B)Y + Bδ(Y ) = (δ(B)+ B A)Y.

Because δ(σ d(Y )) = }dσ
d(δ(Y )), this implies (5.2).
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To prove (ii), fix Y ∈ Gln(L) with δ(Y ) = AY . Equation (5.2) implies that

δ(σ d(Y )) = }dσ
d(δ(Y )) = }dσ

d(A)σ d(Y ) = (δ(B)B−1+ B AB−1)σ d(Y ).

Hence

δ(B−1σ d(Y )) = B−1δ(σ d(Y ))− B−1δ(B)B−1σ d(Y ) = AB−1σ d(Y ).

We conclude that there exists C ∈ Gln(k) such that B−1σ d(Y ) = Y C . Since k is linearly

σ d -closed, there exists D ∈ Gln(k) such that σ d(D) = C−1 D. The matrix Y D ∈ Gln(L) is

a fundamental solution of (5.1).

Situations where the integer d is strictly greater than 1 have to be taken into

consideration. Indeed, the following example shows that, for any prime integer p, one can

construct a differential system which is σ p-integrable and not σ d -integrable for d < p.

Example 5.3. Let p be a prime integer, and let K = C(α, x) be the δσ -field endowed

with δ(x) = 1, δ(α) = 0, and σ(x) = x, σ (α) = α+ 1
p . Let d ∈ N×. The linear differential

system δ(y) = α
1−x y is σ d -integrable if and only if there exists b ∈ C(α, x) such that δ(b) =

d
p

1−x b. Since residues of logarithmic derivatives of rational functions must be integers, one

easily sees that the differential system is σ p-integrable and not σ d -integrable for d < p.

Then a natural question is the existence of a bound for such an integer d, in terms

of the coefficients of the matrix. One could hope to get this bound by taking a closer

look at the local monodromies and their orbits under the action of σ . Nonetheless, in the

applications to come, in order to prove that we have no transformal relations between

the solutions and thus no σ d -integrability, we will treat the integer d as a parameter.

5.2. Some examples

In this section, we show that σ d -integrability is a situation that occurs rather frequently.

Notice that, in p-adic differential equation theory, the σ d -integrability with respect to

an action of the lift of the Frobenius from the positive characteristic is called strong

Frobenius structure. In such a context, R. Crew, in [8], has proved a weak form of the

‘only if’ part of Theorem 5.11 below.

5.2.1. Contiguity relations. The case of contiguity relations for hypergeometric

equations is an example of the situation described in the previous definition.

Example 5.4. Let C(α, x) be a rational function field in two variables, equipped with

the derivation δ = d
dx and the C(x)-linear automorphism σ such that σ(α) = α+ 1. We

consider the hypergeometric differential equation δ(y) = α
1−x y, whose solution is given

by
∑

n>0
(α)n

n! xn . It is easy to see that σ(y) = 1
1−x y and δ(y) = α

1−x y are compatible, and

that therefore δ(y) = α
1−x y is σ -integrable.

Example 5.5. Bessel’s equation

x2δ2(y)+ xδ(y)+ (x2−α2)y = 0
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is a classical example of a differential equation which is σ -integrable with respect to the

shift σ : α 7→ α+ 1. The well known contiguity relations satisfied by the Bessel functions

Jα and Yα can be written in matrix form as σ(Y ) = BY , where

B =


α

x
−1

−α(α+ 1)
x2 + 1

α+ 1
x

 and Y =
(

Jα Yα
J ′α Y ′α

)

is a fundamental solution matrix. The σ -Galois group of Bessel’s equation is Slσ2 . See

Example 2.12 in [15].

In higher dimension, contiguity relations exist for non-resonant A-hypergeometric

equations (see [16, Theorem 6.9.1]) as well as difference equations compatible with

trigonometric KZ-differential equations (cf. [55]). It would be very interesting to

understand these results in light of a generalization of our parameterized Galois theory.

5.2.2. Strong Frobenius structure of Dwork’s exponential. Let k be a

ultrametric field of characteristic zero, complete with respect to a discrete valuation,

and let Fq be its residue field, of characteristic p > 0 and cardinality q. We denote by | |
the p-adic norm of k, normalized so that |p| = p−1. The ring E†

k of all f =∑n∈Z an xn ,

with an ∈ k, such that

• there exists ε > 0, depending on f , such that, for any 1 < % < 1+ ε, we have

limn→±∞ |an|%n = 0, and

• supn |an| is bounded,

is actually a Henselian field with residue field Fq((x)).
We consider the base field K = E†

k endowed with the derivation δ = x d
dx and an action of

a lifting F of the Frobenius automorphism of Fq . Namely, we consider an endomorphism

F of k such that |F(a)− a p| < 1, for any a ∈ k, |a| 6 1. We extend the action of F to K
by setting F(x) = x p, so that F(

∑
n∈Z an xn) =∑n∈Z F(an)x pn . We have

δ ◦ F = pF ◦ δ.
In the framework of p-adic differential equations (see [27] for an introduction to

this topic), the Fd -integrability of a differential equation is called Frobenius structure

(Definition 17.1.1 in [27]). This notion plays a crucial role in the study of p-adic

differential equations since it is the analog of monodromy in the complex setting. The

following examples illustrate how the F-Galois group distinguishes among differential

equations the ones with Frobenius structure, unlike the ‘usual’ Galois group.

Let us suppose that there exists π ∈ k such that π p−1 = −p. The Robba exponential

exp(πx) :=∑n>0
πn xn

n! is a solution of δ(y) = πxy, has radius of convergence 1, and hence

does not belong to K (see for instance [42, Theorem 2.1]). On the other hand, one can

show that exp(πx)p ∈ K . This shows that the usual Galois group of δ(y) = πxy is the

cyclic group of order p.

In this particular case, some sharp p-adic estimates show that F(exp(πx))
exp(πx) ∈ K (see Ch. 2

in [17]). Therefore the σ -Galois group is µσp ; cf. Example 2.14 in [15].
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5.3. Order-1 differential equations with cyclic Galois group of prime order

In the appendix, we prove that any proper σ -closed subgroup of µp, the algebraic

group of pth roots of unity, contains the σ -polynomial σm(x)− σm+d(x) ∈ k{x, x−1}σ =
k{Gm} in its vanishing ideal inside Gm , for convenient integers d > 1 and m > 0. (See

Proposition A.8.) We are going to use this fact in the proof of the following proposition.

Proposition 5.6. Let K be a δσ -field, and let L|K be a σ -Picard–Vessiot extension for

a differential equation δ(y) = ay with a ∈ K×. We assume that the Zariski closure of

σ -Gal(L|K ), i.e., the ‘usual’ Galois group of δ(y) = ay, is µp, for some prime number

p. If σ -Gal(L|K ) is a proper subgroup of µp, there exist two integers M > 0 and d > 1
such that the system δ(y) = }mσ

m(a)y is σ d-integrable for all m > M.

Proof. Let z ∈ L× be a non-zero solution of δ(y) = ay, and let R = K {z, z−1}σ be the

σ -Picard–Vessiot ring of L. We identify σ -Gal(L|K ) with a σ -closed subgroup of Gm via

z. It follows from Proposition A.8 that there exist integers d > 1 and M > 0 such that

σM+d(x)− σM (x) belongs to I(σ -Gal(L|K )). Therefore σm+d(x)− σm(x) ∈ I(σ -Gal(L|K ))
for any m > M . Now, for all k-σ -algebras S and for all τ ∈ σ -Gal(L|K )(S), in R⊗k S we

have τ(z⊗ 1) = z⊗ c, for some c ∈ S, with σm+d(c) = σm(c). Therefore

τ(σm+d(z)σm(z)−1⊗ 1) = σm+d(z)σm(z)−1⊗ σm+d(c)σm(c)−1 = σm+d(z)σm(z)−1⊗ 1.

This means that σm+d(z)σm(z)−1 ∈ K by Galois correspondence. Since σm(z) is a solution

of the equation δ(y) = }mσ
m(a)y, we find that this system is σ d -integrable for all

m > M .

Example 5.7. In the notation introduced for the Dwork exponential, we can consider the

differential equation δ(y) = y
p . Its usual differential Galois group is µp, since the cyclic

extension K (x1/p) is generated by a solution of δ(y) = y
p . We have F(x1/p) = x , which

obviously is F-integrable.

5.4. A descent result for σ d-integrability

Our first concern is to show that ‘being σ d -integrable’ descends along a σ -separable

σ -field extension of the δ-constants (see § 2.2 for the definitions).

Let K be a δσ -field. We would like to extend the σ -field of δ-constants k := K δ to a

σ -field extension k̃ of k. The ring K ⊗k k̃ is naturally a δσ -ring (where we consider k̃ as

δ-constant). Because k is relatively algebraically closed in K (Corollary to Proposition 4,

Ch. II, § 4, p. 94 in [29]), we know that K ⊗k k̃ is an integral domain. Let

K̃ := Quot(K ⊗k k̃)

denote the quotient field of K ⊗k k̃. To ensure that σ is injective on K ⊗k k̃, and hence

that it extends to K̃ , we have to assume that k̃ is σ -separable over k. Note that, by

Corollary A.14 in [15], this is automatic if k is inversive. Then K̃ is naturally a δσ -field.

Because K ⊗k k̃ is δ-simple by Lemma 2.1, it follows that K̃ δ = k̃.
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Proposition 5.8. Let K be a δσ -field and A ∈ K n×n. Let k̃ be a σ -separable

σ -field extension of k := K δ and K̃ = Quot(K ⊗k k̃). Then the equation δ(y) = Ay is

σ d-integrable over K if and only if δ(y) = Ay is σ d-integrable over K̃ .

To prove the proposition above we need a lemma on the behavior of the vector space

of solutions with respect to an extension of the constant field.

Lemma 5.9. Let K be a δ-field and A ∈ K n×n. Let k̃ be a (δ-constant) field extension of

k := K δ, and let K̃ denote the quotient field of K ⊗k k̃. Let us denote by Ṽ (respectively,

V) the solution space of δ(y) = Ay in K̃ n (respectively, K n). Then Ṽ ' V⊗k k̃.

Proof. It is clear that the canonical map V⊗k k̃ → Ṽ is injective. Indeed, if elements

from K n ⊂ (K ⊗k k̃)n = K n ⊗k k̃ are linearly independent over k, they are also linearly

independent over k̃.

It remains to see that V⊗k k̃ → Ṽ is surjective. Let z ∈ Ṽ ⊂ K̃ n . We know from

Lemma 2.1 that S := K ⊗k k̃ is a δ-simple δ-ring. We claim that z ∈ Sn . Set a := {r ∈
S| r z ∈ Sn} ⊂ S. Then a is a non-zero ideal of S, and we will now show that a is a δ-ideal

of S. For r ∈ a we have δ(r z) = rδ(z)+ δ(r)z = r Az+ δ(r)z. As δ(r z) and r Az = Arz lie

in Sn , it follows that δ(r)z lies in Sn . By the simplicity of S, we see that 1 ∈ a; i.e., z ∈ Sn .

Now, let (λi ) be a k-basis of k̃ (which can be infinite, of course). We can write z =∑
zi ⊗ λi for some zi ∈ K n . Then δ(z) =∑ δ(zi )⊗ λi . On the other hand, δ(z) = Az =∑
Azi ⊗ λi . Comparing the coefficients yields δ(zi ) = Azi for all i . This shows that z lies

in the image V⊗k k̃ → Ṽ.

