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Abstract A twisted cocycle taking values on a Lie group G is a cocycle that is twisted by an auto-
morphism of G in each step. In the case where G = GL(d,R), we prove that if two Hölder continuous
twisted cocycles satisfying the so-called fiber-bunching condition have the same periodic data then they
are cohomologous.
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1. Introduction

Given a homeomorphism f : M → M acting on a compact metric space (M,d) and an
automorphism α ∈ Aut(G) of a topological group G, we say that the map Aα : Z×M →
G is an α-twisted cocycle over f if

Am+n
α (x) = An

α(f
m(x))αn(Am

α (x)) (1)

for all x ∈ M and m,n ∈ Z.
Two α-twisted cocycles Aα and Bα over f are said to be α-cohomologous whenever

there exists a transfer map P : M → G satisfying

An
α(x) = P (fn(x))Bn

α(x)α
n(P (x))−1

for every x ∈ M and n ∈ Z. Observe that in the case where α = Id the notions of α-
twisted cocycle and α-cohomology coincide with the ‘standard’ notions of cocycles and
cohomology in dynamical systems [11].

Cohomology of twisted cocycles appears naturally in many problems in dynamics. For
instance, any map A : M → G naturally generates an α-twisted cocycle Aα over f (see
§ 2.2). In this case, we can consider the twisted skew-product FA,α : M ×G → M ×G
given by FA,α(x, g) = (f(x), A(x)α(g)). Now, the problem of determining whether two
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twisted skew-products FA,α and FB,α are conjugated reduces to the problem of studying
whether Aα and Bα are α-cohomologous. In fact, the map U(x, g) = (x, P (x)g) conjugates
FA,α and FB,α precisely when P is a transfer map for Aα and Bα. This observation
applied to the case when G = GL(d,R) is what motivates much of this note. Other
applications also appear in the study of regularity of the transfer map for non-abelian
cocycles over Anosov actions [17], in applications to the differentiable rigidity of Anosov
diffeomorphisms [8] and in the study of local rigidity of higher-rank abelian partially
hyperbolic actions [7]. For more applications, refer to § 4.6 of [11] and to [12].

In the present paper we are interested in describing necessary and sufficient conditions
under which two α-twisted cocycles Aα and Bα are α-cohomologous whenever f is a
hyperbolic map. In the case where α = Id and G is an abelian group admitting a bi-
invariant metric, a first criterion was given by Livšic in his seminal papers [13] and [14].
More precisely, he proved that AId and BId are Id-cohomologous if and only if

An
Id(p) = Bn

Id(p) for every p ∈ Fix(fn).

Because of its many applications, in the case where α = Id, this criterion has been
extended by many authors to many different settings, usually eliminating the assumptions
that G is abelian and admits a bi-invariant metric; see, for instance, [1,3,5,9,18–20].

The case where α is not the identity, on the other hand, despite its many applications,
has received much less attention. To the best of the author’s knowledge, the best result
in this setting is a theorem by Walkden [22], who obtained an analogous result to the
original Livšic’s theorem under the assumptions thatG is a connected Lie group admitting
a bi-invariant metric* and the automorphism α satisfies some ‘growth’ conditions. The
objective of this paper is to extend the results of [22] to the case when G = GL(d,R).

1.1. Main results

The main result of this work is the following theorem (see § 2 for precise definitions).

Theorem 1.1. Let f : M → M be a Lipschitz continuous transitive hyperbolic home-
omorphism on a compact metric space (M,d), let A,B : M → GL(d,R) be two ν-Hölder
continuous maps and let α ∈ Aut(GL(d,R)) be an automorphism of GL(d,R). Suppose
that the twisted cocycles Aα and Bα are fiber-bunched. Moreover, suppose that they
satisfy the periodic orbit condition

An
α(p) = Bn

α(p), ∀n ∈ Z, ∀p ∈ Fix(fn). (2)

Then, there exists a ν-Hölder continuous map P : M → GL(d,R) such that

An
α(x) = P (fn(x))Bn

α(x)α
n (P (x))

−1
, ∀x ∈ M, ∀n ∈ Z. (3)

This result consists of a generalization of the main results of [3] and [19] to the case of
twisted cocycles. In fact, the main results of those works can be obtained as corollaries
of the previous one by taking α = Id. Moreover, this result generalizes the main result of

* In the case when G = GL(d,R) the existence of the bi-invariant metric can be replaced by a bounded
distortion condition. See comments after Theorem 1.1
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[22] in the case where G = GL(d,R). Indeed, it was observed in [22, Remark 3.4] that in
this case, instead asking for the group to admit a bi-invariant metric (recall that GL(d,R)
does not admit such a metric), one can assume some bounded distortion condition in the
twisted cocycles. Roughly speaking, this condition asks for each of the terms on the left-
hand side of (5) to be uniformly bounded. In particular, such a condition is much more
restrictive than our fiber-bunching assumption.
One can easily see that the α-cohomology relation is an equivalence one over the space

of α-twisted cocycles. In particular, as a simple consequence of the previous result, one
can obtain a complete characterization of the cohomology classes in the twisted scenario
in terms of the periodic data.

