
Math. Struct. in Comp. Science (2006), vol. 16, pp. 639–666. c© 2006 Cambridge University Press

doi:10.1017/S0960129506005408 Printed in the United Kingdom

Call-by-need in token-passing nets

F.-R. S INOT†

LIX, École Polytechnique, 91128 Palaiseau cedex, France

Email: frs@lix.polytechnique.fr

Received 18 October 2005; revised 25 March 2006

Recently, encodings in interaction nets of the call-by-name and call-by-value strategies of

the λ-calculus have been proposed. The purpose of these encodings is to bridge the gap

between interaction nets and traditional abstract machines, which are both used to provide

lower-level specifications of strategies of the λ-calculus, but in radically different ways. The

strength of these encodings is their simplicity, which comes from the simple idea of

introducing an explicit syntactic object to represent the evaluation flow. Another benefit of

this approach is that no artifact is needed to represent boxes. However, these encodings

deliberately follow the implemented strategies (call-by-name and call-by-value) as closely as

possible, and hence do not benefit from the ability of interaction nets to represent sharing

easily. The aim of this paper is to show that better sharing (hence efficiency) can indeed be

achieved without adding much structure. We thus present the call-by-need strategy following

the same philosophy, which is, indeed, no more complicated than call-by-name. We also

extend our approach to fully lazy reduction. This continues the task of bridging the gap

between interaction nets and abstract machines, thus pushing forward a more uniform

framework for implementations of the λ-calculus.

1. Introduction

Interaction nets (Lafont 1990) are a graphical, distributed model of computation with

the advantage of expressing in an explicit and uniform way all the non-linear steps

of a computation, such as copying and erasing, which are normally hidden. This is

inspired by proof nets and linear logic (Girard 1987). In particular, sharing is built in (as

opposed to through the use of terms) and is dealt with explicitly (as opposed to through

the use of termgraphs). The locality and strong confluence of reduction contribute to

making interaction nets well suited as an intermediate formalism in the implementation

of programming languages. However, despite their qualities and their popularity among

theoreticians, it is sad to notice that they are not widely used by implementors of real-

world programming languages. While it is difficult to say why this is the case, it may well

be that work such as that on optimal reduction has led some to think of interaction nets

as a tool for theoreticians alone. For these reasons, we believe it is worth bridging the gap

between interaction nets and traditional tools such as abstract machines.

Interaction nets have been used for the implementation of optimal reduction (Lamping

1990; Gonthier et al. 1992; Asperti et al. 1996) and for other efficient (non-optimal)

† Projet Logical, Pôle Commun de Recherche en Informatique du plateau de Saclay, CNRS, École

Polytechnique, INRIA, Université Paris-Sud.

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

F.-R. Sinot 640

implementations of the λ-calculus (Mackie 1998; 2004). A common feature of all these

encodings of the λ-calculus is that a β-redex is always translated to an active pair (that

is, a redex in interaction nets). Hence, paradoxically, while all reductions are equivalent,

an external interpreter is still required to find the redexes and to manage them. This

interpreter is typically implemented by maintaining a stack of redexes (Pinto 2000), or

by ad hoc methods, which are not documented and not part of the theory, and thus

error-prone. The fact that interaction steps implementing different β-reductions may be

interleaved (because there is no control on the order of reductions) also has the nasty

consequence that the encodings need to simulate boxes (Girard 1987; Gonthier et al.

1992) in a more or less complex and costly way.

There is thus a gap between the worlds of interaction nets and abstract machines. In

Sinot (2005), we began to bridge this gap by giving encodings of the call-by-name and

call-by-value strategies of the λ-calculus in interaction nets. These encodings are based on

the idea of an evaluation token, which is a standard interaction agent, walking through

the term as an evaluation function would do. They are very natural and stick as closely

as possible to a given strategy, in a way similar to an abstract machine. In particular,

they ensure that, essentially, only one reduction is possible at a time. This is simpler to

implement than general interaction nets and contributes to avoiding the need for boxes,

and hence to simplifying the encoding.

In this paper, our goal is to bridge the gap further and to push forward a more uniform

framework for describing implementations of the λ-calculus. More precisely, we will give

a presentation of the call-by-need strategy in the style of Sinot (2005). Seen from the point

of view of this previous work, we improve the system with the ability to share reductions,

which is a key aspect of interaction nets that was absent from the earlier work. From the

point of view of functional languages, we give a uniform and fully formal description of

a call-by-need interpreter in interaction nets. We even extend the approach further and

also encode the fully lazy strategy in interaction nets, thus making it more formal and

understandable than previous presentations (Wadsworth 1971; Shivers and Wand 2005).

In particular, we make a connection with the work of Lang (Lang 1998), which could

not be made without our framework. To put this work into context, it is important to

say that, while call-by-need has more or less become a standard in implementations of

functional languages, the fully lazy strategy, which allows more sharing of reductions, has

not. This shows that it is important to improve our understanding of this strategy. Our

work could also constitute an important step forward in better understanding optimal

reduction, although the remaining path may still be difficult.

In Sinot (2005) the encodings are in standard interaction nets, featuring a standard

agent called the evaluation token. Roughly speaking, reductions are triggered by the

evaluation token and the interaction rules guarantee that there is a unique occurrence of

the token in any net, so reduction is essentially deterministic. On the other hand, some

restrictions that are part of the formalism of interaction nets are tailored to ensure strong

confluence, and are thus no longer necessary if all reductions are triggered by a unique

token. In this paper, we will have to abandon the restriction to Lafont’s interaction nets, as

explained in Section 5.2, and adopt Alexiev’s formalism of interactions nets with multiple

principal ports (Alexiev 1999), or simply nets. However, since reduction is directed by a

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

Call-by-need in token-passing nets 641

unique token, evaluation is still fully deterministic. Thus, another important aspect of this

work is to illustrate how the definition of interaction nets can be relaxed without losing

important properties, such as strong confluence.

Call-by-need was introduced by Wadsworth (Wadsworth 1971). The idea is relatively

intuitive: a subterm should be evaluated only if it is needed, and if it is, it should be

evaluated once only. The original formulation is in terms of graph rewriting, but there

have been several attempts to formalise this idea in different ways: big-step operational

semantics of call-by-need have been given independently in Launchbury (1993) and

Seaman and Purushothaman Iyer (1996); small-step presentations based on contexts have

been presented in Ariola et al. (1995), Ariola and Felleisen (1997) and Maraist et al. (1998).

In contrast with these approaches, we present a purely graph-based formalisation, making

explicit at the object-level the rewrite strategy used in Wadsworth (1971). To prove the

correctness of our encoding, we refer to a variant of Launchbury’s big-step semantics,

from which we derive another small-step semantics of call-by-need, which is radically

different from previous work, and better suited to our needs. In this respect, we follow

the approach of Sinot (2005).

Another way to see our encoding using net rewriting is as a graph-based abstract

machine, which is still strikingly close to a term representation. The encoding of terms

is almost the same as for call-by-name, and the reduction rules are not much more

complicated, so sharing is almost obtained for free. Moreover, while some reductions are

sequentialised thanks to the token, we do not lose all the potential for parallelism, and

a distributed implementation may still reduce several redexes at the same time. We have

only made explicit which computations must be sequentialised and which ones may be

performed in parallel.

The present work is a substantially extended and improved version of Sinot (2006).

The new features include a new small-step presentation of call-by-need (Section 2), a full

proof of correspondence with the net rewrite system (Section 6) and a net rewrite system

for fully lazy reduction (Section 7).

The rest of this paper is structured as follows. In Section 2, we recall Launchbury’s

semantics and derive a new small-step presentation of call-by-need. In Section 3, we

recall some background on net rewriting. We give the encoding of terms in Section 4, the

evaluation rules in Section 5 and the correctness properties in Section 6. The issue of fully

lazy reduction is tackled in Section 7. We give conclusions in Section 8.

2. Call-by-need

2.1. Preliminaries

We assume a basic knowledge of the λ-calculus; see Barendregt (1984) for more details.

To fix notation, the set of λ-terms is defined by

t, u ::= x | λx.t | t u

where x ranges over a set of variables. Terms are considered modulo α-conversion, that

is, renaming of bound variables. We use fv(t) to denote the set of free variables of a term

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

F.-R. Sinot 642

t. If t is a λ-term, t̂ is a term α-equivalent to t in which all the bound variables have been

renamed to fresh variables.

This set is equipped with the following rule of β-reduction:

(β) (λx.t) u →β t{x := u}

where t{x := u} denotes the substitution of x by u in t, that is t where all occurrences of

x have been replaced by u, without name capture. We write →β for one-step reduction

and →∗
β for its reflexive transitive closure.

