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Background. A previous small study suggested that Brain Network Activation (BNA), a novel ERP-based brain network
analysis, may have diagnostic utility in attention deficit hyperactivity disorder (ADHD). In this study we examined the
diagnostic capability of a new advanced version of the BNA methodology on a larger population of adults with and
without ADHD.

Method. Subjects were unmedicated right-handed 18- to 55-year-old adults of both sexes with and without a DSM-IV
diagnosis of ADHD. We collected EEG while the subjects were performing a response inhibition task (Go/NoGo) and
then applied a spatio-temporal Brain Network Activation (BNA) analysis of the EEG data. This analysis produced a dis-
play of qualitative measures of brain states (BNA scores) providing information on cortical connectivity. This complex set
of scores was then fed into a machine learning algorithm.

Results. The BNA analysis of the EEG data recorded during the Go/NoGo task demonstrated a high discriminative cap-
acity between ADHD patients and controls (AUC = 0.92, specificity = 0.95, sensitivity = 0.86 for the Go condition; AUC =
0.84, specificity = 0.91, sensitivity = 0.76 for the NoGo condition).

Conclusions. BNA methodology can help differentiate between ADHD and healthy controls based on functional brain
connectivity. The data support the utility of the tool to augment clinical examinations by objective evaluation of electro-
physiological changes associated with ADHD. Results also support a network-based approach to the study of ADHD.
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Introduction

Attention deficit hyperactivity disorder (ADHD) is a
prevalent and morbid neurobiological disorder esti-
mated to affect up to 10% of children (Faraone et al.
2003) and 5% of adults worldwide (Faraone &
Biederman, 2005). It is associated with a wide range
of impairments across the life-cycle, including high
rates of psychiatric co-morbidity, neuropsychological
deficits, educational and occupational under-
attainment, substance use disorders and smoking, acci-
dents and injuries and premature death (Faraone et al.

2015). Because the diagnosis of ADHD is entirely
based on the clinical assessment of largely subjective
symptoms, there has been a great interest in the field
in validating an objective diagnostic test.

Several recent studies suggest that the pathophysi-
ology of ADHD is related to abnormal brain activity
at the functional network level (reviewed in Konrad
& Eickhoff, 2010). Anatomical, physiological, and clin-
ical evidence indicates that functional networks span-
ning spatial and temporal scales form a critical
feature of information processing in the brain
(Bullmore & Sporns, 2009). It has been suggested that
the coordination of such widely distributed brain activ-
ity is a function of the synchronization of network
potential oscillations (Engel et al. 2001; Buzsaki &
Draguhn, 2004). This synchronization seems to govern
the effective strength of connections between critical
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regions in the brain, providing a mechanism for the
generation of diverse functional networks (Fries,
2005; Makris et al. 2007).

Our team developed Brain Network Activation
(BNA) analysis (Shahaf et al. 2012; Reches et al.
2013a, b, 2014), which was shown to have potential
diagnostic utility in ADHD (Shahaf et al. 2012). BNA
is an EEG-event-related potential (ERP)-based tool
that applies novel signal processing algorithm and net-
work analysis methods to identify the dynamic spatio-
temporal aspects of specific cognitive processes
(Reches et al. 2013b). The algorithm produces a display
of qualitative BNA patterns as well as a quantitative
similarity index (BNA score) providing information
on cortical connectivity. BNA methodology has previ-
ously been shown to have potential diagnostic utility
in ADHD (Shahaf et al. 2012) in a pilot feasibility
study consisting of 13 adults with ADHD and 13 con-
trol subjects using a task to assess inhibitory control
(Go/NoGo task). Here we reexamine the diagnostic
accuracy of an advanced version of the BNA ana-
lysis tool, which utilizes a method termed Spatio
Temporal Parcellation (STEP) for feature extraction
(see Stern et al. 2016). This new method indexes the
efficiency of neuronal network activity for an individual
subject against a control group (see details below), and
allows for the examination of functional networks
impairments in ADHD. We hypothesized that this
advanced BNA measure would have diagnostic utility
in ADHD.