Corollary 1.2. Let f, A, B and α be as in Theorem 1.1 and, moreover, suppose
that A or B satisfies (5), (6) and (7) with 7ρ+ 2θ < νλ. Then, there exists a ν-Hölder
continuous map Q : M → GL(d,R) such that

An
α(p) = Q(p)Bn

α(p)α
n (Q(p))

−1

for every n ∈ Z and p ∈ Fix(fn) if and only if there exists a ν-Hölder continuous map
P : M → GL(d,R) such that

An
α(x) = P

(
fn(x)

)
Bn

α(x)α
n (P (x))

−1
, ∀x ∈ M, ∀n ∈ Z.

Proof. One implication is trivial. Let us deduce the other one. Assume that B satisfies
(5), (6) and (7) with 7ρ+ 2θ < νλ. The case where A satisfies it is similar. Let us consider

B̃n
α(x) = Q(fn(x))Bn

α(x)α
n(Q(x))−1.

We start by observing that (B̃n
α)n∈Z is an α-twisted cocycle over f . Indeed,

B̃n+m
α (x) = Q(fn+m(x))Bn+m

α (x)αm+n(Q(x))−1

= Q(fn+m(x))Bn
α(f

m(x))αn (Bm
α (x))αm+n(Q(x))−1

= Q(fn+m(x))Bn
α(f

m(x))αn
(
Q(fm(x))−1Q(fm(x))

)
αn

× (Bm
α (x))αm+n(Q(x))−1

= Q(fn+m(x))Bn
α(f

m(x))αn (Q(fm(x))
−1

αn
(
Q(fm(x))Bm

α (x)αm(Q(x))−1
)

= B̃n
α(f

m(x))αn
(
B̃m

α (x)
)
.

Moreover, our hypothesis on B ensures that B̃ is fiber-bunched in the sense of § 2.5. Thus,
since An

α(p) = B̃n
α(p) for every p ∈ Fix(fn), the result follows by applying our main result

to these two cocycles. �

Observe that the previous proof gives us no apparent ‘meaningful’ relation between the
maps P and Q given in the statement of Corollary 1.2.

In order to prove our main result, we follow the approaches of [3], which in turn
was inspired by [18,20], and [19,22]. The main idea consists of constructing invariant
holonomies, which are a family of linear maps with good properties (see Proposition 3.1),
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and then using this family to explicitly construct the transfer map on a dense set under the
additional assumption that f admits a fixed point. The next step consists of showing that,
restricted to this dense set, the transfer map is ν-Hölder continuous and then extending
it to the whole space. Finally, we explain how to eliminate the hypothesis of existence
of a fixed point for f . The main difference between this proof and that of [3] is that
the estimates here are much more involved owing to the presence of twisting. The overall
strategy is the same. In particular, the last step of the proof is the same, mutatis mutandis,
as in the untwisted case and so we only indicate how to proceed.
Throughout the paper we use the letter C as a generic notation for a positive constant

that may change from line to line. Whenever necessary, we will explicitly mention the
parameters on which C depends.

2. Preliminaries

Let (M,d) be a compact metric space, f : M → M a homeomorphism, G a Lie group and
A : M → G a ν-Hölder continuous map.

2.1. Hyperbolic homeomorphisms

Given any x ∈ M and ε > 0, define the local stable and unstable sets of x with respect
to f by

W s
ε (x) := {y ∈ M : d(fn(x), fn(y)) ≤ ε, ∀n ≥ 0} ,

Wu
ε (x) := {y ∈ M : d(fn(x), fn(y)) ≤ ε, ∀n ≤ 0} ,

respectively. Following [2], we introduce a definition.

Definition 2.1. A homeomorphism f : M → M is said to be hyperbolic with local
product structure (or just hyperbolic for short) whenever there exist constants C, ε, λ, τ >
0 such that the following conditions are satisfied:

• d(fn(y1), f
n(y2)) ≤ Ce−λnd(y1, y2), ∀x ∈ M , ∀y1, y2 ∈ W s

ε (x), ∀n ≥ 0;

• d(f−n(y1), f
−n(y2)) ≤ Ce−λnd(y1, y2), ∀x ∈ M , ∀y1, y2 ∈ Wu

ε (x), ∀n ≥ 0;

• if d(x, y) ≤ τ , then W s
ε (x) and Wu

ε (y) intersect in a unique point which is denoted
by [x, y] and depends continuously on x and y.

For such homeomorphisms, one can define the stable and unstable sets by

W s(x) :=
⋃
n≥0

f−n
(
W s

ε (f
n(x))

)
and Wu(x) :=

⋃
n≥0

fn
(
Wu

ε (f
−n(x))

)
,

respectively.
Notice that subshifts of finite type and basic sets of axiom A diffeomorphisms are

particular examples of hyperbolic homeomorphisms with local product structure (see, for
instance, [16, Chapter IV,§ 9] for details).
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2.2. Twisted cocycles

Let Aut(G) denote the group of automorphisms of G, and let α ∈ Aut(G). A map
Aα : Z×M → G is said to be an α-twisted cocycle over f if

Am+n
α (x) = An

α(f
m(x))αn(Am

α (x))

for all x ∈ M and m,n ∈ Z. With any map A : M → G we may associate an α-twisted
cocycle over f by

An
α(x) =

⎧⎨
⎩
A(fn−1(x))α(A(fn−2(x))) . . . αn−2(A(f(x)))αn−1(A(x)) if n > 0
Id if n = 0
αn(A−n

α (fn(x))−1) if n < 0

for all x ∈ M . In this case we say that A generates the α-twisted cocycle Aα over f .
Reciprocally, every α-twisted cocycle Aα is generated by A = A1

α. In what follows, for
the sake of simplicity, we write Aα instead of A1

α.

