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COUPLING ANY NUMBER OF BALLS
IN THE INFINITE-BIN MODEL
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Abstract

The infinite-bin model, introduced by Foss and Konstantopoulos (2003), describes
the Markovian evolution of configurations of balls placed inside bins, obeying certain
transition rules. We prove that we can couple the behaviour of any finite number of
balls, provided at least two different transition rules are allowed. This coupling makes it
possible to define the regeneration events needed by Foss and Zachary (2013) to prove
convergence results for the distribution of the balls.
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1. Introduction

1.1. Background

Interacting particle systems and their stochastic evolution have been widely studied in
probability and statistical physics. One such system, the infinite-bin model, was introduced
by Foss and Konstantopoulos [2] as an abstraction of stochastic ordered graphs, which are a
directed version of Erdös–Rényi graphs that have applications in queuing theory, mathematical
ecology, and performance evaluation of computer systems (see [2] and the references therein).
A very similar (though less general) model had also appeared in earlier work of Aldous and
Pitman [1].

In the infinite-bin model, a configuration is made up of infinitely many bins indexed by the
nonpositive integers, each bin containing a positive and finite number of balls. An elementary
random move consists in picking one ball at random (according to a certain probability distri-
bution) and adding one ball to the bin situated immediately to the right of the ball we picked. If
the ball we picked was already in the rightmost bin, we create a new bin to its right, add a ball
in it, and relabel the bins so that the new rightmost bin has label 0. The stochastic dynamics
arises from the iteration of independent and identically distributed (i.i.d.) elementary random
moves.

Questions of interest include the existence and uniqueness of a stationary solution, the
convergence to the stationary solution for an arbitrary initial configuration, and the rate of
creation of new bins. The first two questions have been tackled in certain cases in [2] and [3].
The last one was discussed in some cases in [2] and [4].
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Infinite-bin model coupling 541

In this paper we prove that in all the nontrivial cases, we can find a sequence of moves
such that, after applying that sequence of moves, the position of the rightmost N balls is some
prescribed configuration, independent of the initial configuration (here N is an arbitrary positive
integer).

This is a result needed by Foss and Zachary [3] to prove the convergence to the stationary
distribution. They do not prove it in their paper, but instead point to the present paper for a
proof. Note that the present paper relaxes the assumptions of [3] so that we can now cover all
the cases where the theory of renovation events works.

We finally mention that we can rephrase this result in the framework of automata theory.
The infinite-bin model (or rather the finite projections of it defined in the next subsection)
can be seen as a finite automaton, and the sequence of moves we construct corresponds to a
synchronizing word in the language of automata theory (see, e.g. [5]).

1.2. Definitions and main result

An infinite configuration X is a sequence of positive integers (X(i))i∈Z− indexed by Z− =
{0, −1, −2, . . .}. The integer X(i) represents the number of balls in the bin labeled by i. We
adopt the unusual indexing by nonpositive integers to conform to the original definition of the
infinite-bin model in [2]. It finds its roots in an application to stochastic ordered graphs.

For any integer k ≥ 1, we are going to construct the move of type k as a function φk from the
set of infinite configurations to itself. Fix an infinite configuration X. The infinite configuration
Y = φk(X) is defined as follows. If X(0) ≥ k, we set

Y (i) =
{

1 if i = 0,

X(i + 1) if i < 0.

If X(0) < k, we define

ik = min

{
j ∈ Z−

∣∣∣ 0∑
i=j

X(i) < k

}

and set

Y (i) =
{

X(i) + 1 if i = ik ,

X(i) if i �= ik .

In words, the move of type k adds one ball inside the bin situated immediately to the right
of the bin containing the kth ball, where the balls are counted from right to left. When the kth
ball is already in the rightmost bin, we create a new bin immediately to its right, add a ball in
it, and relabel all the bins in such a way that the newly created bin will be labeled by 0. See
Figure 1 for an example.

It will be useful to consider configurations with finitely many balls. If n is a positive integer,
we define an n-configuration X to be a sequence of nonnegative integers (X(i))i∈Z− such that

• ∑
i∈Z− X(i) = n;

• there exists an integer p ≥ 1 such that X(i) > 0 if i > −p and X(i) = 0 otherwise.

We will then denote the n-configuration by the p-tuple [X(−p + 1), . . . , X(0)], omitting the
infinite string of 0s on the left.