Method

Subjects

ADHD subjects were 34 right-handed outpatients (13
females, mean age 30.06 ± 10.76 years), recruited from
the Clinical and Research Program in Adult ADHD
at the Massachusetts General Hospital, and advertising
in the local media. ADHD subjects met full criteria for
the diagnosis of DSM-IV ADHD, with onset of symp-
toms in childhood and persistence of impairing symp-
toms into adulthood, as determined by a clinical
evaluation supplemented by the ADHD module of
the K-SAD-E (Orvaschel, 1994) completed by a study
clinician with expertise in the diagnosis and treatment
of adults with ADHD. Clinicians also completed the
HAMA (Hamilton, 1959) and HAMD (Hamilton,
1960) with ADHD subjects to rule out active symptoms
of depression and anxiety. Any co-morbidity as
assessed through the SCID-IV (First et al. 1997) was
exclusionary. Patients did not receive pharmacological
treatment for ADHD for at least 1 week before study
entry. Controls were 29 right-handed healthy adults
(14 females) of comparable age (30.8 ± 10.72 years)

who did not meet the criteria for ADHD, as deter-
mined by a clinical evaluation supplemented by the
ADHD module of the K-SAD-E (Orvaschel, 1994) com-
pleted by a study clinician with expertise in the diag-
nosis and treatment of adults with ADHD. Any other
psychiatric ndisorder as assessed through the
SCID-IV (First et al. 1997) was also exclusionary.
Social class was based on the two-factor (occupation
and education) Hollingshead sytem ranging for 1
(highest) to 5 (lowest) (Hollingshead, 1975) (for full
information on sociodemographic characteristics, see
Table 1a). All study procedures were approved by
the Massachusetts General Hospital Institutional
Review Board and all subject signed a written consent
before participation.

Tasks and stimuli

We selected the visual Go-NoGo task since it is target-
ing response inhibition, executive functions and sus-
tained attention (Simmonds et al. 2008). In this task, a
frequent ‘Go’ stimulus, which occupies 80% of all
trials, requires the subject to perform a motor response
each time it appears on the screen. A rare ‘NoGo’
stimulus (20% of all trials) requires the subject to
refrain from responding.

Subjects were seated in a dimly lit room, at a dis-
tance of 70 cm from a 17-inch CRT screen, and were
instructed to respond to the Go stimuli using a dedi-
cated response box (Psychological Software Tools
Inc., USA). The Go stimuli in our paradigm consisted
of white English alphabetic letters (B, C, D, E, F, G)
appearing in equal proportions, and the NoGo stimu-
lus was a white X symbol. The stimuli were presented
on the center of a black background computer screen
for 150 ms and were located between two vertical
white lines, which remained constant on the screen
throughout the block. The ISI varied randomly
between 1000 and 3000 ms in 250-ms steps. Four
blocks of 90 stimuli each were presented and the dur-
ation of the task was approximately 12 min. A 10 trial
practice block was run prior to the experimental ses-
sion. The experiment was run using the ePrime soft-
ware (Psychological Software Tools Inc.).

Behavioral analysis

Trials in which the reaction times (RTs) were less than
150 ms (an accepted plausible human RT) and greater
than 4 S.D. from the mean (i.e. the mean for the condi-
tion) were removed from analysis. We computed two
accepted task-related measures: RT for the Go trials
and accuracy. For accuracy, we calculated a global
error rate including the two types of possible errors
in the Go-NoGo task: commissions (key presses in
the NoGo stimulus) and misses (failure to respond to
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the Go stimulus). This error index is commonly used
and considered to reflect the quality of inhibition of
response (Greimel et al. 2011; Pandey et al. 2012).

EEG recording and pre-processing

EEG was recorded at a sampling rate of 250 Hz from
64 Ag/AgCl active electrodes (BioSemi Active Two sys-
tem, The Netherlands) arranged on an electrode cap
according to the international 10/20 system. In addition
to the 64 channels, four electrodes were used for eye-
movement monitoring: two were placed above and
below the right eye, and the other two were placed
at the outer canthus of both eyes. Last, two electrodes
were placed on the mastoid bones behind the ears for
offline re-referencing. After recording, EEG data were
re-referenced to the linked mastoids, and bandpasse
filtered between 0.5 to 30 Hz with a zero-phase lag
FIR filter implemented in the EEGLAB toolbox for
Matlab. Then, data underwent an independent compo-
nent analysis (ICA) for blink artifact removal.
Independent components representing blinks were
identified and subtracted from the data (Delorme &
Makeig, 2004). Before running the BNA analysis, all
datasets passed a final data quality (DQ) procedure
designed to detect noisy EEG files that cannot go
through further analysis, as accepted in EEG studies
(see Appendix A for DQ details).