We call terms of the form λx.t or x t1 . . . tn weak head normal forms. Closed weak head

normal forms are of the form λx.t and are called values. We say that v is a weak head

normal form of t if v is a weak head normal form and t →∗
β v.

Contexts (or more precisely one-hole contexts) on λ-terms are terms with a hole (written

[]), and defined by

C[] ::= [] | λx.C[] | t C[] | C[] t.

The operation of filling a context C[] with a term t is written C[t] and is defined as C[],

where the hole [] has been replaced by t, without renaming (name capture may occur).

2.2. Big-step semantics

The call-by-need (or lazy) strategy was introduced by Wadsworth (Wadsworth 1971) as

a graphical interpreter. To make it easier to reason about lazy evaluation, Launchbury

expressed it in a natural (or big-step) semantics style (Launchbury 1993). This semantics

is briefly reviewed in Appendix A. In this section, we introduce a variant of this semantics

that is slightly simpler and whose equivalence with Launchbury’s semantics is proved in

Appendix A.

Environments (for example, Γ, ∆, Θ) are mappings from variables to terms. Evaluation

is defined on distinctly named pairs Γ : t of an environment and a term. Unlike call-

by-name and call-by-value evaluation, call-by-need (or lazy) evaluation may modify the

environment as a side-effect. More precisely, when a value is computed for a variable,

that value is stored in the environment to avoid a possible recomputation if it is needed

several times. Evaluation is only defined for closed pairs Γ : t, which means that if t has

some free variables, they must be in the domain of Γ. Evaluation judgements are of the

form Γ : t ⇓ ∆ : v, which is to be read ‘the term t in the environment Γ reduces to the

value v together with the new environment ∆’, as defined by the following set of deduction

rules:

Lam
Γ : λx.t ⇓ Γ : λx.t

Γ : t ⇓ ∆ : λx.t′ (∆, x �→ u) : t′ ⇓ Θ : v
App

Γ : t u ⇓ Θ : v

Γ : t ⇓ ∆ : v
Var

(Γ, x �→ t) : x ⇓ (∆, x �→ v) : v̂

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

Call-by-need in token-passing nets 643

This corresponds fairly closely to the semantics given in Launchbury (1993) and

Appendix A. The main difference is that we do not assume that terms are precompiled in

a λ-calculus with lets so that the closures are already explicit. We instead generate a new

binding in the environment in rule App (corresponding to β-reduction). Also, as we use

exactly the bound variable for this binding, we do not need to perform any substitution:

everything is done using the environment. Our presentation is thus simpler: there are

three rules instead of four, and there is no need for a calculus with lets (recursive bindings

can be dealt with using standard λ-calculus fixpoints). It is also easier to use since the

evaluation relation is well-defined on all terms, not just on precompiled terms. Moreover,

our semantics is equivalent to Launchbury’s (see Appendix A), which justifies our saying

that it is indeed a semantics of call-by-need, and allows us to borrow results freely from

Launchbury (1993) when necessary. In particular, we can ensure that all bound variables

remain distinct by carrying out α-conversions in rule Var alone.

2.3. Small-step semantics

A big-step semantics provides a high-level description of the strategy. However, the

strategy itself is not observable at the level of a proposition of the form Γ : t ⇓ ∆ : v,

but just in the proof tree of this proposition, using the deduction rules of the semantics.

The proposition itself only expresses a relation between an input term and a result. In

Sections 4 and 5, we will describe an implementation of call-by-need in interaction nets.

A correctness result with respect to the big-step semantics would not be enough to make

us feel able to claim that the implementation indeed follows the strategy, because there

could be some differences in the way the results are obtained that cannot be observed in

the result itself. That is why we introduce a small-step style presentation of call-by-need,

which will be derived from the big-step presentation in a fairly systematic way, so that it

will be obvious that reductions in the small-step system correspond to deduction branches

of the big-step one. This will also make the proof of correctness easier.

We want to replace the previous inductive rules by a first-order rewrite system, but we

also want to be as explicit about the evaluation order as in the previous system. Intuitively,

the idea is to mimic with rewrite rules what happens when drawing the deduction tree of

a judgement Γ : t ⇓ ∆ : v. Three kinds of things may happen: we may start a new branch

and go up in the deduction tree (evaluate a subterm), we may finish a branch (return an

intermediate result) or we may go down in the tree (put the result back in the correct

context).

We thus enrich the syntax of terms with the symbols ⇓ (called ‘eval’, and corresponding to

evaluation) and ⇑ (called ‘return’, and corresponding to the evaluation function returning).

More precisely, we define the set of enriched terms as follows:

e ::= ⇓Γ t | ⇑Γ t | x �⇒ e | C[e]

where t stands for a λ-term, Γ for an environment, x for a variable and C[] for a one-hole

context on λ-terms.

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

F.-R. Sinot 644

We may now define the following rewrite system on enriched terms:

(⇓Lam) ⇓Γ λx.t → ⇑Γ λx.t

(⇓App) ⇓Γ (t u) → (⇓Γ t) u

(⇑App) (⇑Γ λx.t) u → ⇓(Γ,x �→u) t

(⇓Var) ⇓(Γ,x �→t) x → x �⇒ ⇓Γ t

(⇑Var) x �⇒ ⇑Γ v → ⇑(Γ,x �→v) v̂.

This is a plain rewrite system: substitution is handled by the environment and reduction

is allowed in any context. This is a small-step presentation of call-by-need, as will

be shown by Proposition 2.2. Other small-step presentations of call-by-need include

Ariola et al. (1995), Ariola and Felleisen (1997) and Maraist et al. (1998). However, our

approach is radically different, and, arguably, simpler. The simplicity comes from the fact

that we make the evaluation flow explicit at the syntactic level, whereas the game played

in the previous work consists of designing clever evaluation contexts to restrict reduction

and in encoding environments as terms in a contrived way.

We can also compare our work with work on abstract machines, such as, for example,

the lazy Krivine machine (Crégut 1990). Our presentation is probably closer to this

approach, although it is more abstract. But again, it has exactly the right degree of

abstraction to fit our needs.

Also note that, as far as we know, such a simple small-step presentation of call-by-need

has not been given before. Small-step presentations usually rely on inductive rules that

allow reductions in a certain class of contexts, and hence, unlike in our presentation,

they do not make the flow of evaluation explicit, which is crucial for the encoding

into interaction nets. In some sense, our presentation is intermediate between traditional

small-step semantics (which separate reduction and strategy as much as possible) and

abstract machines (which may involve complex data structures). We call this presentation

the token-passing semantics of call-by-need.

A λ-term t is always in normal form with respect to this system, and so is ⇑Γ t. To

evaluate t in a context Γ, we have to start reduction from ⇓Γ t. In general, if Γ is undefined

for some free variables of t, the call-by-need evaluation of Γ : t may fail. This corresponds

here to the reduction starting from ⇓Γ t terminating on an enriched term that is not of the

form ⇑∆ u. If t is closed, which is generally assumed, we may safely choose Γ to be empty.

This system enjoys the following strong invariant.

Proposition 2.1. If ⇓Γ t →∗ u, then there is exactly one occurrence of ⇓∆ or ⇑∆ in u (for

some ∆).

Proof. The proof is by induction on the length of the reduction and by cases on the

last rule applied. In rule ⇑Var, v is copied but, by the induction hypothesis, it has no

occurrence of ⇓ or ⇑.

Since a reduction always involves a ⇓Γ or ⇑Γ, there is thus always at most one redex

in a term obtained from reduction of ⇓Γ t, and the control flow is indeed made explicit at

the syntactic level.

Proposition 2.2. Γ : t ⇓ ∆ : v ⇐⇒ ⇓Γ t →∗ ⇑∆ v.

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

Call-by-need in token-passing nets 645

Proof. Both implications are systematic.

⇒ We use induction on the derivation:

– Lam: Γ : λx.t ⇓ Γ : λx.t and indeed ⇓Γ λx.t −−→
⇓Lam

⇑Γ λx.t.

– App: If Γ : t u ⇓ Θ : v, then there exists t′ and ∆ such that Γ : t ⇓ ∆ : λx.t′ and

(∆, x �→ u) : t′ ⇓ Θ : v. By induction, ⇓Γ t →∗ ⇑∆ λx.t′ and ⇓(∆,x �→u) t′ →∗ ⇑Θ v,

hence:

⇓Γ (t u) −−→
⇓App

(⇓Γ t) u →∗ (⇑∆ λx.t′) u −−→
⇑App

⇓(∆,x �→u) t
′ →∗ ⇑Θ v.