2.3. Cohomology of α-twisted cocycles

Given a ν-Hölder continuous map B : M → G, we say that the α-twisted cocycles Aα

and Bα generated by A and B over f , respectively, are α-cohomologous if there exists a
ν-Hölder continuous map P : M → G such that

Aα(x) = P (f(x))Bα(x)α(P (x))−1

for every x ∈ M . It is easy to verify that this equation is equivalent to

An
α(x) = P (fn(x))Bn

α(x)α
n(P (x))−1

for every x ∈ M and n ∈ Z. As already observed in the introduction, whenever α = Id
we recover the usual notions of cocycles and cohomology [3,19].

2.4. Linear α-twisted cocycles

From now on we restrict ourselves to the case where G = GL(d,R). In particular, by
A : M → GL(d,R) being ν-Hölder continuous we mean that there exists a constant C > 0
such that

‖A(x)−A(y) ‖ ≤ Cd(x, y)ν (4)

for all x, y ∈ M , where ‖A ‖ denotes the operator norm of a matrix A, that is, ‖A ‖ =
sup{‖Av ‖/‖ v ‖; ‖ v ‖ �= 0}.

Observe that examples of automorphisms of GL(d,R) include αL : GL(d,R) →
GL(d,R) and αi : GL(d,R) → GL(d,R) given by

αL(A) = LAL−1 and αi(A) =
(
AT

)−1
,

where L ∈ GL(d,R) is a fixed matrix and AT denotes the transpose of A. For more on
Aut(GL(d,R)), refer to [15].

https://doi.org/10.1017/S0013091520000206 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091520000206


Cohomology of fiber-bunched twisted cocycles 849

2.5. Fiber-bunched α-twisted cocycles

We say that the α-twisted cocycle Aα generated by A over f is fiber-bunched if there
are constants C > 0 and ρ, θ > 0 with 5ρ+ 2θ < νλ, where ν and λ are as in (4) and
Definition 2.1, respectively, such that for every n ∈ Z:

(i)

‖α−n(An
α(x))‖‖α−n(An

α(x)
−1)‖ < Ceθ|n| (5)

for every x ∈ M ;

(ii)

‖αn(T1)− αn(T2)‖ ≤ Ceρ|n|‖T1 − T2‖ (6)

for every T1, T2 ∈ GL(d,R);

(iii)

‖αn(T )‖ ≤ Ceρ|n|‖T‖ (7)

for every T ∈ GL(d,R).

Once again, it is easy to see that by taking α = Id we recover the ‘standard’ notion of
fiber-bunched cocycles used, for instance, in [2,3,6,19].

Observe that if A and α are sufficiently close to the identity then the fiber-bunching
condition is automatically satisfied. Other examples of α-twisted cocycles with α �= Id
satisfying the fiber-bunching condition are given, for instance, by taking α = αL as in the
previous subsection with L close enough to Id and assuming the cocycle (A, f) is fiber-
bunched in the standard sense of [6,21]. It is also worth noting that this fiber-bunching
notion is related to the partial hyperbolicity of the map FA,α : M ×G → M ×G given by
FA,α(x, g) = (f(x), A(x)α(g)). Indeed, condition (5) says that the rates of expansion and
contraction given by FA,α along the G-direction are ‘dominated’ by the rates of expansion
and contraction along the M -direction.

3. Invariant holonomies

In this section we introduce the notion of invariant holonomies for twisted cocycles. This
is done by generalizing the notion introduced in [6,21] in the untwisted case. As in the
untwisted scenario, these objects are fundamental to our proof.

Proposition 3.1. Let f : M → M be a hyperbolic homeomorphism on a compact met-
ric space (M,d), let A : M → GL(d,R) be a ν-Hölder map and let α ∈ Aut(G). Suppose
that the twisted cocycle Aα generated by A and α over f is fiber-bunched. Then there
exists a constant C = C(A,α, f) > 0 such that, for any x ∈ M and any y, z ∈ W s(x), the
limit

Hs,A,α
yz := lim

n→+∞α−n
(
An

α(z)
−1An

α(y)
)

exists, and

‖Hs,A,α
yz − Id‖ ≤ Cd(y, z)ν , (8)

whenever y, z ∈ W s
ε (x), where the constant ε > 0 associated with f is given by

Definition 2.1.
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On the other hand, if y, z ∈ Wu(x), we can analogously define

Hu,A,α
yz := lim

n→+∞αn
(
A−n

α (z)−1A−n
α (y)

)
,

and the very same Hölder estimate holds for these maps when y, z ∈ Wu
ε (x).

Finally, for every x ∈ M and ∗ ∈ {s, u}, it holds that

H∗,A,α
yz = H∗,A,α

xz H∗,A,α
yx ,

and

H∗,A,α
fm(y)fm(z) = Am

α (z)αm(H∗,A,α
yz )Am

α (y)−1,

for every y, z ∈ W ∗(x) and m ∈ Z.