ERP and BNA analysis

After preprocessing, each EEG datafile was bandpass
filtered into three distinct bands: δ (0.5–4 Hz), θ (3–8
Hz) and α (7–13 Hz).Each of these three bands is then
epoched between −200 and 1200 ms around the stimu-
lus trigger of each experimental condition, to create
ERPs per frequency band. Trials with errors (misses
and commissions) as well as trials with too low or
too high RTs as indicated above (see Behavioral ana-
lysis) were rejected from the data prior to ERP aver-
aging. Overall, 4.69% of trials were rejected due to
behavioral errors or RT.

BNA analysis was carried out on the ERP responses
that involved both the NoGo and the Go visual cues.
The aim of the advanced BNA is producing a set of
event-related microstates for each subject, each of
which is characterized by a frequency band (δ, θ, α –
see above), a scalp topography and a temporal activa-
tion range. These microstates are spatio-temporal
parcells (hereafter ‘STEP’) of the ERP activity. A spatio-
temporal ERP peak was defined as a local maximum of
the amplitude. Each peak could therefore be described
with basic attributes: amplitude, time, and spatial loca-
tion (left-right and posterior-anterior). The goal of this
segmentation stage was to reduce the subject’s entire
brain activity into a set of STEPs. After STEPs were

defined for each subject in each frequency band, clus-
tering was used to create an averaged network. The
goal of clustering was to discover a set of group
STEPs that represented a spatio-temporal event com-
mon to the group.

Finally, each STEP extracted from subjects’ ERPs is
scored compared to the group’s averaged STEP, simi-
larly to the BNA method previously published. Scores
are given for each subject on the three STEP characteris-
tics mentioned above: amplitude, timing and topog-
raphy. Subsequently, for assessing the diagnostic
utility of the advanced BNA algorithm, the various spa-
tial and temporal BNA scores were used as input to the
Support Vector Machine (SVM) for a supervised classifi-
cation, based on which the ADHD-controls separation is
done. An SVM is one of the most commonly used
machine learning techniques. It is aimed in processing
big sets of features (i.e. the various network scores for
each subject, in our case) of the two labeled population
types (i.e. ADHD and controls) and model the best way
to use these data in order to differentiate between the
two populations, by selecting and weighting the fea-
tures in the most adequate way. A more detailed
description of the advanced BNA methodology can be
found in Appendix B. For a more detailed description
of the SVM and of the feature reduction techniques
that were used, see Appendix C.

Ethical standards

The authors assert that all procedures contributing to
this work comply with the ethical standards of the rele-
vant national and institutional committees on human
experimentation and with the Helsinki Declaration of
1975, as revised in 2008.

Results

The sociodemographic and clinical characteristic of the
sample are shown in Tables 1a and 1b. As shown
Table 1a, there were no sociodemographic differences
between the groups. Only subjects that met our a priori
pre-defined EEG signal quality criteria were included
(for further details see Appendix A, ‘The data quality
criteria’). After removing subjects from analysis from
each of the two experimental conditions based on
these data quality criteria, the final sample included
26 healthy subjects and 30 ADHD subjects in the Go
condition, and 27 healthy subjects and 26 ADHD sub-
jects in the NoGo condition.

Behavioral results

Only two trials in two different subjects were rejected
for being too short, and 36 trials were rejected for
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being too long (see Method section for criteria), total-
ing 0.22% of trials rejected.

The global error rate for the ADHD group was signifi-
cantly larger than the error rate of the control group (p =
0.02) (two-tailed) (5.8% ± 0.66% v. 3.6% ± 0.62%, respect-
ively). When examined apart, however, misses and com-
missions did not differ significantly between the groups,
although they both showed trends with ADHD having
more errors than the controls (percent misses – ADHD:
2.88% ± 0.6%; Healthy: 1.27% ± 0.65%; p = 0.062 two-
tailed; percent commissions – ADHD: 19.01% ± 2.05%;
Healthy: 13.89 ± 2.05%; p = 0.084 two-tailed).

