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ABSTRACT

Optimal reinsurance from an insurer’s point of view or from a reinsurer’s point
of view has been studied extensively in the literature. However, as two parties
of a reinsurance contract, an insurer and a reinsurer have conflicting interests.
An optimal form of reinsurance from one party’s point of view may be not ac-
ceptable to the other party. In this paper, we study optimal reinsurance designs
from the perspectives of both an insurer and a reinsurer and take into account
both an insurer’s aims and a reinsurer’s goals in reinsurance contract designs.We
develop optimal reinsurance contracts that minimize the convex combination of
the Value-at-Risk (VaR) risk measures of the insurer’s loss and the reinsurer’s
loss under two types of constraints, respectively. The constraints describe the
interests of both the insurer and the reinsurer. With the first type of constraints,
the insurer and the reinsurer each have their limit on the VaR of their own loss.
With the second type of constraints, the insurer has a limit on the VaR of his
loss while the reinsurer has a target on his profit from selling a reinsurance con-
tract. For both types of constraints, we derive the optimal reinsurance forms
in a wide class of reinsurance policies and under the expected value reinsurance
premium principle. These optimal reinsurance forms aremore complicated than
the optimal reinsurance contracts from the perspective of one party only. The
proposed models can also be reduced to the problems of minimizing the VaR
of one party’s loss under the constraints on the interests of both the insurer and
the reinsurer.

KEYWORDS

Optimal reinsurance, value-at-risk, insurer’s loss, reinsurer’s profit, expected
value reinsurance principle.

1. INTRODUCTION

In a one-period reinsurance model, the underlying (aggregate) loss faced by an
insurer is assumed to be a non-negative random variable X. Under a reinsurance
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contract I, a reinsurer will cover the part of the loss X, denoted by I(X), and
the insurer needs to pay a reinsurance premium, denoted by PI , to the rein-
surer, where the function I is called the ceded loss function. Under the rein-
surance contract I, X − I(X) + PI and I(X) − PI are the total losses faced
by the insurer and the reinsurer, respectively. To avoid moral issues, a feasible
reinsurance contract I should satisfy the following two conditions: (a) I(x) is
increasing in x ∈ [0, ∞) with I(0) = 0; and (b) the 1-Lipschitz continuity,
namely, 0 ≤ I(y) − I(x) ≤ y − x for any 0 ≤ x ≤ y < ∞. Throughout
this paper, we denote by I the set of all feasible reinsurance contracts satisfying
these two conditions and define (x)+ = max{x, 0}, x ∧ y = min{x, y}, and
x∨ y = max {x, y}. In addition, the term “increasing” means “non-decreasing”
and “decreasing” means “non-increasing”.

An optimal reinsurance design is obtained by determining a ceded loss func-
tion I∗ from a set of feasible reinsurance contracts such that the contract I∗ is
optimal under certain optimization criteria. In the literature, optimal reinsur-
ance from an insurer’s point of view or from a reinsurer’s point of view has been
studied extensively. In particular, the classical results on optimal reinsurance
from an insurer’s perspective have shown under certain conditions that a stop-
loss reinsurance is optimal for an insurer if the optimization criteria is to mini-
mize the variance of the insurer’s loss or to maximize the expected utility of the
insurer’s terminal wealth. These classical results have been extended in different
ways. Indeed, the criterion ofminimizing the variance of one party’s loss ormax-
imizing the expected utility of one party’s terminal wealth has been generalized
to the criterion of minimizing the riskmeasure of one party’s loss, while the clas-
sical single-risk reinsurance models have been extended to multiple-risk reinsur-
ance models, reinsurance models with default risk and other related models. Re-
cent references on these generalizations and extensions can be found in Asimit
et al. (2013a, 2013b), Balbás et al. (2009, 2011, 2015), Cai et al. (2013, 2014),
Cai and Tan (2007), Cai and Wei (2012), Cheung (2010), Cheung et al. (2014a,
2014b), Chi (2012), Chi and Meng (2014), Chi and Tan (2011), Hürlimann
(2011), and references therein.

As the two parties of a reinsurance contract, an insurer and a reinsurer have
conflicting interests. An optimal form of reinsurance from one party’s point of
view may be not acceptable to the other party as pointed out by Borch (1969).
Hence, a very interesting question is to take into consideration both an insurer’s
objectives and a reinsurer’s goals in optimal reinsurance designs so that an opti-
mal reinsurance form is acceptable to both parties. There are two general ways
to consider both an insurer’s objectives and a reinsurer’s goals in an optimal
reinsurance design. One way is to minimize or maximize an objective function
that considers both an insurer’s aims and a reinsurer’s goals, and the other way
is to minimize or maximize an objective function from one party’s point of view
under some constraints on the other party’s goals and on the party’s own ob-
jectives. Borch (1960) first addressed this issue by discussing the quota-share
and stop-loss reinsurance contracts and deriving the optimal retention of these
contracts under the optimization criterion of maximizing the product of the
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expected utility functions of the two parties’ terminal wealth. Recently,
Hürlimann (2011) has readdressed this issue by studying the combined quota-
share and stop-loss contracts and obtaining the optimal retention of these con-
tracts under the optimization criterion ofminimizing the sumof the variances of
the losses of the insurer and the reinsurer and several other related optimization
criteria. Cai et al. (2013) proposed the optimization criteria of maximizing the
joint survival probability and the joint profitable probability of the two parties
and derived sufficient conditions for a reinsurance contract to be optimal in
a wide class of reinsurance policies and under a general reinsurance premium
principle. Using the results of Cai et al. (2013), Fang and Qu (2014) derived the
optimal retentions of a combined quota-share and stop-loss reinsurance under
the criterion of maximizing the joint survival probability of the two parties un-
der the expected value reinsurance premium principle.

One of the main objectives for an insurer when buying a reinsurance is to
control his risk, while one of the main goals for a reinsurer when selling a rein-
surance is tomake a profit. Of course, a reinsurer also worries about his own risk
when selling a reinsurance contract and needs to control his risk as well. One of
the important risk measures used in risk management is the VaR risk measure.
In this paper, the VaR of a random variable or a risk is defined as follows:

Definition 1.1. The VaR of a random variable Y at a risk level α ∈ (0, 1) is de-
fined as VaRα(Y) � inf {y ∈ R : P(Y > y) ≤ α} = S−1

Y (α), where S−1
Y (y) is the

generalized inverse function of the survival function SY(y) of Y. �
We point out with Definition 1.1 that VaRα(Y) ≤ y ⇐⇒ SY(y) ≤ α and

that VaRα(Y) is decreasing in α ∈ (0, 1). Roughly speaking, the VaR of a loss
random variableY is the maximum possible loss at the confidence level 1−α. In
practice, the risk level α ∈ (0, 1) is a small value such as α = 0.01 or α = 0.05. In
addition, we recall that VaR satisfies the following properties: (a) VaRα(X+c) =
VaRα(X) + c for any constant c; (b) VaRα(X + Y) = VaRα(X) + VaRα(Y)

for any comonotonic random variables X and Y; (c) VaRα(X) ≤ VaRα(Y) for
any random variables X ≤ Y and (d) VaRα( f (X)) = f (VaRα(X)) for any
continuous and increasing function f .

When both the insurer and the reinsurer use VaR to measure their own risk,
then from the insurer’s perspective, the insurer prefers to buy a reinsurance con-
tract that is a solution to the optimization problem

min
I∈I

VaRα (X− I(X) + PI) . (1)

However, from the reinsurer’s point of view, the reinsurer likes to sell a reinsur-
ance contract that is a solution to the optimization problem

min
I∈I

VaRβ (I(X) − PI) , (2)

where α and β are the risk levels of the insurer and the reinsurer, respectively, for
VaR. Optimal solutions to Problems (1) and (2) are different. Indeed, when the
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reinsurance premium PI is determined by the expected value principle, namely
PI = (1 + θ)E[I(X)] with a positive risk loading factor θ > 0, Cheung et
al. (2014b) proved that the optimal reinsurance form for Problem (1) or for the
insurer is

I∗
i (x) = (x− VaR 1

1+θ
(X))+ − (x− VaRα(X))+.

Then, using the solution to Problem (1), it is easy to obtain that the optimal
reinsurance form for Problem (2) or for the reinsurer is

I∗
r (x) = x− (x− VaR 1

1+θ
(X))+ + (x− VaRβ(X))+.

Obviously, in Problems (1) and (2), the optimal reinsurance form for one party
is not optimal for the other. Indeed, the optimal contract minimizing the VaR
of one party’s loss may lead to an unacceptable large value for the VaR of the
other party’s loss.

In this paper, we study optimal reinsurance designs from the perspectives of
both an insurer and a reinsurer and take into account both an insurer’s aims and
a reinsurer’s goals in reinsurance contract designs. We assume both the insurer
and the reinsurer use the VaR to measure their own loss and develop optimal
reinsurance contracts that minimize the convex combination of the VaR risk
measures of the insurer’s loss and the reinsurer’s loss under two types of con-
straints, respectively. One reason why this criterion was chosen is that it enables
mathematically tractable solutions to our problem. This surely oversimplifies
how the conflicting points of view of the reinsurer and insurer may be jointly
analyzed in practice, as is the case with the criteria proposed by Borch (1960)
andHürlimann (2011), whichwerementioned above.However, our convex com-
bination has the advantage that we can study the effect of varying the relative
importance of the interests of each party, and also recover the two individual
points of view as extreme points. Furthermore, this criterion can lead to the
following type of economical interpretation: assume the reinsurer is designing
the contract to meet its objectives, but also wants to propose a contract that will
be attractive to the insurer. As the weight given to the insurer’s VaR increases,
the reinsurer is able to see the effect of putting more and more importance on
having a competitive contract, and can thus make a better informed decision
when designing the contract.

The constraints describe the interests of both the insurer and the reinsurer.
With the first type of constraints, the insurer and the reinsurer have their own
limit on the VaR of their own loss. With the second type of constraints, the
insurer has a limit on the VaR of his loss while the reinsurer has a target on his
profit in selling a reinsurance contract. For both types of constraints, we derive
the optimal reinsurance forms within a wide class of reinsurance policies and
under the expected value reinsurance premium principle. These optimal reinsur-
ance forms are more complicated than the optimal reinsurance contracts from
the perspective of one party only. The proposed models can also be reduced to
the problems of minimizing the VaR of one party’s loss under the constraints
on the interests of both the insurer and the reinsurer.
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To avoid tedious discussions and arguments, in this paper, we simply suppose
that the survival function SX(x) of the underlying non-negative loss random X
is continuous and decreasing on [0, ∞) with SX(0) = 1. Furthermore, we as-
sume that the reinsurance premium is calculated by the expected value principle,
namely, PI = (1 + θ)E[I(X)], where θ > 0.

The rest of the paper is organized as follows. In Section 2, we propose two
reinsurance problems that take into consideration the interests of both an in-
surer and a reinsurer. The optimal solutions to the two problems are derived in
Sections 3 and 4, respectively. Concluding remarks are given in Section 5. The
proofs of all the results presented in this paper are given in the appendix.

2. REINSURANCE MODELS TAKING INTO ACCOUNT THE INTERESTS OF BOTH
AN INSURER AND A REINSURER

Assume the insurer and the reinsurer use the VaR with risk levels 0 < α < 1
and 0 < β < 1, respectively, to measure their own losses. Without reinsurance,
the VaR of the insurer’ loss is VaRα(X). With a reinsurance contract I, the
VaR of the insurer’s loss is VaRα(X − I(X) + PI), and the insurer requires
VaRα(X− I(X) + PI) ≤ VaRα(X). Furthermore, the insurer wants the VaR to
be reduced to a tolerated value L1 so that

VaRα(X− I(X) + PI) ≤ L1, (3)

where L1 > 0 is the threshold representing the maximum VaR tolerated by the
insurer after a reinsurance. Thus, it is reasonable to assume L1 ≤ VaRα(X).

On the other hand, the reinsurer also worries about his loss in selling the
contract I and wants to set a threshold L2 > 0 for the VaR of his loss so that

VaRβ(I(X) − PI) ≤ L2. (4)

Note that I(X) − X ≤ 0 ≤ PI . Thus, I(X) − PI ≤ X and VaRβ(I(X) − PI) ≤
VaRβ(X). Hence, it is reasonable to assume L2 ≤ VaRβ(X).

As the seller of the reinsurance contract I, the reinsurer expects to make a
profit, namely, to have I(X) ≤ PI . Assume that the reinsurer wants to make
a profit at least L3 ≥ 0 at a confidence level at least 0 < γ < 1 in selling the
reinsurance contract I, namely the profit target L3 and the confidence level γ

satisfy

P (PI − I(X) ≥ L3) = 1 − P (I(X) > PI − L3) ≥ γ. (5)

To obtain feasible and applicable models for optimal reinsurance designs
from the perspectives of both an insurer and a reinsurer, we have to make some
assumptions on the relationships between the confidence level γ and each of
the risk levels α and β, and the safety loading factor θ . In doing so, suppose
1 − γ ≤ β. Then, VaRβ (I(X) − PI) ≤ VaR1−γ (I(X) − PI) ≤ −L3 ≤ 0,
where the second inequality follows from (5). However, the risk level β is used
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to measure the maximum possible loss of the reinsurer. Thus, if 1 − γ ≤ β,
then the level β will lead to a non-positive VaR for his loss I(X) − PI . Such a
non-positive VaR cannot provide useful information for the reinsurer. Thus, we
assume β < 1 − γ . In addition, we assume α < 1 − γ as well, since the risk
levels α and β should be near in practice.

Furthermore, for a feasible contract I ∈ I, note that I(X) is a non-negative
random variable and PI = (1+θ)E[I(X)], thus byMarkov’s inequality, it is easy
to see P (I(X) > PI) ≤ 1/(1 + θ) or equivalently P (I(X) ≤ PI) ≥ θ/(1 + θ),
which implies that the reinsurer will make a profit, namely, I(X) ≤ PI , with a
probability at least θ/(1 + θ). Thus, it is reasonable to assume γ > θ/(1 + θ)

since L3 is the profit target or the minimum profit desire for the reinsurer to
sell a reinsurance contract and only a very high confidence level γ is acceptable
for the reinsurer. Note that γ > θ/(1 + θ) is equivalent to 1 − γ < 1/(1 + θ).
Hence, the assumptions of α < 1 − γ and β < 1 − γ imply α < 1/(1 + θ) and
β < 1/(1 + θ), respectively.

Throughout the paper, we denote a = VaRα(X), b = VaRβ(X), c =
VaR1−γ (X) and vθ = VaR 1

1+θ
(X). Therefore, for any I ∈ I, by the properties of

the VaR, we have VaRα(X− I(X) + PI) = a − I(a) + PI , VaRβ(I(X) − PI) =
I(b)− PI and VaR1−γ (I(X)) = I(c). It is easy to check that (3) is equivalent to
a − I(a) ≤ L1 − PI , (4) is equivalent to I(b) ≤ L2 + PI and (5) is equivalent to
I(c) ≤ PI − L3. Moreover, note that α ∨ β < 1 − γ < 1/(1 + θ) is equivalent
to vθ < c < a ∧ b.

Thus, when the insurer and the reinsurer have the limits L1 and L2, respec-
tively, on the VaRs of their own losses in a reinsurance contract, the set of the
feasible reinsurance contracts acceptable by both the insurer and the reinsurer
is

I1 � {I ∈ I : I(b) − L2 ≤ PI ≤ I(a) − a + L1} , (6)

where I1 is obtained when the constraints (3) and (4) are imposed on I.
Furthermore, when the insurer has the limit L1 on the VaRof his loss and the

reinsurer has the target L3 on his profit in a reinsurance contract, the set of the
feasible reinsurance contracts acceptable by both the insurer and the reinsurer
is

I2 � {I ∈ I : I(c) + L3 ≤ PI ≤ I(a) − a + L1} , (7)

where I2 is obtained when the constraints (3) and (5) are imposed on I.
The desired sets I1 and I2 may be empty.We have to impose some restrictions

on L1, L2 and L3 so that I1 and I2 are non-empty. First, for any I ∈ I1, we have
L1 + L2 ≥ a− I(a)+ PI + I(b)− PI = a+ I(b)− I(a). Furthermore, by the 1-
Lipschitz continuity of I, we have I(b)−I(a) ≥ 0 if b > a and I(b)−I(a) ≥ b−a
if a > b. Hence, L1 + L2 ≥ a ∧ b. Moreover, we assume

vθ + (1 + θ)

∫ a

vθ

SX(x)dx ≤ L1. (8)
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This condition will guarantee that I1 is non-empty as showed in Lemma 3.1.
Next, for any I ∈ I2, because a ≥ c and I is 1-Lipschitz continuous, we have

a + PI − L1 − PI + L3 ≤ I(a) − I(c) ≤ a − c, and thus c ≤ L1 − L3.
Furthermore, we assume

(1 + θ)

(∫ vθ

0
+

∫ ∞

c

)
SX(x)dx− vθ ≥ L3. (9)

The conditions (8) and (9) will guarantee I2 to be non-empty as proved in
Lemma 4.1.