Proof of Proposition 5.8. One implication is tautological, so let us prove the non-trivial

one. Assume that δ(y) = Ay is σ d -integrable over K̃ . This means that there exists

B̃ ∈ Gln(K̃ ) such that δ(B̃)+ B̃ A = }dσ
d(A)B̃. The latter equation, when considered

as an equation in B̃, is a linear differential system over K of order n2. Let V ⊂
K n×n (respectively, Ṽ ⊂ K̃ n×n) denote the corresponding solution vector space over k
(respectively, over k̃). We know from Lemma 5.9 that Ṽ = V⊗k k̃. We have to find

a B ∈ V with non-zero determinant. Let v1, . . . , vm ∈ K̃ n×n be a k-basis of V. Then

v1, . . . , vm is also a k̃-basis of Ṽ. It follows from the Wronskian lemma (Lemma 1.7,

p. 7 in [44]) that v1, . . . , vm are also K̃ -linearly independent. With respect to the basis

v1, . . . , vm of V⊗k K̃ ⊂ K̃ n×n , the determinant det : V⊗k K̃ → K̃ is given by a polynomial

(in m-variables) with coefficients in K̃ . Because the determinant does not vanish on

all of Ṽ, this shows that the determinant cannot vanish on all of V. So δ(y) = Ay is

σ d -integrable over K .

5.5. Galoisian characterization of σ d-integrability

Let k be a σ -field, and let d > 1. For every k-σ -algebra S, we set

Glσ
d

n,k(S) = {g ∈ Gln(S)| σ d(g) = g}.

Then Glσ
d

n,k is a σ -closed subgroup of Gln,k . If G 6 Gln,k is a σ -closed subgroup and

h ∈ Gln(k), then the σ -closed subgroup hGh−1 6 Gln,k obtained from G by conjugation
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with h is given by

(hGh−1)(S) = {hgh−1| g ∈ G(S)} 6 Gln(S),

for every k-σ -algebra S.

Definition 5.10. Let G be a σ -closed subgroup of Gln,k . We call G a σ d-constant subgroup

of Gln,k if G is contained in Glσ
d

n,k . If k̃ is a σ -field extension of k, we say that G is conjugate

over k̃ to a σ d-constant group if there exists h ∈ Gln (̃k) such that hG k̃h−1 6 Gln,̃k is

σ d -constant.

We prove a result on σ d -integrability, which is analogous to Proposition 2.9 in [20],

and § 1.2.1 in [14]. The statement below is more general than the cited results, because

it relies on Proposition 5.8.

Theorem 5.11. Let L|K be a σ -Picard–Vessiot extension for δ(y) = Ay, with A ∈ K n×n.

Then δ(y) = Ay is σ d-integrable over K if and only if there exists a σ -separable σ -field

extension k̃ of k := K δ such that the σ -Galois group σ -Gal(L|K ) is conjugate over k̃ to a

σ d-constant subgroup of Gln,̃k .

First of all, we are going to prove one implication of Theorem 5.11 (see Lemma 5.15

below). To this purpose we need a few lemmas.

Lemma 5.12. Let L|K be a σ -Picard–Vessiot extension and k̃ a σ -separable σ -field

extension of k = K δ. Then L̃ = Quot(L ⊗k k̃) is a σ -Picard–Vessiot extension of K̃ =
Quot(K ⊗k k̃) and the σ -Galois group G̃ of L̃|K̃ , is obtained from the σ -Galois group G
of L|K by base extension; i.e., G̃ = G k̃ .

Proof. As L̃δ = k̃ = K̃ δ, it is clear that L̃|K̃ is a σ -Picard–Vessiot extension. Let R ⊂ L
(respectively, R̃ ⊂ L̃) denote the σ -Picard–Vessiot rings of L|K (respectively, of L̃|K̃ ).

Then R̃ is obtained from R⊗k k̃ by localizing at the multiplicatively closed set of all

non-zero divisors of K ⊗k k̃. It follows that, for every k̃-σ -algebra S,

G k̃(S) = Autδσ (R⊗k S|K ⊗k S) = Autδσ ((R⊗k k̃)⊗k̃ S|(K ⊗k k̃)⊗k̃ S)

= Autδσ (R̃⊗k̃ S|K̃ ⊗k̃ S) = G̃(S).

This ends the proof.

Lemma 5.13. Let k be a σ -field, d > 1, and B ∈ Gln(k). There exists a σ -separable σ -field

extension k̃ of k such that σ d(y) = By has a fundamental solution matrix in k̃.

Proof. Let X1, . . . , Xd denote n× n matrices of indeterminates over k. Extend σ from k
to S := k[X1, . . . , Xd ] by σ(X1) = X2, . . . , σ (Xd−1) = Xd , σ (Xd) = B X1. Obviously S is

σ -separable over k. It follows from Lemma A.16 in [15] that the quotient field k̃ of S is

also σ -separable over k. Clearly σ d(X1) = B X1.

Lemma 5.14. Let k be a linearly σ -closed σ -field. Then k is linearly σ d-closed for every

d > 1.
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Proof. Assume that d > 1 and B ∈ Gln(k). We have to find a Y ∈ Gln(k) with σ d(Y ) =
BY . Let y1, . . . , yd denote vectors of size n. The linear system of order nd given by

σ(y1) = y2, . . . , σ (yd−1) = yd , σ (yd) = By1

has a fundamental solution matrix Z ∈ Glnd(k). Since the first n rows of Z are linearly

independent, there exist n columns of Z such that the corresponding vectors of the

first n entries are linearly independent. These form a fundamental solution matrix for

σ d(y) = By.

So we are ready to prove the first part of Theorem 5.11.

Lemma 5.15. Let L|K be a σ -Picard–Vessiot extension for δ(y) = Ay, with A ∈ K n×n. If

δ(y) = Ay is σ d-integrable over K , then, for a suitable σ -separable σ -field extension k̃ of

k = K δ, the σ -Galois group σ -Gal(L|K ) is conjugate over k̃ to a σ d-constant subgroup of

Gln,̃k . If k is linearly σ -closed, we can take k̃ equal to k.

Proof. Let B ∈ Gln(K ) be such that the system{
δ(y) = Ay
σ d(y) = By

(5.3)

is integrable. Let us also fix a fundamental solution matrix Y ∈ Gln(L) for δ(y) = Ay.

The integrability condition (5.2) implies that

δ((BY )−1σ d(Y )) = δ((BY )−1)σ d(Y )+ (BY )−1δ(σ d(Y ))

= −(BY )−1δ(BY )(BY )−1σ d(Y )+ (BY )−1}dσ
d(δ(Y ))

= −(BY )−1((δ(B)Y + B AY )(BY )−1σ d(Y )− }dσ
d(A)σ d(Y ))

= −(BY )−1((δ(B)+ B A)B−1− }dσ
d(A))σ d(Y ) = 0.

Thus, there exists D ∈ Gln(k) such that

σ d(Y ) = BY D. (5.4)

By Lemma 5.13 there exist a σ -separable σ -field extension k̃ of k and a matrix U ∈ Gln (̃k)
with σ d(U ) = D−1U .

Set K̃ = Quot(K ⊗k k̃) and L̃ = Quot(L ⊗k k̃). We will now work in the σ -Picard–Vessiot

extension L̃|K̃ (Lemma 5.12). The matrix V := YU ∈ Gln(L̃) is solution of (5.3); in fact,

δ(V ) = δ(Y )U = AV

and

σ d(V ) = σ d(Y )D−1U = BYU = BV .

For τ ∈ σ -Gal(L̃|K̃ ) and S a k̃-σ -algebra, let [τ ]V ∈ Gln(S) be such that τ(V ⊗ 1) = (V ⊗
1)[τ ]V . We have

τ(σ d(V ⊗ 1)) = τ(BV ⊗ 1) = (BV ⊗ 1)[τ ]V
and

τ(σ d(V ⊗ 1)) = σ d(τ (V ⊗ 1)) = σ d((V ⊗ 1)[τ ]V ) = (BV ⊗ 1)σ d([τ ]V ).
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We deduce that [τ ]V = σ d([τ ]V ). Therefore, if we consider G̃ := σ -Gal(L̃|K̃ ) as a

σ -closed subgroup of Gln,̃k via the embedding associated with the choice of the

fundamental solution matrix V , then G̃ is a σ d -constant subgroup of Gln,̃k . We consider

the σ -Galois group G := σ -Gal(L|K ) as a σ -closed subgroup of Gln,k via the embedding

associated with the choice of the fundamental solution matrix Y . Since V = YU , it is

clear from Lemma 5.12 that G k̃ is conjugate to G̃ via U ∈ Gln (̃k).

Remark 5.16. If k is linearly σ -closed, we can choose U ∈ Gln(k) and k̃ = k by

Lemma 5.14.

The following lemma is a crucial step in the proof of the inverse implication in

Theorem 5.11.

Lemma 5.17. Let L|K be a σ -Picard–Vessiot extension for δ(y) = Ay, where A ∈ K n×n.

If the σ -Galois group σ -Gal(L|K ) is conjugate (over k = K δ) to a σ d-constant subgroup

of Gln,k , then δ(y) = Ay is σ d-integrable over K .

Proof. Since conjugation in Gln(k) corresponds to a change of fundamental solution

matrix, we can find a fundamental solution matrix Y ∈ Gln(L) such that G := σ -Gal(L|K )
is a σ d -constant subgroup of Gln,k , with respect to the embedding τ 7→ [τ ]Y determined

by Y . (As before, for a k-σ -algebra S and τ ∈ σ -Gal(L|K )(S) we denote by [τ ]Y ∈
Gln(S) the matrix such that τ(Y ⊗ 1) = Y ⊗ 1[τ ]Y .) We set B = σ d(Y )Y−1 ∈ Gln(L). The

matrix B is an invariant of σ -Gal(L|K ); in fact, for every k-σ -algebra S and every

τ ∈ σ -Gal(L|K )(S), we have

τ(B⊗ 1) = τ(σ d(Y ⊗ 1)(Y ⊗ 1)−1) = σ d(τ (Y ⊗ 1))τ (Y−1⊗ 1)

= σ d(Y ⊗ 1[τ ]Y )[τ ]−1
Y Y−1⊗ 1 = σ d(Y )Y−1⊗ 1 = B⊗ 1,

since σ d([τ ]Y ) = [τ ]Y . It follows from the σ -Galois correspondence (Theorem 2.11) that

B ∈ Gln(K ). Since Y ∈ Gln(L) satisfies δ(Y ) = AY and σ d(Y ) = BY , it follows easily from

δ(σ d(Y )) = }dσ
d(δ(Y )) that δ(y) = Ay is σ d -integrable.

Finally, we are able to prove Theorem 5.11.

Proof of Theorem 5.11. Let k̃ be a σ -separable σ -field extension of k such that

σ -Gal(L|K ) is conjugate over k̃ to a σ d -constant group. Consider the σ -Picard–Vessiot

extension L̃|K̃ obtained from L|K by extending the δ-constants from k to k̃ (Lemma 5.12).

Since σ -Gal(L̃|K̃ ) is conjugate over k̃ = K̃ δ to a σ d -constant group, Lemma 5.17 implies

that δ(y) = Ay is σ d -integrable over K̃ . It follows from Proposition 5.8 that δ(y) = Ay is

σ d -integrable over K . The other implication is immediate from Lemma 5.15.

Corollary 5.18. Let L|K be a σ -Picard–Vessiot extension for δ(y) = Ay, with A ∈ K n×n.

Assume that k := K δ is linearly σ -closed. Then δ(y) = Ay is σ d-integrable (over K ) if and

only if the σ -Galois group σ -Gal(L|K ) is conjugate (over k) to a σ d-constant subgroup

of Gln,k .