RTs for the Go trials did not differ significantly
between the groups (417.15 ms for the ADHD group

v. 420.58 ms for the controls, p = 0.6). We also assessed
RT variability, with the idea that ADHD patients have
momentary drops in performance throughout the test
that increase the variability of their RTs. This analysis
yielded a trend in the expected direction, however
this trend was not statistically significant (80.9 ± 3.37
for the ADHD group v. 72.73 ± 3.62 for the controls,
p = 0.1 two-tailed).

BNA results

Of the three score types from the advanced BNA algo-
rithm (amplitude, timing, and topography), classifica-
tion accuracy in terms of area under the curve (AUC)

Table 1a. Sociodemographic characteristics of control and attention deficit hyperactivity disorder (ADHD) subjects

Controls (N = 29) ADHD (N = 32) Test statistic p

Age (mean ± S.D.) 30.8 ± 10.7 30.06 ± 10.76 t = 0.27 0.78
Perecent male, N (%) 15 (52%) 21 (62%) χ2 = 0.64 0.42
Percent Caucasian, N (%) 25 (86%) 28 (82%) Exact 1.00
SES status (mean ± S.D.)a 2.2 ± 1.0 2.0 ± 0.7 z =−0.41 0.69
Full-scale IQ (mean ± S.D.)a 114.0 ± 10.3 111.6 ± 11.3 t46 =−0.79 0.43

SES, Socioeconomic status.
a Data not available for all subjects.
SES: Controls (N = 21), ADHD (N = 17); Full-scale IQ: Controls (N = 28), ADHD (N = 20).

Table 1b. Agea and sexb of control and attention deficit hyperactivity disorder (ADHD) participants in the visual Go/NoGo task

NoGo Go

Control
Female 14 14
Male 15 15
No. of excluded datasetsc 2 3
Nd 27 26
Reaction time N.A. 420.58 ms
Percent errors (S.D.) 13.89% (2.05%) 1.27% (0.65%)
Average age (min/max/S.D.) 30.33 (21/52/10.30) 30.73 (21/52/10.30)

ADHD
Female 13 13
Male 21 21
No. of excluded datasets 8 4
N 26 30
Average age (min/max/S.D.) 34.00 (20/54/9.59) 35.30 (20/54/9.39)
Reaction time N.A. 417.15 ms
Percent errors (S.D.) 19.01% (2.05%) 2.88% (0.6%)

None of the χ2 tests were significant (p > 0.05).
a None of the two-sample t tests for age between groups were significant (p > 0.05).
b χ2 tests of independence were performed to examine the relation between gender and group type.
c Number of datasets excluded from the study per group per task based on the signal quality criteria (see text for details).
d Total number of subjects included in the study per group per task.
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was the highest for the topography scores for both Go
and NoGo results. As detailed further down, the NoGo
condition yielded the best results for the repeated
cross-validation test (see Appendix C) among the
two conditions.

In the NoGo condition, the Topography Correlation
Coefficient Aligned (TCCA) score yielded a training
AUC of 0.84, sensitivity of 0.76, specificity of 0.91, posi-
tive predictive value (PPV) of 0.90 and test negative
predictive value (NPV) of 0.80. In the Go condition
the TCCA score yielded a training AUC of 0.92, sensi-
tivity of 0.86, specificity of 0.95, PPV of 0.93 and test
NPV of 0.85. As explained in Appendix C, we also per-
formed a repeated cross-validation procedure (10 itera-
tions of 10-fold cross validation), to probe how reliable
the classification would be on test data. Test values
separating patients from controls, especially in the
NoGo condition [NoGo: sensitivity = 0.68 ± 0.05 (S.D.);
specificity = 0.80 ± 0.06 (S.D.); PPV = 0.77 ± 0.06 (S.D.)
and NPV = 0.72 ± 0.04 (S.D.); Go: sensitivity = 0.62 ±
0.04 (S.D.); specificity = 0.69 ± 0.07 (S.D.); PPV = 0.69 ±
0.05 (S.D.) and NPV = 0.65 ± 0.04 (S.D.)]. The PPV and
NPV values reported here were assessed with the sam-
ple prevalence, which is roughly 50%. We note that
these two values are highly sensitive to disease preva-
lence in the tested environment. As the prevalence
drops, PPV values decrease and NPV values increase.
Since the real prevalence of ADHD varies across
clinics, corrected PPV and NPV estimates can be com-
puted knowing the clinic’s base rate of disease, under
the assumption of unchanged sensitivity and specifi-
city. Table 2 presents estimates for corrected PPVs
and NPVs for prevalence values of: 5.3% (an estimated
avegaed prevalence in the general population (see
Polanczyk et al. 2007), 10%, 20%, 30%, 40% and 50%.
Corrected values were computed using the below
equations, which derive from the confusion matrix
(see e.g. Gambino, 1997):