When Ii , i = 1, 2, is the set of feasible reinsurance contracts acceptable by
both the insurer and the reinsurer, from the insurer’s perspective, an optimal
reinsurance contract is a solution to the optimization problem of

min
I∈Ii

VaRα (X− I(X) + PI) , (10)

while from the reinsurer’s perspective, an optimal reinsurance contract is a so-
lution to the optimization problem of

min
I∈Ii

VaRβ (I(X) − PI) . (11)

Instead of solving Problems (10) and (11) separately, we consider the unified
minimization problem of

min
I∈Ii

V(I), (12)

where the objective function

V(I) � λVaRα (X− I(X) + PI) + (1 − λ)VaRβ (I(X) − PI)

= λa + (2λ − 1)PI − λI(a) + (1 − λ)I(b)

is the convex combination of the VaRs of the insurer’s loss and the rein-
surer’s loss, with λ ∈ [0, 1] a weighting factor. When λ = 0, V(I) =
VaRβ (I(X) − PI) and Problem (12) is reduced to Problem (11). When λ = 1,
V(I) = VaRα (X− I(X) + PI) and Problem (12) is reduced to Problem (10).
Thus, Problems (10) and (11) can be viewed as special cases of Problem (12).

When a = b, the objective function V(I) becomes

V(I) = λa + (1 − 2λ)(I(a) − PI) = (1 − λ)a + (2λ − 1)(a − I(a) + PI),

which implies that Problem (12) is reduced to either Problem (10) when 1/2 <

λ ≤ 1 or Problem (11) when 0 ≤ λ < 1/2. However, these two problems are
covered in Problem (12) by setting λ = 1 and λ = 0, respectively. Thus, we
assume a �= b.
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Furthermore, when λ = 1/2, the objective function V(I) becomes

V(I) = a
2

+ 1
2

(I(b) − I(a)) .

Thus, Problem (12) is reduced to minI∈Ii {I(b) − I(a)}, i = 1, 2. Note that the
1-Lipschitz property of I implies that 0 ≤ I(b) − I(a) ≤ b − a for a < b and
I(b) − I(a) ≥ −(a − b) for a > b. Hence, minI∈Ii {I(b) − I(a)} = −(a − b)+.
Thus, the optimal contract I∗ to the problem ofminI∈Ii {I(b) − I(a)} and hence
to Problem (12) is any contract I∗ ∈ Ii satisfying I∗(a) − I∗(b) = (a − b)+.
We will see in Remarks 3.1 and 4.1 that such optimal contracts I∗ exist in Ii
for i = 1, 2, and thus Problem (12) is solved for λ = 1/2. Hence, we assume
λ �= 1/2.

In summary, in the rest of this paper, we assume that the following conditions
hold: ⎧⎨

⎩
λ �= 1

2 , a �= b, L3 + c ≤ L1 ≤ a, L2 ≤ b,
0 < vθ < c < a ∧ b ≤ L1 + L2,

and the inequalities (8) and (9) hold.
(13)

We point out that in Assumption (13), conditions L3 + c ≤ L1, vθ < c < a ∧ b
and the inequality (9) are actually not required for Problem (14) in Section 3.

Next, we will solve Problem (12) for i = 1, 2 in Sections 3 and 4, respectively.

3. OPTIMAL REINSURANCE WITH CONSTRAINTS ON THE VARS OF BOTH AN
INSURER’S LOSS AND A REINSURER’S LOSS

In this section, we will solve Problem (12) for i = 1, namely, to solve the mini-
mization problem of

min
I∈I1

V(I). (14)

In this problem, V(I) = λa + (2λ − 1)PI − λI(a) + (1 − λ)I(b) and I1 is
the set of feasible reinsurance contracts acceptable by both the insurer and the
reinsurer. The definition of I1 also describes the constraints on the VaRs of
both an insurer’s loss and a reinsurer’s loss. A reinsurance contract I is said to
be acceptable if I ∈ I1.

First, we introduce some notation. Define the two types of feasible contracts
Imξa ,ξb and I

M
ξa ,ξb

in I for some pairs of (ξa, ξb) as follows:

1. If a < b, for each pair (ξa, ξb) ∈ [0, a] × [0, b] and ξa ≤ ξb, define

Imξa ,ξb(x) = (x− a + ξa)
+ − (x− a)+ + (x− (b − ξb + ξa))

+ − (x− b)+,

IMξa ,ξb(x) = x− (x− ξa)
+ + (x− a)+ − (x− (a + ξb − ξa))

+ + (x− b)+.
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�

�

ξa

ξb

a b

I ∈ I1

Im
ξa,ξb

IM
ξa,ξb

FIGURE 1: Relation between arbitrary I ∈ I1 and the pair (Imξa ,ξb , I
M
ξa ,ξb

) when a < b.

2. If a > b, for each pair (ξa, ξb) ∈ [0, a] × [0, b] and ξa ≥ ξb, define

Imξa ,ξb(x) = (x− b + ξb)
+ − (x− b)+ + (x− (a − ξa + ξb))

+ − (x− b)+,

IMξa ,ξb(x) = x− (x− ξb)
+ + (x− b)+ − (x− (b + ξa − ξb))

+ + (x− a)+.

Since Imξa ,ξb(0) = 0 and limx→∞ SX(x) = 0, we have

PImξa ,ξb
= (1 + θ)E

[
Imξa ,ξb(X)

] = (1 + θ)

∫ ∞

0
Imξa ,ξb(x)dFX(x)

= −(1 + θ)

∫ ∞

0
Imξa ,ξb(x)dSX(x) = (1 + θ)

∫ ∞

0
SX(x)dImξa ,ξb(x)

= (1 + θ)

(∫ a∧b

a∧b−ξa∧ξb

+
∫ a∨b

a∨b−|ξb−ξa |

)
SX(x)dx.

Similarly, we have

PIMξa ,ξb
= (1 + θ)E

[
IMξa ,ξb(X)

]
= (1 + θ)

(∫ ξa∧ξb

0
+

∫ a∧b+|ξb−ξa |

a∧b
+

∫ ∞

a∨b

)
SX(x)dx.

It is easy to verify that for any I ∈ I1 satisfying I(a) = ξa and I(b) = ξb, we
have Imξa ,ξb(x) ≤ I(x) ≤ IMξa ,ξb(x) for all x ≥ 0 as illustrated by Figure 1 and thus
PImξa ,ξb

≤ PI ≤ PIMξa ,ξb
.

Next, we define the set �a,b ⊂ [0, a] × [0, b] as follows:

a. When a < b, �a,b is the set of all pairs (ξa, ξb) satisfying

ξa ≤ ξb ≤ ξa + b ∧ (L1 + L2) − a, (15)

ξb − L2 ≤ PIMξa ,ξb
= (1 + θ)

(∫ ξa

0
+

∫ a+ξb−ξa

a
+

∫ ∞

b

)
SX(x)dx, (16)

L1 − a + ξa ≥ PImξa ,ξb
= (1 + θ)

(∫ a

a−ξa

+
∫ b

b−ξb+ξa

)
SX(x)dx. (17)
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b. When a > b, �a,b is the set of all pairs (ξa, ξb) satisfying

ξb + (a − L1 − L2)
+ ≤ ξa ≤ ξb + a − b, (18)

ξb − L2 ≤ PIMξa ,ξb
= (1 + θ)

(∫ ξb

0
+

∫ b+ξa−ξb

b
+

∫ ∞

a

)
SX(x)dx,

(19)

L1 − a + ξa ≥ PImξa ,ξb
= (1 + θ)

(∫ b

b−ξb

+
∫ a

a−ξa+ξb

)
SX(x)dx. (20)

To solve Problem (14), we introduce the auxiliary functions g1, g2 and g3 and
discuss their properties in the following proposition.

Proposition 3.1. a. Define g1(ξ) � ξ − (1 + θ)
∫ a
a−ξ

SX(x)dx for ξ ∈ [0, a].
Then, g1 is continuous, increasing on [0, a − vθ ), strictly decreasing on (a −
vθ , a], and maxξ∈[0, a] g1(ξ) = g1(a − vθ ).

b. Define g2(ξ) � ξ − (1 + θ)
(∫ ξ

0 + ∫ ∞
b

)
SX(x)dx for ξ ∈ [0, a ∧ b]. Then,

g2 is continuous, strictly decreasing on [0, vθ ), increasing on (vθ , a ∧ b], and
minξ∈[0, a∧b] g2(ξ) = g2(vθ ).
c. Define g3(ξ) � ξ − (1 + θ)

∫ a
b−ξ

SX(x)dx for ξ ∈ [0, b]. Then, g3 is
continuous, increasing on [0, b − vθ ), strictly decreasing on (b − vθ , b], and
maxξ∈[0, b] g3(ξ) = g3(b − vθ ).
d. Assume a < b. Then, g2(ξa) < g1(ξa) for any ξa ∈ [0, a]. In addition, for
any fixed ξa ∈ [0, a], PIMξa ,ξb

, PImξa ,ξb
and ξb − PIMξa ,ξb

are continuous and strictly
increasing in ξb ∈ [ξa, ξa + b − a].
e. Assume a > b. Then, g2(ξb) < g3(ξb) for any ξb ∈ [0, b]. In addition, for
any fixed ξb ∈ [0, b], PIMξa ,ξb

, PImξa ,ξb
and ξa − PImξa ,ξb

are continuous and strictly
increasing in ξa ∈ [ξb, ξb + a − b].

Lemma 3.1. The following three statements are equivalent: (i) Inequality (8)
holds. (ii) I1 �= ∅. (iii) �a,b �= ∅. In addition, (8) implies

vθ − (1 + θ)

(∫ vθ

0
+

∫ ∞

b

)
SX(x)dx ≤ L2. (21)

Lemma 3.2. Problem (14) has the same minimal value as the minimization prob-
lem

min
(ξa ,ξb)∈�a,b

v(ξa, ξb) (22)
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in the sense that minI∈I1 V(I) = min(ξa ,ξb)∈�a,b v(ξa, ξb), where, v(ξa, ξb) = λa +
(2λ − 1)Pξa ,ξb − λξa + (1 − λ)ξb and

Pξa ,ξb �
{

(L1 − a + ξa) ∧ PIMξa ,ξb
, if 0 ≤ λ < 1

2 ,

(ξb − L2) ∨ PImξa ,ξb
, if 1

2 < λ ≤ 1.
(23)

Moreover, let (ξ ∗
a , ξ ∗

b ) ∈ �a,b be the minimizer of Problem (22). Then, a con-
tract I∗ of the form

I∗(x) = (x− d1)+ − (x− (d1 + ξ ∗
a ∧ ξ ∗

b ))
+ + (x− d2)+

− (x− (d2 + ∣∣ξ ∗
b − ξ ∗

a

∣∣))+ + (x− d3)+ (24)

for some (d1, d2, d3) ∈ [0, a∧b−ξ ∗
a ∧ξ ∗

b ]× [a∧b, a∨b−|ξ ∗
b −ξ ∗

a |]× [a∨b, ∞],
satisfying PI∗ = Pξ∗

a , ξ∗
b
, is the optimal solution to Problem (14).

Lemma 3.2 reduces the infinite-dimensional optimization problem (14) to a
two-dimensional optimization problem (22). In the following two theorems, we
give the explicit expressions of (ξ ∗

a , ξ ∗
b ) and (d1, d2, d3) for the optimal solution

I∗ presented in (24).

Theorem 3.1. Suppose a < b, then Problem (22) has minimizer (ξ ∗
a , ξ ∗

b ) with
ξ ∗
a = ξ ∗

b and the optimal solution to Problem (14), denoted by I∗, is given as
follows:

a. In the case 0 ≤ λ < 1/2:
i. If g1(vθ ) ≥ a − L1, then ξ ∗

a = vθ and I∗(x) = (x − d1)+ − (x − d1 −
vθ )

+ + (x − a)+ + (x − d3)+ for some d1 ∈ [0, a − vθ ] and d3 ∈ [b, ∞]
such that PI∗ = vθ − (a − L1) ∨ g2(vθ ).

i i. If g1(vθ ) < a − L1, then there exists ξ1 ∈ [vθ ∧ (a − vθ ), vθ ∨ (a − vθ )]
such that g1(ξ1) = a−L1. Moreover, ξ ∗

a = ξ1 and I∗(x) = (x−a+ξ1)
+ −

(x− a)+.
b. In the case 1/2 < λ ≤ 1:

i. If g2(a − vθ ) ≤ L2, then ξ ∗
a = a − vθ and I∗(x) = (x− d1)+ − (x− d1 −

a + vθ )
+ + (x − a)+ + (x − d3)+ for some d1 ∈ [0, vθ ] and d3 ∈ [b, ∞]

such that PI∗ = a − vθ − L2 ∧ g1(a − vθ ).
i i. If g2(a − vθ ) > L2, then there exists ξ2 ∈ [vθ ∧ (a − vθ ), vθ ∨ (a − vθ )]

such that g2(ξ2) = L2. Moreover, ξ ∗
a = ξ2 and I∗(x) = x− (x− ξ2)

+ +
(x− b)+.

Theorem 3.2. Suppose a > b, then Problem (22) has minimizer (ξ ∗
a , ξ ∗

b ) with
ξ ∗
a = ξ ∗

b + a− b and the optimal solution to Problem (14), denoted by I∗, is given
as follows:

a. In the case 0 ≤ λ < 1/2:
i. If g3(vθ ) ≥ b − L1, then ξ ∗

b = vθ and I∗(x) = (x − d1)+ − (x − d1 −
vθ )

+ + (x − b)+ − (x − a)+ + (x − d3)+ for some d1 ∈ [0, b − vθ ] and
d3 ∈ [a, ∞] such that PI∗ = vθ − (b − L1) ∨ g2(vθ ).
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i i. If g3(vθ ) < b − L1, then there exists ξ3 ∈ [vθ ∧ (b − vθ ), vθ ∨ (b − vθ )]
such that g3(ξ3) = b−L1. Moreover, ξ ∗

b = ξ3 and I∗(x) = (x−b+ξ3)
+ −

(x− a)+.
b. In the case of 1/2 < λ ≤ 1:

i. If g2(b− vθ ) ≤ L2, then ξ ∗
b = b− vθ and I∗(x) = (x− d1)+ − (x− d1 −

b + vθ )
+ + (x − b)+ − (x − a)+ + (x − d3)+ for some d1 ∈ [0, vθ ] and

d3 ∈ [a, ∞] such that PI∗ = b − vθ − L2 ∧ g3(b − vθ ).
i i. If g2(b − vθ ) > L2, then there exists ξ4 ∈ [vθ ∧ (b − vθ ), vθ ∨ (b − vθ )]

such that g2(ξ4) = L2. Moreover, ξ ∗
b = ξ4 and I∗(x) = x− (x− ξ4)

+ +
(x− b)+.

Remark 3.1. By the proofs of Theorems 3.1 and 3.2, we know that the optimal
contracts I∗ in Theorems 3.1 and 3.2 satisfy I∗(a) − I∗(b) = (a− b)+, and hence
the optimal solutions I∗ in Theorems 3.1 and 3.2 are also the solutions to Problem
(14) when λ = 1/2. �

4. OPTIMAL REINSURANCE WITH CONSTRAINTS ON THE VAR OF AN
INSURER’S LOSS AND A REINSURER’S PROFIT

In this section, we solve Problem (12) for i = 2, namely, we solve the minimiza-
tion problem

min
I∈I2

V(I). (25)

In this problem, V(I) = λa + (2λ − 1)PI − λI(a) + (1 − λ)I(b) and I2 is
the set of feasible reinsurance contracts acceptable by both the insurer and the
reinsurer. The definition of I2 also describes the constraints on the VaR of the
insurer’s loss and on the reinsurer’s profit. A reinsurance contract I is said to be
acceptable if I ∈ I2.

It is easy to check that for any given (ξc, ξa, ξb) ∈ [0, c]×[0, a]×[0, b], if I ∈ I
satisifes I(c) = ξc, I(a) = ξa, and I(b) = ξb, then Imξc,ξa ,ξb(x) ≤ I(x) ≤ IMξc,ξa ,ξb(x)
for all x ≥ 0 and PImξc ,ξa ,ξb

≤ PI ≤ PIMξc ,ξa ,ξb
, where

Imξc,ξa ,ξb(x) � (x− c + ξc)
+ − (x− c)+ + (x− (a ∧ b − ξa ∧ ξb + ξc))

+

− (x− a ∧ b)+ + (x− (a ∨ b − |ξa − ξb|))+ − (x− a ∨ b)+,

IMξc,ξa ,ξb(x) � x− (x− ξc)
+ + (x− c)+ − (x− (c + ξa ∧ ξb − ξc))

+

+ (x− a ∧ b)+ − (x− (a ∧ b + |ξa − ξb|))+ + (x− a ∨ b)+,

are two feasible reinsurance contracts in I.
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To solve Problem (25), we introduce auxiliary functions hi for i = 1, . . . , 7,
AMξc , Aξc , A

m
ξc
, BM

ξc
, and Bmξc , and discuss their properties in the following three

propositions.

Proposition 4.1. Assume a �= b.

a. Define h1(ξc) � (1+θ)
(∫ ξc

0 + ∫ ∞
c

)
SX(x)dx−ξc for ξc ∈ [0, c]. Then, h1(ξc)

is continuous, concave, strictly increasing on [0, vθ ), decreasing on (vθ , c], and
maxξc∈[0, c] h1(ξc) = h1(vθ ).
b. Define h2(ξc) � (1 + θ)

∫ a
c−ξc

SX(x)dx − ξc for ξc ∈ [0, c]. Then, h2(ξc) is
continuous, convex, decreasing on [0, c− vθ ), strictly increasing on (c− vθ , c],
and minξc∈[0, c] h2(ξc) = h2(c − vθ ). Moreover, h2(ξc) < h1(ξc) for ξc ∈ [0, c].