Proof. This is clear from Lemmas 5.15 and 5.17.
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Remark 5.19. It may appear quite difficult to determine a priori, given a differential

system δ(y) = Ay, if this system is σ d -integrable for some d > 1. As any d may occur

(Example 5.3), there are in principle infinitely many compatibility conditions one has to

check. In the next section, we will present some special cases where one is able to check

the conditions by treating d as a parameter.

6. Discrete integrability in the case of almost simple Galois groups

We begin this section with the study of the discrete integrability of differential system

having a simple classical Galois group. This is equivalent to asking that the σ -Galois

group is a Zariski dense σ -closed subgroup of a simple algebraic group. This situation is

very rigid, as proved in Theorem A.20, and the σ -Galois group has to be either equal to

the whole simple algebraic group or conjugate to a σ d -constant group for some positive

integer d. Combined with our σ d -integrability criteria, we find that either we have a very

strong transformal relation between the solutions of our differential system, namely the

σ d -integrability, or we have no transformal relations at all. In Proposition 6.1 below we

make this discussion precise.

Recall that a linear algebraic group H over a field k (i.e., an affine group scheme of

finite type over k) is called simple if it is non-commutative, connected, and every normal

closed subgroup is trivial. If H is non-commutative, connected, and every normal closed

connected subgroup is trivial, then H is called almost simple. We say that H is absolutely

(almost) simple if the base extension of H to the algebraic closure of k is (almost)

simple.

Proposition 6.1. Let K be an inversive δσ -field, A ∈ K n×n, and let L|K be a

σ -Picard–Vessiot extension for δ(y) = Ay. We assume that the Zariski closure H of

σ -Gal(L|K ) inside Gln,k is an absolutely simple algebraic group of dimension t > 1 over

k = K δ. Then the following statements are equivalent.

(i) σ -Gal(L|K ) is a proper σ -closed subgroup of H .

(ii) The σ -transcendence degree of L|K is strictly less than t.

(iii) There exists d ∈ Z>0 such that the system δ(y) = Ay is σ d-integrable.

Proof. Let Y ∈ Gln(L) be a fundamental solution matrix for δ(y) = Ay and let G =
σ -Gal(L|K ). Assumption (iii) implies the existence of matrices B ∈ Gln(K ) and D ∈
Gln(k) such that σ d(Y ) = BY D. (See equation (5.4).) Therefore σ -trdeg(L|K ) = 0 < t ,
and we see that (iii) implies (ii).

We know by Proposition 2.9 that σ -trdeg(L|K ) = σ - dimk(G). Therefore assumption (ii)

means that we have σ - dimk(G) = σ -trdeg(L|K ) < t , and therefore G is a proper subgroup

of H .

It remains to prove that (i) implies (iii). We first reduce to the case that k = K δ

is algebraically closed. Since K is inversive, k = K δ is also inversive. Let k̃ denote an

algebraic closure of k, and extend σ from k to k̃. Then k̃ is automatically inversive. Thus

K̃ := Quot(K ⊗k k̃) is also inversive. We know from Lemma 5.12 that L̃ = Quot(K ⊗k k̃)
is a σ -Picard–Vessiot extension whose σ -Galois group G̃ equals G k̃ . It is easy to see
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that the Zariski closure of G̃ in Gln,̃k equals Hk̃ . Since G is properly contained in H ,

G̃ is also properly contained in Hk̃ . Thus, by assumption, it follows that δ(y) = Ay is

σ d -integrable over K̃ for some convenient integer d > 1. But then Proposition 5.8 implies

that δ(y) = Ay is σ d -integrable over K .

So from now on we can assume that k is algebraically closed. Since K is inversive,

Corollary 4.4 in [15] asserts that G = σ -Gal(L|K ) is σ -reduced. Therefore, Theorem A.20

says that there exists a σ -separable σ -field extension k̃ of k and an integer d > 1 such

that G is conjugate in Gln,̃k to a σ d -constant group. Theorem 5.11 ends the proof.

The previous proposition allows us to determine very easily if the solutions of

a differential system δ(y) = Ay, with simple usual Galois group, are transformally

independent or not. Indeed, if we prove that, for all d > 0, the differential system δ(y)+
y A = }dσ

d(A)y has no rational solution Y ∈ Gln(K ), there will be no (proper) transformal

relations between the solutions of δ(y) = Ay. Thus, we have reduced the question of the

algebraic independence between the solutions and their successive transforms via σ , which

is a non-linear problem, into a question of existence of rational solutions to a given linear

differential system. This last question possesses many algorithmic answers, and we refer

to § 4.1 of [44] for a detailed exposition of this subject.

However, in many situations of interest, the usual Galois group of a differential system

is not simple but almost simple. See for example [3]. Unfortunately, as we show in the

appendix, Proposition 6.1 fails, a priori, if the Zariski closure of σ -Gal(L|K ) is only almost

simple and not simple. This is mainly due to the fact that, contrary to the difference

varieties studied in models of ACFA, the group k-σ -schemes associated to finite algebraic

groups are not necessarily σ -constants.

We propose now two ways of getting rid of this problem. We first explore a naive less

effective strategy to deal with the group Sln,k and then prove a more general statement

for almost simple groups (see Theorem 6.4), based on a generalization of a result in [5]

(see Theorem A.25). To conclude this section, we apply Theorem 6.4 to second-order

differential equations, especially to the Airy equation.

We point out that Theorem A.25 on the classification of σ -closed subgroups of almost

simple groups should also give applications of the theory developed in [41].

6.1. A naive approach to Sln,k through symmetric powers

Corollary 6.2 below yields to a characterization of the σ -algebraic relations satisfied

by the solutions in terms of σ d -integrability of the nth symmetric power of the initial

differential system (see for instance Theorem 3.4 in [54] for a definition). Once again,

this method allows us to translate the question of the existence of transformal relations

among solutions of our initial differential system in terms of the much easier problem of

existence of rational solutions to an auxiliary differential system. However, if the order

of the initial system is n, the order of the auxiliary differential system will be less than

or equal to
(2n−1

n

)
. Computations may be then hard to manage.

Corollary 6.2. Let K be an inversive δσ -field such that k = K δ is algebraically closed,

L(y) = a0 y+ a1δ(y)+ · · ·+ δn(y) a linear differential equation with coefficients in K , and
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Lsn the nth symmetric power of L. We denote by

AL =


0 1 . . . 0
...

. . .
. . .

...

0 . . . 0 1
−a0 −a1 . . . −an−1

 (respectively, ALsn )

the companion matrix of L (respectively, of Lsn) and by L|K a σ -Picard–Vessiot

extension for δ(y) = ALy. We assume that the Zariski closure of σ -Gal(L|K ) inside Gln,k
is Sln,k . Then the following statements are equivalent.

(i) σ -Gal(L|K ) is a proper σ -closed subgroup of Sln,k .

(ii) The σ -transcendence degree of L|K is strictly less than n2− 1.

(iii) There exists d ∈ Z>0 such that the system δ(y) = ALsn y is σ d-integrable.

Proof. Let y1, . . . , yn ∈ L be n linearly independent solutions of L in L. By definition (see

Theorem 3.4 in [54]), the symmetric power of order n of L is a linear differential equation

with coefficients in K , whose solution space is spanned by the products of the form

yi1 yi2 . . . yin , where (i1, . . . , in) runs in {1, . . . , n}n . Let M be the δσ -field extension of K
generated by the yi1 yi2 . . . yin . Then M is a σ -Picard–Vessiot extension for δ(y) = ALsn y
over K . By Theorem 2.12, the group k-σ -scheme σ -Gal(L|M) is a normal subgroup of

σ -Gal(L|K ), and the quotient σ -Gal(L|K )/σ -Gal(L|M) is isomorphic to σ -Gal(M |K ).
Since K is inversive, Corollary 4.4 in [15] implies that σ -Gal(L|K ) and σ -Gal(M |K )
are absolutely σ -reduced over k. The Zariski closure of σ -Gal(L|K ) (respectively,

σ -Gal(M |K )) corresponds to the classical Galois group of δ(y) = ALy (respectively,

δ(y) = ALsn y), whose k-points are the K -δ-automorphism Autδ(L0|K ) (respectively,

Autδ(M0|K )) of L0 = K 〈y1, . . . , yn〉δ (respectively, M0 = K 〈yi1 yi2 . . . yin | (i1, . . . , in) ∈
{1, . . . , n}n〉δ) (see Proposition 2.10). Since M0 is a classical Picard–Vessiot extension,

the usual Galois correspondence shows that Autδ(L0|M0) is a normal algebraic subgroup

of Autδ(L0|K ) = Sln(k). The center of Autδ(L0|K ) is the cyclic group µn(k) of order n.

Moreover, the action of λ ∈ µn(k) as an element of Autδ(L0|K ) is determined by its action

on the yi , which is just the multiplication by λ. Then µn(k) ⊂ Autδ(L0|K ) fixes M0. Thus,

the algebraic group Autδ(L0|M0) is a normal subgroup of Sln(k) containing µn(k). The

group Autδ(L0|M0) differs from Sln(k) because otherwise M0 = K , and the yi would be

algebraically dependent over K . Since µn(k) is maximal among the normal subgroups

of Sln(k), we find that Autδ(L0|M0) = µn(k). Then the Zariski closure of σ -Gal(M |K ) is

PSln(k), i.e., the projective special linear algebraic group over k.

Finally, the δσ -field extension L|M is an algebraic field extension, and σ -trdeg(L|K )
= σ -trdeg(M |K ) and σ - dim(σ -Gal(L|K )) = σ - dim(σ -Gal(M |K )). This shows that

σ -Gal(L|K ) is a proper σ -closed subgroup of Sln,k if and only if σ -Gal(M |K ) is a proper

σ -closed subgroup of PSln,k . We conclude the proof by applying Proposition 6.1 to

σ -Gal(M |K ), a σ -reduced, Zariski dense σ -closed subgroup of the simple algebraic group

PSln,k .

As mentioned above, the third point in the equivalence of Corollary 6.2 may be difficult

to test because of the order of the nth symmetric power of the initial differential equation.

Therefore we propose below a more general method.
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6.2. Characterization of σ -integrability for almost simple groups

For a differential system δ(y) = Ay with almost simple usual Galois group, we prove in

Theorem 6.4 that the existence of transformal relations between the solutions in some

σ -Picard–Vessiot extension L is equivalent to the σ d -integrability of δ(y) = Ay over the

relative algebraic closure K ′ of K inside L. That is, we extend Proposition 6.1 to the case

of almost simple groups by allowing the σ d -integrability to be algebraic and not only

rational.

Unlike to the question of rational solutions, there is, to our knowledge, no effective

method published to solve the problem of the existence of algebraic solutions of

differential equations. However, in a private communication with the authors, M. Singer,

relying on [50], gives an algorithm that starts with a linear differential equation L(y) = 0
with coefficients in C(x), and produces a second linear differential equation whose solution

space is spanned by the algebraic solutions of L. Moreover, necessary conditions for the

existence of algebraic solutions exist. We cite for instance the easy implication in the

Grothendieck conjecture on p-curvatures; see [25]. In [6], the reader will also find some

criteria for the existence of an algebraic solution based on residues.

We will need a simple lemma on extensions of σ -fields. Recall that a σ -ring R is called

a σ -domain if it is an integral domain and σ : R→ R is injective. Moreover, an extension

of σ -fields L|K is called σ -regular if L ⊗K K̃ is a σ -domain for every σ -field extension K̃
of K .