PPV = se× prev
se× prev+ (1− sp) × (1− prev) ,

NPV = sp× (1− prev)
(1− se) × prev+ sp× (1− prev) .

In the NoGo condition, the main contributors were:
(1) a posterior θ N1; (2) an α central P2; and, import-
antly, (3) a central δN2 (see Fig. 1). In the Go condition,
the three most contributing features to the overall clas-
sification were: (1) α P1 component of the ERP distrib-
uted over the occipital scalp, slightly right-dominated;
(2) a θ occipital N1, slightly left-dominated; and (3) an
α posterior N1 (see Fig. 1). The best contributors to the
ADHD-controls separation was the N2 response to the

NoGo condition, which is known to represent inhib-
ition of response. Furthermore, as can be seen in
Fig. 1, the relative contribution of the N2 STEP to the
overall classification is the greatest among all the con-
tributing features, as defined by the normalized coeffi-
cients of the classifier.

In order to further test the contribution of the
physiological EEG data to ADHD classification over
merely the behavioral results of the same subjects to
the same visual Go-NoGo task, we calculated the
receiver-operating characteristics (ROCs) of the behav-
ioral results as well. Results of the ROC analysis of
behavioral data showed that none of the behavioral
measures assessed yielded a high discriminability in
the ROCs. The AUC values for the different behavioral
measures ranged between 0.43 to 0.67 (hit RT: AUC =
0.52; commission RT: AUC = 0.43; percent misses:
AUC = 0.61; percent commission: AUC = 0.64; percent
all errors combined: AUC = 0.67).

In order to further validate our selection of model,
we turned to examine the distribution of the classifica-
tion accuracy per subject across the 10 iterations of the
classifier. As can be seen in Fig. 2, the mean classifica-
tion accuracy, ranging between 0 and 1, was the high-
est for the selected topography score, with the FPR
feature selection method (NoGo) and RFECV (Go),

Table 2. Estimates of positive predictive values (PPV) and negative
predictive values (NPV) computed based on the observed sensitivity
and specificity for Go and NoGo classifications

Prevalence (%) PPV NPV

NoGo
5.3 Training 0.32 0.99

Test 0.16 0.98
20 Training 0.68 0.94

Test 0.46 0.91
30 Training 0.78 0.9

Test 0.59 0.85
40 Training 0.85 0.85

Test 0.69 0.79
50 Training 0.89 0.79

Test 0.77 0.71
Go
5.3 Training 0.49 0.99

Test 0.1 0.97
20 Training 0.81 0.96

Test 0.33 0.88
30 Training 0.88 0.94

Test 0.46 0.81
40 Training 0.92 0.91

Test 0.57 0.73
50 Training 0.95 0.87

Test 0.67 0.64

Diagnostic utility of brain activity flow patterns analysis in ADHD 1263

https://doi.org/10.1017/S0033291716003329 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291716003329


paralleling the reported AUC, sensitivity and
specificity.