Proposition 4.2. Assume a < b.

a. Functions PIMξc ,ξa ,ξb
, PImξc ,ξa ,ξb

, ξb − PIMξc ,ξa ,ξb
and ξb − PImξc ,ξa ,ξb

, are continuous and
strictly increasing in ξb ∈ [ξa, ξa + b − a].
b. Given ξc ∈ [0, c], define AMξc (ξa) � PIMξc ,ξa ,ξa+b−a and Amξc(ξa) � PImξc ,ξa ,ξa

, for

ξa ∈ [ξc, ξc + a − c], and Aξc(ξa) � PIMξc ,ξa ,ξa
, for ξa ∈ [ξc, ξc + b − c]. Then,

all the functions AMξc (ξa), A
m
ξc
(ξa), ξa − AMξc (ξa) and ξa − Amξc(ξa) are continuous

and strictly increasing in ξa ∈ [ξc, ξc + a− c], and Aξc(ξa) and ξa − Aξc(ξa) are
continuous and strictly increasing in ξa ∈ [ξc, ξc + b − c].
c. Define h3(ξc) � Aξc(ξc + a − c) − ξc for ξc ∈ [0, c]. Then, h3(ξc) is
continuous, concave, strictly increasing on [0, vθ ), decreasing on (vθ , c] and
maxξc∈[0, c] h3(ξc) = h3(vθ ).
d. Define h4(ξc) � Amξc(ξc + a − L1 + L3) − ξc for ξc ∈ [0, c]. Then, h4(ξc) is
continuous, convex, decreasing on [0, c − vθ ), strictly increasing on (c − vθ , c]
and minξc∈[0, c] h4(ξc) = h4(c − vθ ).
e. Define h5(ξc) � Aξc(ξc + a − L1 + L3) − ξc for ξc ∈ [0, c]. Then, h5(ξc)
is continuous, concave, strictly increasing on [0, vθ ), decreasing on (vθ , c] and
maxξc∈[0, c] h5(ξc) = h5(vθ ).
f. Given ξc ∈ [0, c], it holds that Amξc(ξa) < Aξc(ξa) < AMξc (ξa) for ξa ∈ [ξc, ξc +
a − c]. Furthermore, it holds that h4(ξc) < h5(ξc) ≤ h3(ξc) for ξc ∈ [0, c]. In
addition, h5(ξc) = h3(ξc) if and only if c = L1 − L3.

Proposition 4.3. Assume a > b.

a. Functions PIMξc ,ξa ,ξb
, PImξc ,ξa ,ξb

, ξa − PIMξc ,ξa ,ξb
and ξa − PImξc ,ξa ,ξb

, are continuous and
strictly increasing in ξa ∈ [ξb, ξb + a − b].
b. Given ξc ∈ [0, c], define BM

ξc
(ξb) � PIMξc ,ξb+a−b,ξb

and Bmξc (ξb) � PImξc ,ξb+a−b,ξb
for

ξb ∈ [ξc, ξc + b− c]. Then, all the functions BM
ξc

(ξb), Bmξc (ξb), ξb − BM
ξc

(ξb) and
ξb − Bmξc (ξb), are continuous and strictly increasing in ξb ∈ [ξc, ξc + b − c].

c. Define h6(ξc) � Bmξc (ξc + (b− L1 + L3)
+)− ξc for ξc ∈ [0, c]. Then, h6(ξc) is

continuous, convex, decreasing on [0, c − vθ ), strictly increasing on (c − vθ , c]
and minξc∈[0,c] h6(ξc) = h6(c − vθ ).
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d. Define h7(ξc) � BM
ξc

(ξc + (b − L1 + L3)
+) − ξc for ξc ∈ [0, c]. Then, h7(ξc)

is continuous, concave, strictly increasing on [0, vθ ), decreasing on (vθ , c] and
maxξc∈[0,c] h7(ξc) = h7(vθ ).
e. Given ξc ∈ [0, c], it holds that Bmξc (ξb) < BM

ξc
(ξb) for ξb ∈ [ξc, ξc + b − c].

Furthermore, it holds that h6(ξc) < h7(ξc) for ξc ∈ [0, c].

Furthermore, we need to define the following sets. Let �c,a,b be the set of all
(ξc, ξa, ξb) ∈ [0, c] × [0, a] × [0, b] such that

ξc + (a ∧ b + L3 − L1)
+ ≤ ξa ∧ ξb ≤ ξa ∨ ξb, (26)

ξc + L3 ≤ PIMξc ,ξa ,ξb
, (27)

L1 − a + ξa ≥ PImξc ,ξa ,ξb
. (28)

Let �c be the set of all ξc ∈ [0, c] such that

L3 + ξc ≤ (1 + θ)

(∫ ξc

0
+

∫ ∞

c

)
SX(x)dx, (29)

L1 − c + ξc ≥ (1 + θ)

∫ a

c−ξc

SX(x)dx. (30)

For each ξc ∈ �c, if a < b, then let �a,ξc be the set of all ξa ∈ [ξc + a + L3 −
L1, ξc + a − c] such that

ξc + L3 ≤ (1 + θ)

(∫ ξc

0
+

∫ c+ξa−ξc

c
+

∫ ∞

a

)
SX(x)dx, (31)

a − L1 ≤ ξa − (1 + θ)

(∫ c

c−ξc

+
∫ a

a−ξa+ξc

)
SX(x)dx, (32)

and if b < a, let �b,ξc be the set of all ξb ∈ [ξc + (b+ L3 − L1)
+, ξc + b− c] such

that

ξc + L3 ≤ (1 + θ)

(∫ ξc

0
+

∫ c+ξb−ξc

c
+

∫ ∞

b

)
SX(x)dx, (33)

b − L1 ≤ ξb − (1 + θ)

(∫ c

c−ξc

+
∫ a

b−ξb+ξc

)
SX(x)dx. (34)

If a < b, for each (ξc, ξa) ∈ �c × �a,ξc , let �b,ξc,ξa be the set of all ξb ∈
[ξa, ξa+b−a] such that (ξc, ξa, ξb) ∈ �c,a,b. If a > b, for each (ξc, ξb) ∈ �c×�b,ξc ,
let �a,ξc,ξb be the set of all ξa ∈ [ξb, ξb + a − b] such that (ξc, ξa, ξb) ∈ �c,a,b.

Proposition 4.4. All the sets �c, �a,ξc , �b,ξc , �b,ξc,ξa and �a,ξc,ξb , are closed inter-
vals and can be expressed as follows:

a. The set �c = [ξmc , ξMc ] for some 0 ≤ ξmc ≤ ξMc ≤ c.
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b. When a < b, given ξc ∈ �c, the set �a,ξc = [ξma (ξc), ξMa (ξc)] for some ξc +
a+L3−L1 ≤ ξma (ξc) ≤ ξMa (ξc) ≤ ξc+a−c, and given (ξc, ξa) ∈ �c×�a,ξc , the
set �b,ξc,ξa = [ξmb (ξc, ξa), ξMb (ξc, ξa)] for some ξa ≤ ξmb (ξc, ξa) ≤ ξMb (ξc, ξa) ≤
ξa + b − a.
c. When a > b, given ξc ∈ �c, the set �b,ξc = [ξmb (ξc), ξMb (ξc)] for some ξc +
(b + L3 − L1)

+ ≤ ξmb (ξc) ≤ ξMb (ξc) ≤ ξc + b − c, and given (ξc, ξb) ∈ �c ×
�b,ξc , the set �a,ξc,ξb = [ξma (ξc, ξb), ξMa (ξc, ξb)] for some ξb ≤ ξma (ξc, ξb) ≤
ξMa (ξc, ξb) ≤ ξb + a − b.

Lemma 4.1. The following three statements are equivalent: (i) Inequalities (8)
and (9) hold. (ii) I2 �= ∅. (iii) �c,a,b �= ∅.
Lemma 4.2. Problem (25) has the same minimal value as the minimization prob-
lem

min
(ξc,ξa ,ξb)∈�c,a,b

w(ξc, ξa, ξb) (35)

in the sense that minI∈I2 V(I) = min(ξc,ξa ,ξb)∈�c,a,b w(ξc, ξa, ξb), where
w(ξc, ξa, ξb) = λa + (2λ − 1)Pξc,ξa ,ξb − λξa + (1 − λ)ξb and

Pξc,ξa ,ξb �
{

(L1 − a + ξa) ∧ PIMξc ,ξa ,ξb
, if 0 ≤ λ < 1

2 ,

(ξc + L3) ∨ PImξc ,ξa ,ξb
, if 1

2 < λ ≤ 1.
(36)

To solve the three-dimensional problem (35), we consider the following
three-step minimization problem:{

minξc∈�c

(
minξa∈�a,ξc

[
minξb∈�b,ξc ,ξa

w(ξc, ξa, ξb)
])

, if a < b,
minξc∈�c

(
minξb∈�b,ξc

[
minξa∈�a,ξc ,ξb

w(ξc, ξa, ξb)
])

, if a > b. (37)

In doing so, we define the minimizers of Problem (37) and the corresponding
functions as follows:

For a < b, define minξb∈�b,ξc ,ξa
w(ξc, ξa, ξb) = w(ξc, ξa, ξ

∗
b (ξc, ξa)) �

w2(ξc, ξa) and
minξa∈�a,ξc

w2(ξc, ξa) = w2(ξc, ξ
∗
a (ξc)) = w1(ξc), where

ξ ∗
b (ξc, ξa) � arg min

ξb∈�b,ξc ,ξa

w(ξc, ξa, ξb) and ξ ∗
a (ξc) � arg min

ξa∈�a,ξc

w2(ξc, ξa).

For a > b, denote minξa∈�a,ξc ,ξb
w(ξc, ξa, ξb) = w(ξc, ξ

∗
a (ξc, ξb), ξb) �

w2(ξc, ξb) and minξb∈�b,ξc
w2(ξc, ξb) = w2(ξc, ξ

∗
b (ξc)) = w1(ξc), where

ξ ∗
a (ξc, ξb) � arg min

ξa∈�a,ξc ,ξb

w(ξc, ξa, ξb) and ξ ∗
b (ξc) � arg min

ξb∈�b,ξc

w2(ξc, ξb).

Moreover, denoteminξc∈�c w1(ξc) � w1(ξ
∗
c ), where ξ ∗

c � argminξc∈�c w1(ξc).
In addition, for a < b, denote ξ ∗

a � ξ ∗
a (ξ ∗

c ) and ξ ∗
b � ξ ∗

b (ξ
∗
c , ξ

∗
a ). For a > b,

denote ξ ∗
b � ξ ∗

b (ξ ∗
c ) and ξ ∗

a � ξ ∗
a (ξ ∗

c , ξ
∗
b ).
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FIGURE 2: Optimal form of the contract (38) from Theorem 4.1 when a < b.

Lemma 4.3. The three-stepminimization problem (37) is well-defined in the sense
that the minimizer for each step exists. In particular, the minimizers of Problem
(37) can be expressed as follows:

a. If a < b and 0 ≤ λ < 1
2 , then ξ ∗

c = ξmc ∨ (
vθ ∧ ξMc

)
, ξ ∗

a =
sup

{
ξa ∈ �a,ξ∗

c
: Aξ∗

c
(ξa) < ξ ∗

c + L3
}
and ξ ∗

b = ξmb (ξ ∗
c , ξ

∗
a ).

b. If a < b and 1
2 < λ ≤ 1, then ξ ∗

c = ξL3,h2 ∨ ξL3,h3 , ξ ∗
a = ξ ∗

c + a − c,
and ξ ∗

b = ξmb (ξ ∗
c , ξ

∗
a ), where ξL3,h2 = sup {ξc ∈ [0, c − vθ ] : h2(ξc) ≥ L3} and

ξL3,h3 = sup {ξc ∈ [0, vθ ] : h3(ξc) ≤ L3}.
c. If a > b and 0 ≤ λ < 1

2 , then ξ ∗
c = ξmc ∨ (

vθ ∧ ξMc
)
, ξ ∗

b = ξmb (ξ ∗
c ) and

ξ ∗
a = ξ ∗

b + a − b.
d. If a > b and 1

2 < λ ≤ 1, then ξ ∗
c = ξmc ∨ [

(c − vθ ) ∧ ξMc
]
, ξ ∗

b = ξ ∗
c + b − c

and ξ ∗
a = ξ ∗

c + a − c.

Theorem 4.1. A contract I∗ of the form

I∗(x) = (x− d1)+ − (x− d1 − ξ ∗
c )

+ + (x− d2)+ − (x− (d2 + ξ ∗
a ∧ ξ ∗

b − ξ ∗
c ))+

+ (x− d3)+ − (x− (d3 + ∣∣ξ ∗
b − ξ ∗

a

∣∣))+ + (x− d4)+ (38)

for some (d1, d2, d3, d4) ∈ [0, c − ξ ∗
c ] × [c, a ∧ b − ξ ∗

a ∧ ξ ∗
b + ξ ∗

c ] × [a ∧ b, a ∨
b − |ξ ∗

a − ξ ∗
b |] × [a ∨ b, ∞], satisfying PI∗ = Pξ∗

c ,ξ∗
a ,ξ∗

b
, is an optimal solution to

Problem (25).

Remark 4.1. Figure 2 illustrates the optimal form (38) in the case of a < b.
By the proof of Theorem 4.1, we know that the optimal contract I∗ in Theorem

4.1 satisfies I∗(a)−I∗(b) = (a−b)+, and hence the optimal solution I∗ in Theorem
4.1 is also the solution to Problem (25) when λ = 1/2. �
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Next, we will derive the explicit expressions of the parameters in the optimal
solution I∗ given in Theorem 4.1 in the following four corollaries.

Corollary 4.1. Suppose a < b and 0 ≤ λ < 1/2 and let I∗ be the optimal solution
to Problem (25).

a. In the case h2(vθ ) ≤ L1 − c:
i. If L3 ≤ h4(vθ ), then I∗(x) = (x−c+vθ )

+−(x−c)++(x−a+ξa,0−vθ )
+−

(x− a)+, where ξa,0 is the solution to the equation of PI∗ = ξa,0 + L1 − a.
i i. If h4(vθ ) < L3 ≤ h5(vθ ), then I∗(x) = (x−d∗

1 )
+ − (x−d∗

1 − vθ )
+ + (x−

d∗
2 )

+ −(x−d∗
2 −(a−L1+L3))

+ +(x−d∗
3 )

+, where (d∗
1 , d

∗
2 , d

∗
3 ) ∈ [0, c−

vθ ]× [c, L1−L3]× [b, ∞] is the solution to the equation of PI∗ = vθ +L3.
i i i. If h5(vθ ) < L3, then I∗(x) = x− (x− vθ )

+ + (x− c)+ − (x− c− ξa,1 +
vθ )

++(x−b)+,where ξa,1 is the solution to the equation of PI∗ = vθ +L3.
b. In the case h2(vθ ) > L1 − c, then we have I∗(x) =
(x − c + ξL1−c, h2)

+ − (x − a)+, where ξL1−c, h2 =
inf {ξc ∈ [vθ ∧ (c − vθ ), vθ ∨ (c − vθ )] : h2(ξc) = L1 − c}.

Corollary 4.2. Suppose a < b and 1/2 < λ ≤ 1 and let I∗ be the optimal solution
to Problem (25).

a. If L3 ≤ h2(0), then I∗(x) = (x− c + ξL3, h2)
+ − (x− a)+, where

ξL3, h2 = sup {ξc ∈ [0, c − vθ ] : h2(ξc) ≥ L3} .

b. If h2(0) < L3 < h3(0), then I∗(x) = (x− c)+ − (x−a)+ + (x−d∗)+, where
d∗ ∈ [b, ∞] satisifes PI∗ = L3.
c. If h3(0) ≤ L3, then I∗(x) = x − (x − ξL3, h3)

+ + (x − c)+ − (x − (c +
ξ ∗
b − ξL3, h3))

+ + (x− b)+, where ξL3, h3 = sup {ξc ∈ [0, vθ ] : h3(ξc) ≤ L3} and
ξ ∗
b ∈ [ξL3, h3 + a − c, ξL3, h3 + b − c] satisfies PI∗ = ξL3, h3 + L3.

