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SUMMARY
Autonomous multi-agent systems show promise in countless applications, but can be hindered
in environments where inter-agent communication is limited. In such cases, this paper considers
a scenario where agents communicate intermittently through a cloud server. We derive a graph
transformation mapping the kernel of a graph’s Laplacian to a desired configuration vector while
retaining graph topology characteristics. The transformation facilitates derivation of a self-triggered
controller driving agents to prescribed configurations while regulating instances of inter-agent
communication. Experimental validation of the theoretical results shows the self-triggered approach
drives agents to a desired configuration using fewer control updates than traditional periodic
implementations.

KEYWORDS: Consensus-based control; Self-triggered control; Multi-agent control; Graph
transformation; Asynchronous control.

1. Introduction
The expanding role of distributed multi-agent systems in military, civilian, and industrial applications
has introduced interesting new questions in multi-agent control, coordination, and communication.
Specifically, in bandwidth-limited or denied environments, there exists a need for control algorithms
that drive agents to a desired system configuration while judiciously coordinating their control updates
and time instances of agent interaction. These two objectives are typically at odds; increasing the
time duration between control instances can slow convergence or cause system instability. This paper
presents a novel approach to stabilizing multi-agent configurations by deriving a distributed controller
that drives agents to a desired configuration and regulates agent control update instances to maintain
stability of the desired configuration, an approach known as self-triggering.

We consider the problem of coordinating a multi-agent group to a desired system configuration
assuming agents communicate over a specified network topology intermittently and indirectly through
a server, which we refer to as a “cloud.” The term “cloud” is proposed in this context in refs. [1] and
[2] toward driving agents to consensus, where all agents converge to a common value. The concept
of the cloud in this work shares similarity with that of a blackboard control architecture, where a
“blackboard” component receives information and can store and disseminate information to agents,
or sometimes referred to as nodes, upon request.3 When an agent connects to the cloud it receives
information about its neighbors from the last time they connected, implying that each agent must rely
on old information to make its control decision. Each distributed agent then computes its control,
uploads its current state information, disconnects, and executes the control for a chosen time interval.

This problem may arise in applications involving cyber-physical systems,4 group dynamics,5

coordination of unmanned vehicles,2,6 or load balancing in distributed computing systems.7 For
example, communication is limited and costly in the undersea domain since signals can attenuate
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at relatively short spatial scales. The authors in refs. [2] and [1] posed an example application
coordinating surfacing times of underwater submarines when each vehicle can only receive and
transmit information while surfaced. The goal of the controller is to coordinate surfacing times of
agents and prescribe the desired control (for example, velocity) during the submerged interval. Toward
addressing this problem, this paper considers the coordination of single-integrator kinematic agents to
a desired configuration while simultaneously coordinating the instances in which they communicate
with the cloud.

An extensive body of literature exists addressing the coordination of distributed multi-agent
systems. A summative review of recent work is presented in ref. [8]. Generally speaking, research
thrusts may be categorized into consensus algorithms, where all agents reach a common state,9,10

distributed formation algorithms, where the group of agents (typically mobile vehicles) forms a
predefined geometric configuration,11–13 and triggering algorithms that focus on determining the
times in which agents update their control.14 This work derives a distributed formation controller that
simultaneously coordinates agent’s control update instances.