Definition 3.2. The maps Hs,A,α and Hu,A,α given by Proposition 3.1 are called
stable and unstable holonomies, respectively.

It is worth noting that the main ideas beyond this concept, although not under this
name, were present in [22] (see also [18,20] for the case α = Id). On the other hand,
the construction of these holonomies in that setting was greatly simplified owing to the
existence of a bi-invariant metric. Similarly, the proof in the case α = Id was also much
simpler compared with ours, owing to the lack of twisting (see, for instance, Proposition
2.5 of [21]).
We will prove only the assertions about Hs,A,α

yz since the ones about Hu,A,α
yz are similar.

We start with the following proposition.

Proposition 3.3. Let δ > 0 be such that 5ρ+ 2θ + δ < λν. Then, there exists C =
C(A,α, f, δ) > 0 such that

‖α−n(An
α(y))‖ · ‖α−n(An

α(x)
−1)‖ ≤ Ce(4ρ+2θ+δ)n

for all y ∈ W s
ε (x), x ∈ M and n ≥ 0.

In order to prove this proposition, we need a couple of auxiliary results.

Lemma 3.4. Fix x ∈ M . There exists a family of norms (‖ · ‖k)k∈N such that

max
{‖α−k(A(fk−1(x)))v‖k; ‖v‖k−1 = 1

}
min {‖α−k(A(fk−1(x)))w‖k; ‖w‖k−1 = 1} ≤ e2θ+δ.

Moreover, there exists C > 0 depending only on A, α, f and δ so that

‖ · ‖ ≤ ‖ · ‖k ≤ Ce2ρk‖ · ‖ for every k ∈ N. (9)
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Proof. Fix u0 ∈ R
d with ‖u0‖ = 1, and for any k ∈ Z set

uk =
α−k(A(fk−1(x)))uk−1

‖α−k(A(fk−1(x)))uk−1‖ .

Now, given v ∈ R
d, define

‖v‖2k =
∑
m∈Z

‖α−m−k(Am
α (fk(x)))v‖2

‖α−m−k(Am
α (fk(x)))uk‖2 · e(2θ+δ)|m| . (10)

We start by observing that from (7),

‖α−m−k(Am
α (fk(x)))

v

‖v‖‖‖α
−m−k(Am

α (fk(x)))uk‖−1

is smaller than or equal to

Ce2ρk‖α−m(Am
α (fk(x)))

v

‖v‖‖‖α
−m(Am

α (fk(x)))uk‖−1.

Thus, using our hypothesis (5) and the fact that ‖T‖−1 ≤ ‖T−1‖ for any T ∈ GL(d,R),
we get that the last quantity is smaller than or equal to C2e2ρkeθ|m|. In particular,

‖α−m−k(Am
α (fk(x)))v‖‖α−m−k(Am

α (fk(x)))uk‖−1 ≤ C2e2ρkeθ|m|‖v‖
for every m ∈ Z and thus

‖v‖2k ≤
∑
m∈Z

(
C2e2ρkeθ|m|‖v‖)2

e(2θ+δ)|m| ≤ C̃e4ρk‖v‖2,

where C̃ =
∑

m∈Z
C4e−δ|m| < ∞. Consequently, series (10) converges and ‖ · ‖k is well

defined. Moreover,

‖v‖k ≤ Ce2ρk‖v‖
for any v ∈ R

d and some C > 0 independent of k and x. Furthermore, recalling that
α−k(Id) = Id and ‖uk‖ = 1, looking at the term of (10) when m = 0 it follows that
‖v‖ ≤ ‖v‖k for every v ∈ R

d; this, combined with the previous observations, completes
the proof of (9). In order to prove the other claim, we observe that

‖α−k(A(fk−1(x)))v‖2k =
∑
m∈Z

‖α−m−k(Am
α (fk(x)))α−k(A(fk−1(x)))v‖2

‖α−m−k(Am
α (fk(x)))uk‖2 · e(2θ+δ)|m|

=
∑
m∈Z

‖α−m−k(Am
α (fk(x)))α−k(A(fk−1(x)))v‖2

‖α−m−k(Am
α (fk(x)))

(
α−k(A(fk−1(x)))uk−1

‖α−k(A(fk−1(x)))uk−1‖
)
‖2 · e(2θ+δ)|m|

=
∑
m∈Z

‖α−m−k(Am+1
α (fk−1(x)))v‖2‖α−k(A(fk−1(x)))uk−1‖2

‖α−m−k(Am+1
α (fk−1(x)))uk−1‖2 · e(2θ+δ)|m|

= ‖α−k(A(fk−1(x)))uk−1‖2 · S(v),
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where

S(v) :=
∑
m∈Z

‖α−(m+1)−(k−1)(Am+1
α (fk−1(x)))v‖2

‖α−(m+1)−(k−1)(Am+1
α (fk−1(x)))uk−1‖2 · e(2θ+δ)|m| .