Corollary 4.3. Suppose a > b and 0 ≤ λ < 1/2 and let I∗ be the optimal solution
to Problem (25).

a. In the case h2(vθ ) ≤ L1 − c:
i. If (b+L3−L1)

++L1−b < h6(vθ ), then I∗(x) = (x−c+vθ )
+−(x−c)++

(x−(b−ξb,0+vθ ))
+−(x−a)+,where ξb,0 ∈ [vθ+(b+L3−L1)

+, vθ+b−c]
is the solution to the equation of PI∗ = ξb,0 − b + L1.

i i. If h6(vθ ) ≤ (b+ L3 − L1)
+ + L1 − b < h7(vθ ), then I∗(x) = (x− d∗

1 )
+ −

(x− d∗
1 − vθ )

+ + (x− c)+ − (x− c− (b+ L3 − L1)
+)+ + (x− b)+ − (x−

a)+ + (x− d∗
2 )

+, where (d∗
1 , d

∗
2 ) ∈ [0, c − vθ ] × [a, ∞] is the solution to

the equation of PI∗ = vθ + L3 ∨ (L1 − b).
i i i. If L3 < h7(vθ ) ≤ (b+ L3 − L1)

+ + L1 − b, then I∗(x) = x− (x− vθ )
+ +

(x− c)+ − (x− c − (b + L3 − L1)
+)+ + (x− b)+.

iv. If h7(vθ ) ≤ L3, then I∗(x) = x− (x− vθ )
+ + (x− c)+ − (x− (c+ ξb,1 −

vθ ))
+ + (x− b)+, where ξb,1 ∈ [vθ + (b + L3 − L1)

+, vθ + b − c] is the
solution to the equation of PI∗ = vθ + L3.

b. In the case h2(vθ ) > L1 − c, then we have I∗(x) =
(x − c + ξL1−c, h2)

+ − (x − a)+, where ξL1−c, h2 =
inf {ξc ∈ [vθ ∧ (c − vθ ), vθ ∨ (c − vθ )] : h2(ξc) = L1 − c}.
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Corollary 4.4. Suppose a > b and 1/2 < λ ≤ 1 and let I∗ be the optimal solution
to Problem (25).

a. If h1(c − vθ ) < L3, then I∗(x) = x − (x − ξL3, h1)
+ + (x − c)+, where

ξL3, h1 = sup {ξc ∈ [vθ ∧ (c − vθ ), vθ ∨ (c − vθ )] : h1(ξc) = L3}.
b. If L3 ≤ h1(c − vθ ), then I∗(x) = (x− d∗

1 )
+ − (x− d∗

1 − c + vθ )
+ + (x−

c)+ − (x− a)+ + (x− d∗
2 )

+, where (d∗
1 , d

∗
2 ) ∈ [0, vθ ] × [a, ∞] is the solution

to the equation of PI∗ = c − vθ + L3 ∨ h2(c − vθ ).

5. CONCLUSIONS

In this paper, we describe feasible reinsurance contracts that are acceptable to
both an insurer and a reinsurer and explore optimal reinsurance contracts which
take into account both an insurer’s aims and a reinsurer’s goals. The models and
problems proposed in this paper are interesting in theory and applications. As
showed in this paper, solving the proposed problems and finding the optimal
reinsurance contracts from the perspective of both an insurer and a reinsurer
are challenging jobs. The optimal reinsurance contracts from the perspectives
of both an insurer and a reinsurer are more complicated than the optimal rein-
surance contracts from one party’s point of view only. Themodels and problems
proposed in this paper can be explored further in different ways such as replac-
ing the VaR by other risk measures and accommodating other demands of an
insurer and a reinsurer in the study of optimal reinsurance designs.

As mentioned in the introduction, the criterion used in this paper is arguably
oversimplifying how the two parties’ conflicting interests should jointly be ana-
lyzed in practice. For future work, we plan to consider more general approaches
to perform this type of analysis. For instance, we could use a two-step procedure
where the party that is designing the contract performs a first optimization step
based on its own criterion, with a choice of constraints such that there exist
multiple optimal solutions. One particular solution among those would then be
selected using a secondary criterion representing the other party’s objectives.
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APPENDIX A

Proof of Proposition 3.1. We only prove (a) and (d). Other results of Proposition 3.1 can
be proved similarly and are omitted.

a. It is easy to see that g1(ξ) is continuous in ξ ∈ [0, a]. Since α < 1/(1 + θ), we have
that g′

1(ξ) = 1 − (1 + θ)SX(a − ξ) is non-negative for ξ ∈ [0, a − vθ ) and is negative for
ξ ∈ (a − vθ , a]. Hence, the desired results hold.

d. Suppose a < b, note that g2(ξa) = ξa − PIMξa ,ξa
< ξa − PImξa ,ξa

= g1(ξa) for any ξa ∈
[0, a]. For each (ξa, ξb) ∈ �a,b, ξa ≤ ξb by (15) and it is obvious that PIMξa ,ξb

and PImξa ,ξb

are continuous and strictly increasing in ξb ∈ [0, b]. For any (ξa, ξ1) and (ξa, ξ2) ∈ �a,b

with ξ1 < ξ2, we have 0 ≤ PIMξa ,ξ2
− PIMξa ,ξ1

= (1 + θ)
∫ a+ξ2−ξa
a+ξ1−ξa

SX(x)dx ≤ (1 + θ)(ξ2 −
ξ1)SX(a) ≤ (1+θ)α (ξ2 − ξ1) < ξ2−ξ1,where the third inequality follows from SX(x) ≤ α

for any x ≥ VaRα(X) = a. Therefore, ξb − PIMξa ,ξb
is continuous and strictly increasing in

ξb ∈ [ξa, ξa + b − a].

Proof of Lemma 3.1. We assume a < b. The proof for the case of a > b is similar to the
case of a < b and is omitted.

(i)⇒ (ii). Suppose (8) holds, namely g1(a−vθ ) ≥ a−L1. Since g1(0) = 0 ≤ a−L1 and g1 is
continuous and increasing on [0, a−vθ ], there exists ξa ∈ [0, a−vθ ] such that g1(ξa) = a−L1,
andmoreover, g1(ξa) = a−L1 ≤ L2. Consider the contract I(x) = (x−a+ξa)

+−(x−a)+ ∈ I,
it is easy to check that I(a) = I(b) = ξa and PI = (1+θ)E[I(X)] = ξa −g1(ξa) = ξa −a+L1.
This contract I is acceptable, namely I ∈ I1, because the contract I satisfies a− I(a) + PI =
a− ξa + ξa − a+ L1 = L1, and I(b) − PI = ξa − (ξa − a+ L1) = a− L1 ≤ L2. Thus, I1 �= ∅.

Meanwhile, by Proposition 3.1(b) and (d), we know that g1(ξa) = a − L1 ≤ L2 implies
that g2(vθ ) ≤ g2(ξa) < g1(ξa) ≤ L2, namely (21) holds. Thus, (8) implies (21).

(ii) ⇒ (iii). Suppose I1 �= ∅. For any I ∈ I1, denote ξa = I(a) and ξb = I(b). We are
going to check that (ξa, ξb) satisfies (15), (16) and (17). Since I ∈ I1, we have

ξb − L2 ≤ PI ≤ ξa + L1 − a. (39)

Furthermore, the 1-Lipschitz property of I implies ξa ≤ ξb ≤ ξa + b − a. Hence, (15) holds.
Moreover, it is easy to see that Imξa ,ξb (x) ≤ I(x) ≤ IMξa ,ξb (x) for all x ≥ 0, and thus

PImξa ,ξb
≤ PI ≤ PIMξa ,ξb

. (40)

From (39) and (40), we have ξb − L2 ≤ PIMξa ,ξb
and PImξa ,ξb

≤ ξa + L1 − a, namely (16) and (17)

hold. Therefore, (ξa, ξb) ∈ �a,b and thus �a,b �= ∅.
(iii) ⇒ (i). Suppose �a,b �= ∅. For any (ξa, ξb) ∈ �a,b, we have

a − L1 ≤ ξa − (1 + θ)

(∫ a

a−ξa

+
∫ b

b−ξb+ξa

)
SX(x)dx ≤ ξa − (1 + θ)

∫ a

a−ξa

SX(x)dx = g1(ξa)

≤ a − vθ − (1 + θ)

∫ a

vθ

SX(x)dx = g1(a − vθ ),

where the first inequality is from (17) and the last one is due to the fact that g1 is increasing
on [0, a − vθ ]. Thus, (8) holds.
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Proof of Lemma 3.2. We assume a < b. The proof for the case of a > b is similar to the
case of a < b and is omitted.

For each (ξa, ξb) ∈ �a,b, by (15), we have ξb − L2 ≤ ξa + b ∧ (L1 + L2) − L2 − a ≤
ξa + L1 − a, which, together with (16), implies ξb − L2 ≤ (L1 − a + ξa) ∧ PIMξa ,ξb

. Hence, by

(17) and PImξa ,ξb
≤ PIMξa ,ξb

, we have (ξb − L2) ∨ PImξa ,ξb
≤ (L1 − a + ξa) ∧ PIMξa ,ξb

. Therefore, by

the definition of Pξa ,ξb given in (23), we have

(ξb − L2) ∨ PImξa ,ξb
≤ Pξa ,ξb ≤ (L1 − a + ξa) ∧ PIMξa ,ξb

. (41)

It is easy to check that any contract with the form of

I(x) = (x− d1)+ − (x− d1 − ξa)
+ + (x− d2)+ − (x− d2 − ξb + ξa)

+ + (x− d3)+, (42)

for some (d1, d2, d3) ∈ [0, a − ξa ] × [a, b − ξb + ξa ] × [b, ∞], satisfies I ∈ I, I(a) = ξa ,
I(b) = ξb, and Imξa ,ξb (x) ≤ I(x) ≤ IMξa ,ξb (x) for all x ≥ 0. Thus, PImξa ,ξb

≤ PI ≤ PIMξa ,ξb
. In

particular, when d1 = a− ξa , d2 = b− ξb + ξa , and d3 = ∞, the form (42) is reduced to Imξa ,ξb .
When d1 = 0 , d2 = a, and d3 = b, the form (42) is reduced to IMξa ,ξb . For the contract I of the
form (42), its premium

PI = (1 + θ) E[I(X)] = (1 + θ)

(∫ d1+ξa

d1

+
∫ d2+ξb−ξa

d2

+
∫ ∞

d3

)
SX(x)dx

can be viewed as a function of (d1, d2, d3). Obviously, the premium PI = PI(d1, d2, d3) is a
real-valued continuous function on [0, a − ξa ] × [a, b − ξb + ξa ] × [b, ∞]. Since [0, a − ξa ] ×
[a, b− ξb + ξa ]× [b, ∞] is a connected set, the image of PI(d1, d2, d3) is also a connected set.
Thus,

{PI = (1 + θ) E[I(X)] : I has the expression (42)} =
[
PImξa ,ξb

, PIMξa ,ξb

]
.

For each (ξa, ξb) ∈ �a,b, note that Pξa ,ξb ∈ [PImξa ,ξb
, PIMξa ,ξb

], thus there exists I ∈ I with the

expression (42) such that PI = Pξa ,ξb , and moreover, such I ∈ I1 due to (41).
The existence of the minimizer (ξ ∗

a , ξ
∗
b ) of Problem (22) will be demonstrated in the proof

of Theorems 3.1 and 3.2. Since (ξ ∗
a , ξ

∗
b ) ∈ �a,b, by the above arguments, there exists I∗ ∈ I1

of the form (24) such that I∗(a) = ξ ∗
a , I

∗(b) = ξ ∗
b , and PI∗ = Pξ∗

a ,ξ∗
b
. It can be easily checked

that V(I∗) = v(ξ ∗
a , ξ

∗
b ). Meanwhile, for any I ∈ I1, we have (I(a), I(b)) ∈ �a,b by the proof

of Lemma 3.1 for (ii) ⇒ (iii). From (23), we have PI ≤ PI(a), I(b) when 0 ≤ λ < 1/2, and
PI ≥ PI(a), I(b) when 1/2 < λ ≤ 1. Therefore, (2λ − 1)PI ≥ (2λ − 1)PI(a), I(b) and

V(I) = λa + (2λ − 1)PI − λI(a) + (1 − λ)I(b) ≥ v(I(a), I(b)) ≥ min
(ξa ,ξb)∈�a,b

v(ξa, ξb), (43)

which implies that minI∈I1 V(I) ≥ min(ξa ,ξb)∈�a,b v(ξa, ξb) = v(ξ ∗
a , ξ

∗
b ) = V(I∗) ≥

minI∈I1 V(I). Hence, minI∈I1 V(I) = V(I∗) and I∗ is the optimal solution to Problem (14).
Therefore, a contract I∗ of the form (24) for some (d1, d2, d3) ∈ [0, a−ξ ∗

a ]× [a, b−ξ ∗
b +ξ ∗

a ]×
[b, ∞], satisfying I∗(a) = ξ ∗

a , I
∗(b) = ξ ∗

b , PI∗ = Pξ∗
a , ξ∗

b
, is the optimal solution to Problem

(14).

Proof of Theorem 3.1. Assume a < b. For each (ξa, ξb) ∈ �a,b, we have ξa ≤ ξb by (15),
ξb−PIMξa ,ξb

≤ L2 by (16), and PImξa ,ξb
≤ L1−a+ξa by (17). Since ξb−PIMξa ,ξb

and PImξa ,ξb
are strictly

increasing in ξb ∈ [ξa, ξa +b−a] by Proposition 3.1(d), we have ξa − PIMξa ,ξa
≤ ξb − PIMξa ,ξb

≤ L2
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and PImξa ,ξa
≤ PImξa ,ξb

≤ L1 − a + ξa . Thus, (ξa, ξa) ∈ �a,b. From (16) and (17), we know that
(ξa, ξa) ∈ �a,b is equivalent to

g2(ξa) ≤ L2 and a − L1 ≤ g1(ξa). (44)

a. Consider the case 0 ≤ λ < 1
2 . By Lemma 3.2, minI∈I1 V(I) = min(ξa ,ξb)∈�a,b v(ξa, ξb),

where v(ξa, ξb) = λa+(2λ−1)Pξa ,ξb−λξa+(1−λ)ξb and Pξa ,ξb = (L1 − a + ξa)∧PIMξa ,ξb
. For

each (ξa, ξb) ∈ �a,b, since ξa ≤ ξb and ξa−PIMξa ,ξa
≤ ξb−PIMξa ,ξb

, together with the definition

of Pξa ,ξb given by (23) and the facts that −(x ∧ y) = (−x) ∨ (−y) and kz + k(x ∨ y) =
k[(z+ x) ∨ (z+ y)] for k > 0, we have

v(ξa, ξb) = λa − λξa + (1 − λ)ξb − (1 − 2λ)
[
(L1 − a + ξa) ∧ PIMξa ,ξb

]
= λa − λξa + λξb + (1 − 2λ)

[
(ξb − L1 + a − ξa) ∨

(
ξb − PIMξa ,ξb

)]
≥ λa + (1 − 2λ)

[
(a − L1) ∨

(
ξa − PIMξa ,ξa

)]
= (1 − λ)a − (1 − 2λ)L1 + (1 − 2λ) [g2(ξa) − (a − L1)]

+ = v(ξa, ξa).

Hence, min(ξa ,ξb)∈�a,b v(ξa, ξb) ≥ min(ξa ,ξa )∈�a,b v(ξa, ξa), and since (ξa, ξa) ∈ �a,b, we have

min
(ξa ,ξb)∈�a,b

v(ξa, ξb) = min
(ξa ,ξa )∈�a,b

v(ξa, ξa)

= (1 − λ)a − (1 − 2λ)L1 + (1 − 2λ) min
(ξa ,ξa )∈�a,b

[g2(ξa) − (a − L1)]
+

= (1 − λ)a − (1 − 2λ)L1 + (1 − 2λ)

[
min

(ξa ,ξa )∈�a,b
g2(ξa) − (a − L1)

]+
.

Note that PIMξa ,ξa
= ξa − g2(ξa) and then

Pξa ,ξa = (ξa − a + L1) ∧ PIMξa ,ξa
= ξa − (a − L1) ∨ g2(ξa). (45)

i. If g1(vθ ) ≥ a−L1, note that g2(vθ ) ≤ L2 by (21), thus ξa = vθ satisfies condition (44),
namely (vθ , vθ ) ∈ �a,b. In this case,

min
(ξa ,ξa )∈�a,b

g2(ξa) ≥ min
ξa∈[0,a]

g2(ξa) = g2(vθ ) ≥ min
(ξa ,ξa )∈�a,b

g2(ξa),

where the equality holds due to Proposition 3.1(b). Therefore, min(ξa ,ξa )∈�a,b g2(ξa) =
g2(vθ ) and (ξ ∗

a , ξ
∗
b ) = (vθ , vθ ). It implies that Pξ∗

a ,ξ∗
b

= Pvθ ,vθ
= vθ − (a − L1) ∨ g2(vθ )

from (45), and

min
(ξa ,ξa )∈�a,b

v(ξa, ξa) = v(vθ , vθ )

= (1 − λ)a − (1 − 2λ)L1 + (1 − 2λ) [g2(vθ ) − (a − L1)]
+ .