– Var: If (Γ, x �→ t) : x ⇓ (∆, x �→ v) : v̂, then Γ : t ⇓ ∆ : v. Hence, by induction,

⇓Γ t →∗ ⇑∆ v, and finally

⇓(Γ,x �→t) x −−→
⇓Var

(x �⇒ ⇓Γ t) →∗ (x �⇒ ⇑∆ v) −−→
⇑Var

⇑(∆,x �→v) v̂.

⇐ We use structural induction on the term t:

– Abstraction: ⇓Γ λx.t −−→
⇓Lam

⇑Γ λx.t and, indeed, Γ : λx.t ⇓ Γ : λx.t by (Lam).

– Application: Assume ⇓Γ (t u) →∗ ⇑Θ v. Thus we have

⇓Γ (t u) −−→
⇓App

(⇓Γ t) u →∗ ⇑Θ v.

The final result is no longer an application, and the rule ⇑App is the only one that

can make this happen. Thus we must have ⇓Γ t →∗ ⇑∆ λx.t′ for some ∆ and t′.

Moreover, Γ : t ⇓ ∆ : λx.t′ by induction. Then

(⇑∆ λx.t′) u −−→
⇑App

⇓(∆,x �→u) t
′ →∗ ⇑Θ v,

so (∆, x �→ u) : t′ ⇓ Θ : v by induction and Γ : t u ⇓ Θ : v by rule (App).

– Variable: Assume

⇓(Γ,x �→t) x −−→
⇓Var

(x �⇒ ⇓Γ t) →∗ ⇑(∆,x �→v) v̂.

The last rule applied must be

(x �⇒ ⇑∆ v) −−→
⇑Var

⇑(∆,x �→v) v̂,

so ⇓Γ t →∗ ⇑∆ v, necessarily, and, by induction, Γ : t ⇓ ∆ : v. Using (Var), we get

(Γ, x �→ t) : x ⇓ (∆, x �→ v) : v̂.

Hence the given rewrite system faithfully corresponds to the call-by-need strategy. In

particular, as with the big-step semantics, if all bound variables are initially distinct, this

is preserved by reduction. This step is crucial, as the interaction net encoding will closely

follow the above small-step semantics.

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

F.-R. Sinot 646

3. Nets

3.1. Interaction nets

A system of interaction nets (Lafont 1990) is specified using a set Σ of symbols, and a set

R of interaction rules. Each symbol α ∈ Σ has an associated (fixed) arity. An occurrence

of a symbol α ∈ Σ will be called an agent. If the arity of α is n, then the agent has n + 1

ports: a distinguished one called the principal port depicted by an arrow, and n auxiliary

ports labelled x1, . . ., xn corresponding to the arity of the symbol. Such an agent will be

drawn as follows:

��
��
α

�

� �· · ·
x1 xn

Intuitively, a net N built on Σ is a (not necessarily connected) graph with agents at

the vertices. The edges of the graph connect agents together at the ports such that there

is only one edge at each port. The ports of an agent that are not connected to another

agent are called free. There are two special instances of a net: a wiring (no agents) and

the empty net – the extremes of wirings are also called free ports.

An interaction rule ((α, β) =⇒ N) ∈ R replaces a pair of agents (α, β) ∈ Σ×Σ connected

together on their principal ports (this is called an active pair or redex, and written α �� β)

by a net N. Rules must satisfy two conditions: all free ports are preserved during reduction

(reduction is local, that is, only the part of the net involved in the rewrite is modified),

and there is at most one rule for each pair of agents. Because of this last restriction, a

rule is fully defined by its left-hand side; so such a rule will sometimes also be denoted

by α �� β. The following diagram shows the format of interaction rules (N can be any net

built from Σ):

��
��
α ��

��
β��

�

�

�

�

...
...

x1

xn

ym

y1

=⇒ N
...

...
x1

xn

ym

y1

We use the notation =⇒ for the one-step reduction relation, or ==⇒
α��β

if we want to

be explicit about the rule used, and =⇒∗ for its transitive and reflexive closure. If a net

does not contain any active pairs, we say that it is in normal form. The key property

of interaction nets, besides locality of reduction, is that reduction is strongly confluent.

Indeed, all reduction sequences are permutation equivalent and standard results from

rewriting theory tell us that weak and strong normalisation coincide (if one reduction

sequence terminates, then all reduction sequences terminate).

3.2. Nets

We define nets as interaction nets (Lafont 1990), but ones in which the agents are allowed

to have any number of principal ports, instead of just one. They were introduced in

Alexiev (1999) under the name interaction nets with multiple principal ports and have also

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

Call-by-need in token-passing nets 647

been used, for instance, under the name multiports interaction nets (Mazza 2005), but they

can even be traced back to Bawden (1986).

So, each agent has a fixed number of principal ports, each of which is depicted by an

arrow; the other ports are still called auxiliary. An active pair still consists of two agents

connected by principal ports on both sides. Reduction is still local, but in general, no

property of confluence can be expected.

If all agents in a net system have exactly one principal port and at most one rule can

be applied to any active pair, then it is a system of interaction nets (Lafont 1990). In this

case, reduction is strongly confluent.

3.3. Token-passing nets

The aim of this paper is to describe two net reduction systems implementing call-by-need

(Section 5) and fully lazy reduction (Section 7), respectively. However, we feel that these

two systems, as well as the systems of Sinot (2005), share some common features, so

it makes sense to include them all under a common heading. We have chosen to call

them token-passing nets, because a particular agent is passed around and enables certain

reductions. It is beyond the scope of this paper to give a formal definition of token-passing

nets, or to prove any general properties for them. It is also too soon: we should first find

some other interesting examples of token-passing nets before presenting general concepts

about such systems – we leave this for future work.

4. Encoding of terms

In this section, we define a translation function T(·) from λ-terms into nets, which is

indeed very natural. We basically represent terms by their syntax trees, where we group

together several occurrences of the same variable using agents s (for sharing) and bind

them to their corresponding λ node (this is sometimes referred to as a backpointer). The

nodes for abstraction and application are agents λ and a, respectively, with their principal

port oriented upwards. In traditional encodings, the principal port of the application

agent is oriented to the left (that is, towards the translation of the left subterm of the

application), so that interaction with an abstraction (β-reduction) is always possible. Here,

however, terms are translated to principal nets (Lafont 1997; Lippi 2002) with one free

port connected to a principal port, called the root of the net, and possibly some free ports

connected to auxiliary ports, corresponding to the free variables of the term. In particular,

closed terms will be translated to packages (Lafont 1997; Lippi 2002). Translations of

terms are thus reduced nets, and something will have to trigger reduction: the evaluation

token.

This is essentially the same encoding as in Sinot (2005). The only difference is that agents

s representing sharing have two principal ports oriented upwards, and are thus inhibited

until an agent arrives from above (the evaluation token will be in charge of activating a

sharing agent to become a copy agent). This contrasts with the usual encodings (including

those in Sinot (2005)) where a standard agent is used with its only principal port oriented

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

F.-R. Sinot 648

downwards so that it may readily perform copying immediately after a β-reduction. This

version in fact corresponds to the agent c, which will be introduced in Section 5.2.

Variables. We just consider closed terms (see Sinot (2005) for how we could handle open

terms), so variables are not translated as such. They will simply be represented by

edges between their binding λ agent and their grouped occurrence in the body of the

abstraction, as explained below.

Application. The translation T(t u) of an application t u is simply an agent a whose

principal port points towards the root, whose left auxiliary port (its function port)

is linked to the root of T(t) and whose right auxiliary port (its argument port) is

linked to the root of T(u). If t and u share common free variables, then s agents

(representing sharing) collect these together pairwise so that a single occurrence of

each free variable occurs amongst the free edges (only one such copy is represented

in the figure). Note that s agents have two principal ports oriented upwards, so that

copying will not begin before an agent (the evaluation token) arrives from above.

These will be the only agents of the system with more than one principal port.

T(t) T(u)

��
��
a

�

· · · · · ·

�
��

�
��

��
��
s

�� ��	

Abstraction. For an abstraction, T(λx.t) is obtained by introducing an agent λ, and simply

linking its right auxiliary port (its body port) to the root of T(t) and its left auxiliary

port (its variable port) to the unique wire corresponding to x in T(t). If x does not

appear in t, the λ agent’s left port is linked to an agent ε (for erasure).