Now, since |m+ 1| ≥ |m| − 1, we get that S(v) ≤ e2θ+δ‖v‖2k−1. Similarly, since |m+ 1| ≤
|m|+ 1, we get that S(v) ≥ e−(2θ+δ)‖v‖2k−1. Combining these facts with the previous
observations, it follows that

e−(θ+(δ/2))‖α−k(A(fk−1(x)))uk−1‖‖v‖k−1 ≤ ‖α−k(A(fk−1(x)))v‖k
≤ eθ+(δ/2)‖α−k(A(fk−1(x)))uk−1‖‖v‖k−1

for any v ∈ R
d. Thus, taking v, w ∈ R

d so that ‖v‖k−1 = ‖w‖k−1 = 1, it follows that

e−(2θ+δ)‖α−k(A(fk−1(x)))v‖k ≤ ‖α−k(A(fk−1(x)))w‖k
≤ e2θ+δ‖α−k(A(fk−1(x)))v‖k.

Consequently,

max
{‖α−k(A(fk−1(x)))v‖k; ‖v‖k−1 = 1

}
min {‖α−k(A(fk−1(x)))w‖k; ‖w‖k−1 = 1} ≤ e2θ+δ

as claimed. �

Thus, defining the k-norm of an operator T ∈ GL(d,R) with respect to the family of
norms (‖ · ‖k)k∈N by

‖T‖k = sup
v �=0

‖Tv‖k
‖v‖k−1

,

a corollary follows easily from the previous lemma.

Corollary 3.5. For any k ∈ N,

‖α−k(A(fk−1(x)))−1‖k‖α−k(A(fk−1(x)))‖k ≤ e2θ+δ.

Proof of Proposition 3.3. Let (‖ · ‖k)k∈Z be the family of norms given by
Lemma 3.4. Recalling (6), (7) and (9), we start by observing that

‖α−k(A(fk−1(y)))‖k
‖α−k(A(fk−1(x)))‖k ≤ 1 +

∣∣‖α−k(A(fk−1(y)))‖k − ‖α−k(A(fk−1(x)))‖k
∣∣

‖α−k(A(fk−1(x)))‖k

≤ 1 +
‖α−k(A(fk−1(y)))− α−k(A(fk−1(x)))‖k

‖α−k(A(fk−1(x)))‖k

≤ 1 +
Ce2ρk‖α−k(A(fk−1(y)))− α−k(A(fk−1(x)))‖

‖α−k(A(fk−1(x)))‖

≤ 1 +
Ce4ρk‖A(fk−1(y))−A(fk−1(x))‖

‖A(fk−1(x))‖ .
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Thus, since A is ν-Hölder and M is compact, and recalling Definition 2.1, it follows that

‖α−k(A(fk−1(y)))‖k
‖α−k(A(fk−1(x)))‖k ≤ 1 + Ce(4ρ−λν)kd(x, y)ν .

Now, Corollary 3.5 gives us that for any j ∈ N,

‖α−j(A(f j−1(x)))−1‖j ≤ e2θ+δ

‖α−j(A(f j−1(x)))‖j .

Combining these two observations with the fact that

‖α−k(Ak
α(x))

−1‖k = ‖α−1(A(x))−1α−2(A(f(x)))−1 . . . α−k(A(fk−1(x)))−1‖k
≤ ‖α−1(A(x))−1‖1‖α−2(A(f(x)))−1‖2 . . . ‖α−k(A(fk−1(x)))−1‖k,

and similarly

‖α−k(Ak
α(y))‖k ≤ ‖α−k(A(fk−1(y)))‖k . . . ‖α−2(A(f(x)))‖2‖α−1(A(x))‖1,

it follows that

‖α−k(Ak
α(x))

−1‖k‖α−k(Ak
α(y))‖k ≤ ‖α−1(A(y))‖1

‖α−1(A(x))‖1 e
2θ+δ . . .

‖α−k(A(fk−1(y)))‖k
‖α−k(A(fk−1(x)))‖k e

2θ+δ

≤ e(2θ+δ)k
k∏

j=1

(1 + Ce(4ρ−λν)jd(x, y)ν)

≤ C̃e(2θ+δ)k,

where C̃ =
∏∞

j=1(1 + CDe(4ρ−λν)j) < ∞ and D = supx,y∈M d(x, y)ν (recall that 4ρ−
λν < 0). Thus, since by (9) we have that ‖T‖ ≤ Ce2ρk‖T‖k for every T ∈ GL(d,R), it
follows that

‖α−k(Ak
α(x))

−1‖‖α−k(Ak
α(y))‖ ≤ Ce(4ρ+2θ+δ)k

for some constant C independent of x and y as claimed. �

We are now ready to prove the main proposition of this section.

Proof of Proposition 3.1. By taking forward iterates, we can assume that y, z ∈
Wu

ε/2(x). In particular, z ∈ W s
ε (y). We are going to show that the sequence

(α−n(An
α(z)

−1An
α(y)))n is a Cauchy sequence. In order to do this, we start by observing
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that for every n ∈ N,

‖α−(n+1)
(
An+1

α (z)−1An+1
α (y)

)− α−n
(
An

α(z)
−1An

α(y)
) ‖

is equal to

‖α−n
(
An

α(z)
−1

)
α−(n+1)

(
A(fn(z))−1A(fn(y))

)
α−n (An

α(y))

− α−n
(
An

α(z)
−1

)
α−n (An

α(y)) ‖,

which is smaller than or equal to

‖α−n
(
An

α(z)
−1

) ‖‖α−n (An
α(y)) ‖‖α−(n+1)

(
A(fn(z))−1A(fn(y))

)− Id‖.