By Lemma 3.2, a contract I∗ of the form (24) satisfying I∗(a) = vθ , I∗(b) = vθ ,
and PI∗ = Pvθ ,vθ

, is the optimal solution to Problem (14). Note that ξ ∗
a = ξ ∗

b . Thus,
I∗(x) = (x−d1)+ −(x−d1−vθ )

+ +(x−d3)+ for some d1 ∈ [0, a−vθ ] and d3 ∈ [b, ∞]
such that PI∗ = vθ − (a − L1) ∨ g2(vθ ) is the optimal solution to Problem (14).

https://doi.org/10.1017/asb.2015.23 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2015.23


OPTIMAL REINSURANCE FROMTHE PERSPECTIVES OF INSURER ANDREINSURER 837

ii. If g1(vθ ) < a−L1, note that g1(a−vθ ) ≥ a−L1 from (8), thus there exists ξ1 ∈ [vθ∧(a−
vθ ), vθ ∨(a−vθ )] such that g1(ξ1) = a−L1 due to the continuity and monotonicity of
g1 on this interval. From Proposition 3.1(d), we know g2(ξ) < g1(ξ) for any ξ ∈ [0, a].
In particular, g2(ξ1) < g1(ξ1) = a − L1 ≤ L2 and thus ξ1 satisfies condition (44),
namely (ξ1, ξ1) ∈ �a,b. For any (ξa, ξa) ∈ �a,b, we have [g2(ξ1) − (a − L1)]

+ = 0 ≤
[g2(ξa) − (a − L1)]

+. Then,[
min

(ξa ,ξa )∈�a,b
g2(ξa) − (a − L1)

]+
= 0 = [g2(ξ1) − (a − L1)]

+ ,

and ξ ∗
a = ξ1. In this case, we have Pξ∗

a ,ξ∗
b

= Pξ1,ξ1 = ξ1 − (a − L1) ∨ g2(ξ1) = ξ1 −
a+ L1 and min(ξa ,ξa )∈�a,b v(ξa, ξa) = v(ξ1, ξ1) = (1− λ)a− (1− 2λ)L1. Therefore, the
optimal contract of the form (24) is reduced to I∗(x) = (x− a+ ξ1)

+ − (x− a)+ with
d1 = a − ξa and d3 = ∞ because the contract I∗ satisfies I∗(a) = I∗(b) = ξ1 and
PI∗ = ξ1 − g1(ξ1) = ξ1 − a + L1 = Pξ1,ξ1 .

b. For the case 1
2 < λ ≤ 1. By Lemma 3.2, we have minI∈I1 V(I) = min(ξa ,ξb)∈�a,b v(ξa, ξb),

where v(ξa, ξb) = λa+ (2λ− 1)Pξa ,ξb −λξa + (1−λ)ξb and Pξa ,ξb = (ξb − L2)∨ PImξa ,ξb
. For

each (ξa, ξb) ∈ �a,b, since ξa ≤ ξb and PImξa ,ξa
≤ PImξa ,ξb

, we have

v(ξa, ξb) = λa − λξa + (1 − λ)ξb + (2λ − 1)
[
(ξb − L2) ∨ PImξa ,ξb

]
≥ λa − λξa + (1 − λ)ξa + (2λ − 1)

[
(ξa − L2) ∨ PImξa ,ξa

]
= v(ξa, ξa) = λa + (1 − 2λ)L2 + (2λ − 1)

[
(ξa − L2) ∨ PImξa ,ξa

− (ξa − L2)
]

= λa + (1 − 2λ)L2 + (2λ − 1)
[
PImξa ,ξa

− (ξa − L2)
]+

= λa + (1 − 2λ)L2 + (2λ − 1) [L2 − g1(ξa)]
+ .

Hence, min(ξa ,ξb)∈�a,b v(ξa, ξb) ≥ min(ξa ,ξa )∈�a,b v(ξa, ξa), and since (ξa, ξa) ∈ �a,b, we have

min
(ξa ,ξb)∈�a,b

v(ξa, ξb) = min
(ξa ,ξa )∈�a,b

v(ξa, ξa)

= λa + (1 − 2λ)L2 + (2λ − 1) min
(ξa ,ξa )∈�a,b

[L2 − g1(ξa)]
+

= λa + (1 − 2λ)L2 + (2λ − 1)
[
L2 − max

(ξa ,ξa )∈�a,b
g1(ξa)

]+
.

Note that PImξa ,ξa
= ξa − g1(ξa) and then

Pξa ,ξa = (ξa − L2) ∨ PImξa ,ξa
= ξa − L2 ∧ g1(ξa), (46)

i. If g2(a − vθ ) ≤ L2, note that a − L1 ≤ g1(a − vθ ) by (8), thus ξa = a − vθ satisfies
condition (44), namely (a − vθ , a − vθ ) ∈ �a,b ⊂ [0, a] × [0, b]. In this case,

max
(ξa ,ξa )∈�a,b

g1(ξa) ≤ max
ξa∈[0,a]

g1(ξa) = g1(a − vθ ) ≤ max
(ξa ,ξa )∈�a,b

g1(ξa),

where the equality holds due to Proposition 3.1(a). Therefore, max(ξa ,ξa )∈�a,b g1(ξa) =
g1(a − vθ ) and (ξ ∗

a , ξ
∗
b ) = (a − vθ , a − vθ ). It implies that Pξ∗

a ,ξ∗
b

= Pa−vθ ,a−vθ
=
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a − vθ − L2 ∧ g1(a − vθ ) due to (46), and min(ξa ,ξb)∈�a,b v(ξa, ξa) = v(a − vθ , a − vθ ) =
λa − (2λ − 1) [g1(a − vθ ) ∧ L2] .
By Lemma 3.2, a contract I∗ of the form (24) satisfying I∗(a) = a − vθ , I∗(b) = a − vθ ,
and PI∗ = Pa−vθ ,a−vθ

, is the optimal solution to Problem (14). Note that ξ ∗
a = ξ ∗

b = a−vθ .
Thus, I∗(x) = (x−d1)+ −(x−d1−a+vθ )

+ +(x−d3)+ for any d1 ∈ [0, vθ ] and d3 ∈ [b, ∞]
such that PI∗ = a − vθ − L2 ∧ g1(a − vθ ) is the optimal solution to Problem (14).

ii. If g2(a−vθ ) > L2, note that L2 ≥ g2(vθ ) by (21), thus there exists ξ2 ∈ [vθ ∧(a−vθ ), vθ ∨
(a− vθ )] such that L2 = g2(ξ2) due to the continuity and monotonicity of g2 as showed in
Proposition 3.1(b).Moreover, (ξ2, ξ2) ∈ �a,b from the observation a−L1 ≤ L2 = g2(ξ2) <

g1(ξ2). For any (ξa, ξa) ∈ �a,b, we have [L2 − g1(ξ2)]
+ = 0 ≤ [L2 − g1(ξa)]

+. Thus,

[
L2 − max

(ξa ,ξa )∈�a,b
g2(ξa)

]+
= 0 = [L2 − g1(ξa)]

+ ,

and ξ ∗
a = ξ2. In this case, we have Pξ∗

a ,ξ∗
a = Pξ2,ξ2 = ξ2 − L2 ∧ g1(ξ2) = ξ2 − L2 due to (46),

and min(ξa ,ξa )∈�a,b v(ξa, ξa) = v(ξ2, ξ2) = λa+ (1− 2λ)L2. Therefore, the optimal contract
of the form (24) is reduced to I∗(x) = x− (x− ξ2)

+ + (x− b)+ with d1 = 0 and d3 = b
because the contract I∗ satisfies I∗(a) = I∗(b) = ξ2 and PI∗ = ξ2 − g2(ξ2) = ξ2 − L2.

Proof of Theorem 3.2. Assume b < a. For each (ξa, ξb) ∈ �a,b, we have ξb ≤ ξa ≤ ξb +
a − b by (18), ξb − L2 ≤ PIMξa ,ξb

by (19), and a − L1 ≤ ξa − PImξa ,ξb
by (20). Since PIMξa ,ξb

and

ξa − PImξa ,ξb
are continuous and strictly increasing in ξa ∈ [0, a] by Proposition 3.1(e), we have

ξb − L2 ≤ PIMξa ,ξb
≤ PIM

ξb+a−b,ξb
and a − L1 ≤ ξa − PImξa ,ξb

≤ ξb + a − b − PIm
ξb+a−b,ξb

. Thus,

(ξb + a− b, ξb) ∈ �a,b. By (19) and (20), we know that (ξb + a− b, ξb) ∈ �a,b is equivalent to

g2(ξb) ≤ L2 and g3(ξb) ≥ b − L1. (47)

a. Consider the case 0 ≤ λ < 1
2 . By Lemma 3.2, minI∈I1 V(I) = min(ξa ,ξb)∈�a,b v(ξa, ξb),

where v(ξa, ξb) = λa+ (2λ−1)Pξa ,ξb −λξa + (1−λ)ξb and Pξa ,ξb = (L1 − a + ξa)∧ PIMξa ,ξb
.

For (ξa, ξb) ∈ �a,b, since ξa ≤ ξb + a − b and PIMξa ,ξb
≤ PIM

ξb+a−b,ξb
, we have

v(ξa, ξb) = λa − λξa + (1 − λ)ξb − (1 − 2λ)
[
(L1 − a + ξa) ∧ PIMξa ,ξb

]
≥ λa − λ(ξb + a − b) + (1 − λ)ξb − (1 − 2λ)

[
(L1 − b + ξb) ∧ PIM

ξb+a−b,ξb

]
= v(ξb + a − b, ξb)

= λb + (1 − 2λ)(b − L1) − (1 − 2λ)
[
(L1 − b + ξb) ∧ PIM

ξb+a−b,ξb
− (L1 − b + ξb)

]

= (1 − λ)b − (1 − 2λ)L1 + (1 − 2λ)
[
L1 − b + ξb − PIM

ξb+a−b,ξb

]+

= (1 − λ)b − (1 − 2λ)L1 + (1 − 2λ) [g2(ξb) − (b − L1)]
+ .
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Hence, min(ξa ,ξb)∈�a,b v(ξa, ξb) = min(ξb+a−b, ξb)∈�a,b v(ξb + a − b, ξb), and since (ξb + a −
b, ξb) ∈ �a,b, we have

min
(ξa ,ξb)∈�a,b

v(ξa, ξb) = min
(ξb+a−b,ξb)∈�a,b

v(ξb + a − b, ξb)

= (1 − λ)b − (1 − 2λ)L1 + (1 − 2λ) min
(ξb+a−b, ξb)∈�a,b

[g2(ξb) − (b − L1)]
+

= (1 − λ)b − (1 − 2λ)L1 + (1 − 2λ)

[
min

(ξb+a−b, ξb)∈�a,b
g2(ξb) − (b − L1)

]+
.

Note that PIM
ξb+a−b,ξb

= ξb − g2(ξb) and then

Pξb+a−b,ξb = (ξb + a − b − a + L1) ∧ PIM
ξb+a−b,ξb

= ξb − (b − L1) ∨ g2(ξb), (48)

i. If g3(vθ ) ≥ b − L1, note that g2(vθ ) ≤ L2 by (21), thus ξb = vθ satisfies condition (47),
namely (vθ + a − b, vθ ) ∈ �a,b. In this case,

min
(ξb+a−b, ξb)∈�a,b

g2(ξb) ≥ min
ξb∈[0,b]

g2(ξb) = g2(vθ ) ≥ min
(ξb+a−b, ξb)∈�a,b

g2(ξb),

where the equality holds due to Proposition 3.1(b). Therefore, min(ξb+a−b, ξb)∈�a,b g2(ξb) =
g2(vθ ) and (ξ ∗

a , ξ
∗
b ) = (vθ + a− b, vθ ). It implies that Pξ∗

a ,ξ∗
b

= Pvθ +a−b,vθ
= vθ − (b− L1)∨

g2(vθ ) due to (48), and

min
(ξb+a−b, ξb)∈�a,b

v(ξb + a − b, ξb) = v(vθ + a − b, vθ )

= (1 − λ)b − (1 − 2λ)L1 + (1 − 2λ) [g2(vθ ) − (b − L1)]
+ .

By Lemma 3.2, a contract I∗ of the form (24) satisfying I∗(a) = vθ +a−b, I∗(b) = vθ and
PI∗ = Pvθ +a−b,vθ

, is the optimal solution to Problem (14). In this case, note that ξ ∗
a = vθ +

a− b and ξ ∗
b = vθ . It implies that the range for d2 given in (24) is reduced to a single point

set, that is d2 ∈ [b, a− I∗(a)+ I∗(b)] = {b} and then, d2 = b. Hence, the optimal solution
to Problem (14) is reduced to I∗(x) = (x−d1)−(x−d1−vθ )

++(x−b)+−(x−a)++(x−d3)+

for some d1 ∈ [0, b − vθ ] and d3 ∈ [a, ∞] such that PI∗ = vθ − (b − L1) ∨ g2(vθ ).
ii. If g3(vθ ) < b − L1, note that g3(b − vθ ) ≥ b − L1 by (8) and g3 is continuous on [0, b],
thus there exists ξ3 ∈ [vθ ∧ (b − vθ ), vθ ∨ (b − vθ )] such that g3(ξ3) = b − L1. From
Proposition 3.1(e), we known that g2(ξ) < g3(ξ) for all ξ ∈ [0, b]. In particular, g2(ξ3) <

g3(ξ3) = b − L1 ≤ L2 and then ξ3 satisfies condition (47), namely (ξ3 + a − b, ξ3) ∈ �a,b.
For any (ξb + a − c, ξb) ∈ �a,b, we have [g2(ξ3) − (b − L1)]

+ = 0 ≤ [g2(ξb) − (b − L1)]
+.

Then,

[
min

(ξb+a−b, ξb)∈�a,b
g2(ξb) − (b − L1)

]+
= 0 = [g2(ξ3) − (b − L1)]

+ ,

and ξ ∗
b = ξ3. In this case, we have Pξ∗

a ,ξ∗
b

= Pξ3+a−b,ξ3 = ξ3 − (b−L1)∨g2(ξ3) = ξ3 −b+L1

due to (48) and

min
(ξb+a−b, ξb)∈�a,b

v(ξb + a − b, ξb) = v(ξ3 + a − b, ξ3) = (1 − λ)b − (1 − 2λ)L1.
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The optimal contract of the form (24) is reduced to I∗(x) = (x− b+ ξ3)
+ − (x− a)+ with

d1 = b − ξ3, d2 = b, and d3 = ∞ because the contract I∗ satisfies I∗(a) = ξ3 + a − b,
I∗(b) = ξ3 and PI∗ = ξ3 − g3(ξ3) = ξ3 − b + L1.

b. Consider the case 1
2 < λ ≤ 1. By Lemma 3.2, minI∈I1 V(I) = min(ξa ,ξb)∈�a,b v(ξa, ξb),

where v(ξa, ξb) = λa−λξa+(1−λ)ξb+(2λ−1)Pξa ,ξb and Pξa ,ξb = (ξb−L2)∨PImξa ,ξb
. For any

(ξa, ξb) ∈ �a,b, it is easy to check that ξa ≤ ξb+a−b and PImξa ,ξb
−ξa ≥ PIm

ξb+a−b,ξb
−(ξb+a−b),

thus

v(ξa, ξb) = λa + (1 − λ)(ξb − ξa) + (2λ − 1)
[
(ξb − L2 − ξa) ∨

(
PImξa ,ξb

− ξa

)]
≥ λa + (1 − λ)(b − a) + (2λ − 1)

[
(b − a − L2) ∨

(
PIm

ξb+a−b,ξb
− (ξb + a − b)

)]
= v(ξb + a − b, ξb) = λb + (2λ − 1)

[
(−L2) ∨

(
PIm

ξb+a−b,ξb
− ξb

)]

= λb + (1 − 2λ)L2 + (2λ − 1)
[
PIm

ξb+a−b,ξb
− (ξb − L2)

]+

= λb + (1 − 2λ)L2 + (2λ − 1) [L2 − g3(ξb)]
+ .

Hence, min(ξa ,ξb)∈�a,b v(ξa, ξb) ≥ min(ξb+a−b,ξb)∈�a,b v(ξb + a − b, ξb), and since (ξb + a −
b, ξb) ∈ �a,b, we have

min
(ξa ,ξb)∈�a,b

v(ξa, ξb) = min
(ξb+a−b,ξb)∈�a,b

v(ξb + a − b, ξb)

= λb + (1 − 2λ)L2 + (2λ − 1) min
(ξb+a−b, ξb)∈�a,b

[L2 − g3(ξb)]
+

= λb + (1 − 2λ)L2 + (2λ − 1)
[
L2 − max

(ξb+a−b, ξb)∈�a,b
g3(ξb)

]+
.

Note that PIm
ξb+a−b,ξb

= ξb − g3(ξb) and then

Pξb+a−b,ξb = (ξb − L2) ∨ PIm
ξb+a−b,ξb

= ξb − L2 ∧ g3(ξb), (49)

i. If g2(b − vθ ) ≤ L2, note that g3(b − vθ ) ≥ b − L1 by (8), thus ξb = b − vθ satisfies
condition (47), namely (a − vθ , b − vθ ) ∈ �a,b. It implies that

max
(ξb+a−b, ξb)∈�a,b

g3(ξb) ≤ max
ξb∈[0,b]

g3(ξb) = g3(b − vθ ) ≤ max
(ξb+a−b, ξb)∈�a,b

g3(ξb),

where the equality holds due to Proposition 3.1(c). Therefore, we obtain that
max(ξb+a−b, ξb)∈�a,b g3(ξb) = g3(b − vθ ) and (ξ ∗

a , ξ
∗
b ) = (a − vθ , b − vθ ). It implies that

Pξ∗
a ,ξ∗

b
= Pa−vθ ,b−vθ

= b − vθ − g3(b − vθ ) ∧ L2 due to (49), and

min
(ξb+a−b, ξb)∈�a,b

v(ξb + a − b, ξb) = λb + (1 − 2λ)L2 + (2λ − 1) [L2 − g3(b − vθ )]
+ .