�

��
��
λ

T(t)

��

· · ·

or

�

��
��
λ

T(t)

��

· · ·

��
��
ε

��	

To sum up, we represent λ-terms in a very natural way. In particular, there is no

encoding of boxes. Another point worth noticing is that, because of the explicit link

between a variable and its binding λ agent, α-conversion comes for free, as is often the

case in graphical representations of the λ-calculus. So far, we have only introduced agents

λ and a strictly corresponding to the λ-calculus, as well as agents ε and s for the explicit

resource management necessary (and desirable: we do not want to hide such important

things) in net rewriting. Also note that the translation of a term has no active pair, so

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

Call-by-need in token-passing nets 649

it is in normal form, whatever interaction rules are allowed. Moreover, it has exactly one

principal port, which is connected to the root.

5. Evaluation by interaction

In this section we give the dynamics of the encoding, that is, the interaction rules. The

difference between call-by-name and call-by-need is only visible when sharing is involved.

Consequently, the part of the encoding that does not deal with sharing (Section 5.1) is

exactly the same as in Sinot (2005). There is no reason either to change the way copying

and erasing are done (Section 5.3); the difference lies only in when copying should occur,

that is, when we should activate a sharing agent to become a copying agent (Section 5.2).

5.1. Linear part

We introduce two new unary agents ⇓ and ⇑. To start the evaluation, we simply build the

following net, which we will denote ⇓T(t):

T(t)

�

��
��

⇓
�

⇑T(t) will be a net built in the same way, but with a ⇑ agent instead, with its principal

port directed towards the root. In particular, ⇑T(t) is always a net in normal form.

As for call-by-name, when we evaluate a term beginning with a λ, we should return

that term:

��
��
λ

��

�

��
��

⇓
� =⇒

��
��
λ

��

�

��
��

⇑
�

We take the opportunity of this first rule to recall that the interaction rules always have

an implicit name: for instance, the above rule is called ⇓ �� λ, and reduction using this

rule is written ==⇒
⇓��λ

.

To evaluate a term whose head symbol is an application, we should first evaluate its left

subterm. In other words, we should move the evaluation token to the function port of the

application. We also rename the agent a to @, which is still representing an application,

but with its principal port no longer pointing towards the root but to the left, so that

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

F.-R. Sinot 650

interaction will be possible when the evaluation token returns:

��
��
a

��

�

��
��

⇓
� =⇒

��
��
@

���
�

��
��

⇓
�

Finally, when the agent ⇑ returns from a successful evaluation to an agent @, we know

for sure that there is a λ just below the ⇑ (this will be proved in Lemma 6.3), and a

β-reduction should be performed. Due to the restriction to binary interaction, this takes

two steps:

��
��
@

���
�

	

��
��

⇑

=⇒ ��
��
@

����

��
��
λ

��
��
@

��
	

� �

��

=⇒

��
��

⇓
�

We link the variable port of the λ to the argument port of the @, which initiates the

substitution; and we pursue evaluation on the body of the abstraction. This is the core of

the interaction net machinery for linear λ-terms; it is the same as for call-by-name.

5.2. Sharing

Sharing is represented by agents s. When the evaluation token reaches an agent s, the

shared subterm must be evaluated. This is done very simply by moving the evaluation

token down to the shared subterm. The agent s is then renamed to an agent s′ looking

down, so that interaction will be possible when the token returns. We also have to

remember whether the token came from the left or right of the agent s so that we can

continue from the same position. This is why we actually introduce two agents: s′
l and s′

r .

��
��

⇓
�

�	

��
��
s

��

=⇒
��
��
s′
l

��

�

��
��

⇓
�

��
��

⇓
��
�

	

��
��
s

�

=⇒

��
��
s′
r

��

�

��
��

⇓
�

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

Call-by-need in token-passing nets 651

When the token returns to an agent s′, we initiate the copying process with a c agent

and propagate the token to the original position (left or right, as remembered in the

agent). There is no need to resume evaluation (that is, produce a ⇓ token) because the

subterm has already been evaluated (Lemma 6.3). (This will not always be the case for

fully lazy reduction, see Section 7).

��
��
s′
l

��

�

��
��

⇑
�

=⇒ ��
��

⇑
�

�

��
��
c

�

��

��
��
s′
r

��

�

��
��

⇑
�

=⇒ ��
��

⇑
�

��

��
��
c

�

�

Remark 5.1. Because of our encoding and because we follow a normal order strategy

(we always go left in an application), it will often be the case that the token reaches an

agent s on its left port. However, this is not always the case, for instance, it is not true

for the term (λx.(λy.λz.z y) x x) (λu.u). This is why we have to abandon the restriction to

interaction nets.

5.3. Copying and erasing

Copying and erasing are done in a classical way, by agents ε, c and δ. The auxiliary agent

δ is introduced to duplicate abstractions, as explained below. As shown in the operational

semantics of call-by-need, copying happens only on closed terms and is done immediately.

In other words, the interaction net implementation of the copying process should always

complete, and never block on some partially copied net. The agent ε erases any agent

and propagates according to the following schema. For clarity, the schema is valid for

α ∈ {λ, a,@, ε, c, δ, s′′} (δ and s′′ are introduced below with their own schemas, which are

compatible with this one):

��
��
ε

��
��
α

�
�

� �· · ·

=⇒ ��
��
ε

�

· · · ��
��
ε

�

Erasure of s agents is slightly unusual, though very natural. The intuition behind it

is simply that if a term is shared and one of the two copies is unused, then sharing is

useless. Such rules cannot be defined in standard interaction nets, and this is indeed often

considered as an equivalence in the literature.

��
��
ε

�
�	

��
��
s

��

 =⇒

��
��
ε

��
�

	

��
��
s

�
 =⇒

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

F.-R. Sinot 652

The agent ε is thus responsible for garbage collection. There are two interesting remarks

to make on this subject. First, garbage collection is complete (see Proposition 6.5), because

β-reduction, hence erasing, only ever occurs on closed terms because of the token. This

contrasts with other implementations of the λ-calculus in interaction nets, where it is

often the case that the net must be evaluated (with the possibility of non-termination)

before it can be erased. Moreover, interactions with ε will never be needed to enable

the token to make progress. More precisely, an ε agent may appear either in a subnet

disconnected from the subnet containing the unique evaluation token, or above an s agent,

but not on the same side as the evaluation token. In particular, implementations are free

to simply ignore disconnected subnets containing ε agents, or to garbage collect them as

a whole.

In general, the agent c duplicates any agent it meets. To duplicate an abstraction, we

need an auxiliary agent δ that will also duplicate any agent, but will stop the copy when

it meets another δ agent. Note that an agent c will thus never interact with another agent

c. Here, α ∈ {a, ε} (λ is excluded and the other cases do not arise).

��
��
α

� · · · �

��
��
c

� �

�
� =⇒

��
��
α ��

��
α

��
��
c ��

��
c· · ·

� �

� �

�
��

�
��

��
��
λ

� �

��
��
c

� �

�
� =⇒

��
��
λ ��

��
λ

��
��
δ ��

��
δ

� �

� �

�
��

�
��

The agent δ duplicates any agent, except itself. If it interacts with itself, it just annihilates.

Here, α ∈ {λ, a,@, ε, c}.

��
��
α

� · · · �

��
��
δ

� �

�
� =⇒

��
��
α ��

��
α

��
��
δ ��

��
δ· · ·

� �

� �

�
��

�
��

��
��
δ

�

��
��
δ

�

��

� �

=⇒

A c agent always tries to copy a closed, evaluated subnet, so agents c and s never

meet (because the s would have been activated first; this is proved in Lemma 6.3).

However, we may have to copy an agent s inside an abstraction using a δ. We cannot

use the generic rule δ �� α with α = s because the s agent may not be surrounded by

agents δ, and this could cause δ agents to ‘escape’, as can be seen by reducing the term

(λx.(λy.y y x) (λz.z x)) (λi.i).

When an agent δ interacts with an agent s, the agent s is ‘activated’ into a new agent

s′′, which behaves like a lazy agent c: it performs only one copy step, and is then restored

(‘deactivated’) to become an agent s again. The result is that we can avoid the problem

of copying agents s: we do not copy them, instead we tell them to copy. More precisely,

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

Call-by-need in token-passing nets 653

agents s′′ are introduced as follows:

��
��
δ

�
�	

��

��
��
s

��

 =⇒

��
��
δ

�
�

��

��
��
s′′

��

�

��
��
δ

��
�

	

��

��
��
s

�
 =⇒
��
��
δ

��
�

��

��
��
s′′

�

�

��
��
s′′

�
�	

��

��
��
s

��

 =⇒

��
��
s′′

�
�

��

��
��
s′′

��

�

��
��
s′′

��
�

	

��

��
��
s

�
 =⇒
��
��
s′′

��
�

��

��
��
s′′

�

�

And they interact as follows (α ∈ {a, ε, δ}):

��
��
α

� · · · �

��
��
s′′

� �

�
� =⇒

��
��
α ��

��
α

��
��
s ��

��
s· · ·

� �

�
��

�
��

� �	

��
��
λ

� �

��
��
s′′

� �

�
� =⇒

��
��
λ ��

��
λ

��
��
δ ��

��
δ

� �

� �

�
��

�
��

Note that we do not attempt to preserve sharing inside an abstraction (we use δ agents

instead of s agents). The sharing obtained is thus exactly call-by-need in the usual sense

(for example, as in Haskell, and as opposed to fully lazy reduction): there is sharing at

the top-level, but no reduction is shared inside an abstraction. A finer tuning of this issue

will lead to an implementation of the fully lazy strategy (Wadsworth 1971) in Section 7.

