
British Journal of Psychiatry (1993), 163, 308â€”314

Recognising Psychiatric Symptoms
Relevance to the Diagnostic Process

G. E. BERRIOS and E. V. H. CHEN

Current overemphasis on nosological diagnosis has led to a neglect of the process of symptom
recognition. There is evidence, however, that the perception of the symptom alone does not
guarantee symptom ascertainment since a decision-making component is also involved. To
achievethe latter,additionalinformationmust be providedby the contextualcues implicit
in the ongoing diagnostic hypothesis. Current diagnostic systems, however, still assume a
two-stage model according to which symptom and disease recognition are independent
cognitive events. This paper suggests that this model is inadequate and that descriptive
psychopathology is not transparent. It then describes a neural network simulation to make
various aspects of the problem explicit. This takes into account the multidimensional and
probabilisticaspects of symptom recognitionand is,from thispointof view, superiorto
traditional algorithmic models. It also has the capacity to represent the different cognitive
styles involved in symptom recognition.

Current overemphasis on nosological diagnosis and on
the reliability of diagnostic check-lists â€”¿�for example,
DSMâ€”IIIâ€”R(American Psychiatric Association,
1987) and lCDâ€”10 (World Health Organization,
1992)â€”¿�has led to a neglect of the problems involved
in symptom recognition. Most diagnostic systems con
sider symptom ascertainment to be unproblematic,
and descriptive psychopathology as â€˜¿�transparent'.
This assumption is unwarranted; indeed, there is
evidence that the recognition of the symptoms and
signs of mental illness is criterion dependent, that
is, it also involves a decision-making component.

Current diagnostic instruments also assume that
any problems associated with symptom recognition
can be resolved by providing operational definitions
(of delusions, hallucinations, depersonalisation, etc.).
However, these definitions are primarily addressed
at â€˜¿�constructing'the symptom, hence are of little
value; furthermore, there are no clear rules for
their application. For example, DSMâ€”IIIâ€”Rdefines
â€˜¿�depersonalisation'as:

â€œ¿�.. . an alteration in the perception or experience of the

self so that the feeling of one's own reality is temporarily
lost. This is manifested in a sense of self-estrangement
or unreality, which may include the feeling that one's
extremities have changed in size, or a sense of seeming to
perceive oneself from a distance (usually from above).â€•

This definition includes a list of experiential events and
dimensions, the presence of any of which signifies
the existence of the symptom, and which can occur
in various clinical contexts. The observer, however,
is given no rules to cope with such ambiguities.

In reality, the perception of such symptom-related
events or dimensions does not complete the process

of symptom ascertainment. A decision-making
component and a context are always required. In
other words, decision making requires additional
information which the observer obtains from con
textual cues which are usually provided by the
diagnostic hypothesis.

Psychiatric training has traditionally focused on
disease recognition. Symptom recognition, on the
other hand, is taught by â€˜¿�ostensible'definition, that
is by the iterative demonstration of cases with the
â€˜¿�same'symptom. Trainees are expected to generate
and memorise â€˜¿�prototypes'which then can be used
as templates for subsequent symptom recognition.
This learning occurs at the same time as disease
recognition. It is likely that, therefore, both processes
become inextricably linked in the mind of the
psychiatrist early on in training. However, current
diagnostic systems, such as DSM-III-R, assume that
symptom recognition and disease recognition are
successive and independent cognitive events. Indeed,
their reliability (and perforce validity) requires that
such events do not contaminate each other. According
to this model, the first event is the recognition of
the â€˜¿�unitsof analysis' or â€˜¿�buildingbricks'; the
second, their synthesis into a â€˜¿�diagnosis'.The
objective seems to be the creation of a tight decisional
cascade according to which, â€˜¿�giventhat a, b, and c
are obtained, then D is the case', where a, b, and c
are â€˜¿�criteria'(that is, symptoms), and D, â€˜¿�diagnosis'.
The reliability of this model is based on the view that
whenever a, b, and c are present, D will have to
be diagnosed.

What we want to suggest in this paper is that these
diagnostic systems are caught in the horns of a
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dilemma. On the one hand, if a two-stage model
is adopted, then the fact will have to be faced that
a clandestine contamination of symptom recognition
is taking place and new foundations for the putative
reliability of the system sought for; on the other, if
the two stages are made truly independent, then new
ways will have to be found to make symptoms less
ambiguous, that is, a far more complex science of
symptom recognition will have to be created.