If X is an infinite configuration and n is a positive integer, we define πn(X) the n-ball
projection of X to be the n-configuration obtained from X by keeping the rightmost n balls and
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Figure 1.

erasing all the other balls. More precisely,

(πn(X))i =

⎧⎪⎪⎨
⎪⎪⎩

min(X(i), n −
0∑

j=i+1

X(j)) if
∑0

j=i+1 X(j) < n,

0 otherwise.

An algorithm � is defined as the composition of a finite number of moves. It maps one
infinite configuration to another. The length of an algorithm is the number of moves used to
build it. For example, � = φ3

5φ2 is an algorithm of length 4 obtained by applying φ2 first
followed by three times φ5.

An algorithm � is said to couple the first n balls if, for any two infinite configurations X

and Y , we have πn(�(X)) = πn(�(Y )). We have the following result regarding the existence
of coupling algorithms.

Theorem 1. For any integers N ≥ 1 and 1 ≤ k < l, we can find an algorithm using only the
moves φk and φl which couples the first N balls. The length of the algorithm can be taken to
be less than N + 4l2.

The proof is provided in Section 2. We will see in the proof that we can impose the condition
that any infinite configuration obtained after applying that coupling algorithm contains at least k
balls in the rightmost bin, which is exactly the setting in which Lemma 2 of [3] was stated.
Note that we do not need the condition (required by that Lemma 2) that k and l are co-prime.

1.3. Probabilistic implications

Coupling algorithms are interesting from a probabilistic point of view because they make it
possible to define regeneration events, and thus make the infinite-bin model more tractable.
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Let ξ be a random variable taking values in the set of the positive integers, and let (ξn)n≥0
be a sequence of i.i.d. random variables distributed like ξ . Then any sequence of infinite
configurations (Xn)n≥0 such that, for all n ≥ 0, Xn+1 = φξn(Xn) is a Markov chain.

Theorem 4 in [3] proves, under some assumptions, the convergence of the distribution of the
number of balls in the rightmost k bins for any positive integer k. It is based on their Lemma 2,
which is a more restrictive version of our Theorem 1. For a proof of that lemma, they point to
the present paper. Combining our Theorem 1 with Theorem 4 and Proposition 2 of [3], leads
us to the following corollary.

Corollary 1. (See Foss and Zachary [3].) Assume that ξ has finite expectation and is not
constant almost surely (a.s.). Then for any integer k ≥ 0 and any initial infinite configuration
X0, (Xn(−k), . . . , Xn(0)) converges to a proper limiting random vector in the total variation
norm. Therefore, Xn weakly converges to its proper limit.

Here ‘proper’ means the limiting random variable is finite a.s. Note that if ξ is a.s. constant
equal to c then the dynamics is deterministic and ultimately c-periodic.

The proof is the same as that of Theorem 4 in [3], replacing their Lemma 2 by our Theorem 1
and constructing regeneration events. A regeneration event E is an event such that at the time
when E starts, conditionally on E, the future does not depend on what happened before E

(here ‘depend’ is used in the algebraic sense, not in the probabilistic sense). They define a
regeneration event to be a coupling algorithm followed by an infinite sequence of moves with
the property that the balls involved in that infinite sequence of moves are only those balls that
were created by the coupling algorithm. Such an event will eventually occur a.s. This implies
that if we run the Markov chain with two different initial configurations but with the same
sequence (ξn)n≥0, the content of the first k bins of the Markov chains will eventually be the
same a.s.

An interesting next step would be to find the coupling algorithms that occur most frequently,
i.e. for which the ratio ‘probability of algorithm’ divided by ‘length of algorithm’ is maximal.
When the distribution of ξ is the uniform measure on a finite set of integers, this boils down to
finding the shortest coupling algorithms, which is a classical question in automata theory (see,
e.g. [5]).

2. Proof of Theorem 1

The structure of the proof is as follows. Firstly, we reduce the proof to finding an algorithm
which couples the first k balls when applied to l-configurations. For this purpose, we will need
to define how moves act on l-configurations. Secondly, we define a set of k l-configurations
{X0, . . . , Xk−1} and two algorithms �1 and �2 using only the moves φk and φl verifying the
following properties:

• for any l-configuration X, �1(X) ∈ {X0, . . . , Xk−1};
• for any 0 ≤ i ≤ k − 1, �2(Xi) = X0.

It will follow that the algorithm �2�1 couples the first l balls (and a fortiori the first k balls)
when applied to l-configurations.

The k = 1 case is easy: applying move φ1 N times couples the first N balls. From now on
we will assume that k ≥ 2.