By Lemma 3.2, a contract I∗ of the form (24) satisfying I∗(a) = a−vθ , I∗(b) = b−vθ , and
PI∗ = Pa−vθ ,b−vθ

, is the optimal solution to Problem (14). Note that in this case, ξ ∗
a = a−vθ

and ξ ∗
b = b− vθ . Hence, d2 ∈ [b, a − I∗(a) + I∗(b)] = {b} and thus d2 = b. Therefore, the

optimal solution I∗ is reduced to I∗(x) = (x−d1)+ − (x−d1 −b+vθ )
+ + (x−b)+ − (x−

a)++(x−d3)+ for some d1 ∈ [0, vθ ] and d3 ∈ [a, ∞] such that PI∗ = b−vθ −L2∧g3(b−vθ ).
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ii. If g2(b − vθ ) > L2, note that g2(vθ ) ≤ L2 due to (21), thus there exists ξ4 ∈ [vθ ∧ (b −
vθ ), vθ ∨(b−vθ )] such that g2(ξ4) = L2 due to the continuity andmonotonicity of g2. Since
a−L1 ≤ L2 = g2(ξ4) < g3(ξ4), we have that ξ4 satisfies (47), namely (ξ4+a−b, ξ4) ∈ �a,b.
For all (ξb + a − b, ξb) ∈ �a,b, we have [L2 − g3(ξ4)]

+ = 0 ≤ [L2 − g3(ξb)]
+. Thus,

[
L2 − max

(ξb+a−b, ξb)∈�a,b
g3(ξb)

]+
= 0 = [L2 − g3(ξ4)]

+ ,

and ξ ∗
b = ξ4. In this case, we have Pξ∗

a ,ξ∗
b

= Pξ4+a−b,ξ4 = ξ4 − L2 ∧ g3(ξ4) = ξ4 − L2 due to
(49), andmin(ξb+a−b, ξb)∈�a,b v(ξb+a−b, ξb) = v(ξ4+a−b, ξ4) = λb+(1−2λ)L2.Therefore,
the optimal contract of the form (24) is reduced to I∗(x) = x−(x−ξ4)

++(x−b)+ because
the contract f ∗ satisfies I∗(a) = ξ4 +a−b, I∗(b) = ξ4, and PI∗ = ξ4 − g2(ξ4) = ξ4 − L2 =
Pξ4+a−b,ξ4 .

Proof of Proposition 4.1. a. Obviously, h1(ξc) = (1 + θ)(
∫ ξc
0 + ∫ ∞

c )SX(x)dx − ξc is
continuous and differentiable with h′

1(ξc) = (1 + θ)SX(ξc) − 1. Since h′
1(ξc) is decreas-

ing in ξc, we obtain that h1(ξc) is a concave function of ξc. For any 0 ≤ ξc < vθ ,
we have SX(ξc) > 1

1+θ
, where vθ = VaR 1

1+θ
(X) = inf

{
x ≥ 0 : SX(x) ≤ 1

1+θ

}
. Thus,

h′
1(ξc) = (1 + θ)SX(ξc) − 1 > 0 for any 0 ≤ ξc < vθ , and h1(ξc) is strictly increasing on

[0, vθ ). For any c ≥ ξc > vθ , we have SX(ξc) ≤ 1
1+θ

. Thus, h′
1(ξc) = (1 + θ)SX(ξc) − 1 ≤ 0

for any c ≥ ξc > vθ , and h1(ξc) is decreasing on (vθ , c]. Hence, maxξc∈[0,c] h1(ξc) = h1(vθ ).
b. Obviously, h2(ξc) = (1 + θ)

∫ a
c−ξc

SX(x)dx − ξc is continuous and differentiable with

h′
2(ξc) = (1+ θ)SX(c− ξc)− 1. For ξc < c− vθ , we have c− ξc > vθ and SX(c− ξc) ≤ 1

1+θ
.

For ξc > c − vθ , we have c − ξc < vθ and SX(c − ξc) > 1
1+θ

. Thus, h2(ξc) is decreasing on
[0, c− vθ ), strictly increasing on (c− vθ , c] and minξc∈[0,c] h2(ξc) = h2(c− vθ ). Since c < a
and SX(x) is continuous and decreasing in x ≥ 0, we have, for ξc ∈ [0, c],

h1(ξc) − h2(ξc) = (1 + θ)

(∫ ξc

0
+

∫ a

c
+

∫ ∞

a

)
SX(x)dx− (1 + θ)

(∫ c

c−ξc

+
∫ a

c

)
SX(x)dx

= (1 + θ)

(∫ ξc

0
−

∫ c

c−ξc

+
∫ ∞

a

)
SX(x)dx

= (1 + θ)

∫ ξc

0
[SX(x) − SX(x+ c − ξc)] dx+ (1 + θ)

∫ ∞

a
SX(x)dx > 0,

where SX(x) ≥ SX(x+ c − ξc) and SX(a) = α > 0.

Proof of Proposition 4.2. We prove (b) for the function Aξc only. The proofs for all the
other functions and results in (a)–(f) can be obtained using similar arguments and are omit-
ted.

(b)Clearly, Aξc (ξa) = PIMξc ,ξa ,ξa
= (1+θ)

(∫ ξc
0 + ∫ c+ξa−ξc

c + ∫ ∞
b

)
SX(x)dx is continuous and

strictly increasing in ξa with A′
ξc
(ξa) = (1+ θ)SX(c+ ξa − ξc) > 0. Note that SX(c+ ξa − ξc) ≤

SX(c) = 1−γ < 1
1+θ

and d
dξa

[
ξa − Aξc (ξa)

] = 1−(1+θ)SX(c+ξa−ξc) > 0. Thus, ξa−Aξc (ξa)

is continuous and strictly increasing in ξa ∈ [ξc, ξc + b − c].

Proof of Proposition 4.3. The proof of this proposition is similar to the proof of Propo-
sitions 4.1 and 4.2 and is omitted.
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Proof of Proposition 4.4. (a) Note that �c ⊂ [0, c]. If �c = [0, c], then ξmc = 0, ξMc = c
and the proof is done. Now, assume �c �= [0, c]. From (29) and (30), ξc ∈ �c is equivalent to
h1(ξc) ≥ L3 and h2(ξc) ≤ L1 − c. From Proposition 4.1(a) and (b), we have that h1 is concave
and h2 is convex on [0, c]. Denote ξmc = inf �c and ξMc = sup�c. Then, 0 ≤ ξmc ≤ ξMc ≤ c
because �c ⊂ [0, c]. There exists a sequence {xn}∞

n=1 ⊂ �c such that xn → ξmc as n → ∞.
For each n, we have h1(xn) ≥ L3 and h2(xn) ≤ L1 − c because xn ∈ �c. By continuity of
h1 and h2, h1(ξmc ) = limn→∞ h1(xn) ≥ L3 and h2(ξmc ) = limn→∞ h2(xn) ≤ L1 − c and thus,
ξmc ∈ �c. Using a similar argument, we can prove ξMc ∈ �c. For any ξc ∈ (ξmc , ξMc ), there
exists 	 ∈ (0, 1) such that ξc = 	ξmc + (1 − 	)ξMc . It is easy to see that ξc ∈ �c because
h1(ξc) = h1(	ξmc + (1− 	)ξMc ) ≥ 	h1(ξmc ) + (1− 	)h1(ξMc ) ≥ 	L3 + (1− 	)L3 = L3 from
the concavity of h1; and h2(ξc) = h2(	ξmc +(1−	)ξMc ) ≤ 	h2(ξmc )+(1−	)h2(ξMc ) ≤ 	(L1−
c) + (1 − 	)(L1 − c) = L1 − c from the convexity of h2. Therefore, �c = [ξmc , ξMc ] ⊂ [0, c].

The proofs of (b) and (c) are similar to (a) and are omitted.

Proof of Lemma 4.1. We assume a < b. The proof for the case of a > b is similar to the
case of a < b and is omitted.

(i) ⇒ (ii). Suppose (8) and (9) hold, which are equivalent to h2(c − vθ ) ≤ L1 − c and
L3 ≤ h1(vθ ), respectively. We will prove I2 �= ∅ by considering the following two cases:

Case 1: If h2(0) ∨ h2(c) ≥ L1 − c, by the continuity of h2 and (8), there exists ξc ∈ [0, c]
such that h2(ξc) = L1 − c, and thus L3 ≤ L1 − c = h2(ξc) < h1(ξc). Consider the contract
I(x) = (x− c+ ξc)

+ − (x− a)+ ∈ I. It is easy to check that I(c) = ξc, I(a) = ξc + a− c, and
PI = h2(ξc)+ξc = L1−c+ξc. Thus, I ∈ I2 since a−I(a)+PI = a−(ξc+a−c)+L1−c+ξc = L1

and PI − I(c) = L1 − c ≥ L3.
Case 2: If h2(0)∨h2(c) < L1 − c, then h2(ξc) ≤ L1 − c for all ξc ∈ [0, c], and in particular,

h2(vθ ) ≤ L1 − c. Note that L3 ≤ h1(vθ ) by (9), we have

vθ − c + L1 ≥ h2(vθ ) + vθ = PImvθ , vθ +a−c and vθ + L3 ≤ h1(vθ ) + vθ = PIMvθ , vθ +a−c ,

where Imvθ , vθ +a−c(x) = (x−c+vθ )
+ − (x−a)+ and IMvθ , vθ +a−c(x) = x− (x−vθ )

+ + (x−c)+ for
all x ≥ 0. Since c ≤ L1 − L3, we have vθ + L3 ≤ vθ − c+ L1. Note that PImvθ ,vθ +a−c ≤ PIMvθ ,vθ +a−c ,

and thus (vθ + L3)∨ PImvθ ,vθ +a−c ≤ (vθ − c+ L1)∧ PIMvθ ,vθ +a−c . Using similar arguments to those

used in the proof of Lemma 3.2, we know that as a function of (d1, d2) ∈ [0, c− vθ ]× [a,∞],

PI = PI(d1, d2) = (1 + θ)
(∫ d1+vθ

d1
+ ∫ d2

c

)
SX(x)dx can take all its intermediate values in

the interval [PImvθ , vθ +a−c , PIMvθ , vθ +a−c ]. Thus, there exists (d1, d2) ∈ [0, c − vθ ] × [a,∞] such that

PI(d1, d2) = (vθ +L3)∨ PImvθ , vθ +a−c . Consider the contract I(x) = (x−d1)+ − (x−d1 −vθ )
+ +

(x−c)+−(x−d2)+, it is easy to check that I(c) = vθ , I(a) = vθ +a−c, and PI = PI(d1, d2) =
(vθ + L3) ∨ PImvθ , vθ +a−c . Thus, I(c) + L3 = vθ + L3 ≤ PI ≤ vθ − c + L1 = I(a) − a + L1 and
I ∈ I2.

Therefore, by combining Cases 1 and 2, we get I2 �= ∅.
(ii) ⇒ (iii). Suppose I2 �= ∅. For any I ∈ I2, denote ξc = I(c), ξa = I(a) and ξb = I(b).

Note that for a < b and I ∈ I2, we have ξa ≤ ξb and ξc + L3 ≤ PI ≤ ξa − a + L1, and
thus (26) holds. It is easy to check that Imξc ,ξa ,ξb (x) ≤ I(x) ≤ IMξc ,ξa ,ξb (x) for all x ≥ 0 and thus
PImξc ,ξa ,ξb

≤ PI ≤ PIMξc ,ξa ,ξb
.Moreover, we get (ξc + L3)∨PImξc ,ξa ,ξb

≤ PI ≤ (ξa − a + L1)∧PIMξc ,ξa ,ξb

and it implies that (27) and (28) hold for (ξc, ξa, ξb). By its definition, (ξc, ξa, ξb) ∈ �c,a,b and
then �c,a,b �= ∅.
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(iii) ⇒ (i). Suppose �c,a,b �= ∅. From (27), we get

L3 ≤ (1 + θ)

(∫ ξc

0
+

∫ c+ξa−ξc

c
+

∫ a+ξb−ξa

a
+

∫ ∞

b

)
SX(x)dx− ξc

≤ (1 + θ)

(∫ ξc

0
+

∫ ∞

c

)
SX(x)dx− ξc = h1(ξc) ≤ h1(vθ ).

Thus, (9) holds. From (28) and the fact that ξa − Amξc (ξa) is increasing in ξa , we get

a − L1 ≤ ξa − (1 + θ)

(∫ c

c−ξc

+
∫ a

a−ξa+ξc

+
∫ b

b−ξb+ξa

)
SX(x)dx

≤ ξa − (1 + θ)

(∫ c

c−ξc

+
∫ a

a−ξa+ξc

)
SX(x)dx = ξa − Amξc (ξa)

≤ ξc + a − c − Amξc (ξc + a − c) = a − c − h2(ξc) ≤ a − c − h2(c − vθ ),

where h2(ξc) = Amξc (ξc + a − c) − ξc. Thus, (8) holds.

Proof of Lemma 4.2. We assume a < b. The proof for the case of a > b is similar to the
case of a < b and is omitted.

For any I ∈ I2, from the proof of Lemma 4.1 for (ii)⇒ (iii), we have (ξc + L3)∨PImξc ,ξa ,ξb
≤

PI ≤ (ξa − a + L1)∧PIMξc ,ξa ,ξb
, where (ξc, ξa, ξb) = (I(c), I(a), I(b)) ∈ �c,a,b. By the definition

(36) of Pξc ,ξa ,ξb , it is easy to check PI ≤ PI(c),I(a),I(b) for 0 ≤ λ < 1/2 and PI ≥ PI(c),I(a),I(b) for
1/2 < λ ≤ 1. Therefore, we have (2λ − 1)PI ≥ (2λ − 1)PI(c),I(a),I(b), and

V(I) = λa + (2λ − 1)PI − λI(a) + (1 − λ)I(b)

≥ λa + (2λ − 1)PI(c),I(a),I(b) − λI(a) + (1 − λ)I(b) = w(I(c), I(a), I(b)).

Thus, minI∈I2 V(I) ≥ min(ξc ,ξa ,ξb)∈�c,a,b w(ξc, ξa, ξb).
On the contrary, for any (ξc, ξa, ξb) ∈ �c,a,b, using similar arguments to those used in the

proof of Lemma 3.2, we know that there exists I ∈ I such that PI = Pξc ,ξa ,ξb , I(c) = ξc,
I(a) = ξa and I(b) = ξb. Thus, I satisfies ξc + L3 ≤ PI ≤ ξa + L1 − a, namely I ∈ I2

and V(I) = w(ξc, ξa, ξb). It implies that minI∈I2 V(I) ≤ min(ξc ,ξa ,ξb)∈�c,a,b w(ξc, ξa, ξb). Thus,
minI∈I2 V(I) = min(ξc ,ξa ,ξb)∈�c,a,b w(ξc, ξa, ξb).

Proof of Lemma 4.3. (a) Assume a < b and 0 ≤ λ < 1/2. For any (ξc, ξa) ∈ �c × �a,ξc

where �c = [ξmc , ξMc ] and �a,ξc = [ξma (ξc), ξMa (ξc)], in the first step, we solve the problem of
minξb∈�b,ξc ,ξa

w(ξc, ξa, ξb), where �b,ξc ,ξa = [ξmb (ξc, ξa), ξMb (ξc, ξa)]. By Lemma 4.2, we have

w(ξc, ξa, ξb) = λa + (2λ − 1)
[
(L1 − a + ξa) ∧ PIMξc ,ξa ,ξb

]
− λξa + (1 − λ)ξb

= λa − λξa + λξb + (1 − 2λ)
[
(ξb − L1 + a − ξa) ∨

(
ξb − PIMξc ,ξa ,ξb

)]
,

thus w(ξc, ξa, ξb) inherits the increment in ξb ∈ �b,ξc ,ξa from the function ξb − PIMξc ,ξa ,ξb
by

Proposition 4.2(a). Therefore, the minimizer of minξb∈�b,ξc ,ξa
w(ξc, ξa, ξb), is the left-end point

ξ ∗
b (ξc, ξa) = ξmb (ξc, ξa) of the set �b,ξc ,ξa .

In the second step, we solve the problem of min
ξa∈�a,ξc

w(ξc, ξa, ξ
m
b (ξc, ξa)) =

min
ξa∈�a,ξc

w2(ξc, ξa). In doing so, consider the supremum of the set {ξa ∈ �a,ξc : Aξc (ξa) <
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ξc + L3}, denoted by

ξa,ξc = sup
{
ξa ∈ �a,ξc : Aξc (ξa) < ξc + L3

}
. (50)

By convention, the supremum (50) is defined as the left-end point ξma (ξc) of the set �a,ξc if
the set

{
ξa ∈ �a,ξc : Aξc (ξa) < ξc + L3

}
is empty. Note that Aξc (ξa) is continuous and strictly

increasing in ξa , thus there are three possible scenarios for the supremum (50). First of all, if
ξc + L3 ≤ Aξc (ξ

m
a (ξc)), then ξa,ξc = ξma (ξc). Second, if Aξc (ξ

m
a (ξc)) < ξc + L3 < Aξc (ξ

M
a (ξc)),

then ξma (ξc) < ξa,ξc < ξMa (ξc) and Aξc (ξa,ξc ) = ξc+L3. The last scenario is that if Aξc (ξ
M
a (ξc)) ≤

ξc + L3, then ξa,ξc = ξMa (ξc). In the following, we discuss the properties of the function
w2(ξc, ξa) in the second scenario, that is to assume Aξc (ξ

m
a (ξc)) < ξc + L3 < Aξc (ξ

M
a (ξc)).