Lemma 6.3. Let L|K be an extension of σ -fields such that K is inversive, and let K ′
denote the relative algebraic closure of K in L. Then L|K ′ is σ -regular.

Proof. By Lemma A.13(ii) in [15] it suffices to a find an inversive algebraically closed

σ -field extension K̃ of K ′ such that L ⊗K ′ K̃ is a σ -domain. Let K̃ denote an algebraic

closure of K containing K ′, and extend σ from K ′ to K̃ . Since K is inversive, K̃ is also

inversive. As the extension L|K ′ is regular, L ⊗K ′ K̃ is a field, and consequently σ is

automatically injective on L ⊗K ′ K̃ .

Now, we are able to state our main theorem.

Theorem 6.4. Let K be an inversive δσ -field, δ(y) = Ay a differential system with A ∈
K n×n, and L|K a σ -Picard–Vessiot extension for δ(y) = Ay. We assume that the Zariski

closure H of σ -Gal(L|K ) inside Gln,k is an absolutely almost simple algebraic group of

dimension t > 1 over k = K δ. Let K ′ be the relative algebraic closure of K inside L. Then

the following statements are equivalent.

(i) σ -Gal(L|K ′) is a proper σ -closed subgroup of H .

(ii) The σ -transcendence degree of L|K is strictly less than t.

(iii) There exists d ∈ Z>0 such that the system δ(y) = Ay is σ d-integrable over K ′.

Proof. As in the proof of Proposition 6.1, condition (iii) implies that σ -trdeg(L|K ′) = 0.

But then σ -trdeg(L|K ) = σ -trdeg(L|K ′) = 0 < t . Thus (iii) implies (ii).
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Condition (ii) implies that σ - dim(σ -Gal(L|K )) = σ -trdeg(L|K ) < t . Therefore

σ -Gal(L|K ) is properly contained in H . But then also σ -Gal(L|K ′) 6 σ -Gal(L|K ) is

properly contained in H .

It remains to show that (i) implies (iii). Let us first show that the Zariski closure H ′ of

G ′ = σ -Gal(L|K ′) in Gln,k equals H . Suppose that H ′ is properly contained in H . Then,

since H is connected, the dimension t ′ of H ′ is strictly smaller than t . Let Y ∈ Gln(L) be

a fundamental solution matrix for δ(y) = Ay. Since K ′|K is algebraic, we arrive at the

contradiction

trdeg(K (Y )|K ) = trdeg(K ′(Y )|K ′) = t ′ < t = trdeg(K (Y )|K ).
So H = H ′, and condition (i) means that G ′ is properly contained in H ′.

By Lemma 6.3 we know that L|K ′ is σ -regular. By Proposition 4.3(iii) in [15] this

implies that G ′ is absolutely σ -integral. To apply Theorem A.25 we need to go the

algebraic closure of k. So let k̃ denote the algebraic closure of k, and extend σ from k
to k̃. Note that, since K is inversive, k and k̃ are also inversive. Extending the δ-constant

from k to k̃ as in Lemma 5.12, we obtain σ -Picard–Vessiot extensions K̃ ⊂ K̃ ′ ⊂ L̃
with field of δ-constants k̃. Since G ′ is absolutely σ -integral, G̃ ′ := σ -Gal(L̃|K̃ ′) = G ′

k̃
is σ -integral. Since G ′ is properly contained in its Zariski closure H = H ′, G̃ ′ is also

properly contained in its Zariski closure Hk̃ . We can thus apply Theorem A.25 to

G̃ ′ 6 Gln,̃k and combine it with Theorem 5.11 to find that δ(y) = Ay is σ d -integrable

over K ′ for a suitable integer d > 1.

Given a differential system δ(y) = Ay over a δσ -field K , it might be difficult to obtain

information about the relative algebraic closure K ′ of K in a suitable σ -Picard–Vessiot

extension. Nevertheless, Theorem 6.4 implies the following transformal independence

criterion.

Corollary 6.5. Let K be an inversive δσ -field, A ∈ K n×n, L a δσ -field extension of K
with Lδ = K δ, and Y ∈ Gln(L) with δ(Y ) = AY . Let T be a transcendence basis of K (Y )
over K , and assume that the (usual differential) Galois group of K (Y )|K is an absolutely

almost simple algebraic group. If, for every d > 1, the linear differential equation δ(B)+
B A = }dσ

d(A)B over K has no non-zero solution B which is algebraic over K , then T
is transformally independent over K .

Proof. We may assume that L = K 〈Y 〉σ . So L|K is a σ -Picard–Vessiot extension. Suppose

that T is transformally dependent over K . Then σ -trdeg(L|K ) < |T | = trdeg(K (Y )|K ).
Thus condition (ii) of Theorem 6.4 is satisfied, and it follows that δ(y) = Ay is

σ d -integrable over the relative algebraic closure K ′ of K in L for some d > 1. This

contradicts the assumption that δ(B)+ B A = }dσ
d(A)B has no non-zero algebraic

solutions.

6.3. The case of Sl2
We now apply Theorem 6.4 to the almost simple algebraic group Sl2.

Corollary 6.6. Let K = k(x) be a field of rational functions equipped with the derivation

δ = d
dx and an automorphism σ commuting with δ, such that k ⊂ C is an algebraically
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closed inversive σ -field. We assume that the differential equation δ2(y)− r y = 0,

with r(x) ∈ K , has (usual) Galois group Sl2(k), and we denote by L|K one of its

σ -Picard–Vessiot extensions. Let K ′ be the relative algebraic closure of K in L. We have

the following.

• If the σ -transcendence degree of L|K is strictly less than 3, there exists s ∈ Z>0 such

that the differential system{
δ2(b)+ (σ s(r)− r)b = 2δ(d)

δ2(d)+ (σ s(r)− r)d = 2σ s(r)δ(b)+ δ(σ s(r))b
(6.1)

has a non-zero algebraic solution (b, d) ∈ (K ′)2.

• If we can find a solution (b, d) ∈ (K ′)2 of (6.1), such that the matrix B =(
d − δ(b) b

σ s (r)b− δ(d) d

)
is invertible, then the σ -transcendence degree of L|K is strictly less

than 3.

Proof. The group Sl2,k is an almost simple algebraic group of dimension 3. Since K is

an inversive σ -field and k is algebraically closed,2 we can apply Theorem 6.4 and obtain

the equivalence between the following statements.

• The σ -transcendence degree of L|K is strictly less than 3.

• There exist B ∈ Gln(K ′) and s ∈ Z>0 such that the system

{
δ(y) = Ay :=

(
0 1
r 0

)
y

σ s (y) = By
is

compatible.

This means that A and B verify δ(B)+ B A = σ s(A)B. If we write

B =
(

a b
c d

)
,

the integrability condition of order s is equivalent to the following system of differential

equations: 
δ(a) = c− rb
δ(b) = d − a
δ(c) = σ s(r)a− rd
δ(d) = σ s(r)b− c.

Eliminating a and c, we obtain the differential system (6.1). This proves the first

statement.

Suppose that we have a solution (b, d) ∈ (K ′)2 such that the matrix B is invertible;

then the system δ(y) = Ay is σ s-integrable and therefore σ -trdeg(L|K ) < 3.

Assuming that a second-order linear differential equation has usual Galois group Sl2(k)
is not a restrictive assumption, as we know from a famous paper of Kovacic [30, 31], which

provides an algorithm to test whether a differential equation of order 2 with coefficients

in k(x) has Liouvillian solutions or not. Based on this property, the algorithm actually

calculates the Galois group of the differential equation.

Let K = k(x), where k ⊂ C is an algebraically closed field, and let δ = d
dx , as above.

Starting with a differential equation δ2(y)+ aδ(y)+ by = 0 of order 2 with coefficients in

2This assumption insures that the usual Galois group is well defined, i.e., unique up to isomorphism.
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K (x), one computes its normal form

δ2(z)− r z = 0, (6.2)

by means of a change of unknown function z = f y, where f is a solution of δ( f ) = a
2 f and

r = b− 1
4 a2− 1

2δ(a). In the form (6.2), the existence of Liouvillian solutions is equivalent

to finding solutions of the Riccati equation

u2− δ(u) = r(x)

in
⋃

m∈Z>0
C[x 1

m ]. Kovacic’s algorithm says, in particular, the following.

Proposition 6.7. If δ2(y)− r y = 0 has no Liouvillian solutions, then its (usual) Galois

group is Sl2(k).

Remark 6.8. In [11] (see also [1]), the author gives a version of the Kovacic algorithm

with differential parameters. The author gives, for instance, a characterization of the

differential dependence with respect to the parameters t = (t1, . . . , tk) of the solutions of

δ2(y)− r(x, t)y = 0, in terms of the existence of rational solutions of auxiliary differential

equations. A similar result should be true also in the present setting.

6.4. Airy’s equation

For a differential system δ(y) = Ay with usual almost simple Galois group, Theorem 6.4

shows that the transformal relations satisfied by the solutions of δ(y) = Ay in some

σ -Picard–Vessiot extension L are determined by the existence of solutions of an auxiliary

linear differential system, lying in the relative algebraic closure K ′ of K inside L. The

field K ′ is not easy to handle in general, but if the solutions in L are sufficiently regular,

one can easily show that K ′ = K . Below, we illustrate this remark and combine it with

Corollary 6.6 to characterize the transformal relations satisfied by the solutions of the

Airy equation.

Lemma 6.9. Let C(x) be the field of rational functions over C, and let M be the field of

meromorphic functions over C. Then C(x) is relatively algebraically closed in M.

Proof. Let f ∈ M be algebraic over C(x). Consider the function field E = C(x)( f ). It

is a finite separable extension of the rational function field C(x). Then Corollary III.5.8

in [53] implies that either E = C(x) or E |C(x) is ramified. This is an easy consequence of

the Riemann–Hurwitz genus formula. Since E is a subfield of M , and since a meromorphic

function has no branch point, E |C(x) cannot be ramified, and then f ∈ C(x).
We are now able to apply Corollary 6.6 to the case of the Airy equation

δ2(y)− xy = 0. (6.3)

Notice that it has an irregular singularity at ∞, and that all the other points of A1
C are

ordinary. This immediately implies that (6.3) admits a basis of solutions A(x) and B(x)
in the field M of meromorphic functions over C.
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Corollary 6.10. Let C(x) be the field of rational function over the complex numbers,

equipped with the derivation δ = d
dx and the automorphism σ : f (x) 7→ f (x + 1), and

let M be the field of meromorphic functions over C. In the notation above, let L =
C(x)〈A(x), B(x), δ(A(x)), δ(B(x))〉σ ⊂ M be the σ -Picard–Vessiot extension for the Airy

equation contained in M. Then σ -Gal(L|C(x)) is equal to Sl2,C, and the functions A(x),
B(x) and δ(B(x)) are transformally independent over C(x).
Proof. By Example 4.2.9 in [26], the usual Galois group of the Airy equation is Sl2(C).
Moreover, by Lemma 6.9, the field C(x) is relatively algebraically closed in L.

We can then apply Corollary 6.6 to the case K = C(x), σ(x) = x + 1, and r(x) = x .

Then, if there exists s ∈ Z>0 such that the system (6.1) has a rational solution, we have

to find (b, d) ∈ C(x)2 such that{
δ2(b)+ sb = 2δ(d)
δ2(d)+ sd = 2(x + s)δ(b)+ b

.