From Proposition 3.3 it follows that the previous quantity is smaller than or equal to

Ce(4ρ+2θ+δ)n‖α−(n+1)
(
A(fn(z))−1A(fn(y))

)− Id‖.

Thus, since

‖α−(n+1)
(
A(fn(z))−1A(fn(y))

)− Id‖
= ‖α−(n+1)

(
A(fn(z))−1A(fn(y))

)− α−(n+1)(Id)‖
≤ Ceρ(n+1)‖A(fn(z))−1A(fn(y))− Id‖
≤ Ceρ(n+1)e−νλnd(z, y)ν

= Ceρe(ρ−νλ)nd(z, y)ν ,

we get that

‖α−(n+1)
(
An+1

α (z)−1An+1
α (y)

)− α−n
(
An

α(z)
−1An

α(y)
) ‖

≤ Ce(4ρ+2θ+δ)nCeρe(ρ−νλ)nd(z, y)ν

= Ce(5ρ+2θ+δ−νλ)nd(z, y)ν .

Therefore, since 5ρ+ 2θ + δ − νλ < 0, we get that the sequence (α−n(An
α(z)

−1An
α(y)))n

is indeed a Cauchy sequence. Consequently,

Hs,A,α
yz = lim

n→+∞α−n
(
An

α(z)
−1An

α(y)
)

exists and, moreover,

‖Hs,A,α
yz − Id‖ ≤ Cd(y, z)ν ,

whenever y, z ∈ W s
ε (x) as claimed.
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To prove the last claim, we start by observing that, on the one hand,

α−n
(
An

α(z)
−1An

α(y)
) n→∞−−−−→ Hs,A,α

yz .

On the other hand,

α−n
(
An

α(z)
−1An

α(y)
)

is equal to

α−m
(
Am

α (z)−1
)
α−m

(
α−(n−m)

(
An−m

α (fm(z))−1An−m
α (fm(y))

))
α−m (Am

α (y)) ,

which converges to

α−m
(
Am

α (z)−1
)
α−m

(
Hs,A,α

fm(y)fm(z)

)
α−m

(
Am

α (y)
)

as n goes to infinity. Combining these observations, we conclude that

Hs,A,α
fm(y)fm(z) = Am

α (z)αm(Hs,A,α
yz )Am

α (y)−1,

as claimed. �

Remark 3.6. From the proof of Proposition 3.3, we can easily see that in order to get

‖α−k(Ak
α(y))‖ · ‖α−k(Ak

α(x)
−1)‖ ≤ Ce(4ρ+2θ+δ)k

for every 0 ≤ k ≤ n we do not actually need y ∈ W s
ε (x). In fact, we only need x and y to

satisfy d(fk(x), fk(y)) ≤ Ce−γkd(x, y) for every 0 ≤ k ≤ n and some γ ∈ (0, λ) satisfying
4ρ+ δ < νγ. In this case, the constant C will depend on A, α, f , δ and γ. We will use
this fact in the sequel.

The notions of fiber-bunching and invariant holonomies in the case where α = Id have
important roles in many subareas of dynamical systems and arise naturally in various
different contexts (for instance, [2–4,6,19,21]). Therefore, Proposition 3.1 is also likely
to have many applications and can be seen as interesting in itself.
In order to simplify the notation, in what follows, whenever α is fixed and there is no

ambiguity, we simply write H∗,A instead of H∗,A,α, for ∗ = s, u, to denote the stable and
unstable holonomies associated with Aα.

4. Constructing the transfer map

In this section we ‘explicitly’ build the transfer map. The method we use is similar to
that used in [3,5] and [19] in the untwisted setting and in [22] in the twisted one: using
the invariant holonomies, we define the transfer map on a dense set; prove that restricted
to this set, it is Hölder continuous; and then extend it to the closure to obtain the desired
result.
Assume there exists x ∈ M such that f(x) = x. For such a point, we write W (x) :=

W s(x) ∩Wu(x). We define P : W (x) → GL(d,R) by

P (y) = Hs,A
xy (Hs,B

xy )−1 = Hs,A,
xy Hs,B

yx ,

where Hs,A and Hs,B are the holonomy maps given by Proposition 3.1 associated with
the twisted cocycles Aα and Bα, respectively.
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Note that P satisfies

An
α(y) = P (fn(y))Bn

α(y)α
n(P (y)−1)

for every y ∈ W (x) and every n ∈ N. Indeed, using f(x) = x, Proposition 3.1 and the
hypothesis on periodic points (2),

P (fn(y)) = Hs,A
xfn(y)H

s,B
fn(y)x = Hs,A

fn(x)fn(y)H
s,B
fn(y)fn(x)

= An
α(y)α

n(Hs,A
xy )An

α(x)
−1Bn

α(x)α
n(Hs,B

yx )Bn
α(y)

−1

= An
α(y)α

n(Hs,A
xy Hs,B

yx )Bn
α(y)

−1

= An
α(y)α

n(P (y))Bn
α(y)

−1,

and thus

An
α(y) = P (fn(y))Bn

α(y)α
n(P (y)−1)

as claimed.
We will now show that P is ν-Hölder continuous. This will allow us to extend P to

W (x) = M and thus to get the desired transfer map. The main ‘ingredient’ in the proof
is the next lemma, which says that P can be interchangeably defined using stable or
unstable holonomies. Its proof is similar to that of [3, Lemma 3]; we only present the full
details of it because of its central role in our proof and also because the presence of twist
makes some estimates a little more involved than in the untwisted case.