An illustration of this problem can be found in
recent attempts to computerise the diagnostic process.
Whatever the level of sophistication of the programs
involved, the fact remains that few provide sub
routines to deal with independent symptom recognition.
Thus, the validity (and reliability) of the computerised
instrument depends entirely upon the quality of the
information provided as input data (i.e. symptoms).
This paper offers an account of this problem and
describes a neural network simulation that models
the situations described above.

Conceptual issues

â€˜¿�Descriptivepsychopathology', â€˜¿�psychiatricsemi
ology', or the â€˜¿�language'of psychiatry can be said
to have developed during the 19th century. The
process of development has been described in detail
elsewhere (Berrios, 1984, 1988). Suffice it to say that
during the early 20th century this â€˜¿�language'was
gratuitously called â€˜¿�phenomenological',thus starting
a confusion that has lasted to the present day. Like
all languages, psychopathology includes a vocabulary,
a grammar, a syntax, and a set of rules for their
application. While the vocabulary has become
enshrined in traditional teaching and has acquired
a â€˜¿�sacred'status, the application rules (i.e. the
guidelines according to which a psychiatrist decides
whether a particular fragment of behaviour is to be
â€˜¿�named'as symptom a, b, or c) have been sadly
neglected. These rules, which were doubtlessly
articulated during the early stages of the formation
of the language, seem to survive only in the oral
tradition built into the apprenticeship system.

The redundant nature of psychiatric diagnosis
allows for the possibility of occasional lapses in
symptom recognition; for example, if out of six
criteria for schizophrenia four are correct and 2
misidentified, the final dignosis may still be reached.
This may cause the belief that symptom recognition
is far more efficient than in fact it is. The issue,
therefore, is whether a notion of â€˜¿�efficiency'can be
developed with regard to symptom recognition. We
would suggest that efficiency might be defined here
as the capacity of a language to achieve a high â€˜¿�hit
rate' in its naming function; for example, every time

a fragment of behaviour is called symptom a, b, or c,
the name will fit. An efficient language would be one
that extracts the maximum amount of information
available in a given behaviour.

This leads to the question of whether all the
symptoms listed as the components of a particular
disease have, in fact, the same informational import.
Clinical practice suggests that they may not. However,
current diagnostic systems do not offer means of
assigning such weights or otherwise creating symptom
hierarchies. The fact that in some cases symptom
misidentification does not seem seriously to affect
diagnosis suggests some variation in the quantum of
information carried by each symptom. Interestingly,
the fact that descriptive psychopathology has so far
been unable to make such differences explicit,
suggests that its efficiency is limited.

The points listed above suggest that there is little
reason to consider descriptive psychopathology as
transparent, and that such language may, in fact, be
conceptually parasitical upon the diagnostic process
itself. If so, more research will be needed into the
real nature of this language, on its conceptual
boundaries, and on whether the two-events model
of diagnosis is sufficiently heuristic.

A computational model

Within the last decade, artificial neural networks
(ANNs) (or parallel distributed processing) have been
recognised as useful models of cognitive processes.
These consist of sets of interconnected processing
units, each capable of independent computation.
Computed outcomes are communicated to other
units via weighted connections. The latter can be
modified according to definable learning algorithms.
The emergent properties of ANNs have been applied
to cognitive processes such as associative memory,
categorisation, and generalisation.

â€˜¿�Constraintsatisfaction networks' are a particular
class of ANN (McClelland & Rumelhart, 1988).
These can be defined as systems where the weights
of the internal connections â€˜¿�constrain'the state
of the various associated units. This limits the
number of possible states the system can evolve
into from a starting point. A typical example is
the network studied by Hopfield (1982). Hopfield
networks have an analogy with a known physical
system (Ising ferromagnetism), and this has allowed
a formal description of their behaviour. Rumelhart
et a! (1986) have also used â€˜¿�constraintsatisfaction
networks' to model cognitive processes such as the
representation of schemata. We propose here that
this type of network may also be useful in modelling
symptom recognition.
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Constraint satisfaction networks

In a constraint satisfaction network, each processing
unit can be taken to represent a hypothesis (for
example a particular â€˜¿�feature'or â€˜¿�dimension'of a
symptom). Connections between units represent
constraints among hypotheses. Thus, a positive
connection between A and B would imply that
whenever A is present B is â€˜¿�expected'(probabil
istically) to be present; a negative connection that
whenever A is present B is â€˜¿�expected'to be absent.
When A and B are not connected, their behaviours
would be independent of each other (i.e. unrelated).
A positive input from outside the network to a
particular unit would mean that there is evidence that
the relevant feature is present; a negative input would
mean the opposite. The strength of the evidence is
reflected in the magnitude of the input.