6. Properties

6.1. Reduction

In this section we give some properties of the interaction rules: mainly the preservation

of some structural properties of nets and strong confluence.

Definition 6.1. Rules can be partitioned into evaluation rules involving a token ⇓ or ⇑, or

an active pair λ �� @, and administrative rules involving agents c, s′′, δ or ε. Note that it

is indeed a partition. We write ==⇒
ev

for reduction with an evaluation rule, and ==⇒
adm

for

reduction with an administrative rule.

Definition 6.2. A net N is valid if there exists a λ-term t such that ⇓T(t) =⇒∗ N.

From now on, we assume all nets are valid. Initially, a net corresponds to the syntax

tree of a term, hence there is a natural notion of orientation of the net and of the agents

in it, which can be made fully formal using types (Lafont 1990). Moreover, this orientation

is preserved by reduction: loosely for λ �� @ (if α is below β in M and M ==⇒
λ��@

N not

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

F.-R. Sinot 654

touching α and β, then, in N, either α is still below β, either they are in disconnected

components); and strictly for the other rules. We may now state some structural properties

of valid nets.

Lemma 6.3. In a valid net:

1 ⇓ and ⇑ are never below a λ or a.

2 ⇓ and ⇑ are never above a @.

3 ⇓ and ⇑ are never below a s, c, δ or s′′.

4 If there is a ⇑, then there is a λ below it, and there may be only c agents in between.

5 If there is a s below a c, then there is a λ in between.

6 If there is a δ and a ⇓ or ⇑ in the same connex component, then the former is below

the latter.

Proof. The proof is by induction. All properties are true for ⇓T(t) and are preserved by

reduction (by checking all rules if the agents are involved in the reduction, by the above

remark otherwise).

In a valid net, there may be several administrative redexes. However, we have the

following result.

Proposition 6.4. In a valid net there is exactly one occurrence of ⇓, ⇑ or of a λ �� @ active

pair, hence there is at most one evaluation redex.

Proof. This is true for ⇓T(t) and all rules trivially preserve the property, except λ �� @.

But thanks to Lemma 6.3 (first two points), we know that there is no ⇓ or ⇑ in the net

when this rule is used.

Classical results on packages (Lafont 1997; Lippi 2002) allow us to state the two

properties in the following proposition.

Proposition 6.5.

— If t is a closed λ-term, then

T(t)

�

��
��
ε

�
=⇒∗ ��

�

(where the right-hand side of the rule denotes the empty net).

— If t is a closed λ-term, then

T(t)

�

��
��
c

� �

�
=⇒∗

T(t)

�

T(t)

�

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

Call-by-need in token-passing nets 655

Proof. The proof is by induction on the structure of t. For the second point, we need

the following lemma, which is also easily proved by induction:

T(t) T(u)

� �

��
��
δ ��

��
δ

� �

� � � �

· · · · · ·��
��
s

�� ��	

��
��
δ ��

��
δ ��

��
δ ��

��
δ��

��
δ

� � � ��

=⇒∗

T(t) T(u)

� �

· · · · · ·��
��
s

�� ��	

T(t) T(u)

� �

· · · · · ·��
��
s

�� ��	

It is only because of the agent s that our system fails to be an interaction net system

in the sense of Lafont, but it is enough to invalidate strong confluence. However, strong

confluence can be restored by imposing two limitations:

— by considering valid nets only (and thus nets with only one token agent); and

— by removing the rules for garbage collection (rules involving ε).

We stress again that these rules are not essential for the progress of evaluation (failing to

apply them will not block the evaluation token).

Proposition 6.6. Reduction (excluding erasing rules) is strongly confluent on valid nets,

that is, if M is a valid net such that M =⇒ P and M =⇒ Q (with P �= Q), then there

exists a net N such that P =⇒ N and Q =⇒ N.

Proof. In a valid net, there is at most one evaluation rule applicable (by Proposition 6.4),

so at least one of the reductions is administrative. But, from Lemma 6.3 and Proposi-

tion 6.4, an s agent cannot have a δ on one port and an evaluation token on the other.

Consequently, there is no overlap between evaluation and administrative rules: in this

case, the reductions are independent and the diverging pair can be joined by applying the

other rule. The remaining case thus involves two administrative rules. Again, if they are

applied at different places, the pair is easy to join. Lemma 6.3 (point 6) means agents c and

s cannot meet, so the only remaining cases involve an agent s and agents δ or s′′ on both

its principal ports. In all of these configurations, both reductions lead to the same net, in

which the agent s has been activated into an agent s′′. This completes the proof.

Now, if we put the garbage collection rules back into the system, confluence does not

hold in general because of the overlap between ε �� s and ⇓ �� s: if the term corresponding

to the net below the agent s is not weakly normalising, the diverging reductions will

never join again. This issue could be addressed by adding more principal ports to s′
l and

s′
r and interaction rules with ε, but there is little point in doing this, at least from an

implementation point of view. However, reduction is confluent for terminating λ-terms.

This can be easily seen from Corollary 6.11 (and the above counter-example shows that

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

F.-R. Sinot 656

no better confluence result can be hoped for). It is also worth noticing that, in the folklore

of interaction nets, an ε connected to an auxiliary port of a c agent is often considered

equivalent to a single edge (Asperti and Guerrini 1998). This partly corresponds to the

interaction rule ε �� s in our setting, which is possible because s has two principal ports,

but it is no surprise that it does not solve all problems.

A more general remark about token-passing nets is that reduction is more likely to

be confluent than in net systems without tokens, as shown by Proposition 6.6 for our

particular system. Another point is that some cost in terms of the number of interaction

steps comes from the token agent. However, this is better seen as a cost made explicit

rather than as an extra cost: standard implementations of Lafont’s interaction nets require

some external machinery to find the next redex (Pinto 2000). By contrast, in token-passing

nets, it is always sufficient to reduce in the neighbourhood of the token agent.

6.2. Simulation

We will now show a correctness property demonstrating that the interaction net system

given in Section 5 is indeed an implementation of the rewrite system of Section 2.3, and

thus an implementation of call-by-need. However, there is no point in looking for an

exact correspondence: we do not care if the representations of the objects differ, as long

as the results of the computations correspond. We will thus consider both terms and nets

up to a certain equivalence preserving the meaning of the objects. From now on, � will

stand for either ⇓ or ⇑.

Definition 6.7 (Equivalence on terms). We define ∼ as the least symmetric, reflexive and

transitive relation such that:

— For any two-holes context C[][] and value v, C[�(Γ,x �→v) t][x] ∼ C[�(Γ,x �→v) t][v].

— For any context C[], if e = C[�(Γ,x �→u) t] and e′ = C[�Γ t], if x �∈ fv(e′), then e ∼ e′.

In the first clause of the definition above we need a context with two holes because

the binding x �→ v is not local to the subterm t, but to the whole term (in the big-step

notation Γ : t, the environment Γ is a binder at the top-level). Moreover, there is no

capture problem since all bound variables are distinct (this is assumed in the initial term

and preserved by reduction).

Definition 6.8 (Equivalence on nets). We define ≈ as the least symmetric, reflexive,

transitive relation that is stable in net contexts (that is, plugging two equivalent nets

into the same net gives two equivalent nets) and such that:

— a ≈ @, s ≈ s′
l ≈ s′

r;

— ==⇒
adm

⊂ ≈;

— s is considered associative and commutative, that is,

�
 �	

��
��
s

��

��
��
s

�� �	�
 ≈

�
 �	

��
��
s

��

��

��
��
s

�	�
�

��
��
s

�	�

≈ ��

��
s

����

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

Call-by-need in token-passing nets 657

Another thing we have to take care of before demonstrating a simulation property

is to define a sensible notion of correspondence between intermediate states during the

reduction of a term and a net. This amounts to extending the translation function T(·)
to enriched terms instead of just λ-terms, which was enough to start the process.