Lemma 4.1. For every y ∈ W (x),

P (y) = Hs,A
xy Hs,B

yx = Hu,A
xy Hu,B

yx .

The following classical result (see, for instance, [10, Corollary 6.4.17]) will be used in
the proof.

Lemma 4.2 (Anosov closing lemma). Given γ ∈ (0, λ), there exist C > 0 and
ε0 > 0 such that if z ∈ M satisfies d(fn(z), z) < ε0 then there exists a periodic point
p ∈ M such that fn(p) = p and

d(f j(z), f j(p)) ≤ Ce−γ min{j,n−j}d(fn(z), z) (11)

for every j = 0, 1, . . . , n.

Proof of Lemma 4.1. Let δ > 0 be such that 5ρ+ 2θ + δ < λν and γ ∈ (0, λ) such
that 5ρ+ 2θ + δ < γν. Let C > 0 and ε0 > 0 be given by the Anosov closing lemma
associated with γ.
Fix an arbitrary point y ∈ W (x). We begin by noticing that, as y ∈ W (x), there exist

C > 0 and n0 ∈ N such that for all n ≥ n0 we have

d(f−n(y), fn(y)) ≤ Ce−λ(n−n0).
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In fact, this follows from the fact that, as y ∈ W (x) = W s(x) ∩Wu(x), there exists n0 ∈ N

such that fn0(y) ∈ W s
ε (x) and f−n0(y) ∈ Wu

ε (x), and from the exponential convergence
towards x in W s

ε (x) and Wu
ε (x).

Let n1 ≥ n0 be such that, for all n ≥ n1, d(f
n(y), f−n(y)) < ε0. Thus, by the Anosov

closing lemma, for every n ≥ n1 there exists a periodic point pn ∈ M with f2n(pn) = pn
such that

d(f j(f−n(pn)), f
j(f−n(y))) ≤ Ce−γ min{j,2n−j}d(f−n(y), fn(y))

for every j = 0, 1, . . . , 2n. Using the periodic orbit condition (2) and noticing that
f2n(f−n(pn)) = f−n(pn), we get

A2n
α (f−n(pn)) = B2n

α (f−n(pn)),

which can be rewritten as

An
α(pn)α

n
(
An

α(f
−n(pn))

)
= Bn

α(pn)α
n
(
Bn

α(f
−n(pn))

)
,

or, equivalently, as

αn
(
An

α(f
−n(pn))B

n
α(f

−n(pn))
−1

)
= An

α(pn)
−1Bn

α(pn).

Thus, observing that

An
α(f

−n(pn)) = αn
(
A−n

α (pn)
−1

)
,

and similarly

Bn
α(f

−n(pn))
−1 = αn

(
B−n

α (pn)
)
,

we get

αn
(
A−n

α (pn)
−1B−n

α (pn)
)
= α−n

(
An

α(pn)
−1Bn

α(pn)
)
. (12)

Now we claim that

‖α−n
(
An

α(y)
−1Bn

α(y)
)− α−n

(
An

α(pn)
−1Bn

α(pn)
) ‖ n→+∞−−−−−→ 0 (13)

and

‖αn
(
A−n

α (y)−1B−n
α (y)

)− αn
(
A−n

α (pn)
−1B−n

α (pn)
) ‖ n→+∞−−−−−→ 0. (14)

Consequently, it follows from (12) and our claim that

‖α−n
(
An

α(y)
−1Bn

α(y)
)− αn

(
A−n

α (y)−1B−n
α (y)

) ‖ n→+∞−−−−−→ 0.

Thus, observing that

α−n
(
An

α(y)
−1Bn

α(y)
)
= α−n

(
An

α(y)
−1An

α(x)B
n
α(x)

−1Bn
α(y)

) n→+∞−−−−−→ Hs,A
xy Hs,B

yx ,

and similarly

αn
(
A−n

α (y)−1B−n
α (y)

) n→+∞−−−−−→ Hu,A
xy Hu,B

yx ,

we conclude that

P (y) = Hs,A
xy Hs,B

yx = Hu,A
xy Hu,B

yx

as we wanted.
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So, in order to complete the proof, it remains to prove our claim. We shall only prove
(13) since (14) is completely analogous.
We start observing that

‖α−n
(
An

α(y)A
n
α(pn)

−1
)− Id‖

is smaller than or equal to

n−1∑
j=0

‖α−(n−j)
(
An−j

α (f j(y))An−j
α (f j(pn))

−1
)

− α−(n−j)
(
An−j−1

α (f j+1(y))An−j−1
α (f j+1(pn))

−1
) ‖,

which by the cocycle property (1) is equal to

n−1∑
j=0

‖α−(n−j)
(
An−j−1

α (f j+1(y))
)
α−1

(
A(f j(y))A(f j(pn))

−1
)

× α−(n−j)
(
An−j−1

α (f j+1(pn))
−1

)

− α−(n−j)
(
An−j−1

α (f j+1(y))An−j−1
α (f j+1(pn))

−1
) ‖.