If n ≥ k and X, Y are two infinite configurations such that πn(X) = πn(Y ), observe that
πn+1(φk(X)) = πn+1(φk(Y )). So without loss of generality, we may assume that N = k: if

https://doi.org/10.1017/jpr.2017.16 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2017.16


544 K. CHERNYSH AND S. RAMASSAMY

we find an algorithm coupling the first k balls, applying N − k more times the move φk will
couple the first N balls.

We now define projections and moves applied to n-configurations. If n > m one defines
πm(X), the m-ball projection of an n-configuration X in the same way as for infinite con-
figurations. The map πm is a function from n-configurations into m-configurations. If X is
an n-configuration and k ≤ n, we define φk(X) to be the following n-configuration: starting
from X, add one ball to the bin situated immediately to the right of the bin containing the kth
ball (where the balls are counted from right to left), then delete one ball from the leftmost bin.
When the kth ball is already in the rightmost bin, we create a new bin immediately to its right,
add a ball in it and relabel all the bins in such a way that the newly created bin will be labeled
by 0. The map φk is a function from n-configurations into n-configurations. This definition
of φk for n-configurations parallels the one for infinite configurations, so that moves commute
with projections, i.e. if k ≤ n and if X is an infinite configuration or an m-configuration with
m ≥ n, then

πn(φk(X)) = φk(πn(X))

This is illustrated in Figure 2.
Fix an integer n ≥ 1. If, for any move φk entering in the construction of an algorithm �,

we have k ≤ n then � also maps n-configurations to n-configurations.
Let � be an algorithm using only the moves φk and φl which couples the first k balls when

restricted to l-configurations. Then, if X and Y are two infinite configurations,

πk(�(X)) = πk(πl(�(X)))

= πk(�(πl(X)))

= πk(�(πl(Y )))

= πk(πl(�(Y )))

= πk(�(Y )),

where the third equality follows from the fact that � couples the first k balls of the l-config-
urations πl(X) and πl(Y ).

Figure 2: Commutation of φ5 with π8.
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So � also couples the first k balls for infinite configurations. Thus, we can reduce it to
the question of finding an algorithm � which couples the first k balls when applied to l-
configurations. From now on, by ‘configurations’ we will mean ‘l-configurations’.

Write l = kd + r , where d and r are two integers such that d ≥ 1 and 1 ≤ r ≤ k. Define the
following configurations. Set X0 = [k, . . . , k, r] with d consecutive bins containing k balls
and the rightmost bin containing r balls. If 1 ≤ i ≤ r − 1, set Xi = [i, k, . . . , k, r − i],
with d consecutive bins containing k balls sandwiched between a bin with i balls and a bin with
r − i balls. If r ≤ i ≤ k − 1, set Xi = [i, k, . . . , k, k + r − i], with d − 1 consecutive bins
containing k balls sandwiched between a bin with i balls and a bin with r − i balls. Then, for
any 1 ≤ i ≤ k, φk(Xi) = Xi−1, where indices are taken modulo k.

Example 1. In the case when k = 3 and l = 11, we have d = 3 and r = 2. Thus, X0 =
[3, 3, 3, 2], X1 = [1, 3, 3, 3, 1], and X2 = [2, 3, 3, 3].

The rest of the proof of the theorem is based on three lemmas, which will be proved in
Section 3. Set

M = max

(
l,

k(k − 1)

2

)

and �1 = φM
k , where φM

k denotes the algorithm built from the move k composed M times.
Then we have the following result.

Lemma 1. For any l-configuration X, �1(X) ∈ {X0, . . . , Xk−1}.
Define the algorithm

� = φl−k
k φ

dr+k[d(d−1)/2]
l φk−r

k .

If n ∈ Z is an integer, we write (n)+ = max(n, 0). Define the function f from the set
{0, . . . , k − 1} to itself by

f (i) =
{

(k − l + di)+ if 0 ≤ i ≤ k − r − 1,

(k − (d + 1)(k − i))+ if k − r ≤ i ≤ k − 1.

Using the function f , we can describe the action of � on the configurations Xi as follows.

Lemma 2. If 0 ≤ i ≤ k − 1 then �(Xi) = Xf (i).

Lemma 3. The function f has the following properties:

• f (0) = 0;

• for any 1 ≤ i ≤ k − 1, we have f (i) < i.