In general, an enriched term e is of the form: e = C0[x1 �⇒ C1[. . . xn �⇒ Cn[�Γ t] . . .]],

where t is a λ-term, x1, . . ., xn are variables and C0[], . . ., Cn[] are contexts on λ-terms.

We now extend T(·) step by step:

— T(t) is already defined if t is a λ-term. If t has free variables x1, . . ., xn, we assume that

the corresponding free edges are temporarily labelled with the appropriate variable.

The label will not be part of the final translation: it is only used to build it.

— We define T(� t) (empty environment) as in Section 5.1 by connecting an agent ⇓ or

⇑ to T(t).

— T(C[�Γ t]) where Γ = (x1 �→ t1, . . ., xn �→ tn) is defined by building T(C[� t]) and T(ti)

for all i, and connecting every edge labelled xi in T(C[� t]) to the root of T(ti).

— Similarly, for T(C[x �⇒ t]), we build T(C[x]) and T(t) and connect the free edge

labelled x of the former to the root of the latter.

Note that T(·) produces nets that are valid with respect to reduction only modulo ≈.

For instance, T((⇓Γ t) u) has an agent ⇓ below an agent a, which is not supposed to

happen in a reduction: the agent a should have been transformed into @. However,

everything is fine modulo ≈, in the sense of the following two propositions.

Proposition 6.9 (Completeness). For two enriched terms t and u, if t → u, then there exist

M and N such that T(t) ≈ M, M =⇒∗ N and N ≈ T(u).

Proof. The proof is by cases on the rule used:

— (⇓Lam): This case is clear.

— (⇓App): This case is clear.

— (⇑App): This case is clear (it takes two steps).

— (⇓Var): Say ⇓(Γ,x �→t)x → x �⇒⇓Γt. There are two cases:

– If the occurrence of x is unique in the term or if t has already been evaluated, the

variable x is just represented by a wire, and the two translations are equal:

T(C[⇓(Γ,x �→t) x]) = T(C[x �⇒ ⇓Γ t]).

– Otherwise, this corresponds to a rule ⇓ �� s, which transforms s into s′
l or s′

r (which

are equivalent modulo ≈).

— (⇑Var): There are again two cases:

– In the linear case, the translations are the same on both sides.

– In the non-linear case, this corresponds to a rule ⇑ �� s′
l or ⇑ �� s′

r .

We cannot impose M = T(t) in the above proposition because the principal ports

in T(t) may be oriented incorrectly (as in T((⇓Γ t) u)), but there is indeed a correctly

oriented representative in the class of T(t).

For the other direction, there is a detail to take care of: the rule ⇑ �� @ creates an

intermediate net that does not correspond to a valid term until the corresponding rule

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

F.-R. Sinot 658

λ �� @ is applied. Hence, we do not reason using reduction =⇒ but rather ≡� defined

as follows:

— M ≡� N if there exists P such that M ==⇒
⇑��@

P ==⇒
λ��@

N.

— M ≡� N if M =⇒ N by another rule.

Proposition 6.10 (Correctness). If M ≡� N and M ≈ T(t) for some enriched term t, then

there exist t′ and u such that t ∼ t′, t′ →∗ u and N ≈ T(u).

Proof. The proof is by cases on the family of rules used:

— Rules ⇓ �� λ, ⇓ �� a, ⇑ �� @+λ �� @: These cases are clear (some rules moving variables

between the context and construct of the form x �⇒ t may be applied implicitly in the

linear case).

— Rules ⇓ �� s: In this case t′ is of the form C[⇓(Γ,x �→v) x] (with x non-linear in t′), and,

indeed, T(C[x �⇒ ⇓Γ v]) ≈ N.

— Rules ⇑ �� s′
l/r: This case is similar to the previous one.

— Administrative rules: These cases are true with t = t′ = u, since ≈ contains this

≡� step.

Corollary 6.11 (Simulation of call-by-need).

— If Γ : t ⇓ ∆ : v, then T(⇓Γt) =⇒∗ T(⇑∆v).

— If T(⇓Γt) =⇒∗ T(⇑∆v), then there are v′,∆′ such that ⇑∆v ∼ ⇑∆′ v′ and Γ : t ⇓ ∆′ : v′.

Proof. We simply put together previous results.

— By Propositions 2.2 and 6.9, there are nets M and N such that T(⇓Γt) ≈ M, N ≈
T(⇑∆v) and M =⇒∗ N, and we may choose N in normal form without loss of

generality. Since the token is at the top, there is no s′ in M or N and there is no harm

in choosing to mark applications a instead of @. So T(⇓Γt) =⇒∗ T(⇑∆v).

— First note that the reduct has a token agent in it, hence the =⇒∗ reduction is also a

≡� ∗ reduction. We use Propositions 2.2 and 6.10, and an argument similar to the one

used above allows us to get rid of the ≈. However, we cannot get rid of the ∼ since a

net may be read back into several different enriched terms.

Note that this corollary is weaker than the propositions, since it is a simulation property

only with respect to the normal forms, and not to the reductions themselves.

7. Fully lazy reduction

The call-by-need strategy, for which we have just given an implementation using net

rewriting, just captures the sharing of values. For example, evaluation of the term

(λf.fI(fI))(λw.(II)w)

where I = λx.x will evaluate the redex II twice, because the subterm λw.(II)w will

be shared, then copied as a whole when necessary. This is what happens in the implementa-

tion above, as well as in standard implementations of call-by-need, for example, in the

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

Call-by-need in token-passing nets 659

G-machine (Peyton Jones and Salkild 1989). This is not usually considered to be a

problem, because this term can also be transformed into

(λf.fI(fI))((λz.(λw.z w))(II))

in which the redex II will be evaluated only once. This transformation is called fully lazy

λ-lifting (Peyton Jones 1987, Chapter 15).

However, it is also possible to share the evaluation of this redex directly. Implementa-

tions achieving this are called fully lazy. Wadsworth was the first to provide a fully lazy

interpreter (Wadsworth 1971): he noticed that the redex II should not be copied since

no occurrence of the bound variable w occurs in it. However, his algorithm is neither

intuitive or efficient; it is thus natural to try to adapt the work done so far to fully lazy

sharing.

The evaluator proposed in Section 5 relies crucially, on the one hand, on the fact that

whenever a copy is started on a closed term, it may always complete, and, on the other

hand, on the fact that the token ensures that reduction happens only at a point where

the term is closed (that is, the token does not go under λ’s). This would not be true

for a fully lazy evaluator. The difficulty lies in the fact that we are using a distributed

framework: the copying is performed by local steps, and two different copying processes

may be interleaved, so it may not be obvious when to stop.

This problem disappears in a non-distributed framework; for instance, in Shivers and

Wand (2005), an algorithm for fully lazy reduction is described in an imperative style. The

trick is to make two passes for copying: in the first pass, nodes are copied and marked as

such, and an already marked node is never copied; in the second pass marks are erased.

This is clearly not applicable here.

In our framework the problem boils down to deciding whether, when two agents δ meet,

they should copy each other or cancel each other out. This problem is known to be hard

in the context of optimal reduction (Lamping 1990), where it is known as the problem

of implementing (efficiently) the boxes of linear logic. So before even starting work on a

solution, we can already say that the solution will not be completely satisfactory. So far,

the evaluation token has had two benefits: it restricted evaluation to the needed redexes

and allowed us to manage copying in a very simple way. In a fully lazy setting, this last

point will not hold: we have reached a limit for the token-passing approach.

Now there are several known solutions to the problem of restricting copying agents to

the correct scope. The framework RINO developed by Lang (Lang 1998) is the easiest

to adopt for our purpose, because he does not introduce extra agents (instead, he adds

some structure to already existing agents) and his evaluator is already (essentially) fully

lazy, although he does not make such a claim. We will thus freely borrow his technology

and results. The full details and proofs can be found in Lang (1998).