Discussion

The main aim of the current study was to evaluate the
diagnostic utility of an advanced BNA-based analysis
as an objective supporting tool that can assist the clin-
ician in obtaining more informed decisions in the pro-
cess of ADHD diagnosis and management. Results
showed that the advanced BNA algorithm used to iden-
tify neuronal activations associated with visual Go/

NoGo tasks discriminated between ADHD and control
subjects. As such, the BNA can complement the clinical
evaluation with quantified neurological data of brain
network activity. Furthermore, the very nature of the
BNA methodology, which is based on a comparison
of individual neural network activity to a reference nor-
mative group, allows for a constant development to
improve its generalization across patient groups and
enhance its clinical utility by refining the reference
group characteristics. For example, reference networks
can be created per gender (males and females apart),
or for narrower age bins. Indeed, a recently published

Fig. 1. Main contributing features to the classification. The figure depicts the Spatio Temporal Parcellation (STEP) of activity
having the biggest contributions to the classification, as determined by the Support Vector Machine feature-selection
procedure. Each STEP represents an encapsulated EEG activity at a specific frequency band, evolving during a specific time
frame, and having a specific spatial distribution. The activation itself does not include the whole scalp topography, but is
confined to the activity inside the chain of contours seen in and between the topographies (see Appendix B for the procedure
of defining activity boundary). The peak latency of each STEP, from where values were extracted for the classifier, is marked
with a circle around the relevant topography. Frequency band is depicted on the x-axis, time from stimulus onset is depicted
on the inclined z axis. (a) NoGo condition; (b) Go condition. Note that the color range differs between frequency bands and
capsule networks, for a better visualization (given that the values of activity used for the classification were projected onto
the feature space and then normalized, there is no direct comparison of activation strengths).
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paper demonstrates preliminary evidence for clinical
utility of BNA in the diagnosis of mild traumatic brain
injury in young athletes using refined age bins such as
13- to 16-year-old patients (Kiefer et al. 2015).

The feature reduction procedure maintained only a
few main contributors to the actual classification
from the large amount of individual spatio-temporal
microstates (41 STEPs in the NoGo condition and 31
STEPs in the Go condition). Importantly, these major
contributors largely overlap with well-established

ERP components previously associated with ADHD.
For example, studies of inhibitory processes in
ADHD patients using tasks such as the Go/NoGo or
the Stop Signal Task, reported atypical N1, P2, and
N2 (Dimoska et al. 2003; Smith et al. 2004; Johnstone
et al. 2007; Groom et al. 2008). These three ERP compo-
nents were represented by the STEPs selected by our
classifier in the NoGo condition to best differentiate
patients from healthy controls, providing further valid-
ation to the advanced BNA tool.

Fig. 2. Comparing classification accuracy across all scores and feature reduction methods. The figure depicts the accuracy
ratio averaged across subjects, for the 10 iterations of the classification. It can be seen that several models provide a visible
separation between patients and control, but the topography score gives the best results among the classifiers [with the false
positive rate (FPR) model in the NoGo condition, and the recursive feature elimination with cross-validation (RFECV) method
in the Go condition].
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Taken together, these results are consistent with the
frontoparietal system dysfunction associated with
ADHD (Cortese et al. 2012). They are also consistent
with the role of posterior regions in sustaining atten-
tion (Fassbender & Schweitzer, 2006). These findings
may also reflect ADHD-related deficits in motor out-
put and response organization (Himelstein &
Halperin, 2000) as well as deficits in inhibitory control
(Hakvoort Schwerdtfeger et al. 2012). Moreover, the
activation patterns identified in each of the tasks iden-
tified are in accord with low-frequency activations in
the δ-α range associated with the Go/NoGo task
(Muller & Anokhin, 2012). The distinct prefrontal clus-
ters in each of the Go tasks described above were each
co-activated with centro-parietal or fronto-central
regions in accord with the role of the prefrontal cortex
in cognitive control (Muller & Anokhin, 2012).

While the advanced BNA algorithm is based on
event-related activity analysis (ERP), it maximizes the
information extracted from ERPs. It conjugates
event-related activity in different frequency bands as
well as in space, in addition to the traditionally peak
and latency analysis. In the results presented here,
for example, STEP activations representing the N2
component of the event-related activity can be seen
in δ and in θ frequency bands at the same time, with
slightly different scalp topographies.

The advanced BNA strength lies in its ability to score
patients relative to a cohort of subjects with the same
disorder. That is, scoring of subjects is done via com-
parison of individual brain activity with the clustered
activity of the group. A classification cutoff can then
be achieved, and can subsequently be used to assess
the existence of a disorder in a new patient.