From Lemma 3, we deduce that for any 0 ≤ i ≤ k − 1, we have f k−1(i) = 0. So by
Lemma 2, for any 0 ≤ i ≤ k, we have �k−1(Xi) = X0. Combining this with Lemma 1,
we conclude that for any l-configuration X, we have �2�1(X) = X0, provided we define
�2 = �k−1.

The configuration X0 has k balls in the rightmost bin, confirming the claim made after the
statement of Theorem 1 in Section 1. Also, note that we did better than coupling the first k

balls, we coupled the first l balls.

Example 2. Continuing with Example 1, when k = 3 and l = 11, we have M = 11 and
� = φ8

3φ15
11φ3, thus, �1 = φ11

3 and �2 = �2 = φ8
3φ15

11φ9
3φ15

11φ3. Consider the 11-configuration
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X = [2, 3, 1, 3, 2]. We first have �1(X) = [1, 3, 3, 3, 1] = X1, then �(X1) = [3, 3, 3, 2] =
X0 and �(X0) = X0, thus, �2�1(X) = X0.

The length of �2�1 is

L = max

(
l,

k(k − 1)

2

)
+ (k − 1)

(
k − r + dr + k

d(d + 1)

2
+ l − k

)
.

Using the fact that r ≤ k ≤ l and d ≤ l/k, we obtain

L ≤ l + k(k − 1)

2
+ k

(
dr + dk + k

d(d − 1)

2
+ l

)

≤ l + k2

2
+ k

(
l + l + k

l2

2k2 + l

)

≤ l + l2

2
+ 3kl + l2

2
≤ l + 4l2.

If we want to couple N balls with N > l for infinite configurations, we will need at most N − l

more iterations of φl following �. Hence, an upper bound of the total length of such a coupling
algorithm is N + 4l2. This concludes the proof of the theorem. �

3. Proof of the lemmas

Proof of Lemma 1. We will use the following characterization of the configurations Xi : if
an l-configuration X has at most k balls in each bin, and every bin except maybe for the leftmost
and the rightmost bins contains exactly k balls, then X ∈ {X0, . . . , Xk−1}. Also, in the proof
of this lemma, it might be convenient to think that the bins do not get relabeled after a new
rightmost bin gets created by a move.

Fix an l-configuration X and write πk(X) = [i1, i2, . . . , ip] for some positive integers
i1, . . . , ip. After applying i1 times φk to X, the bin of X that initially contained i2 balls now
contains i1 + i2 balls. Iterating this process, we observe that if we set

n =
p−1∑
j=1

(p − j)ij ,

then after applying n times φk to X, the rightmost bin of X (which initially contained ip balls)
contains i1 + · · · + ip = k balls. All further applications of φk will add new bins to the right of
the original rightmost bin of X. These new bins will all contain k balls, except maybe for the
last (rightmost) bin, which will contain at most k balls.

Note that we can write

n =
k∑

i=1

(distance of the bin containing ball number i to the rightmost bin),

where the balls are counted from right to left. The distance between two bins is given by the
absolute value of the difference of their labels. That sum is clearly maximal when p = k and
i1 = · · · = ik = 1, thus, n ≤ 1

2k(k − 1).
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Recall that we had
M = max

(
l, 1

2k(k − 1)
)
.

Since M ≥ l, all the balls that were originally in X have been deleted by applying φM
k . Since

M ≥ n, after applying φM
k , all the bins to the right of the original rightmost bin will contain k

balls, except maybe for the leftmost and the rightmost, which will nevertheless contain at most k
balls. So φM

k (X) ∈ {X0, . . . , Xk−1}. �
Proof of Lemma 2. If 1 ≤ j ≤ l − 1, set Yj = [j, l − j ] and set Y0 = [l]. For any

1 ≤ j ≤ l, φl(Yj ) = Yj−1, where indices are taken modulo l. We will be using the following
lemma, describing how powers of φk and φl act on certain configurations.

Lemma 4. (i) Assume that i1, . . . , ip are p positive integers summing to l and n = ∑p−2
j=1 (p−

1 − j)ij . Then
φn

l ([i1, i2, . . . , ip]) = Yl−ip .

(ii) For any 0 ≤ j ≤ l − 1, we have

φl−k
k (Yj ) = X(k−l+j)+ .

Proof. The first part is obtained by iterating the following procedure to remove the leftmost
bin:

φ
i1
l ([i1, i2, . . . , ip]) = [i1 + i2, i3, . . . , ip].

For the second part, Yj = [j, l − j ], with the leftmost bin being empty if j = 0. We need
to distinguish three cases.