If we eliminate d from the previous system, we get

δ4(b)− (4x + 2s)δ2(b)− 6δ(b)+ s2b = 0. (6.4)

Let us assume that this last equation has a non-zero solution b0 ∈ C(x). It is easy to see

that b0 has no pole. In fact, if α was a pole of order r of b0 then it would be a pole of order

r + 4 of δ4(b0)− (4x + 2s)δ2(b0)− 6δ(b0)+ s2b0 = 0, and this is impossible. Therefore b0
must be a polynomial. Finally, if b0 6= 0, then δ4(b0)− (4x + 2s)δ2(b0)− 6δ(b0)+ s2b0 is a

non-zero polynomial of the same degree than b0, which is again impossible. So we conclude

that b0 = 0 and that the differential system above does not have any rational solution.

Therefore σ -trdeg(L|C(x)) = 3, which allows us to conclude. Since the relative algebraic

closure of K in L equals K , condition (i) in Theorem 6.4 implies that σ -Gal(L|K ) is not

a proper σ -closed subgroup of Sl2,C. Therefore σ -Gal(L|C(x)) = Sl2,C.

Appendix A. Some classification results for σ -algebraic groups

In this appendix we have collected some results on the classification of σ -closed subgroups

of certain algebraic groups. The results are typically of the following type: if G is a

σ -closed subgroup of a certain algebraic group, then G is of a very special form. In the

main body of the text, via the σ -Galois correspondence, this yields results of the following

type: if there is a transformal relation between the solutions of a certain linear differential

equation, then there is a transformal relation of a very special form.

We have made it a general assumption (in § 2.1) that all fields are of characteristic

zero. However, in this appendix we do not make this assumption, but rather state the

characteristic zero assumption whenever it is convenient.

A.1. The σ -closed subgroups of Gn
a

Let k be a σ -field. As usual, we denote by Ga the additive algebraic group over k. We think

of the vector group Gn
a as a σ -algebraic group; i.e., Gn

a(S) = Sn for any k-σ -algebra S. The

σ -coordinate ring of Gn
a is k{Gn

a} = k{x1, . . . , xn}σ . A linear, homogenous σ -polynomial

p =∑i, j λi, jσ
j (xi ) ∈ k{x1, . . . , xn}σ defines a σ -closed subgroup of Gn

a . The following

theorem provides a converse.
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Theorem A.1. Let k be a σ -field of characteristic zero, and let G be a σ -closed subgroup

of Gn
a. Then there exists a set F of linear homogeneous σ -polynomials such that

G(S) = {g ∈ Gn
a(S)| p(g) = 0 for p ∈ F}

for any k-σ -algebra S.

Proof. For d ∈ N, let G[d] be the dth-order Zariski closure of G inside Gn
a . By

Lemma A.39 in [15], G[d] is an algebraic subgroup of (Gn
a)d = Gn(d+1)

a . The claim now

follows from the fact that the algebraic subgroups of Gn(d+1)
a are defined by linear

homogeneous polynomials.

Remark A.2. In positive characteristic, the situation is slightly more complicated because

one has to take into account the Frobenius. For example, if k is a σ -field of characteristic

p > 0, then

G(S) = {g ∈ S| g+ σ(g)p = 0} 6 Ga(S),
for any k-σ -algebra S, defines a σ -closed subgroup G of Ga .

Corollary A.3. Let k be a σ -field of characteristic zero and G a σ -closed subgroup of Ga,

not equal to Ga. Then there exists a non-zero, linear, homogenous σ -polynomial p =
anσ

n(x)+ an−1σ
n−1(x)+ · · ·+ a0x ∈ k{x}σ such that

G(S) = {g ∈ S| p(g) = 0}
for any k-σ -algebra S. Moreover, if a0 6= 0, then G is σ -integral; i.e., the σ -ideal I(G) is

prime and reflexive.

Proof. By Theorem A.1, the vanishing ideal I(G) ⊂ k{x}σ = k{Ga} of G is generated as

a difference ideal by linear, homogeneous σ -polynomials. Let p ∈ I(G) be a non-zero,

linear, homogeneous σ -polynomial of minimal order. So

p = anσ
n(x)+ an−1σ

n−1(x)+ · · ·+ a0x ∈ k{x}σ , an 6= 0,

with n minimal. We have to show that I(G) = [p]. Suppose there exists a non-zero,

linear, homogeneous σ -polynomial in I(G) which does not lie in [p]. Among these

σ -polynomials choose one, say q, of minimal order. If q = bmσ
m(x)+ · · ·+ b0x , bm 6= 0,

then necessarily m > n and q − bmσ
m−n(an)

−1σm−n(p) ∈ I(G) has order strictly less than

m. So q − bmσ
m−n(an)

−1σm−n(p) ∈ [p]. But then also q ∈ [p], a contradiction.

Let us now assume that a0 6= 0. We have to show that G is σ -integral. The coordinate

ring k{G} = k{x}σ /[p] ' k[x, σ (x), . . . , σ n−1(x)] is a polynomial ring in n variables over k.

To see that σ is injective on k{G} is suffices to note that σ(x), σ 2(x), . . . , σ n(x) =
− 1

an
(a0x + · · ·+ an−1σ

n−1(x)) are algebraically independent over k.

We recall the definition of linearly σ -closed and σ -closed fields.

Definition A.4 (cf. Def. 3.1, p. 1330 in [32]). A σ -field k is called linearly σ -closed if every

linear system of difference equations over k has a fundamental solution matrix in k. That

is, for every B ∈ Gln(k) there exists Y ∈ Gln(k) with σ(Y ) = BY . We say that a σ -field

k is σ -closed3 if every system of difference polynomial equations with coefficients in k,

3A σ -closed σ -field is also called a model of ACFA, in model theory language.
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that has a solution in some σ -field extension of k, has a solution in k (see also § 1.1

in [5]).

Remark A.5. The reader familiar with the Galois theory of linear difference equations

might be slightly puzzled by the above definition, because usually one is looking for

fundamental solution matrices in finite products of fields, rather than fields [43]. The

definition makes sense because we do not make any assumption on the constants of k.

(The constants of a linearly σ -closed σ -field can be non-algebraically closed.) Note that

a σ -closed σ -field is linearly σ -closed.

The difference Wronskian lemma [7, Lemma II, p. 271] implies that, if a σ -field k is

linearly σ -closed, then any linear difference equation of order s, with coefficients in k,

a0 y+ a1σ(y)+ · · ·+ asσ
s(y) = 0,

with a0, . . . , as ∈ k, a0as 6= 0, has s solutions in k, linearly independent over kσ . Therefore

we have the following corollary.

Corollary A.6. Let k be a linearly σ -closed σ -field of zero characteristic, and let G be a

proper σ -closed subgroup of Ga, such that L =∑s
i=0 λiσ

i (x), λ0λs 6= 0, generates I(G) as

a σ -ideal. Then G(k) is a kσ -vector space of dimension s, generated by a basis of solutions

in k of the linear difference equation L(y) = 0. Moreover, for any k-σ -algebra S, we have

G(S) = G(k)⊗kσ Sσ .

A.2. The σ -closed subgroups of Gn
m

By a multiplicative function on Gn
m , we mean a σ -polynomial in k{Gn

m} =
k{x1, . . . , xn, x−1

1 , . . . , x−1
n }σ which is a product of monomials σ i (x j ). The structure of

the σ -closed subgroups of Gn
m was already noted in Lemma A.40 in [15].

Theorem A.7. Let k be a σ -field, and let G be a σ -closed subgroup of Gn
m . Then there

exists a set 9 of multiplicative functions such that

G(S) = {g ∈ Gn
m(S)| ψ(g) = 1 for ψ ∈ 9},

for any k-σ -algebra S.

In the following proposition, we show that, for certain σ -closed subgroup of Gm , we

can give a more precise description.

Proposition A.8. Let k be a σ -field, p a prime number, µp 6 Gm the group scheme of

pth roots of unity, and G a proper σ -closed subgroup of µp. Then there exist two integers

m > 0 and d > 1 such that

G(S) 6 {g ∈ µp(S)| σm+d(g) = σm(g)},
for any k-σ -algebra S.
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Proof. Note that σ l(g)p = 1 for any integer l > 0, g ∈ G(S) ⊂ S×, and any k-σ -algebra S.

Since G is properly contained in µp, it follows from Theorem A.7 that there exist

α0, . . . , αl ∈ {0, . . . , p− 1}, not all equal to zero, such that

gα0σ(g)α1 · · · σ l(g)αl = 1 for all g ∈ G(S).

We may assume that αl 6= 0, so that there exist a, b ∈ Z such that aαl + bp = 1. Then

σ l(g) = σ l(g)1−bp = σ l(g)aαl = g−aα0σ(g)−aα1 · · · σ l−1(g)−aαl−1 .

Thus there exist β0, . . . , βl−1 ∈ {0, . . . , p− 1} such that

σ l(g) = gβ0σ(g)β1 · · · σ l−1(g)βl−1 . (A 1)

Applying σ to both sides of this identity and recursively substituting equation (A 1), we

find that for every m > l there exist β0,m, . . . , βl−1,m ∈ {0, . . . , p− 1} such that

σm(g) = gβ0,mσ(g)β1,m · · · σ l−1(g)βl−1,m .

Since there are only finitely many possibilities for the exponents βi,m , this shows that

there must exist distinct integers m1,m2 > l with σm1(g) = σm2(g) for all g ∈ G(S) and

any k-σ -algebra S.

A.3. The σ -closed subgroups of Ga oGm

Let k be a σ -field of characteristic zero, and let G denote the algebraic subgroup of Gl2,k
given by

G(S) =
{(

α β

0 1

)∣∣∣∣α ∈ S×, β ∈ S
}
6 Gl2(S),

for any k-algebra S. Notice that G ' Ga oGm . Let Gu denote the algebraic subgroup of

G corresponding to Ga ; i.e.,

Gu(S) =
{(

1 β
0 1

)∣∣∣∣β ∈ S
}
6 Gl2(S),

for any k-algebra S.

Theorem A.9. Let G be a σ -closed subgroup of G such that the scheme theoretical

intersection Gu := G ∩Gu is properly contained in Gu. Then G has one of the following

properties.

(i) There exists an integer n > 0 such that σ n(β) = 0 for all
(

1 β

0 1

)
∈ Gu(S) and all

k-σ -algebras S.

(ii) There exist integers n > m > 0 such that σ n(α) = σm(α) for all
(
α β

0 1

)
∈ G(S) and

all k-σ -algebras S.

Proof. Since Gu is properly contained in Gu , it follows from Corollary A.3 that there

exists a non-zero, linear, homogeneous difference polynomial p ∈ k{x}σ such that

Gu(S) =
{(

1 β
0 1

)
∈ Gu(S)

∣∣∣∣ p(β) = 0
}
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for any k-σ -algebra S. If p is a monomial we are in case (i). Otherwise, we may assume

that p is of the form

p(x) = σ n(x)+ an−1σ
n−1(x)+ · · ·+ amσ

m(x),

where n > m > 0, ai ∈ k for i = m, . . . , n− 1 and am 6= 0. Let S be a k-σ -algebra and g =(
α β

0 1

)
∈ G(S). We have to show that σ n(α) = σm(α). Note that, for h =

(
1 β1
0 1

)
∈ Gu(S),

we have ghg−1 =
(

1 αβ1
0 1

)
∈ Gu(S). Therefore p(αβ1) = 0 for all β1 ∈ S with p(β1) = 0.

Let

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...
. . .

...

0 0 · · · · · · 1
−am −am+1 · · · · · · −an−1

 ∈ Gln−m(k).