Case a.1. For ξma (ξc) ≤ ξa ≤ ξa,ξc , we have Aξc (ξa) ≤ ξc + L3, and then PIMξc ,ξa ,ξa
=

Aξc (ξa) ≤ ξc + L3. By (31), we have PIM
ξc ,ξa ,ξa+b−a

≥ ξc + L3. Since PIMξc ,ξa ,ξb
is continuous and

strictly increasing in ξb, we know that the equation PIMξc ,ξa ,ξb
= ξc + L3 has a unique solution

ξb,0 ∈ [ξa, ξa + b − a], namely, (27) is satisfied by (ξc, ξa, ξb,0). Meanwhile, (28) is satisfied by
(ξc, ξa, ξb,0) because PImξc ,ξa ,ξb,0

≤ PIMξc ,ξa ,ξb,0
= ξc + L3 ≤ L1 − a+ ξa . Thus, (ξc, ξa, ξb,0) ∈ �c,a,b

and ξb,0 ∈ �b,ξc ,ξa . For any ξb < ξb,0, because PIMξc ,ξa ,ξb
< ξc + L3, namely, (27) is not satisfied,

we have that (ξc, ξa, ξb) /∈ �c,a,b and then ξb /∈ �b,ξc ,ξa . Therefore, ξmb (ξc, ξa) = ξb,0 and
PIM

ξc ,ξa ,ξmb (ξc ,ξa )
= ξc + L3. Now, for any ξ1 and ξ2 such that ξma (ξc) ≤ ξ1 < ξ2 ≤ ξa,ξc , we have

that ξmb (ξc, ξi ) satisfies PIM
ξc ,ξi ,ξ

m
b (ξc ,ξi )

= ξc + L3, for i = 1, 2. Then, the equation PIM
ξc ,ξ1 ,ξmb (ξc ,ξ1)

=
ξc + L3 = PIM

ξc ,ξ2 ,ξmb (ξc ,ξ2)
implies that

∫ a+ξmb (ξc ,ξ1)−ξ1

a+ξmb (ξc ,ξ2)−ξ2

SX(x)dx =
∫ c+ξ2−ξc

c+ξ1−ξc

SX(x)dx > 0.

Since SX(x) is positive and decreasing in x, we have a+ξmb (ξc, ξ1)−ξ1−(a+ξmb (ξc, ξ2)−ξ2) ≥
c+ ξ2 − ξc − (c+ ξ1 − ξc) and thus ξmb (ξc, ξ1) ≥ ξmb (ξc, ξ2). Moreover, ξmb (ξc, ξ2) → ξmb (ξc, ξ1)

as ξ2 → ξ1. Therefore, ξmb (ξc, ξa) is continuous and decreasing in ξa ∈ [ξma (ξc), ξa,ξc ]. Since
ξ ∗
b (ξc, ξa) = ξmb (ξc, ξa) and PIM

ξc ,ξa ,ξ∗
b (ξc ,ξa )

= ξc + L3 ≤ L1 − a + ξa , we have

w2(ξc, ξa) = λa + (2λ − 1)
[
(L1 − a + ξa) ∧ PIM

ξc ,ξa ,ξ∗
b (ξc ,ξa )

]
− λξa + (1 − λ)ξ ∗

b (ξc, ξa)

= λa + (2λ − 1)(ξc + L3) − λξa + (1 − λ)ξ ∗
b (ξc, ξa)

is continuous and decreasing in ξa ∈ [ξma (ξc), ξa,ξc ]. In particular, when ξa = ξa,ξc , it is
easy to check that the equation Aξc (ξa,ξc ) = ξc + L3 implies that ξmb (ξc, ξa,ξc ) = ξa,ξc , and
w2(ξc, ξa,ξc ) = λa + (1 − 2λ)

(
ξa,ξc − (ξc + L3)

)
.

Case a.2. For ξa,ξc < ξa ≤ ξMa (ξc), we have that Aξc (ξa) > ξc + L3, then (27) is satisfied
by (ξc, ξa, ξa). Since ξa ∈ �a,ξc , (32) implies that (ξc, ξa, ξa) satisfies (28). Thus, (ξc, ξa, ξa) ∈
�c,a,b. It implies that ξa ∈ �b,ξc ,ξa and then ξmb (ξc, ξa) = ξa . We have ξ ∗

b (ξc, ξa) = ξa and

w2(ξc, ξa) = λa + (2λ − 1)
[
(L1 − a + ξa) ∧ PIM

ξc ,ξa ,ξ∗
b (ξc ,ξa )

]
− λξa + (1 − λ)ξ ∗

b (ξc, ξa)

= λa + (1 − 2λ)
[
(a − L1) ∨ (

ξa − Aξc (ξa)
)]

,
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which inherits the continuity and increment in ξa form the function ξa−Aξc (ξa) by Proposition
4.2(b). Note that ξc + L3 ≤ ξa,ξc − a + L1 and then

lim
ξa↓ξa,ξc

w2(ξc, ξa) = λa + (1 − 2λ)
[
(a − L1) ∨ (

ξa,ξc − Aξc (ξa,ξc )
)]

= λa + (1 − 2λ)
[
(a − L1) ∨ (

ξa,ξc − (ξc + L3)
)]

= λa + (1 − 2λ)
(
ξa,ξc − (ξc + L3)

) = w2(ξc, ξa,ξc ).

By combining Cases a.1 and Case a.2, we obtain that, when Aξc (ξ
m
a (ξc)) < ξc + L3 <

Aξc (ξ
M
a (ξc)), the function w2(ξc, ξa) is continuous in ξa ∈ �a,ξc and minimized at the point

ξ ∗
a (ξc) = ξa,ξc . If ξc + L3 ≤ Aξc (ξ

m
a (ξc)), by using the same arguments in Case a.2, we have

that w2(ξc, ξa) is continuous in ξa ∈ �a,ξc and minimized at the point ξ ∗
a (ξc) = ξa,ξc = ξma (ξc).

If Aξc (ξ
M
a (ξc)) ≤ ξc + L3, by using the same arguments in Case a.1, we have that w2(ξc, ξa)

is continuous in ξa ∈ �a,ξc and minimized at the point ξ ∗
a (ξc) = ξa,ξc = ξMa (ξc). In short, we

conclude that w2(ξc, ξa) is continuous in ξa ∈ �a,ξc and minimized at the point ξ ∗
a (ξc) = ξa,ξc .

In the last step, we solve the problem of minξc∈�c w2(ξc, ξ
∗
a (ξc)) = minξc∈�c w1(ξc). Note

that, for each ξc ∈ �c, ξMa (ξc) = ξc + a − c and ξma (ξc) ≥ ξc + L3 + a − L1. By Proposition
4.2(b), we know that ξa − Aξc (ξa) and ξa − Amξc (ξa) are both continuous and strictly increasing
in ξa . Consider the following two cases:

Case a.i. If L3 ≤ h5(ξc), namely ξc+L3 ≤ Aξc (ξc+L3+a−L1), note that ξma (ξc) ≥ ξc+L3+
a−L1 and Aξc (ξa) is increasing on�a,ξc , thus Aξc (ξ

m
a (ξc)) ≥ Aξc (ξc+L3+a−L1) ≥ ξc+L3. It

implies that the set
{
ξa ∈ �a,ξc : Aξc (ξa) < ξc + L3

}
is empty. Thus, we have ξ ∗

a (ξc) = ξma (ξc)

and Aξc (ξ
∗
a (ξc)) ≥ ξc + L3. From the arguments in Case a.2, we have ξ ∗

b (ξc, ξ
∗
a (ξc)) = ξ ∗

a (ξc)

and

w2(ξc, ξa) = λa + (1 − 2λ)
[
(a − L1) ∨ (

ξ ∗
a (ξc) − Aξc (ξ

∗
a (ξc))

)]
.

Suppose Aξc (ξ
∗
a (ξc)) < ξ ∗

a (ξc)+L1 −a, then ξ ∗
a (ξc) > Aξc (ξ

∗
a (ξc))−L1 +a ≥ ξc +L3 +a−L1

and ξ ∗
a (ξc)− Amξc (ξ

∗
a (ξc)) ≥ ξ ∗

a (ξc)− Aξc (ξ
∗
a (ξc)) > a−L1. Note that ξa − Amξc (ξa) is continuous

and increasing in ξa ∈ �a,ξc , then there exists ξ ∈ [ξc + L3 + a − L1, ξ ∗
a (ξc)) such that

ξ − Amξc (ξ) > a − L1, which implies that ξ satisfies (31). Moreover, ξ satisfies (32) because
ξc + L3 ≤ Aξc (ξc + L3 + a − L1) ≤ Aξc (ξ) ≤ AM

ξc
(ξ). Conditions (31) and (32) imply ξ ∈

�a,ξc , namely ξ ≥ ξma (ξc), which contradicts the fact that ξ < ξ ∗
a (ξc) = ξma (ξc). Therefore,

Aξc (ξ
∗
a (ξc)) ≥ ξ ∗

a (ξc) + L1 − a and w2(ξc, ξa) = λa + (1− 2λ)(a − L1) is a constant function.
Case a.ii. If L3 > h5(ξc), namely ξc + L3 > Aξc (ξc + a − L1 + L3). Since Aξc (ξc +

b − c) ≥ ξc + L3, by (29), and the fact that Aξc (ξa) is continuous and strictly increasing
in ξa ∈ �a,ξc , we see that there exists ξa,1 ∈ [ξc + a − L1 + L3, ξc + b − c], which is the
unique solution to the equation of Aξc (ξa,1) = L3 + ξc. Thus, ξ ∗

a (ξc) = ξa,1 ∧ ξMa (ξc) =
ξa,1 ∧ (ξc + a − c) ≤ ξa,1 and Aξc (ξ

∗
a (ξc)) ≤ Aξc (ξa,1) = ξc + L3. Consider the contract

I(x) = x− (x− ξc)
+ + (x− c)+ − (x− (c + ξa,1 − ξc))

+ + (x− b)+, it is easy to check that
I(c) = ξc, I(a) = (ξc +a− c)∧ ξa,1 = ξ ∗

a (ξc), I(b) = ξa,1, and PI = Aξc (ξa,1) = ξc +L3. Since
I(c)+ L3 = ξc + L3 = PI = (ξc + L3 + a− L1)− a+ L1 ≤ I(a)− a+ L1, we have I ∈ I2 and
(ξc, (ξc+a−c)∧ξa,1, ξa,1) ∈ �c,a,b. For any ξb < ξa,1, we have (ξc, (ξc+a−c)∧ξa,1, ξb) /∈ �c,a,b

because either (26) is invalid when ξa,1 < ξc+a−c, or (27) is invalid when ξa,1 ≥ ξc+a−c from
the observation that PIMξc ,ξc+a−c,ξb

= Aξc (ξb) < Aξc (ξa,1) = ξc+L3. It implies that ξb /∈ �b,ξc ,ξ∗
a (ξc)

for any ξb < ξa,1 and then ξ ∗
b (ξc, ξ

∗
a (ξc)) = ξmb (ξc, ξ

∗
a (ξc)) = ξa,1. It is easy to check that,
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PIM
ξc ,(ξc+a−c)∧ξa,1 ,ξa,1

= Aξc (ξa,1) = ξc + L3 ≤ ξa,1 − a + L1. Thus,

w1(ξc) = λa − λξ ∗
a (ξc) + (1 − λ)ξ ∗

b (ξc, ξ
∗
a (ξc))

+ (2λ − 1)
[
(L1 − a + ξ ∗

a (ξc)) ∧ PIM
ξc ,ξ∗

a (ξc ),ξ∗
b (ξc ,ξ∗

a (ξc ))

]

= λa − λ((ξc + a − c) ∧ ξa,1) + (1 − λ)ξa,1 + (2λ − 1)(ξc + L3)

and it has derivative on the set �c \ {
ξc : Aξc (ξc + a − c) = L3 + ξc + a − c

}
with

w′
1(ξc) = [1 − λ − λ I(ξa,1 < ξc + a − c)]

(
d
dξc

ξa,1 − 1
)

= 1
SX(c + ξa,1 − ξc)

(
1

1 + θ
− SX(ξc)

)
[1 − λ − λ I(ξa,1 < ξc + a − c)],

where d
dξc

ξa,1 = 1+ [
1

1+θ
− SX(ξc)

]
/SX(c+ ξa,1 − ξc) since ξa,1 satisfies the equation ξc +L3 =

Aξc (ξa,1). Note that w′
1(ξc) ≤ 0 ⇐⇒ 1

1+θ
≤ SX(ξc) ⇐⇒ ξc ≤ vθ .

By combiningCase a.i andCase a.ii, we obtain thatw′
1(ξc) ≤ 0when ξc ≤ vθ andw′

1(ξc) ≥
0 when ξc > vθ . Therefore, ξ ∗

c = ξmc ∨ (
vθ ∧ ξMc

)
.

The proofs of (b) and (c) are similar to (a) and omitted.
(d) Assume b < a and 1/2 < λ ≤ 1. By Lemma 4.2, we have

w(ξc, ξb, ξa) = λa − λξa + (1 − λ)ξb + (2λ − 1)
[
(ξc + L3) ∨ PImξc ,ξa ,ξb

]
= λa + (1 − λ)ξb − (1 − λ)ξa + (2λ − 1)

[
(ξc + L3 − ξa) ∨

(
PImξc ,ξa ,ξb

− ξa

)]
.

Thus, w(ξc, ξa, ξb) is continuous and decreasing in ξa due to the properties of PImξc ,ξa ,ξb
− ξa

given in Proposition 4.3(a). Hence, we have ξ ∗
a (ξc, ξb) = ξMa (ξc, ξb) = ξb + a − b and

w2(ξc, ξb) =w(ξc, ξ
∗
a (ξc, ξb), ξb) = λa − λ(ξb + a − b) + (1 − λ)ξb

+ (2λ − 1)
[
(ξc + L3) ∨ Bm

ξc
(ξb)

]
=λb + (2λ − 1)

[
(ξc + L3 − ξb) ∨ (

Bm
ξc
(ξb) − ξb

)]
.

Thus, w2(ξc, ξb) is continuous and decreasing in ξb due to the properties of Bm
ξc
(ξb) − ξb given

in Proposition 4.3(b). It implies ξ ∗
b (ξc) = ξMb (ξc) = ξc + b − c and thus

min
ξc∈�c

w1(ξc) = min
ξc∈�c

w2(ξc, ξ
∗
b (ξc))

= min
ξc∈�c

{
λb + (2λ − 1)

[
(c + L3 − b) ∨ (

Bm
ξc
(ξc + b − c) − (ξc + b − c)

)]}
= min

ξc∈�c
{(1 − λ)b + (2λ − 1)c + (2λ − 1) [L3 ∨ h2 (ξc)]}

= (1 − λ)b + (2λ − 1)c + (2λ − 1)
[
L3 ∨ min

ξc∈�c
h2 (ξc)

]
.

Since h2(ξc) is continuous, decreasing on [0, c − vθ ), and increasing on (c − vθ , c], we obtain
that w1(ξc) is continuous and ξ ∗

c = ξmc ∨ [
(c − vθ ) ∧ ξMc

]
.
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Proof of Theorem 4.1. We assume a < b. The proof for the case of a > b is similar to the
case of a < b and is omitted.