By the property of the norm, this last quantity is smaller than or equal to

n−1∑
j=0

‖α−(n−j)
(
An−j−1

α (f j+1(y))
) ‖‖α−(n−j)

(
An−j−1

α (f j+1(pn))
−1

) ‖

· ‖α−1
(
A(f j(y))A(f j(pn))

−1
)− Id‖,

which in turn is smaller than or equal to

n−1∑
j=0

C2e2ρ‖α−(n−j−1)
(
An−j−1

α (f j+1(y))
) ‖‖α−(n−j−1)

(
An−j−1

α (f j+1(pn))
−1

) ‖

· ‖A(f j(y))A(f j(pn))
−1 − Id‖.

Now, using Remark 3.6, the fact that A is ν-Hölder continuous, and property (11) given
by the Anosov closing lemma, it follows that the previous quantity is smaller than or
equal to

n−1∑
j=0

C2e2ρCe(4ρ+2θ+δ)(n−j−1)Ce−γν(n−j−1)d(f−n(y), fn(y))ν .

Recalling that d(f−n(y), fn(y)) ≤ e−λ(n−n0) for every n ≥ n0 and 5ρ+ 2θ + δ < γν, it
follows that

‖α−n
(
An

α(y)A
n
α(pn)

−1
)− Id‖ ≤ Ce−λν(n−n0) (15)

for every n ≥ n0, for some constant C > 0 independent of n and pn. Similarly, we can
prove that

‖α−n
(
Bn

α(pn)A
n
α(y)

−1
)− Id‖ ≤ Ce−λν(n−n0) (16)

for every n ≥ n0.
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Now, as there exists N > 0 so that ‖α−n(An
α(y)

−1An
α(x))‖ < N and ‖α−n(Bn

α(x)
−1

Bn
α(y))‖ < N for every sufficiently large n, since these two quantities converge to Hs,A

xy

andHs,B
yx , respectively; ‖α−n(An

α(y)A
n
α(pn)

−1)‖ < N for every sufficiently large n by (15);
An

α(x) = Bn
α(x) since Aα and Bα satisfy periodic orbit condition (2) and f(x) = x; and

using (5), (15) and (16), we get

‖α−n
(
An

α(y)
−1Bn

α(y)
)− α−n

(
An

α(pn)
−1Bn

α(pn)
)‖

= ‖α−n
(
An

α(y)
−1An

α(x)
)
α−n

(
Bn

α(x)
−1Bn

α(y)
)− α−n

(
An

α(pn)
−1Bn

α(pn)
)‖

≤ N2‖Id− α−n
(
An

α(x)
−1An

α(y)A
n
α(pn)

−1Bn
α(pn)B

n
α(y)

−1Bn
α(x)

)‖
≤ N2‖α−n

(
An

α(x)
−1

)‖‖α−n
(
An

α(x)
)‖‖Id− α−n

(
An

α(y)A
n
α(pn)

−1Bn
α(pn)B

n
α(y)

−1
)‖

≤ N2Ceθn
(‖α−n

(
An

α(y)A
n
α(pn)

−1
)‖‖α−n

(
Bn

α(pn)B
n
α(y)

−1
)− Id‖

+ ‖α−n
(
An

α(y)A
n
α(pn)

−1
)− Id‖)

≤ N2Ceθn
(
NCe−λν(n−n0) + Ce−λν(n−n0)

)

≤ C̃e(θ−λ)n,

for some C̃ > 0 independent of n and pn and n � 0. In particular,

‖α−n
(
An

α(y)
−1Bn

α(y)
)− α−n

(
An

α(pn)
−1Bn

α(pn)
) ‖ n→+∞−−−−−→ 0,

proving (13) and thus completing the proof of Lemma 4.1. �

Lemma 4.3. P is ν-Hölder continuous on W (x).

Proof. The proof of this fact is analogous to the proof of [3, Lemma 4], and so we just
summarize the main idea. Full details can be checked in the original work.
From Lemma 4.1 we know that P can be defined using both stable and unstable

holonomies. By property (8) we get that restricted to local stable or unstable manifolds,
P is Hölder continuous with an uniform Hölder constant. Now, since f has local product
structure, points that are τ -close (where τ is as in Definition 2.1) can be connected via
local stable and unstable manifolds. Putting all these facts together, we conclude that
P is Hölder continuous on balls of radius τ . Finally, using the compactness of M , we
conclude that P is Hölder continuous in W (x). �

Therefore, we can extend P : W (x) → GL(d,R) to the closure of W (x), that is, the
whole space M . By continuity, such an extension clearly satisfies the cohomological
equation (3), completing the proof of Theorem 1.1 in the case where f has a fixed point.
Now, following the argument given in § 5 of [3], mutatis mutandis, we eliminate the

additional assumption about the existence of a fixed point for f and conclude the proof
of Theorem 1.1.
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