When such a network is run, it will eventually
settle into an â€˜¿�optimal'state, defined as one in which
as many as possible of the constraints are satisfied,
and in which priority is given to the strongest
constraints. The network is then said to have

â€˜¿�relaxed'into a â€˜¿�local'solution. In contrast, a
â€˜¿�global'solution is attained when a stochastic (non
deterministic) rule is used to determine activation of
the units (by a process called simulated annealing - for
details see Hinton & Sejnowski, 1986).

Evaluation of psychiatric symptoms

The cognitive processes involved in symptom recog
nition can be modelled on the basis of a system of
constraint satisfaction networks. As a first approxi
mation, a two-stage process is considered (Fig. 1).

Recognition of symptoms

At stage 1 there are N networks (@â€˜A,Y5, . . .
each dedicated to recognising a symptom (say, a
hallucination). Individual networks receive a number
(k) of inputs (features 1 to k), each representing a
particular symptom characteristic or magnitude (e.g.
vividness, frequency, timing). For each symptom, a
set of external observations is represented in the form
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-0-

-0-
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Fig. 1 A hierarchical system of networks processing psychiatric symptoms.
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of an input vector with k elements which is then
mapped onto the k units of the network. One vector
will thus act as the starting point for, say, network

@ From previous learning, network @Ahas stored

a number p of stable patterns as k-dimensional vectors
(retrieval patterns): for example, for symptom A,
there are four stored patterns (A0, A1, A11,A111).
These are encoded as connection weights to guide
inputs entering the network to settle in one of the
retrieval patterns. The set of input vectors which will
relax to a particular pattern, say A111,is called the
â€˜¿�basinof attraction of A111'.

In the second stage, end interpretations of stage 1
networks serve as input for network Z. This receives
input from each stage 1 network (TA, Y5. . . Y@).
Inputs to network Z are recognised symptoms.
Internal weights in network Z store information on
association between symptoms. The stored stable
patterns correspond to symptom clusters or â€˜¿�diag
noses'. Input vectors for network Z are N-dimensional
vectors resulting from stage 1 processing, and
represent the particular combination of symptoms.
Network Z settles into an interpretation by retrieval
of one of the stored patterns of â€˜¿�diagnosis'.

When such state has been reached, the internal
constraints are said to be optimally satisfied, and an
interpretation of the input data to have taken place.
This process is repeated for each symptom, that is,
one at a time.

Recognition of disease

Stage 2 shows a network dedicated to disease recog
nition. Symptom recognition, as carried out during
stage 1, provides the input for this network. The
internal weights of this network store information
about putative symptom associations. Stable patterns
will correspond to symptom clusters or â€˜¿�syndromes'.
The input vectors for this network (retrieval patterns
from stage 1) represent particular combinations and
permutations of symptoms (as determined by the
examination of the patient). The network finds an
interpretation by settling into one of the stored
patterns or â€˜¿�syndromes'.

According to this model, the â€˜¿�diagnosticprocess'
starts with an â€˜¿�unbiased'observation of phenomen
ological data, assumed to be theory free (stage 1).
This is followed by a diagnostic decision based on
the symptoms collected (stage 2).

Processing under a â€˜¿�primed'condition

We suggest that the above model â€”¿�which is assumed
by current diagnostic systems â€”¿�is inadequate to
represent the real clinical situation for symptom
recognition as it is not entirely unbiased. As

mentioned in the introduction, such recognitions are
likely to be affected by decisions taken on the basis
of contextual features (for example demographic
details such as age, sex, etc.), and on-going diagnostic
hypotheses. (These influences are referred to here as
â€˜¿�priming'.)To model â€˜¿�priming',the two-stage multi
network system described above needs to be modified
by introducing â€˜¿�bidirectional'connections between
stage 1 and stage 2 (Fig. 2a,b).