For a < b, we have ξ ∗
b = ξ ∗

b (ξ
∗
c , ξ

∗
a ) ∈ �b,ξ∗

c ,ξ∗
a . Note that �b,ξ∗

c ,ξ∗
a is the set of all ξb ∈

[ξ ∗
a , ξ

∗
a +b−a] such that (ξ ∗

c , ξ
∗
a , ξb) ∈ �c,a,b, thus

(
ξ ∗
c , ξ

∗
a , ξ

∗
b

) ∈ �c,a,b. It is easy to check that
any contract I of the form

I(x) = (x− d1)+ − (x− d1 − ξ ∗
c )

+ + (x− d2)+ − (x− (d2 + ξ ∗
a − ξ ∗

c ))
+

+ (x− d3)+ − (x− (d3 + ξ ∗
b − ξ ∗

a ))
+ + (x− d4)+ (51)

for some (d1, d2, d3, d4) ∈ [0, c − ξ ∗
c ] × [c, a − ξ ∗

a + ξ ∗
c ] × [a, b − ξ ∗

b + ξ ∗
a ] × [b, ∞], satisfies

I ∈ I, I(c) = ξ ∗
c , I(a) = ξ ∗

a , I(b) = ξ ∗
b and Im

ξ∗
c ,ξ∗

a ,ξ∗
b
(x) ≤ I(x) ≤ IM

ξ∗
c ,ξ∗

a ,ξ∗
b
(x) for all x ≥ 0. For

I of the form (51), its premium is given by

PI = P(d1, d2, d3, d4) = (1 + θ)

(∫ d1+ξ∗
c

d1

+
∫ d2+ξ∗

a −ξ∗
c

d2

+
∫ d3+ξ∗

b −ξ∗
a

d3

+
∫ ∞

d4

)
SX(x)dx,

which is a real-valued continuous function of (d1, d2, d3, d4). Thus,
{PI : I has expression (51)} = [PIm

ξ∗
c ,ξ∗

a ,ξ∗
b
, PIM

ξ∗
c ,ξ∗

a ,ξ∗
b

]. By (36), we have PIm
ξ∗
c ,ξ∗

a ,ξ∗
b

≤ Pξ∗
c ,ξ∗

a ,ξ∗
b

≤
PIM

ξ∗
c ,ξ∗

a ,ξ∗
b

and ξ ∗
c + L3 ≤ Pξ∗

c ,ξ∗
a ,ξ∗

b
≤ ξ ∗

a − a + L1. Therefore, there exists I∗ ∈ I2 such that

I∗(c) = ξ ∗
c , I

∗(a) = ξ ∗
a , I

∗(b) = ξ ∗
b , and PI∗ = Pξ∗

c ,ξ∗
a ,ξ∗

b
. For any I ∈ I2, denote ξc = I(c),

ξa = I(a), and ξb = I(b), then

V(I∗) = λa + (2λ − 1)Pξ∗
c ,ξ∗

a ,ξ∗
b

− λξ ∗
a + (1 − λ)ξ ∗

b = w(ξ ∗
c , ξ

∗
a , ξ

∗
b )

= w(ξ ∗
c , ξ

∗
a (ξ

∗
c ), ξ

∗
b (ξ

∗
c , ξ

∗
a (ξ

∗
c ))) = w2(ξ

∗
c , ξ

∗
a (ξ

∗
c )) = w1

(
ξ ∗
c

) = min
ξ∈�c

w1(ξ)

≤ w1 (ξc) = min
ξ∈�a,ξc

w2(ξc, ξ) ≤ w2(ξc, ξa) = min
ξ∈�b,ξc ,ξa

w (ξc, ξa, ξ)

≤ w (ξc, ξa, ξb) = λa + (2λ − 1)Pξc ,ξa ,ξb − λξa + (1 − λ)ξb ≤ V(I),

where the last inequality is from the proof of Lemma 4.2. Therefore, a contract I∗ of the form
(38) for some (d1, d2, d3, d4) ∈ [0, c−ξ ∗

c ]×[c, a−ξ ∗
a +ξ ∗

c ]×[a, b−ξ ∗
b +ξ ∗

a ]×[b, ∞], satisfying
I∗(c) = ξ ∗

c , I
∗(a) = ξ ∗

a , I
∗(b) = ξ ∗

b and PI∗ = Pξ∗
c ,ξ∗

a ,ξ∗
b
, is an optimal solution to Problem

(25).

Proof of Corollary 4.1. Suppose a < b and 0 ≤ λ < 1/2. By (29) and (30), we have that
ξc ∈ �c is equivalent to h1(ξc) ≥ L3 and h2(ξc) ≤ L1 − c. Note that (8) implies h2(c − vθ ) ≤
L1 − c while (9) implies h1(vθ ) ≥ L3.

a. Assume h2(vθ ) ≤ L1 − c. Note that h1(vθ ) ≥ L3, thus we have vθ ∈ �c. By Lemma
4.3(a), we get ξ ∗

c = vθ . It follows that ξ ∗
a = ξ ∗

a (vθ ) = sup
{
ξa ∈ �a,vθ

: Avθ
(ξa) < vθ + L3

}
,

ξ ∗
b = ξ ∗

b (vθ , ξ
∗
a ) = ξmb (vθ , ξ

∗
a ), and Pξ∗

c ,ξ∗
a ,ξ∗

b
= (L1 − a + ξ ∗

a ) ∧ PIM
ξ∗
c ,ξ∗

a ,ξ∗
b

.

i. If L3 ≤ h4(vθ ), note that h4(vθ ) < h5(vθ ), thus vθ + L3 ≤ Amvθ
(vθ + a − L1 + L3) <

Avθ
(vθ + a − L1 + L3). From Case a.i in the proof of Lemma 4.3, we have ξ ∗

b = ξ ∗
a =

ξma (vθ ). We will specify the value of ξma (vθ ). Since (vθ + a − L1 + L3) + L1 − a ≤
Amvθ

(vθ +a− L1 + L3) from L3 ≤ h4(vθ ), (vθ +a− c)+ L1 −a ≥ Amvθ
(vθ +a− c) from

h2(vθ ) ≤ L1 − c, and Amvθ
(ξa) is continuous and strictly increasing in ξa ∈ �a,vθ

, there
exists ξa,0 ∈ [vθ +L3 +a−L1, vθ +a−c], which is the unique solution to the equation
of ξa,0 + L1 − a = Amvθ

(ξa,0). Hence, ξa,0 satisfies (32) for ξc = vθ . Meanwhile, ξa,0
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satisfies (31) for ξc = vθ because vθ +L3 ≤ ξa,0 +L1 −a = Amvθ
(ξa,0) < AM

vθ
(ξa,0). Thus,

ξa,0 ∈ �a,vθ
. For any ξa < ξa,0, since ξa − Amvθ

(ξa) is strictly increasing, we know that
ξa−Amvθ

(ξa) < ξa,0−Amvθ
(ξa,0) = a−L3. It implies that (32) with ξc = vθ is not satisfied

by ξa , and then ξa /∈ �a,vθ
. Therefore, ξma (vθ ) = ξa,0. It follows that ξ ∗

b = ξ ∗
a = ξa,0 and

Pξ∗
c ,ξ∗

a ,ξ∗
b

= (ξa,0 + L1 − a) ∧ PIMvθ ,ξa,0 ,ξa,0
= (ξa,0 + L1 − a) ∧ Avθ

(ξa,0) = ξa,0 + L1 − a.

Hence, I∗(x) = (x−c+vθ )
+−(x−c)++(x−(a−ξa,0+vθ ))

+−(x−a)+ since it is easy
to check that I∗(c) = vθ , I∗(a) = I∗(b) = ξa,0, and PI∗ = Amvθ

(ξa,0) = ξa,0 + L1 − a.
Thus, I∗ is the optimal contract by Theorem 4.1.

ii. If h4(vθ ) < L3 ≤ h5(vθ ), which means Amvθ
(vθ + a − L1 + L3) < (vθ + L3 + a − L1) +

L1 −a = vθ +L3 ≤ Avθ
(vθ +a−L1 +L3), then vθ +L3 +a−L1 satisfies (31) and (32)

for ξc = vθ . It implies vθ + L3 + a − L1 ∈ �a,vθ
, where �a,vθ

⊂ [vθ + L3 + a − L1, a]
by its definition, and thus, ξma (vθ ) = vθ + L3 + a − L1. From Case a.i in the proof
of Lemma 4.3, we have ξ ∗

b = ξ ∗
a = ξma (vθ ) = vθ + L3 + a − L1 and Pξ∗

c ,ξ∗
a ,ξ∗

b
=

(ξ ∗
a + L1 − a) ∧ PIM

vθ ,ξ∗
a ,ξ∗

a
= (ξ ∗

a + L1 − a) ∧ Avθ
(vθ + a − L1 + L3) = vθ + L3. As a

function of (d1, d2, d3) ∈ [0, c − vθ ] × [c, L1 − L3] × [b, ∞],

PI = PI(d1, d2, d3) = (1 + θ)

(∫ d1+vθ

d1

+
∫ d2+a+L3−L1

d2

+
∫ ∞

d3

)
SX(x)dx

can take all values on [PI(c − vθ , L1 − L3, ∞), PI(0, c, b)]. Since PI(c − vθ , L1 −
L3, ∞) = h4(vθ )+vθ < L3 +vθ ≤ h5(vθ )+vθ = PI(0, c, b), there exists (d∗

1 , d
∗
2 , d

∗
3 ) ∈

[0, c − vθ ] × [c, L1 − L3] × [b, ∞] such that PI(d∗
1 , d

∗
2 , d

∗
3 ) = vθ + L3. Therefore,

I∗(x) = (x− d∗
1 )

+ − (x− d∗
1 − vθ )

+ + (x− d∗
2 )

+

− (x− d∗
2 − (a − L1 + L3))

+ + (x− d∗
3 )

+

because it satisfies I∗(x) = ξ ∗
x for x = c, a, b and PI∗ = PI(d∗

1 , d
∗
2 , d

∗
3 ) = vθ + L3.

iii. If h5(vθ ) < L3, by the arguments in Case a.ii in the proof of Lemma 4.3, we know
that there exists ξa,1 ∈ [vθ + L3 + a − L1, vθ + b − c] such that Avθ

(ξa,1) = vθ + L3

and (ξ ∗
c , ξ

∗
a , ξ

∗
b ) = (vθ , (vθ + a − c) ∧ ξa,1, ξa,1). It implies that Pξ∗

c ,ξ∗
a ,ξ∗

b
= (ξ ∗

a − a +
L1) ∧ PIM

ξ∗
c ,ξ∗

a ,ξ∗
b

= (ξ ∗
a − a+ L1) ∧ Avθ

(ξa,1) = vθ + L3. Hence, I∗(x) = x− (x− vθ )
+ +

(x− c)+ − (x− (c+ ξa,1 − vθ ))
+ + (x− b)+ since it easy to check that I∗(x) = ξ ∗

x for
x = c, a, b and PI∗ = Avθ

(ξa,1) = vθ + L3.
b. Assume h2(vθ ) > L1 − c. Note that h2(c − vθ ) ≤ L1 − c and h2 is continuous and
monotone on [vθ ∧ (c− vθ ), vθ ∨ (c− vθ )], thus the equation h2(ξc) = L1 − c has solutions
on [vθ ∧ (c − vθ ), vθ ∨ (c − vθ )]. Denote

ξL1−c, h2 = inf {ξc ∈ [vθ ∧ (c − vθ ), vθ ∨ (c − vθ )] : h2(ξc) = L1 − c} . (52)

Notice that L3 ≤ L1 − c = h2(ξL1−c, h2) < h1(ξL1−c, h2) implies that (29) and (30) are
satisfied by ξL1−c, h2 and thus ξL1−c, h2 ∈ �c. Suppose vθ < c − vθ , then vθ ≤ ξL1−c, h2 ≤
c−vθ . For any ξc < ξL1−c, h2 , we have h2(ξc) > L1−c because h2 is decreasing on [0, c−vθ ].
It implies that ξc /∈ �c because it does not satisfy (30). Thus, ξL1−c, h2 = ξmc and moreover,
vθ ≤ ξL1−c, h2 = ξmc ≤ ξMc . By Lemma 4.3(a), we have ξ ∗

c = ξmc ∨ (vθ ∧ ξMc ) = ξL1−c, h2 . In
the other case of vθ ≥ c− vθ , we have h2(ξc) > h2(ξL1−c, h2) = L1 − c for any ξc > ξL1−c, h2
because h2 is strictly increasing on [c − vθ , c]. It implies that ξc /∈ �c because it does
not satisfy (30). Thus, ξMc = ξL1−c, h2 ≤ vθ . By Lemma 4.3(a), we have ξ ∗

c = ξmc ∨ (vθ ∧
ξMc ) = ξL1−c, h2 . Therefore, in both of the two cases, ξ ∗

c = ξL1−c, h2 . Note that the equation
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h2(ξL1−c, h2) = L1 − c can be rewritten as Am
ξ∗
c
(ξ ∗
c + a − c) = (ξ ∗

c + a − c) + L1 − a. Since
the function ξa − Am

ξ∗
c
(ξc) is strictly increasing in ξa , for any ξa < ξ ∗

c + a − c, we have
ξa − Am

ξ∗
c
(ξc) < (ξ ∗

c +a−c)− Am
ξ∗
c
(ξ ∗
c +a−c) = a−L1, which means that (32) with ξc = ξ ∗

c

are not satisfied by ξa . Thus, �a,ξ∗
c = {

ξ ∗
c + a − c

}
is a single point set. It is easy to check

that ξ ∗
b = ξmb (ξ ∗

c , ξ
∗
a ) = ξ ∗

a = ξ ∗
c +a−c and Pξ∗

c ,ξ∗
a ,ξ∗

b
= (ξ ∗

a −a+L1)∧PIM
ξ∗
c ,ξ∗

a ,ξ∗
b

= ξ ∗
a −a+L1,

where PIM
ξ∗
c ,ξ∗

a ,ξ∗
b

= Aξ∗
c (ξ

∗
a ) ≥ Am

ξ∗
c
(ξ ∗
a ) = h2(ξ ∗

c ) + ξ ∗
c = L1 − c + ξ ∗

c = ξ ∗
a − a + L1. The

contract I∗(x) = (x − c + ξL1−c,h2)
+ − (x − a)+ is the optimal one because it satisfies

I∗(x) = ξ ∗
x for x = c, a, b and PI∗ = h2(ξ ∗

c ) − ξ ∗
c = ξ ∗

c − c + L1.

Proofs of Corollaries 4.2 and 4.3 are similar to Corollary 4.1 and are omitted.

Proof of Corollary 4.4. Suppose b < a and 1/2 < λ ≤ 1. By Lemma 4.3(d), we have
ξ ∗
c = ξmc ∨[

(c − vθ ) ∧ ξMc
]
, ξ ∗

b = ξ ∗
c +b−c, ξ ∗

a = ξ ∗
c +a−c and Pξ∗

c ,ξ∗
a ,ξ∗

b
= (ξ ∗

c +L3)∨PIm
ξ∗
c ,ξ∗

a ,ξ∗
b

=
(ξ ∗
c + L3) ∨ (h2(ξ ∗

c ) + ξ ∗
c ). By (29) and (30), we know that c − vθ ∈ �c is equivalent to

h1(c − vθ ) ≥ L3 and h2(c − vθ ) ≤ L1 − c. Note that h2(c − vθ ) ≤ L1 − c by (9).

a. If h1(c−vθ ) < L3, then c−vθ /∈ �c. Furthermore, note that h1(vθ ) ≥ L3 by (9) and h1 is
continuous and monotone on [vθ ∧ (c− vθ ), vθ ∨ (c− vθ )], thus the equation h1(ξc) = L3

has solutions on [vθ ∧ (c − vθ ), vθ ∨ (c − vθ )]. Denote

ξL3,h1 = sup {ξc ∈ [vθ ∧ (c − vθ ), vθ ∨ (c − vθ )] : h1(ξc) = L3} . (53)

Then, we have h1(ξL3,h1) = L3. Moreover, h2(ξL3,h1) ≤ h1(ξL3,h1) = L3 ≤ L1 − c. Thus,
ξL3,h1 ∈ �c. Suppose vθ ≤ ξL3,h1 ≤ c − vθ , since h1 is decreasing on [vθ , c − vθ ], we have
h1(ξc) < L3, for any ξc > ξL3,h1 , namely ξc does not satisfy (29) and ξc /∈ �c. It implies
that ξMc = ξL3,h1 ≤ c − vθ and thus ξ ∗

c = ξL3,h1 . Suppose c − vθ ≤ ξL3,h1 ≤ vθ , since h1
is strictly increasing on [c − vθ , vθ ], we have h1(ξc) < h1(ξL3,h1) = L3 for any ξc < ξL3,h1 ,
namely ξc does not satisfy (29) and ξc /∈ �c. We also conclude that ξ ∗

c = ξmc = ξL3,h1 .
Moreover, Pξ∗

c ,ξ∗
a ,ξ∗

b
= (ξL3,h1 + L3) ∨ (h2(ξL3,h1) + ξL3,h1) = L3 + ξL3,h1 , where h2(ξL3,h1) ≤

h1(ξL3,h1) = ξL3,h1 . The optimal contract is I∗(x) = x− (x− ξL3,h1)
+ + (x− c)+ because

it satisfies I∗(x) = ξ ∗
x for x = c, a, b and PI∗ = ξL3,h1 + h1(ξL3,h1) = ξL3,h1 + L3.

b. If h1(c− vθ ) ≥ L3 which means c− vθ ∈ �c, then ξ ∗
c = c− vθ , ξ ∗

b = b− vθ , ξ ∗
a = a− vθ ,

and Pξ∗
c ,ξ∗

a ,ξ∗
b

= c − vθ + L3 ∨ h2(c − vθ ). As a function of (d1, d2) ∈ [0, vθ ] × [a, ∞],

PI = PI(d1, d2) = (1 + θ)
(∫ d1+c−vθ

d1
+ ∫ a

c + ∫ ∞
d2

)
SX(x)dx is continuous and can take all

the values on [PI(0, a), PI(vθ , ∞)]. Note that h1(c− vθ ) ≥ L3 by (29) and h1(ξc) ≥ h2(ξc)
for all ξc ∈ [0, c], then PI(0, a) = h1(c− vθ ) + c− vθ ≥ L3 ∨ h2(c− vθ ) + c− vθ . Together
with PI(vθ , ∞) = h2(c − vθ ) + c − vθ ≤ L3 ∨ h2(c − vθ ) + c − vθ , we know that there
exists (d∗

1 , d
∗
2 ) ∈ [0, vθ ] × [a, ∞] such that PI(d∗

1 , d
∗
2 ) = Pξ∗

c ,ξ∗
a ,ξ∗

b
. The optimal contract is

I∗(x) = (x − d∗
1 )

+ − (x − d∗
1 − c + vθ )

+ + (x − c)+ − (x − a)+ + (x − d∗
2 )

+ because it
satisfies I∗(x) = ξ ∗

x for x = c, a, b and PI∗ = PI(d∗
1 , d

∗
2 ) = L3 ∨ h2(c − vθ ) + c − vθ .
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