Let y1, . . . , yn−m, σ (y1), . . . , σ (yn−m), . . . , σ
n−1(y1), . . . , σ

n−1(yn−m) be indeterminates

over S, and abbreviate y = (y1, . . . , yn−m). We extend the action of σ on S to an

action on S[y, . . . , σ n−1(y)] as suggested by the names of the variables and by setting

σ(σ n−1(yi )) = −an−1σ
n−1(yi )− · · ·− amσ

m(yi ) for i = 1, . . . , n−m. Then the matrix

Z =

 σm(y1) · · · σm(yn−m)
...

...

σ n−1(y1) · · · σ n−1(yn−m)


satisfies σ(Z) = AZ , which implies that σ(det(Z)) = det(A) det(Z). So we can extend the

action of σ to S′ := S[y, . . . , σ n−1(y), 1
det(Z) ]. Since p(yi ) = 0, we have p(αyi ) = 0 for

i = 1, . . . , n−m.

This implies that

σ



σm(α) 0 . . . 0

0
. . .

. . .
...

...
. . . σ n−2(α) 0

0 . . . 0 σ n−1(α)

 Z

 = A


σm(α) 0 . . . 0

0
. . .

. . .
...

...
. . . σ n−2(α) 0

0 . . . 0 σ n−1(α)

 Z .

Since two fundamental solution matrices for σ(Y ) = AY only differ by a constant matrix,

there exists C ∈ Gln−m((S′)σ ) such that


σm (α) 0 . . . 0

0
. . .

. . .
.
.
.

.

.

.
. . . σ n−2(α) 0

0 . . . 0 σ n−1(α)

 Z = ZC . By applying

the determinant to the previous equation, we find that σm(α) · · · σ n−1(α) ∈ (S′)σ , and

thus

σm+1(α) · · · σ n(α) = σm(α) · · · σ n−1(α).

Since α ∈ S×, we obtain σm(α) = σ n(α), as desired.
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A.4. The Zariski dense σ -closed subgroups of almost simple algebraic groups

This section is devoted to the classification of the Zariski dense σ -closed subgroups

of almost simple algebraic groups. In the framework of ‘difference varieties’, this

classification has been achieved in Proposition 7.10, p. 309, in [5]. Since we have to deal

with not necessarily perfectly σ -reduced difference group schemes, we need to obtain a

schematic version of the result of Chatzidakis, Hrushovski, and Peterzil. In full generality,

this schematic version fails to be true (see Remark A.22). But we succeed to obtain a

satisfactory statement for Zariski dense σ -reduced subgroups of simple algebraic groups

(see Theorem A.20) and Zariski dense σ -integral subgroups of almost simple algebraic

groups (see Theorem A.25).

We start this section with a collection of technical lemmas on the compatibility of

quotients, Zariski closure, and base extension in the category of group k-σ -schemes. This

lemmas are only used in the almost simple case. Then we study the case of simple groups

and conclude with the almost simple case.

A.4.1. Preliminary lemmas on quotients of group k-σ -schemes. Let G be a

group k-σ -scheme, and let N E G be a normal σ -closed subgroup. A quotient of G by N
is a morphism π : G → G/N of a group k-σ -scheme which satisfies the universal property

of quotients in the category of group k-σ -schemes. As shown in § A.9 of [15], quotients

exist and are unique up to unique isomorphism. Moreover, we have ker(π) = N , and

π∗ : k{G/N } → k{G} is injective.

Lemma A.10. Let k be a σ -field. Let φ : G → H be a morphism of group k-σ -schemes.

Then the induced morphism G/ ker(φ)→ H is a σ -closed embedding.

Proof. We will use the language of k-σ -Hopf algebras (Definition A.35 in [15]). If R is a

Hopf algebra over k, we denote by R+ the kernel of the counit R→ k.

Let N = ker(φ)�G, and let φ∗ : k{H} → k{G} be the dual map. Note that

I(N ) = k{G}φ∗(k{H}+) ⊂ k{G}. From Proposition A.42 and Theorem A.43 in [15]

we know that k{G/N } is the unique sub-Hopf algebra of k{G} with the property

that k{G}k{G/N }+ = I(N ). But φ∗(k{H}) is also a sub-Hopf algebra of k{G}, and

k{G}φ∗(k{H})+ = k{G}φ∗(k{H}+) = I(N ). Therefore k{G/N } = φ∗(k{H}). Thus k{H} →
k{G/N } is surjective, and G/N → H is a σ -closed embedding.

Next, we want to show that the functorial construction [σ ]k (see § 2 and § A.4 in

the appendix in [15], for more details) is compatible with quotients. First, we prove the

following lemma.

Lemma A.11. Let k be a σ -field, and let φ : R→ S be a morphism of k-algebras. Let

[σ ]kφ : [σ ]k R→ [σ ]k S be the morphism of k-σ -algebras deduced from φ by functoriality

of [σ ]k . If φ is injective then [σ ]kφ is also injective.

Proof. By construction, [σ ]kφ is the limit of φd : Rd → Sd for d > 0. It is thus sufficient

to prove that the φd are injective for all d > 0. We prove this by induction on d. For

d = 0, it is true by assumption on φ. Assume that φd : Rd → Sd is injective. We prove

that φd+1 : Rd+1 → Sd+1 is injective by proving that it is the composition of the following
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injective morphisms:

Rd+1 = Rd ⊗k
σ d+1

R
φd⊗id

σd+1 R // Sd ⊗k
σ d+1

R
idSd⊗k

σd+1
φ

// Sd ⊗k
σ d+1

S

= Sd+1.

Indeed the flatness of the tensor product over a field immediately implies that φd ⊗ idσd+1 R

and idSd ⊗k
σ d+1

φ are injective.

Lemma A.12. Let k be a σ -field. Let H be a group k-scheme, and let N E H be a normal

closed subgroup. Then the group k-σ -scheme [σ ]k(H/N ) is the quotient of [σ ]k H by

[σ ]k N ; i.e., [σ ]k(H/N ) and [σ ]k H/[σ ]k N are canonically isomorphic.

Proof. Since p : H → H/N is a quotient map, the dual morphism p∗ : k[H/N ] → k[H ]
is injective, and ker(p) = N . Because of (2.1), for any k-σ -algebra S we have

ker([σ ]k p : [σ ]k H(S)→ [σ ]k(H/N )(S)) = ker(p : H(S])→ (H/N )(S]))

= N (S]) = [σ ]k N (S),

where S] is the underlying k-algebra of S. That is, ker([σ ]k p) = [σ ]k N . Moreover, by

Lemma A.11, [σ ]k p∗ : [σ ]kk[H/N ] → [σ ]kk[H ] is injective. By Corollary A.44 in [15],

[σ ]k p : [σ ]k H → [σ ]k(H/N ) is the quotient of [σ ]k H modulo [σ ]k N .

Remark A.13. If there is no possible confusion, we write H/N instead of [σ ]k(H/N ).

In the following lemma, we prove the compatibility between the dth-order Zariski

closure and quotients.

Lemma A.14. Let H be an algebraic group over k and N E H a normal closed subgroup

of H . Let i : G → H be the inclusion of a σ -closed subgroup G of H into H , G ∩ N the

schematic intersection of G with N . Let p : H → H/N and π : G → G/(G ∩ N ) be the

quotient maps. Then the following hold.

• The morphism p ◦ i : G → H/N factors through π into a σ -closed embedding ι : G/(G ∩
N )→ H/N .

• For d > 0, the dth-order Zariski closure G/(G ∩ N )[d] of G/(G ∩ N ) inside H/N is a

quotient of the dth-order Zariski closure G[d] of G by G[d] ∩ Nd . That is, the algebraic

groups G/(G ∩ N )[d] and G[d]/G[d] ∩ Nd are canonically isomorphic over k.

Proof. Since ker(p ◦ i) = G ∩ N , Lemma A.10 implies that p ◦ i factors through π into a

σ -closed embedding ι : G/(G ∩ N )→ H/N .

Let d > 0. First of all, we prove that (H/N )d is a quotient of Hd by Nd . Since p : H →
H/N is a quotient map, its dual p∗ : k[H/N ] → k[H ] is injective. Following the lines of

the proof of Lemma A.11, we see that the dual map p∗d of pd : Hd → (H/N )d is also

injective. Moreover, ker(pd) is exactly Nd . To see this, we remark that Hd = H × σ H ×
. . .× σ d

H , where σ i
H = H ×Spec(k) Spec(k) and the fiber product is taken with respect

to the morphism induced from σ i : k → k. Moreover pd acts on the ith component via
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the morphism σ i
p, obtained from p by extension of scalars σ i : k → k. This shows that

ker(pd) = N × σ N × . . .× σ d
N . It follows that pd : Hd → (H/N )d is the quotient of Hd

by Nd . (cf. [35, Theorem 7.8].) By construction of the dth-order Zariski closure, we have

closed embeddings G[d] ↪→ Hd and G/(G ∩ N )[d] ↪→ (H/N )d . Since ker(pd) = Nd , we

find that the kernel of G[d] → G/(G ∩ N )[d] is G[d] ∩ Nd .

By construction of the dth-order Zariski closure, we have k[G/(G ∩ N )[d]] =
ι∗(k[H/N ]d), k[G[d]] = i∗(k[H ]d), and k[G/(G ∩ N )[d]] → k[G[d]] is the restriction of π∗
to k[G/(G ∩ N )[d]]. Since π∗ is injective, the same holds for k[G/(G ∩ N )[d]] → k[G[d]].
We can then conclude that G[d] → G/(G ∩ N )[d] is a quotient of G[d] by G[d] ∩ Nd .

Lemma A.15. Let G be a group k-σ -scheme, N E G be a normal σ -closed subgroup, and

k′|k be a σ -field extension. Let π : G → G/N be a quotient of G by N . Denote by Gk′ , Nk′
and (G/N )k′ the base extension to k′ of G, N , and G/N . Then the group k′-σ -schemes

(G/N )k′ and Gk′/Nk′ are isomorphic.

Proof. Since ker(π) = N , for every k′-σ -algebra S, viewed as a k-σ -algebra S, the sequence

N (S)→ G(S)→ (G/N )(S) of abstract groups is exact. It follows that ker(πk′) = Nk′ ,
where πk′ : Gk′ → (G/N )k′ is the base extension of π . Moreover, since k′|k is a faithfully

flat extension and π∗ : k{G/N } → k{G} is injective, we get that π∗k′ : k′{G/N } → k′{G}
is injective. By Corollary A.44 in [15], we deduce that (G/N )k′ is a quotient of Gk′
by Nk′ .

A.4.2. The Zariski dense σ -closed subgroups of a simple algebraic group.

In this section, we show that every σ -reduced σ -closed subgroup of Gln,k with simple

Zariski closure is conjugate to a σ d -constant subgroup of Gln,k for some d > 1. This is

the crucial group theoretic input for the proof of Proposition 6.1. The result is originally

due to Z. Chatzidakis, E. Hrushovski, and Y. Peterzil. A slightly simplified version of

their result reads as follows.

Proposition A.16 (Prop. 7.10, p. 309 in [5]). Let k be a σ -closed σ -field of characteristic

zero, H an almost simple algebraic group over k, and let G be a Zariski dense definable (in

the language of difference rings) subgroup of H(k). Then either G = H(k) or there exist

an isomorphism f : H → H ′ of algebraic groups and an integer d > 1 such that some

subgroup of f (G) of finite index is conjugate to a subgroup of H ′(kσ ). If H is defined

over the algebraic closure of kσ , then we may take H = H ′ and f to be conjugation by

an element of H(k).

Unfortunately it seems impossible to apply the above proposition directly in the proof

of Proposition 6.1 and Theorem 6.4. Our versions are Theorems A.20 and A.25 below.