Lang’s technology relies on giving labels to certain agents, so we begin by introducing

some terminology. We assume we are given an infinite set of atomic labels or letters

(denoted x, x1, x2, y, . . .). We then define a label or word (denoted σ, ρ, . . .) as an ordered

sequence of atomic labels, and we write ε for the empty label. Prefixing, postfixing and

concatenation are denoted without a symbol when there is no risk of confusion. We define

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

F.-R. Sinot 660

��
��
cσ

��

�

��
��

⇓

� =⇒

��
��
cσ

��

�

��
��

−⇑
�

��
��
@

���
�

	

��
��

−⇑

=⇒

��
��
a

��

�

��
��

−⇑
�

��
��
s′
l,σ

��

�

��
��

−⇑
�

=⇒ ��
��

⇓
�

�

��
��
cσ

�

��

��
��
s′
r,σ

��

�

��
��

−⇑
�

=⇒ ��
��

⇓
���

��
��
cσ

�

�

��
��
a

� �

��
��
cσ

� �

�
� =⇒

��
��
a ��

��
a

��
��
cσ ��

��
sσ

�

� �

�
��

�
��

 �

��
��
λx

� �

��
��
cσ

� �

�
� =⇒

��
��
λx1 ��

��
λx2

��
��
cσx ��

��
sσx

�

� �

�
��

�
��

�

��
��
cρ

�

��
��
cσ

�

��

� �

=⇒
ρ�σ

��
��
cρ

� �

��
��
cσ

� �

�
� =⇒

ρ ��σ

��
��
cρ ��

��
cρ

��
��
sσ ��

��
sσ

� �

�
��

�
��

� ��
��

�
��

	

Fig. 1. Additional net rewriting rules for fully lazy reduction

the length of a label σ, written |σ|, as the number of letters of σ. Moreover, we write

ρ � σ if ρ is a prefix of σ.

Our starting point is the encoding of Section 4. The agents are modified as follows:

— The agents λ are annotated with an atomic label, which is unique in the net considered:

the starting net has unique atomic labels on λ agents, and when a λ agent is copied,

the two copies are given fresh atomic labels (that is, atomic labels that have never

previously appeared in the net), see Figure 1.

— The former agents c and δ are now coalesced into a single type of agent cσ , annotated

with a non-atomic label. All labels are initially empty (that is, equal to ε). The former c

agents correspond to an empty label, while the δ agents correspond to cσ with |σ| � 1.

This is a consequence of the rule cσ �� λ: see Figure 1.

— The agents s are also annotated with a label. The previous agent s was an inhibited

version of the agent c, and was used to share closed subterms. Now sσ is also an

inhibited version of δ (in the case |σ| � 1), but it may share open subterms.

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

Call-by-need in token-passing nets 661

— The agent δ was used for two dual purposes: to share a subterm (that is, as a fan in,

in the literature) and to end the scope of the sharing of a context (fan out). Now these

two usages are syntactically distinguished as cσ for the first, and cσ for the second.

This is necessary because of the possible asymmetry in the rule cσ �� cρ (see Figure 1),

in contrast with Section 5.

— There is no longer an agent s′′. Indeed, the default behaviour of the new agent cσ is

to perform one copy step and then turn back into an sσ and share the subterm until

the token makes a further copy necessary, in a similar way to s′′ as given in Section 5.

— Finally, there is a new type of token, written −⇑, which is used when the evaluated

subnet under it is in the form of a stack of applications beginning with an agent cσ .

Its role is to go up to find an agent s′
σ (there must be one), as opposed to the role of

the standard token ⇑, which is to find an application.

Our fully lazy net interpreter consists of the rules of Section 5 (adding labels where

necessary), with the modifications and additions shown in Figure 1 – the following

comments provide some further explanations:

— An agent −⇑ is created when the token reaches a cσ and goes up the stack of applications

above it until it finds an agent s′
σ (there must be one).

— When the token −⇑ returns to an agent s′
σ , we initiate the copying process with a cσ

agent and resume evaluation from the original position (left or right, as remembered

in the agent).

— When an application is copied, we know that the left subterm will be needed, and

hence should be copied. So, as a cheap optimisation, we prefer to generate a cσ directly

instead of a sσ .

— When a cσ agent copies a λ agent labelled x, the two copies of the λ are given fresh

labels (that is, labels that have never appeared before in the net), while the new c and

s agents are labelled by σx (x postfixed to σ), see Figure 1.

— When two agents cσ and cρ are facing each other, their labels are compared for

prefixing. If the label of the closing copy agent cρ is a prefix of the other, they must

both come from the same λ and should annihilate (the copy is finished). Otherwise,

they do not match, and they should copy each other. Note that in this case, the rule

is asymmetric, so we need to introduce different agents cσ and cσ .

— To understand the role of the labels using an example, the puzzled reader is invited

to reduce the term (λz.z z) (λx.(λz.z z) (λy.x y))): the body of the inner abstraction is

copied twice, and the labels ensure that the copying agents match correctly.

In brief, the net interpreter we propose is a reformulation of the interpreter found in

Lang (1998), so it is not appropriate to take more space here describing the properties

of this interpreter. Correctness of the labelling and simulation with respect to the λ-

calculus are given in Lang (1998) and easily adapted. We may, nevertheless, note an

interesting common point between our system and the systems developed by Lang and

Lippi: there are two distinct agents for application, one used for β-reduction and the

other for duplication, and these agents can be converted from one type to the other by

certain interaction rules with other agents.

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

F.-R. Sinot 662

Though Lang’s implementation is ‘essentially’ fully lazy, it is not completely so since

normal order is not imposed (this is the main role of the token here), and thus some

useless computations may be performed. On the other hand, it uses standard interaction

nets (no multiple principal ports), which is not possible with the token-passing approach,

because the token may appear on any side of a sharing agent. We may briefly state a

strength of our presentation in the following proposition.

Proposition 7.1. The net rewriting rules given in Figure 1 perform fully lazy reduction.

Proof. Fully lazy reduction means sharing of maximal free expressions (Peyton Jones

1987). Whatever they are, one just has to notice that our implementation shares everything

until the token says that evaluation is indeed required. Our implementation is thus trivially

fully lazy.

The observation that Lang’s interpreter is (almost) fully lazy would probably be difficult

to make without our framework with a token; indeed, Lang does not make such a claim

(except for the claim of being experimentally efficient). Once this observation has been

made, it is probably fair to say that Lang’s implementation is probably more efficient than

ours, in particular, in a true distributed setting. The evaluation token does indeed make the

strategy more explicit, but it may also have a cost, depending on how token-passing nets

are implemented. Lang’s implementation does not have such (potential) extra cost, and,

moreover, uses standard interaction nets (no multiple principal ports). Our presentation

can be seen as a formalisation of what would probably be a real implementation of

Lang’s interpreter in a sequential language. It is also fair to say that our presentation

aims at simplicity and does not consider possible optimisations. We believe that our

framework could be a good candidate for reasoning about such possible optimisations

and for proving them formally.

8. Conclusions

We have presented a simple approach to expressing the lazy and fully lazy strategies

of the λ-calculus in net rewriting. For standard call-by-need, the approach is so simple

that it is indeed a good alternative to working with terms and environments. It is

obtained from an encoding of call-by-name without adding any extra structure, and

without much complication. Moreover, some meaningless differences in the representation

as term/environment pairs are quotiented out in the net representation, which makes the

approach even simpler. For fully lazy reduction, the framework is less simple and borrows

some of the technology developed by Lang, thus reintroducing a mechanism to match

copying agents reminiscent of the boxes of linear logic. However, this is not a weakness

of our framework; this is simply the price to pay for having such a fine notion of sharing.

The framework of interaction nets had to be abandoned, but no property is lost. This

can be seen both as a simple formalisation of Wadsworth’s original ideas in a distributed

framework, and as the basis for distributed graph-based abstract machines.

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

Call-by-need in token-passing nets 663

Appendix A. Equivalence of big-step semantics

We present Launchbury’s big-step semantics of call-by-need (Launchbury 1993) and prove

its equivalence to the simplified version presented in Section 2.2. The usual set of λ-terms

is denoted Λ.

Definition A.1. Λlet is the set of λ-terms with lets defined by

t, u ::= x | λx.t | t x
| let x = u in t x (if x �∈ fv(t)).

Definition A.2. The compilation function (·)∗ : Λ → Λlet is defined by

x∗ = x

(λx.t)∗ = λx.(t∗)

(t u)∗ =

{
(t∗) u if u is a variable,

let x = u in t x otherwise (x is a fresh variable).

Definition A.3. Launchbury’s big-step semantics of call-by-need is denoted ⇓L and is

defined on Λlet as follows. All bound variables are assumed to be initially different:

LamL
Γ : λx.t ⇓L Γ : λx.t

Γ : t ⇓L ∆ : λy.t′ ∆ : t′{y := x} ⇓L Θ : v
AppL

Γ : t x ⇓L Θ : v

Γ : t ⇓L ∆ : v
VarL

(Γ, x �→ t) : x ⇓L (∆, x �→ v) : v̂

(Γ, x �→ u) : t ⇓L ∆ : v
LetL.