• Assume that k − l + j ≤ 0. Then the rightmost bin already contains at least k balls, so
φl−k

k ([j, l − j ]) = X0 = X(k−l+j)+ .

• Assume that 0 < k − l + j ≤ l −k. Then k − l + j and 2l −2k − j are both nonnegative.
We first compute

φ
k−l+j
k ([j, l − j ]) = [l − k, k].

Since 2l −2k−j ≥ l −2k, applying φ
2l−2k−j
k to [l −k, k] will delete at least l −2k balls

from the leftmost bin (initially containing l−k balls) and will construct columns of size k,
except the rightmost column which will contain at most k balls. So φ

2l−2k−j
k ([l − k, k])

has to be equal to some Xi . The number of balls in the rightmost bin of Xi will be
congruent to 2l − 2k − j = (2d − 2)k + 2r − j modulo k, so the number of balls
in its leftmost bin will be congruent to j − r = k − l + j + (d − 1)k modulo k. So
φ

2l−2k−j
k ([l − k, k]) = Xk−l+j . So

φl−k
k ([j, l − j ]) = Xk−l+j = X(k−l+j)+ .

• Assume that k − l + j > l − k. Then

φl−k
k ([j, l − j ]) = [j + k − l, 2l − k − j ],

because the rightmost bin will always have less than k balls in the process of applying
l − k times φk . Moreover, the leftmost bin of [j + k − l, 2l − k − j ] also has less
than k balls, so that configuration has to be one of the Xi , namely Xk−l+j . Thus,
φl−k

k ([j, l − j ]) = X(k−l+j)+ .

This completes the proof. �
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Let us now use it to prove Lemma 2. We need to distinguish two cases.

• Assume that 0 ≤ i ≤ k − r − 1. Then φk−r
k (Xi) = Xi+r , with r ≤ i + r ≤ k − 1. So

Xi+r = [i + r, k, . . . , k, k − i], with d − 1 bins containing k balls sandwiched between
a bin with i + r balls and a bin with k − i balls. If we set

m1 = (i + r)(d − 1) +
d−2∑
j=1

kj,

then by the first part of Lemma 4 we obtain

φ
m1
l ([i + r, k, . . . , k, k − i]) = Yl−k+i .

Set

m2 = dr + k
d(d − 1)

2
− m1 = l − k + i − di.

Then we have
φ

m2
l (Yl−k+i ) = Ydi .

By the second part of Lemma 4, we obtain

φl−k
k (Ydi) = X(k−l+di)+ .

Putting everything together, we conclude that �(Xi) = Xf (i) in this case.

• Assume that k − r ≤ i ≤ k − 1. Then φk−r
k (Xi) = Xi+r−k with 0 ≤ i + r − k ≤ r − 1.

So Xi+r−k = [i + r − k, k, . . . , k, k − i] with d bins containing k balls sandwiched
between a bin with i + r − k balls and a bin with k − i balls. If we set

n1 = d(i + r − k) +
d−1∑
j=1

kj,

then by the first part of Lemma 4, we obtain

φ
n1
l ([i + r − k, k, . . . , k, k − i]) = Yl−k+i .

Set

n2 = dr + k
d(d − 1)

2
− n1 = d(k − i).

Then we have
φ

n2
l (Yl−k+i ) = Yr−k+i(d+1).

By the second part of Lemma 4, we obtain

φl−k
k (Yr−k+i(d+1)) = X(k−l+r−k+i(d+1))+ = X(k−(d+1)(k−i))+ .

Putting everything together, we conclude that �(Xi) = Xf (i) in this case too. �
Proof of Lemma 3. Firstly, f (0) = (k − l)+ = 0 because k < l. Now let us show by

descending induction on i that for 1 ≤ i ≤ k − 1, we have f (i) < i. Using the fact that d ≥ 1
and k ≥ 2, we have f (k − 1) = (k − d − 1)+ < k − 1. Fix 1 ≤ i ≤ k − 2. If f (i) = 0,
we are done, so let us assume that f (i) > 0. It is easy to check that f is nondecreasing,
thus, f (i + 1) > 0. Considering the three cases where i is less than, equal to, or greater than
k − r − 1, one can prove that f (i + 1) − f (i) ≥ d ≥ 1. Using the induction hypothesis, we
obtain f (i) ≤ f (i + 1) − 1 < i + 1 − 1, which concludes the proof of the second part of the
lemma. �
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