They differ in several aspects.

(i) We prefer to work over an inversive algebraically closed difference field of

characteristic zero, rather than over a σ -closed σ -field.

(ii) We have to avoid the isomorphism f and the ‘finite index’.

(iii) We are interested in the σ -closed subgroups of H , rather than in the definable

subgroups of H(k).
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(iv) If H is simple, it suffices to assume that G is σ -reduced. If H is almost simple, we

have to assume that G is σ -integral. See Remark A.22.

Because of these differences, we have chosen to include a full proof of our reformulation,

even though our proof follows [5] very closely. The divergence in the formulations is mainly

due to (iii). Since ACFA does not (fully) eliminate quantifiers, the definable subgroups,

say of Gln(k), k a σ -closed σ -field, need not be defined by difference polynomials. For

example, the group

{g ∈ k×| ∃ h ∈ k× : h2 = g, σ (h) = h} 6 Gl1(k)

does not correspond to a σ -closed subgroup of Gl1,k . On the other hand, the quantifier

free definable subgroups of Gln(k), i.e., the subgroups of Gln(k) defined by difference

polynomials in the matrix entries, only correspond to perfectly σ -reduced σ -closed

subgroups of Gln,k .

In this section we assume that the base field has characteristic zero. Note, however,

that [5] also provides a version for positive characteristic. So let k be a field of

characteristic zero. By an algebraic group over k we mean an affine group scheme of finite

type over k. If H is an algebraic group over k and k̃ a field extension of k, we denote by

Hk̃ = H ⊗k k̃ the algebraic group over k̃ obtained from H via base extension from k to k̃.

By a representation V of H we mean a finite dimensional k-vector space V together with

a morphism H → Gl(V ) of algebraic groups over k. (Here, from a formal point of view,

Gl(V ) is the functor such that Gl(V )(S) = Gl(V ⊗k S) for every k-algebra S.)

It is well known that every simple algebraic group descends to Q. To avoid the

isomorphism f in the above proposition we require a slightly more precise statement.

We thank Michael Singer for the proof of Lemma A.17 and Corollary A.18.

Lemma A.17. Let H be a split and connected reductive algebraic group over Q, and let k
be an algebraically closed field of characteristic zero. If V is a representation of H := Hk ,

then there exists a representation V of H such that V ' V ⊗Q k, as representations of H .

Proof. Since we are in characteristic zero, every representation of H decomposes as

a direct sum of irreducible representations. Therefore, we can assume, without loss of

generality, that V is irreducible. The irreducible representations of H are classified by

the so-called dominant weights. See Part II, Ch. 2 of [24]. The claim now follows from

Corollary 2.9, Part II, p. 203 in [24].

Corollary A.18. Let k be an algebraically closed field of characteristic zero, and let H 6
Gln,k be a connected reductive algebraic group. Then there exists g ∈ Gln(k) such that

gHg−1 6 Gln,k is defined over Q.

Proof. Since k is algebraically closed, H is split, and it follows from the classification (see,

e.g., Corollary 1.3, p. 411 in [10]) that H = Hk for some split and connected reductive

algebraic group H over Q. By Lemma A.17 the given representation V := kn of H is

of the form V = V ⊗Q k for some representation V of H. Since V is faithful, V is also

faithful, and it follows that H is conjugate to Hk .
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Let k be an algebraically closed field of characteristic zero. Recall that a connected

non-commutative algebraic group H over k is called simple if every proper normal

algebraic subgroup of H is trivial.

Proposition A.19. Let k be an algebraically closed, inversive σ -field of characteristic zero.

Let H be a simple algebraic group over k, and let G be a σ -reduced, Zariski dense,

σ -closed subgroup of H , properly contained in H . Then there exist an integer m > 1 and

an isomorphism ϕ : H → σm
H of algebraic groups such that

G(S) = {h ∈ H(S)| σm(h) = ϕ(h)}
for every k-σ -algebra S.

Proof. Note that σ
d

H is simple for every d > 0. (Indeed, since H descends to Q ⊂ kσ , H
and σ d

H are (non-canonically) isomorphic as algebraic groups over k.) So Hd = H × σ H ×
· · ·× σ d

H is a product of simple algebraic groups. As G is Zariski dense in H , we have

G[0] = H0 = H . Since G is properly contained in H , we have G[d] ( Hd for some d > 1.

Let m > 1 denote the smallest integer such that G[m] ( Hm . Then G[m− 1] = Hm−1. We

will show that the projection G[m] → G[m− 1] = Hm−1 is an isomorphism (of algebraic

groups).

Let π : G[m] → σm
H denote the projection onto the last factor of Hm ⊃ G[m]. Let

I(G) ⊂ k{H} denote the defining ideal of G. Then

I(G)∩ k[Hm] = I(G[m]) ⊂ k[Hm] = k[H ]⊗k · · · ⊗k k[σm
H ]

defines G[m] 6 Hm . A non-zero element in the kernel of π∗ : k[σm
H ] → k[G[m]] =

k[Hm]/I(G[m]) corresponds to an element of the form 1⊗ · · ·⊗ 1⊗ a ∈ I(G[m]) ⊂ k[H ]⊗k
· · · ⊗k k[σm

H ], with a ∈ k[σm
H ]r {0}. As G is σ -reduced (i.e., I(G) is reflexive) and k is

inversive, such an element would give rise to a non-zero element of I(G)∩ k[H0] = {0}.
Thus π∗ is injective; i.e., π is dominant.

Let H ′ 6 σm
H denote the algebraic subgroup of σ

m
H determined by G[m] ∩ ({1}m ×

σm
H) = {1}m × H ′ 6 Hm . We will show that H ′ is normal in H . Because k is algebraically

closed, it suffices to work with the k-rational points. Let h′ ∈ H ′(k) and h ∈ σm
H(k).

Because π is dominant, π(G[m](k)) = σm
H(k) (Proposition 2.2.5, (ii), p. 26, in [52]).

Thus, there is a g ∈ Hm−1(k) such that (g, h) ∈ G[m](k). It follows that

(g, h)(1, h′)(g, h)−1 = (1, hh′h−1) ∈ G[m](k),
and so H ′ is normal in σm

H . Since σ
m

H is simple, we have H ′ = 1 or H ′ = σm
H . Suppose

that H ′ = σm
H . As G[m] → G[m− 1] = Hm−1 is dominant, this implies that G[m] =

Hm , a contradiction. So H ′ = 1. This means that G[m](k)→ G[m− 1](k) is injective.

Thus, G[m](k)→ G[m− 1](k) is actually bijective. Since we are in characteristic zero,

this is enough to deduce that G[m] → G[m− 1] is an isomorphism of algebraic groups

(Exercise 5.3.5, p. 87 in [52]). Let

ϕ : Hm−1 = G[m− 1] → G[m] π−→ σm
H

denote the composition of the inverse of this isomorphism with π . Then G[m] 6 Hm is

the graph of ϕ. That is,

G[m](k) = {(h, ϕ(h))| h ∈ Hm−1(k)} 6 Hm(k).
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Suppose that H ×{1}m−1 ⊂ ker(ϕ). Then

ϕ(1, h1, . . . , hm−1) = ϕ(h0, h1, . . . , hm−1) = hm ∈ σm
H(k)

for all (h0, . . . , hm) ∈ G[m](k) 6 Hm(k). For every f ∈ k[σm
H ], the map

(h0, . . . , hm) 7→ f (ϕ(1, h1, . . . , hm−1))− f (hm)

defines a regular function f̃ ∈ k[Hm]. Moreover, f̃ ∈ I(G[m]) ⊂ I(G). We can choose f ∈
k[σm

H ] such that f̃ is non-zero. Because G is σ -reduced and k is inversive, we can obtain

from f̃ , by considering the inverse image of f̃ under σ , a non-zero element of I(G[m−
1]) = I(G)∩ k[Hm−1]. But this contradicts the minimality of m. Therefore H ×{1}m−1 *
ker(ϕ). Since H is simple, we have (H ×{1}m−1)∩ ker(ϕ) = {1}m . Thus, ϕ restricts to an

isomorphism ϕ : H = H ×{1}m−1 → σm
H of algebraic groups.

Since the σ i
H are simple, a normal algebraic subgroup N of Hm−1 = H × σ H × · · ·×

σm−1
H must be a product of some of the factors σ

i
H . (This is easy to see. For example,

if (h0, . . . , hm−1) ∈ N (k) and h0 6= 1, then there exists h′0 ∈ H(k) with h0h′0 6= h′0h0. Then

(h′0, 1, . . . , 1)(h0, . . . , hm−1)(h′0
−1
, 1, . . . , 1)(h0, . . . , hm−1)

−1 = (h′0h0h′0
−1h0

−1, 1, . . . , 1) is

a non-trivial element of N (k)∩ (H(k)×{1}m−1). It follows that H ×{1}m−1 ⊂ N .)

Because ker(ϕ) is a normal algebraic subgroup of Hm−1, we must have ker(ϕ) = {1}×
σ H × · · ·× σm−1

H . In summary, we find that

G[m](k) = {(h0, . . . , hm−1, ϕ(h0))| hi ∈ σ i
H(k)} 6 Hm(k).

Because k[G[m− 1]] = k[G[m]] = k{G}, the defining ideal I(G) of G is determined by

I(G[m]). Therefore

G(S) = {h ∈ H(S)| σm(h) = ϕ(h)}
for every k-σ -algebra S.

Recall (Definition 5.10) that a σ -closed subgroup G of Gln,k is called σ d -constant

if σ d(g) = g for every g ∈ G(S) 6 Gln(S) and all k-σ -algebras S. We say that G is

conjugate to a σ d -constant subgroup of Gln,k if there exists u ∈ Gln(k) such that uGu−1

is σ d -constant.

Theorem A.20. Let k be an algebraically closed, inversive σ -field of characteristic zero,

and let G be a σ -reduced, σ -closed subgroup of Gln,k . Assume that the Zariski closure of

G in Gln,k is a simple algebraic group, properly containing G. Then there exist a σ -field

extension k̃ of k and an integer d > 1 such that G k̃ is conjugate to a σ d-constant subgroup

of Gln,̃k . If k is linearly σ -closed we can choose k̃ = k.

Proof. Let H 6 Gln,k denote the Zariski closure of G. By Corollary A.18, there exist

an algebraic group H 6 Gln,Q over Q and g ∈ Gln(k) such that gHg−1 = Hk 6 Gln,k .

Therefore, we can assume without loss of generality that H = Hk . Then, for every

d > 1, the algebraic groups H and σ d
H are equal as subgroups of Gln,k . So the ϕ in

Proposition A.19 is an automorphism of H (and not merely an isomorphism).

The group Inn(H) of inner automorphisms of H is of finite index in the group Aut(H)
of all automorphisms of H . (See Theorem 27.4, p. 166, in [22].) Therefore Out(H) :=
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Aut(H)/Inn(H) is a finite group. If ψ : H → H is an automorphism of H , and d > 0 an

integer, we denote by σ d
ψ : σ d

H → σ d
H the automorphism of σ

d
H obtained from ψ by

extension of scalars via σ d : k → k. Since σ d
H = H (as subgroups of Gln,k), we see that

σ d
ψ is actually an automorphism of H . We obtain an action ψ 7→ σψ of σ on Aut(H)

and an induced action on Out(H). Since Out(H) is finite, there exists for every integer

m > 1 and every element ψ of Out(H) an integer e > 1 such that σm(e−1)
ψ · · · σm

ψ ·ψ =
1 ∈ Out(H). (For example, we can choose e as the product of the length of the orbit of ψ

under ψ 7→ σm
ψ and the size of Out(H).) With m and ϕ as in Proposition A.19, we see

that there exists an integer e > 1 such that σ
m(e−1)

ϕ · · · σm
ϕ ·ϕ is the conjugation with an

element h ∈ H(k).
Let S be a k-σ -algebra and g ∈ H(S). Because σm(g) = ϕ(g), we find that

σme(g) = σm(e−1)
ϕ(· · · σm

ϕ(ϕ(g)) · · · ) = hgh−1.