In such a model, stages 1 and 2 are no longer
considered as occurring in series but in parallel. For
example, after a symptom A has been recognised by
retrieving A1 from among the stored patterns (A0,
A1, A11, . . ., AN), the pattern A1 is entered into the
stage 2 network. In the absence of other inputs, the
activation of A1 will force a corresponding state of
activity in the stage 2 network. Now, suppose that
among the stored patterns of symptom B (B0, B1,
B11, . . ., Ba), A1 is particularly associated with B11.
In such a case, the association would be encoded in the
stage 2 network as a large positive weight between A1
and B11.In the presence of A1, B11becomes partially
activated. If the relative activation of B11was fed
back to stage 1, the effect is that during evaluation of
symptom B there would be a tendency for the network
to settle towards pattern B11.Analytically, such a
tendency is equivalent to the presence of a weak
external input field corresponding to pattern B11
(Amit, 1989).

Another way of describing this â€˜¿�priming'effect is to
say that the â€˜¿�energyfunction landscape' becomes dis
torted so that the set of input vectors that is attracted
to B11is enlarged (see below). Some input vectors
which previously would have settled in, say, B1may
now settle in B11.In other words, exact!y the same
externa!features for symptom B would be interpreted
different!y because of the priming effect of A1.

The processing of symptom B could be generalised
to the recognition of subsequent symptoms. Symptom
recognition is, therefore, a function of external data,
stored patterns (from long-term store), as well as of
â€˜¿�priming'from preceding assessments via stage 2
network.

Simulation experiment

To illustrate this theoretical discussion, a simple
simulation experiment is described. It shows the
processing of a symptom at stage 1, and the effect
of â€˜¿�priming'on the dynamics of the network in
retrieving two hypothetical patterns.

Method

The processing of a symptom at stage 1 will be modelled
by means of a 16-unit constraint satisfaction network. This
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Stage 1 Stage 2 Stage 2

zDIagnosIs â€”¿�@ DIagnosIs

Fig. 2a Each symptom in stage us recognised independently. The
resulting information is used as data for the stage 2 network Z.

is a fully connected network with bounded continuous
activation levels, employing an asynchronous update rule
(for details of the original program, of which the one
usedhereisa modification,seeMcClelland& Rumelhart,
1988).Two patterns are stored in the network by prior
specification of the weight matrix. The same storage could be
achieved by training the network with repeated presentation
of the two patterns using an unsupervised learning algorithm
(such as the Hebbian rule).

Simulation is performed by running the network with
randomisedupdatesequences.Aftereachrun,thefinalstate
(theretrievalstate)and themeasureofâ€˜¿�energy'corresponding
to this state are noted. The â€˜¿�priming'effect is modelled by
applyinga weak externalfield(seeabove)tothenetwork.
Thus,eachunitwhichisactiveintheprunedpatternreceives
a weak â€˜¿�priming'input of 0.1 on a scale of 0 to 1. The
primed network is run with randomised update sequences
as in the unprimed network.

Both networks were run with a constant stochastic
activation function (temperature = 2), and a baseline â€˜¿�bias'
of 0.5 (that is, in the absence of input, each updated unit
has a probability of 0.5 of being activated). Coefficients
for relative strength of internal connections and external
input were 0.4 and 0.2 respectively. Since there was a â€˜¿�bias'
factor,theinitialnetworkstateswere stronglyrelatedto
the early sequence of updating. Thus, using a randomised
updatesequence,random initialstatesarerepresented.

Fig. 2b With bidirectional connections between stages I and 2, the
stateofnetworkZ caninfluenceprocessinginstage1.Forexample,
after processing of the symptom A in network @A'the result is
registered in network Z. The resulting pattern of partial activation
in network Z then â€˜¿�primes'unit Y5 and distorts its energy
landscape, affecting the dynamics of the recognition of symptom B.

Results

Results of the simulation (Table 1) can be visualised as
changesin the energylandscapeassociatedwiththe primed
and unprimed network states. In Fig. 3a,b, the vertical
dimension represents the energy function. The horizontal
plane is a simplified two-dimensional representation of net
work states' space. Retrieval states of the two patterns are
represented by two minima on the energy surface. The size of
the basin of attraction, that is the area around each retrieval
state within which the network will be attracted to the
retrieval state, is related to the probability of attaining that

Table 1
Changes in the energy landscape associated with the

primed and unprimed networks

Unprimed Primed

Energy1 Probability2 Energy Probability

1. Relative â€˜¿�energy'is expressed as the negative magnitude of a
â€˜¿�goodness-of-fit'measure (McClelland & Rumelhart, 1988).
2. Probabilityrefers to the probabilityof retrievingthe pattern with
random sequence updating. For each condition. 100 trials were
performed.