To drive agents to a desired configuration, the approach derived in this paper shares similarities
with previous work in consensus-based formation control literature (e.g., see refs. [15] and [11], or
[8] for an overview), where agents reach a desired configuration of states rather than a common
state (called consensus). Like these works, we assume single-integrator agent kinematics and weight
edges of the underlying agent communication graph Laplacian in the control to stabilize a desired
agent configuration. In ref. [11], the author relates multi-agent kinematics to the advection equation
and shows that carefully weighting communication in directed graph topologies results in stable,
multi-agent formations. Similarly, the authors of ref. [12] derive edge weights to enforce a desired
distance between communicating agents while simultaneously incorporating obstacle avoidance. In
both approaches, however, the choice of weights affects the spectral properties of the graph and
a systematic method of weight selection and allowable communication topologies for a desired
formation is not specified. This paper extends the results of refs. [11] and [12] in that the graph
transformation of this paper retains the spectral properties and communication topology of the inter-
agent network and systematically generates the appropriate communication weights to achieve the
desired configuration. In other related consensus-based formation work, the authors in refs. [16]
and [15] incorporate a bias vector corresponding to the desired agent distance from the centroid
of agent states. Achieving consensus relative to the centroid ensures convergence to the desired
formation. This approach achieves convergence properties dictated by the spectral properties of the
communication graph Laplacian, but requires each agent to know its required position relative to the
centroid to achieve the desired formation. This paper achieves the same convergence properties but uses
weights shared amongst neighboring agents to specify the formation rather than each agent requiring
a known individual bias. Beyond consensus-based approaches to formation control, an extensive body
of literature addresses formation control specific to non-holonomic mobile vehicles.17–19

A substantial amount of research has focused on coordinating the communication and control
update instances of distributed systems. Generally speaking, the approaches fall into two categories.
In event-triggered control, actuation and communication are triggered when a measured function,
typically a measure of error, approaches some destabilizing threshold value.20 This requires each
agent to continuously monitor the error function to trigger control updates; further details regarding
this approach and its applications can be found in refs. [14] and [21]. In self-triggered control, an
agent forecasts its next control update time during its current one and maintains constant control
between updates.7,20,22,23 This paper uses the self-triggered approach. An agent connects to the cloud
to download information about its neighbors. It then uploads its information to the cloud including
the next time it will connect. Compared to traditional time-periodic implementations, event- and self-
triggered control approaches can reduce the cumulative number of triggering instances required while
remaining stable, with durations between triggers longer than allowed by time-periodic approaches.2

The self-triggered controller derived in this paper is motivated by refs. [1] and [2], but differs in
that the results extend the self-triggering control to distributed configurations rather than consensus,
where all agents reach a common state. Furthermore, it allows the cloud to reconfigure the formation
of agents by “pushing” a new configuration to the group via inter-agent communication weightings.
This work also shares similarity with ref. [24] where an event-triggered solution is proposed rather
than a self-triggered one and with ref. [25] where the authors focus on achieving consensus subject
to noise in the shared information between agents.
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The contributions of this work include (1) a theoretically justified kernel design technique that
employs a similarity transformation to map the kernel vector of an N-dimensional graph Laplacian
to a desired configuration vector with positive elements. The transformation presented in this work
conserves spectral properties of the communication graph and allows the extensive body of research
toward consensus to be extended to distributed formation problems. (2) We derive a decentralized
continuous-time autonomous control algorithm steering agents to a desired time-invariant state
configuration vector with positive elements using network communication defined by a prescribed
graph, and (3) extend the continuous-time control to asynchronous, self-triggered control. Finally, (4)
we provide experimental results using a network of direct current (DC) motor modules to validate the
distributed, self-triggered consensus-based formation controller. The DC motors serve as placeholders
for application specific “agents” such as mobile vehicles. Building on the experimental results, we
simulate a group of autonomous quadrotors and use the multi-agent, self-triggered control algorithm
to drive agents to a desired formation.

The remainder of the paper is organized as follows. Section 2 provides a review of relevant
background information, including multi-agent kinematics, tools from graph theory, and properties
of matrices used throughout the paper. Section 3 presents the primary theoretical results including
a graph transformation algorithm and multi-agent control derivations of both conventional (i.e.,
continuous time) and self-triggered approaches. Section 4 provides an overview of experimental
implementation and validation of the theoretical results from Section 3 using a network of DC motor
modules communicating with the cloud over a serial interface. We follow the experimental results
with a simulated application using the self-triggered controller to drive a group of quadrotor aircraft
to a desired formation. Section 5 provides a summary of results and closing remarks.