Γ : let x = u in t ⇓L ∆ : v

Terms of Λlet enjoy some structural properties. First, if all variables are distinct in Γ : t

and Γ : t ⇓L ∆ : v, then all variables are distinct in ∆ : v (Launchbury 1993). In other

words, to keep all bound variables distinct, it is sufficient to perform α-conversion in rule

VarL alone. Moreover, for any t ∈ Λlet , if a subterm of t is an application u v, then v is a

variable, and if a subterm of t is of the form let x = u in v, then v = w x with x �∈ fv(w).

It is easy to see that the compilation (·)∗ enforces these properties, and that the evaluation

⇓L preserves them, which justifies the above definitions, as well as the following one.

Definition A.4. We define the readback function (·)◦ : Λlet → Λ by

x◦ = x

(λx.t)◦ = λx.(t◦)

(t x)◦ = t◦ x

(let x = u in t x)◦ = t◦ u◦.

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

F.-R. Sinot 664

Lemma A.5. Compilation and readback are inverses (modulo α-conversion):

— (·)◦ ◦ (·)∗ = idΛ

— (·)∗ ◦ (·)◦ = idΛlet
.

Proof. The proof is obvious.

We also need the following auxiliary lemma.

Lemma A.6. If x is a fresh variable (for Γ : t) and u is a Λlet -term, then Γ : t ⇓L ∆ : v if

and only if (Γ, x �→ u) : t ⇓L (∆, x �→ u) : v.

Proof. The proof is obvious.

We extend (·)∗ and (·)◦ to environments and to pairs Γ : t in the obvious way. We also

identify the relations ⇓ and ⇓L with their associated functions. We are now in a position

to state the main theorem of this section.

Theorem A.7. ⇓ and ⇓L are bisimilar (modulo α-conversion) in the following sense:

— ⇓ = (·)◦ ◦ ⇓L ◦ (·)∗

— ⇓L= (·)∗ ◦ ⇓ ◦ (·)◦.

Proof. Lemma A.5 means both points are equivalent. We only develop the difficult case.

Let us assume Γ : t u ⇓ Θ : v and show that (Γ : t u)∗ ⇓L Θ′ : v′ with (Θ′ : v′)◦ = Θ : v.

By rule App, there exist ∆ and r such that Γ : t ⇓ ∆ : λx.r and (∆, x �→ u) : r ⇓ Θ : v. By

induction, there exist ∆′, t′ such that

(Γ : t)∗ ⇓L ∆′ : t′ (1)

and (∆′ : t′)◦ = ∆ : λx.r. By Definition A.4, there exists r′ such that

t′ = λx.r′. (2)

Using Lemma A.5,

∆′ = ∆∗ and r′ = r∗. (3)

By induction again, there exist Θ′, v′ such that

((∆, x �→ u) : r)∗ ⇓L Θ′ : v′ (4)

and

(Θ′ : v′)◦ = Θ : v. (5)

The following derivation and fact (5) allow us to conclude this case.

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

Call-by-need in token-passing nets 665

(1) + (2)

Γ∗ : t∗ ⇓L ∆′ : λx.r′

(A.6)
(Γ∗, y �→ u∗) : t∗ ⇓L (∆′, y �→ u∗) : λx.r′

(4)

(∆∗, x �→ u∗) : r∗ ⇓L Θ′ : v′

(3)
(∆′, x �→ u∗) : r′ ⇓L Θ′ : v′

(=α)
(∆′, y �→ u∗) : r′{x := y} ⇓L Θ′ : v′

(AppL)
(Γ∗, y �→ u∗) : t∗ y ⇓L Θ′ : v′

(LetL)
Γ∗ : let y = u∗ in t∗ y ⇓L Θ′ : v′

(A.2)
(Γ : t u)∗ ⇓L Θ′ : v′

The other two cases are easy.

References

Alexiev, V. (1999) Non-deterministic Interaction Nets, Ph.D. thesis, University of Alberta.

Ariola, Z.M. and Felleisen, M. (1997) The call-by-need lambda calculus. Journal of Functional

Programming 7 (3) 265–301.

Ariola, Z.M., Felleisen, M., Maraist, J., Odersky, M. and Wadler, P. (1995) The call-by-need lambda

calculus. In: Conference Record of POPL ’95: 22nd ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages 233–246.

Asperti, A., Giovannetti, C. and Naletto, A. (1996) The Bologna optimal higher-order machine.

Journal of Functional Programming 6 (6) 763–810.

Asperti, A. and Guerrini, S. (1998) The Optimal Implementation of Functional Programming

Languages, Cambridge Tracts in Theoretical Computer Science, Cambridge University Press.

Barendregt, H. P. (1984) The Lambda Calculus: Its Syntax and Semantics. Studies in Logic and the

Foundations of Mathematics 103 (second, revised edition), North-Holland Publishing Company.

Bawden, A. (1986) Connection graphs. In: Gabriel, R. P. (ed.) Proceedings of the ACM Conference

on LISP and Functional Programming, ACM Press 258–265.

Crégut, P. (1990) An abstract machine for lambda-terms normalization. In: Lisp and Functional

Programming 1990, ACM Press 333–340.

Girard, J.-Y. (1987) Linear Logic. Theoretical Computer Science 50 (1) 1–102.

Gonthier, G., Abadi, M. and Lévy, J.-J. (1992) The geometry of optimal lambda reduction. In:

Proceedings of the 19th ACM Symposium on Principles of Programming Languages (POPL’92),

ACM Press 15–26.

Lafont, Y. (1990) Interaction nets. In: Proceedings of the 17th ACM Symposium on Principles of

Programming Languages (POPL’90), ACM Press 95–108.

Lafont, Y. (1997) Interaction combinators. Information and Computation 137 (1) 69–101.

Lamping, J. (1990) An algorithm for optimal lambda calculus reduction. In: Proceedings of the 17th

ACM Symposium on Principles of Programming Languages (POPL’90), ACM Press 16–30.

Lang, F. (1998) Modèles de la β-réduction pour les implantations, Ph.D. thesis, École Normale

Supérieure de Lyon.

Launchbury, J. (1993) A natural semantics for lazy evaluation. In: Conference Record of the

Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

144–154.

Lippi, S. (2002) Théorie et pratique des réseaux d’interaction, Ph.D. thesis, Université de la

Méditerranée.

Mackie, I. (1998) YALE: Yet another lambda evaluator based on interaction nets. In: Proceedings

of the 3rd International Conference on Functional Programming (ICFP’98), ACM Press 117–128.

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

F.-R. Sinot 666

Mackie, I. (2004) Efficient λ-evaluation with interaction nets. In: van Oostrom, V. (ed.) Proceedings

of the 15th International Conference on Rewriting Techniques and Applications (RTA’04).

Springer-Verlag Lecture Notes in Computer Science 3091 155–169.

Maraist, J., Odersky, M. and Wadler, P. (1998) The call-by-need lambda calculus. Journal of

Functional Programming 8 (3) 275–317.

Mazza, D. (2005) Multiport interaction nets and concurrency. In: Abadi, M. and de Alfaro, L. (eds.)

Proceedings of CONCUR’05. Springer-Verlag Lecture Notes in Computer Science 3653 21–35.

Peyton Jones, S. and Salkild, J. (1989) The spineless tagless G-machine. In: Proceedings of the Fourth

International Conference on Functional Programming Languages and Computer Architecture, ACM

Press 184–201.

Peyton Jones, S. L. (1987) The Implementation of Functional Programming Languages, Prentice Hall

International.

Pinto, J. S. (2000) Sequential and concurrent abstract machines for interaction nets. In: Tiuryn, J.

(ed.) Proceedings of Foundations of Software Science and Computation Structures (FOSSACS).

Springer-Verlag Lecture Notes in Computer Science 1784 267–282.

Seaman, J. and Iyer, S. P. (1996) An operational semantics of sharing in lazy evaluation. Science of

Computer Programming 27 (3) 289–322.

Shivers, O. and Wand, M. (2005) Bottom-up beta-reduction: uplinks and lambda-DAGs. In:

Proceedings of the 14th European Symposium on Programming (ESOP’05). Springer-Verlag

Lecture Notes in Computer Science 3444.

Sinot, F.-R. (2005) Call-by-name and call-by-value as token-passing interaction nets. In: Proceedings

of the 7th International Conference on Typed Lambda Calculi and Applications (TLCA’05).

Springer-Verlag Lecture Notes in Computer Science 3461 386–400.

Sinot, F.-R. (2006) Token-passing nets: Call-by-need for free. In: Proceedings of Developments in

Computational Models. Electronic Notes in Theoretical Computer Science 135 (3) 129–139.

Wadsworth, C. P. (1971) Semantics and Pragmatics of the Lambda-Calculus, Ph.D. thesis, Oxford

University.

https://doi.org/10.1017/S0960129506005408 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005408