Interestingly, early components also comprised the
ADHD NoGo network found by BNA in an auditory
Go-NoGo task (Shahaf et al. 2012), showing differenti-
ating features persist across different sensory modal-
ities. In that study however, the NoGo N2 was less
prominent than its relative contribution to classifica-
tion in the current study, which is consistent with the
N2 being larger in the visual modality than in the audi-
tory modality (Nieuwenhuis et al. 2004; Hakvoort
Schwerdtfeger et al. 2012).

Our findings need to be viewed in light of some
methodological limitations. EEG-based methods such
as the one presented here lack the ability to directly
sample activity in sub-cortical regions. Because our
sample was largely Caucasian and referred, our results
may not generalize to community samples and other
ethnic groups. Although our cross-validation method-
ology, complemented by a repeated cross-validation of
10 iterations, is considered sufficient to address overfi-
tting, it would have been ideal to have had a separate
sample for testing the cross-validated model.

Despite these considerations, results of this study
suggest that the advanced BNA methodology can
help differentiate between ADHD and healthy controls
based on functional brain connectivity. Results also
support a network-based approach to the study of
ADHD.

Appendix A

The data quality (DQ) criteria

The purpose of the DQ procedure is to enable objective
selection of individual EEG datasets with a good qual-
ity EEG to be included in the study. In this study two
DQ measures were used. The first considers the vari-
ance across single trials and is the standard error
(S.E.). The average S.E. value reflects the repeatability
of a specific ERP time point across the single trials,
i.e. the reliability of the ERPs. The second DQ measure
was the signal-to-noise ratio (SNR) which reflects the
strength of the ERP signal relative to baseline.
Importantly, the DQ is computed for each trial type
(experimental condition) apart. This is important
since when considering the variability and repeatabil-
ity of single-trials, one have to do so within the distri-
bution of trials of the same type, as different conditions
give ERPs with different shapes and different evoked
potentials. This way of examining data quality per con-
dition enhances the accuracy and sensitivity to noise,
although it may result in a slightly different number
of rejections across the examined conditions (i.e. Go
and NoGo total N). Note, however, that unlike trad-
itional ERP studies, the BNA does not compare Go to
NoGo activity at any stage. Two independent models
are run for the two conditions. This stems from the
logic of the BNA method, according to which individ-
ual brain network activity for a certain cognitive func-
tion is compared to its normative model.

In order to obtain the S.E., the variance across the sin-
gle trials was computed for each electrode and then
normalized by the square root energy of the ERP. A
smaller S.E. value indicates a higher quality EEG signal.
A larger SNR value designates a higher quality signal.
The decision whether to discard the data of a specific
subject was based on a procedure that takes into
account both thresholds. First, the subject was assessed
based on the S.E. threshold. If the subject’s data quality
failed to meet the S.E. threshold, they were excluded
from the study. However, if their data quality fell
within the 90% and 95% confidence intervals of the
S.E. measure distribution their data were compared
against the SNR measure. To be included in the
study the subject’s data quality had to meet the SNR
measure or fall within the 90% and 95% confidence
intervals. In the latter case the subject’s data was sent
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to review for further visual examination and final deci-
sion. This procedure was done before application of
the STEP analysis in order to avoid a bias. For DQ,
(see for example Reches et al. 2016).

Appendix B

STEP analysis

The essence of the BNA analysis is the extraction of
spectral, spatial, and temporal brain activation patterns
common to a group of subjects, to which the brain acti-
vation of individual subjects may be compared. This is
done in two main steps. First, we define a set of
task-related functional microstate events across fre-
quency bands and time-points, in all subjects compos-
ing the group, and then we cluster them in order to
find the group’s common characteristics. In a second
step the individual subject events are matched to the
group events, and various scores pertaining to the tim-
ing, amplitude and topography of the events are
assigned to each subject (Makris et al. 2007).

