TEACHING NOTES 155

Teaching Notes

Extending the parity proof that $\sqrt{2}$ is irrational

The following argument extends one of the usual proofs that $\sqrt{2}$ is irrational to show that $\sqrt{k^2+1}$ is irrational for all odd integers, k. Assume for contradiction that $\sqrt{k^2+1}$ is rational. Then $\sqrt{k^2+1}=k+\frac{b}{a}$ for integers a, b with 0 < b < a and the fraction $\frac{b}{a}$ in its lowest form. Squaring both sides leads to $1=2k\frac{b}{a}+\frac{b^2}{a^2}$ or $a^2-b^2=2kab$ so that (a-b)(a+b)=2kab (*). Since $\frac{b}{a}$ is in its lowest form, we have a contradiction because either:

- *a*, *b* are both odd, in which case 4 divides the left-hand side of (*) but not the right-hand side (because *k* is odd);
- *a*, *b* have opposite parity, in which case the left-hand side of (*) is odd and the right-hand side even.

doi: 10.1017/mag.2014.25 NICK LORD

Tonbridge School, Kent TN9 1JP

Areas of images of singular 3×3 matrix transformations

For a 3 × 3 matrix, A, $|\det A|$ gives the volume of the image of the unit cube under transformation by A. For a singular matrix this is zero, but we can still ask: what is the area of the image of the unit cube? If the columns of A are \mathbf{a} , \mathbf{b} , \mathbf{c} then the image of the unit cube when A is singular lies in the plane spanned by \mathbf{a} , \mathbf{b} , \mathbf{c} and is the convex region given by $\alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c}$; $0 \le \alpha$, β , $\gamma \le 1$. As in Figure 1, this is a hexagon with pairs of parallel, equal sides represented by the vectors \mathbf{a} , \mathbf{b} , \mathbf{c} . It is made up of the three parallelograms labelled I, II, III spanned by the respective pairs of vectors \mathbf{a} , \mathbf{b} ; \mathbf{a} , \mathbf{c} ; \mathbf{b} , \mathbf{c} . The area of the hexagon is thus

FIGURE 1: Possible images of the unit cube.

Evaluating the three vector products in (1) thus answers our original question, but it is worth making two further points in connection with (1).

• If we omit the modulus signs in (1), then $\mathbf{a} \times \mathbf{b} + \mathbf{c} \times \mathbf{a} + \mathbf{b} \times \mathbf{c}$ gives a normal vector to the plane containing \mathbf{a} , \mathbf{b} , \mathbf{c} , [1]. (It will be $\mathbf{0}$ if \mathbf{a} , \mathbf{b} , \mathbf{c} are collinear.)

• Usually, calculating the matrix of cofactors of *A* is a waste of time if *A* is singular, but here we note that any row and non-zero column gives us all the information we need to evaluate (1).

For example, if
$$A = \begin{pmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \end{pmatrix} = \begin{pmatrix} -2 & 1 & 2 \\ -1 & 2 & 3 \\ 1 & 4 & 5 \end{pmatrix}$$
, then the matrix of

cofactors is
$$\begin{pmatrix} -2 & 8 & -6 \\ 3 & -12 & 9 \\ -1 & 4 & -3 \end{pmatrix}$$
. The columns are the (necessarily parallel)

vectors $\mathbf{b} \times \mathbf{c}$, $\mathbf{c} \times \mathbf{a}$, $\mathbf{a} \times \mathbf{b}$ but to work out (1) all we need is the magnitude of the first column $\sqrt{(-2)^2 + 3^2 + (-1)^2} = \sqrt{14}$ and the size of the ratio between the column vectors 1:4:3 from which (1) evaluates as $(1 + 4 + 3)\sqrt{14} = 8\sqrt{14}$.

Reference

1. A. Ellis-Davies, The equation of the plane π containing *ABC*, *Math. Gaz.* **89** (November 2005) p. 507.

doi: 10.1017/mag.2014.26

NICK LORD

Tonbridge School, Kent TN9 1JP