Set d = me, and let k̃ be a σ -field extension of k such that there exists u ∈ Gln (̃k) with

σ d(u) = hu. (For example, we can take k̃ = k(X) with σ(X) = h X .) If k is linearly σ -closed

we can choose k̃ = k by Lemma 5.14.

Then, for every k̃-σ -algebra S and g ∈ G k̃(S) = G(S), we have

σ d(u−1gu) = σ d(u)−1σme(g)σ d(u) = u−1h−1hgh−1hu = u−1gu.

Thus u−1G k̃u 6 Gln,̃k is σ d -constant.

Remark A.21. The assumption that G is σ -reduced cannot be omitted. For example, let

H 6 Gln,k be a simple algebraic group and H ′ a connected, non-trivial algebraic subgroup

of H . Define a σ -closed subgroup G of H by

G(S) = {h ∈ H(S)| σ(h) ∈ σ H ′(S)} 6 H(S)

for every k-σ -algebra S. Then G is Zariski dense in H but not conjugate to a σ d -constant

group.

Remark A.22. The theorem does not extend to almost simple algebraic groups. For

example, let G be a σ -closed subgroup of Sln,k containing the center Z of Sln,k , given by

Z(S) = {λI | λ ∈ S×, λn = 1} for every k-σ -algebra S. Suppose that there exist an integer

d > 1 and a σ -field extension k̃ of k, such that G is conjugate over k̃ to a σ d -constant

subgroup of Gln,̃k . Since Z k̃ is in the center of Gln,̃k , this would imply that Z k̃ 6 Gln,̃k is

σ d -constant. Obviously this is not the case: despite the fact that σ n(λ) = λ for every λ

in a σ -field extension of k with λn = 1, this property is not retained if we choose λ from

an arbitrary k-σ -algebra.

Remark A.23. In the notation of the proof of Theorem A.20, there exist a σ -field

extension k̃ of k and an element u ∈ Gln (̃k) such that u−1G k̃u 6 Gln,̃k is σ d -constant.

Assume that H is defined over Q. One can show that a convenient choice of the σ -field

extension k̃ allows us to choose u in H (̃k). In other words, there exists a σ -field extension

k̃ of k such that G k̃ is conjugate inside Hk̃ to a σ d -constant group.
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Proof. Going back to the proof of Theorem A.20, we need to show that, for a given

h ∈ H(k), one can find a σ -field extension k̃ of k and u ∈ H (̃k) such that σ d(u) = hu.

Let k̃ be the function field of Hd = H × . . .× H , i.e., d copies of H . One can write

k̃ = k(X1, . . . , Xd), where X i is an n× n-matrix of coordinates on the ith copy of H .

Since the vanishing ideal I(H) ⊂ k[X, 1
det(X) ] = k[Gln] is defined over Q, the action of σ

on the coefficients of the polynomial ring k[X, 1
det(X) ] stabilizes I(H). This allows us to

define a structure of k-σ -field extension on k̃ via

σ(X1) = X2, σ (X2) = X3, . . . , σ (Xd) = h X1.

Then X1 is an element of H (̃k) and satisfies σ d(X1) = h X1 by construction.

A.4.3. The case of almost simple groups. Let k be an algebraically closed field

of characteristic zero. Recall that a connected non-commutative algebraic group H over

k is called almost simple if every proper connected normal closed subgroup is trivial. In

remark A.22, we have seen that a proper Zariski dense σ -closed subgroup of H is not

necessarily σ d -constant. However, the aim of this section is to show that Theorem A.20

still holds for a proper, σ -integral, Zariski dense σ -closed subgroup G of H .

We start with some remarks on almost simple algebraic groups, their center, and their

adjoint group. Let H be an almost simple algebraic group. By Corollary 1.3, p. 411 in [10],

the algebraic group H is defined over Q, i.e., is equal to Hk for some split almost simple

algebraic group H over Q. Since we are in characteristic zero, the schematic center N of

H is representable by a closed subscheme of H (see Exposé XI, 6.11, in [47]). Thus, we get

that, in our situation, the formation of schematic center commutes with base extension.

Precisely, Nk = N . Now, by Exposé XXII, 4.3 in [48], the quotient H/N is representable

by an affine group scheme over Q. Since formation of quotients commute with flat base

extension (see Exposé VIIa, 4.6 of [46]), the k-scheme (H/N )k is a quotient of H by N .

In conclusion, given an almost simple algebraic group H over k, we see that its center N
is defined over Q as well as the quotient map p : H → H/N and the adjoint group H/N .

Before proving our main result on the σ -closed subgroups of almost simple algebraic

groups, we need one more lemma.

Lemma A.24. Let k be an algebraically closed field of characteristic zero, H an almost

simple algebraic group over k, and N E H the center of H . Let i : G → H be the inclusion

of a proper σ -closed subgroup G of H into H . Let p : H → H/N and π : G → G/(G ∩ N )
be the quotient maps. Then the following hold.

• The morphism p ◦ i : G → H/N factors through π into a σ -closed embedding ι :
G/(G ∩ N )→ H/N .

• The σ -closed subgroup G/(G ∩ N ) is a proper σ -closed subgroup of H/N .

Proof. The first assertion comes from Lemma A.14. Suppose that G/(G ∩ N ) = H/N .

Since G is a proper σ -closed subgroup of H , there exists m > 1 such that G[m] (
Hm . Now, by Lemma A.14, we have G/(G ∩ N )[m] = G[m]/G[m] ∩ Nm and (H/N )m =
Hm/Nm . Then

dim(G[m]/G[m] ∩ Nm) = dim(G[m])− dim(G[m] ∩ Nm) 6 dim(G[m])
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and dim(Hm/Nm) = dim(Hm)− dim(Nm) = dim(Hm) (since Nm is a finite algebraic group).

Therefore

dim(G[m]/G[m] ∩ Nm) 6 dim(G[m]) < dim(Hm) = dim(Hm/Nm),

which contradicts the assumption G/(G ∩ N ) = H/N .

Recall that a σ -algebraic group G is called σ -integral if k{G} is a σ -domain, i.e., k{G}
is an integral domain and σ : k{G} → k{G} is injective.

Theorem A.25. Let k be an algebraically closed, inversive σ -field of characteristic zero,

and let G be a σ -integral, σ -closed subgroup of Gln,k . Assume that the Zariski closure of

G in Gln,k is an almost simple algebraic group, properly containing G. Then there exist a

σ -field extension k̃ of k and an integer d > 1 such that G k̃ is conjugate to a σ d-constant

subgroup of Gln,̃k .

Proof. Let H 6 Gln,k denote the Zariski closure of G, i : G → H be the inclusion of G
into H , N the center of H . Let p : H → H/N and π : G → G/(G ∩ N ) be the quotient

maps. By Corollary A.18, we can assume that H is over Q. By the discussion above,

we get that the finite center N of H as well as the quotient map p : H → H/N are

over Q.

By Lemma A.14, the morphism G → H/N factors into a σ -closed embedding ι : G/(G ∩
N )→ H/N . Moreover, since G is Zariski dense in H , we get that G/(G ∩ N ) is Zariski

dense in H/N . By Lemma A.24, G/G ∩ N is a proper σ -closed subgroup of H/N . Finally,

by Theorem A.43 in [15], one can identify the k-σ -Hopf algebra of G/(G ∩ N ) with a

sub-Hopf algebra of k{G}. Since k{G} is σ -reduced, the same holds for k{G/(G ∩ N )}.
Embed H/N into some Glm,k such that H/N 6 Glm,k is defined over Q. We can then

apply Theorem A.20 and Remark A.23 to the proper Zariski dense σ -closed subgroup

G/(G ∩ N ) of the simple algebraic group H/N . Thereby, there exist a σ -field extension

k̃ of k, an integer d > 1, and u ∈ H/N (k̃) such that u−1(G/G ∩ N )k̃u is a σ d -constant

subgroup of Glm,k̃ . By Lemma A.15, we can exchange base field extension and quotients,

which implies that u−1G k̃/(G ∩ N )k̃u is a σ d -constant subgroup of some Glm,k̃ .

Now, up to enlarging k̃ to its algebraic closure, we can find an element v of H(k̃)
such that p(v) = u. Since p : H → H/N is defined by polynomials over Q, we have

p(σ d(v)) = σ d(u). Then, let φ : G k̃ → Gln,k̃ be the σ -morphism defined by φ(g) =
σ d(v−1gv)(v−1gv)−1 for all g ∈ G k̃(S) and for every k̃-σ -algebra S. By the above, φ maps

G k̃ into Nk̃ . Since k is algebraically closed and inversive, Corollary A.14 in [15] implies

that k̃{G} = k{G}⊗k k̃ is also a σ -domain. Since N is a finite algebraic group, there exists

a set of orthogonal idempotents e1, . . . , er ∈ k[N ], such that k[N ] = ke1⊕ . . .⊕ ker . Then

k̃{N } is generated as k̃-σ -algebra by e1, . . . , er . Since k̃{G} is a domain, e1+ · · ·+ er = 1,

and ei e j = 0 for i 6= j , there exists 1 6 i0 6 r such that φ∗(ei0) = 1 and φ∗(e j ) = 0 for

all j 6= i0. This implies that φ∗(k̃{N }) ⊂ k̃ and φ is a constant morphism. Considering

the image of the identity element of G k̃ under φ, we see that v−1G k̃v is a σ d -constant

subgroup of Gln,k̃ .
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Luminy for supporting us via the Research in pairs program as well as the organizers of

the semester ‘Model Theory, Arithmetic Geometry and Number Theory’, January–March

2014 at the MSRI, for giving us the opportunity to expose our results and exchange ideas

on difference algebra. Finally, we are sincerely grateful to the reviewer for many helpful

suggestions.

References

1. C. E. Arreche, Computing the differential galois group of a one-parameter family of
second order linear differential equations, 2012. arXiv:1208.2226.

2. C. E. Arreche, A Galois-theoretic proof of the differential transcendence of the
incomplete Gamma function, J. Algebra 389 (2013), 119–127.

3. F. Beukers and G. Heckman, Monodromy for the hypergeometric function n Fn−1,
Invent. Math. 95(2) (1989), 325–354.

4. Z. Chatzidakis, Model theory of difference fields, in The Notre Dame Lectures, Lecture
Notes Logic, Volume 18, pp. 45–96 (Association for Symbolic Logic, Urbana, IL, 2005).

5. Z. Chatzidakis, E. Hrushovski and Y. Peterzil, Model theory of difference fields.
II. Periodic ideals and the trichotomy in all characteristics, Proc. Lond. Math. Soc. (3)
85(2) (2002), 257–311.

6. S. Chen, M. Kauers and M. F. Singer, Telescopers for rational and algebraic functions
via residues, in Procedings of ISSAC 2012 (ed. J. van der Hoeven and M. van Hoeij),
pp. 130–137. (2012).

7. R. M. Cohn, Difference Algebra (Interscience Publishers, John Wiley & Sons, New York,
London, Sydeny, 1965).

8. R. Crew, F-isocrystals and their monodromy groups, Annales Scientifiques de l’École
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