After pre-processing, event-related activity is com-
puted for the main frequency bands (δ: 0.5–4 Hz, θ:
3–8 Hz and α: 7–13 Hz). In each band, events are
defined in time and space by finding local peaks of
activity, and their surroundings. A peak is an
extremum ERP activity point in time and space and
its surroundings are defined as all points around the
peak with amplitude of over 50% of the peak’s ampli-
tude. These spatio-temporally defined microstates
(STEPs) per frequency band are the building blocks
of the BNA algorithm. They are then clustered to pro-
duce the group level common STEPs of activity per fre-
quency band. Clustering is performed in the following
three steps: (1) mapping all possible clusters, under a
pre-defined constraint of temporal and spatial window
sizes per frequency band; (2) selecting the best clusters
representing at least 70% of the subjects composing the
group. This is done by comparing the surrounding cor-
relations across subjects for each cluster, the number of
participating subjects in each cluster, and the distance
between peaks of all subjects; (3) computing the
group level STEPs.

After the group level microstates events are defined,
individual subjects are scored for each STEP, relative to
the means and STDs of the group STEP characteristics.
For precise formulae of the scores see Stern et al. (2016).

Appendix C

Classification

Support Vector Machine (SVM) is a commonly used
pattern recognition method from the field of machine
learning, owing its origin to the work of Vapnik et al.

(1995). The goal is to form a decision boundary
between the classes (e.g. ADHD and Control groups),
by representing the input data as elements in the multi-
dimensional feature space and identifying the best sep-
aration boundary between the classes (a plane in the
multi-dimensional space), such that the margins
between this boundary and the nearest elements of
each class are maximal. The kernel algorithm we
employed to build the classifier’s separation was a lin-
ear SVM. We used a repeated cross-validation tech-
nique with 10 iterations of the classifier, in order to
obtain a distribution of classification accuracy per sub-
ject, for model examination purposes (see below). The
success of a classifier is not measured with statistical
tools that are used for common hypothesis-testing
methods for null hypothesis to rejection, and is not
expressed in significance p values. Rather, these mod-
els are validated on data.

A repeated cross-validation approach with 10 itera-
tions of classification, each containing an inner
10-fold cross-validation folds, was applied to verify
the reliability of the classification’s results. In this tech-
nique, the classification is tested 10 times, on different
partitions (folds) of the data. In each of these ten folds
the data-points are divided into a training subset com-
posed of 90% of the data, on which the classification
model is constructed, and to a testing group composed
of the remaining 10%, on which the model is subse-
quently tested. The overall classification is then evalu-
ated by taking the mean of the 10 folds. This whole
process was repeated 10 times (hence a repeated cross-
validation). Between each of these 10 iterations of the
classification process, the data are shuffled to insure
a different 10-fold cross validation partition in each
one of the iterations. The reason for which we opted
to repeat the classification 10 times along with its
inner 10-fold cross-validation, was a need to further
validate the selection of the best model. Classification
models are often validated against a second, external,
dataset. The classification model is run again on the
validation dataset, and accuracy is examined. We did
not have access to such a number of datasets, and
therefore applied the well-accepted 10-fold cross-
validation procedure. However, since we had several
feature reduction methods for each score (see below)
among which the best classifier was selected, a supple-
mentary justification for this model selection would be
good. We therefore opted for a repeated cross-
validation, in order to achieve a distribution of classifi-
cation accuracy as a secondary validation of the
classifier’s success. In this approach, each of the SVM
classifiers (score per feature reduction method) was
run 10 times in a row. Note that in each iteration the
subject order is shuffled, such that the inner 10-fold
cross validation yields a different set of results each
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time. Accuracy was then computed per subject, and
ranged from 0 to 1, indexing the ratio of correct classifi-
cation (the ratio in which the classifier correctly iden-
tified the label of the subject as healthy or patient).
With this accuracy distribution we would test for the
best model, independently of the values based on
which the selection was made, and that were reported
in the Results. In this way we could test whether the
model providing the best sensitivity, specificity and
other predictive values would also be the most
accurate.

A few accepted methods for feature selection and
scoring were used within the classification process,
and subsequently report the results of the feature selec-
tion strategies giving the best classification results.
These strategies were FPR (univariate feature selection
based on false positive rate) and RFECV (recursive fea-
ture elimination with cross-validation). The perform-
ance of the classifier is reported using the repeated
cross-validation test mean sensitivity, test mean spe-
cificity, PPV, NPV, and the training mean AUC com-
puted by the ROC function.
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