Stage 1

LIiE@@
EIJE@@@
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retrieval state from a random starting network state. The
depthof the minimaisa measureof energy(i.e. theextentto
which external and internal constraints are satisfied in the net
work). In Fig.3a,b, spurious retrieval states (Amit, 1989) are
ignored as they are not directly relevant to the present model.

In the unprimed condition, the basins of attraction (i.e.
the set of initial states which end up being interpreted as
a particular pattern) (Amit, 1989) of each of the stored
patterns occupy about 36% of the state space, and the
energy associated with each pattern is equal. In the primed
condition, the primed pattern has a basin of attraction
extending over 6OWoof the state space, at the expense of
that of the unprimed pattern, whichshrinks to 12%. The
energy associated with the primed pattern is also decreased.

Discussion

The simple simulation shown above takes into
account the multidimensional and stochastic nature
of the cognitive processes that might be involved in
the recognition of psychiatric symptoms. It postulates
the existence of a cognitive system that strives to
maximise satisfaction of internal and external con
straints to arrive at a â€˜¿�best-fit'interpretation of the
incoming data concerning the symptom.

Top-down versus bottom-up processing

The effect of the â€˜¿�top-down'type of influence has
thus been illustrated as a â€˜¿�priming' effect on the
network. The model suggests a way of formally
articulating the hypothesis mentioned earlier that
individual symptom recognition is never an inde
pendent exercise. Instead, at every stage of the
process there seems to be an interaction between
symptom and disease recognition.

In contrast to the â€˜¿�prototype'approach to diagnosis
(as used in ICDâ€”9; World Health Organization,

Energy
function

Fig. 3a Energy landscape for â€˜¿�unprimed' network. Fig. 3b Energy landscape for network â€˜¿�primed'for pattern I.

1978), where the actual clinical picture of the patient
is compared as a whole with an ideal conception of
the illness, the â€˜¿�operationaldefinition' approach (as
in DSMâ€”IIIâ€”R)assumes that independent symptom
recognition must precede disease recognition. Such
assumption does not take into account the possibility
of an interaction between these two cognitive events.
In theory, the reliability of the â€˜¿�operationaldefinition'
approach depends on the crucial assumption that
disease recognition is independent from symptom
recognition; in practice, however, this does not
seem to be the case as the model described in this
study suggests. It is more likely that an ongoing
interaction takes place between symptom and disease
recognition; in fact, diagnostic possibilities are
already narrowed down early in the clinical process
(see Kendell, 1975).

Typical versus atypical symptoms

Although it is suggested that typical symptoms, that
is those located close to the prototype patterns in the
state space, may be less affected by â€˜¿�priming',the
converse also holds true, namely, that those symptoms
falling on the boundary between two prototypes are
more susceptible to â€˜¿�priming'. This, as shown in
Fig. 3a,b, is a direct consequence of a distortion of
the energy landscape caused by the expansion of one
pattern at the expense of the other (which is, in turn,
caused by priming).

Cognitive styles and internal versus external
connection strengths

In the above simulation, the relative strengths of
internal and external connections in the networks at
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stage I were set as constants. However, they could
potentially be used to represent the different cognitive
styles likely to exist among doctors. A high weighting
to external input (relative to internal connections) may
be used to describe a style of recognition that wants to
remain faithful to empirical observation, and which
has a good degree of tolerance for dissonant internal
representations. In contrast, a high internal connection
strength suggests a recognition style that puts
emphasis on goodness-of-fit between external data
and the internal representation, and hence is prepared
to accept degradation of the empirical data. Doctors
using this latter style might be tempted to suppress
the diversity and richness of symptom manifestations
in order to reach a clinical conclusion.

In practice, most doctors are likely to operate
between these two styles. One lesson to be drawn
from this analysis is that trainee psychiatrists should
develop an early awareness of their cognitive style.
This, and the other problems outlined in this
paper, constitute areas of urgent investigation,
particularly since any future maximisation of diag
nostic validity depends on their solution.
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