2. Background
This section provides background information relevant to the theoretical results in Section 3. Section
2.1 discusses the kinematic model of agent motion, and Section 2.2 discusses the mathematical
formulation of the agent communication network.

2.1. Kinematic motion model
Consistent with recent works in consensus-based multi-agent coordination and self-triggered control
literature,1,12,24 consider N agents with single-integrator kinematics. The position of the kth agent
is xk ∈ R ∀ k = 1, . . . , N . The position of all agents is defined by the vector(1) x ∈ RN given by
x = [x1, . . . , xN ]T. The time derivative of each agent’s position is controlled, giving the kinematic
equation of motion for the kth agent

ẋk = uk, (1)

where uk is a control variable. This paper derives state-feedback control algorithms uk = uk (x),
utilizing x or a subset of states within x to drive agents to a desired configuration denoted by
c = [c1, c2, . . . , cN ]T. We assume limited communication between agents, implying that the kth
agent’s control may only depend on a subset of the state vector x as dictated by the underlying
agent communication network.

2.2. Graph representation of agent communication
Inter-agent communication in multi-agent systems is often described using tools from graph theory.26

Consider a graph, G, composed of N vertices each representing an agent. Edges of the graph
correspond to inter-agent communication channels; an edge from vertex ni to vertex n j indicates
directed communication from agent i to agent j. The set of all neighbors of agent i is denoted Ni. An
undirected graph assumes bidirectional communication between agents whose vertices share an edge,
whereas a directed graph, also called a digraph, specifies unidirectional information transfer between
vertices sharing directed edges. Edges may be weighted to indicate relative weights of connection
between agents. Let G = (V, E ) be an undirected, unweighted graph, where V = {n1, . . . , nN} is the

(1)Bold fonts represent a column vector, e.g., x = [x1, . . . , xN ]T and capital letters represent an M × N matrix,
e.g., A ∈ RM×N .
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set of all vertices, and E is the set of all edges.26 Assume any two vertices can be connected via a path
along edges contained in E . This implies that G is strongly connected.26

The matrices associated with the graph G are defined as follows. The unweighted adjacency matrix
A ∈ RN×N of G represents E in matrix form. A is defined element-wise where Ai,i = 0 (ignoring an
agent’s ability to communicate with itself), and Ai, j = 1 if (ni, n j ) ∈ E (assuming a single bidirectional
communication channel between the ith and jth agents) and zero otherwise (see ref. [26] for further
details). In a weighted graph Ai, j = wi, j , where wi, j corresponds to a weight associated with the
communication channel. For undirected graphs, A is symmetric. The degree matrix D ∈ RN×N is a
diagonal matrix whose ith diagonal entry corresponds to the number of edges associated with the ith
vertex.26 From the adjacency and degree matrices, the graph Laplacian L ∈ RN×N is

L = D − A. (2)

In an undirected graph, row and column sums of the Laplacian are zero implying that, for a strongly
connected graph, the Laplacian has one zero eigenvalue whose corresponding eigenvector is the vector
of ones 1 = [1, . . . 1]T ∈ RN . By definition, the kernel of L contains scalar multiples of 1, and the
trivial zero vector.26 Given the symmetry of the Laplacian associated with an undirected graph, the
remaining eigenvalues are real and strictly greater than zero, with associated eigenvectors spanning
the N − 1 dimensional complementary subspace of the vector 1.26

The graph transformation results of this paper assume an underlying graph that is undirected and
strongly connected; we also utilize time-invariant communication topologies. However, the results
are naturally extensible to time-varying communication topologies. The results of ref. [27] address
stability and convergence with limited and time-varying communication topologies; these topics are
beyond the scope of this work.

3. Theoretical Results
This section presents the theoretical contributions of the paper. Section 3.1 derives a kernel design
technique that transforms the kernel of the graph Laplacian (2) while retaining its eigenvalue and
agent communication characteristics. We show that the transformation maps an undirected graph
to a weighted, directed graph whose weights are described by elements of the desired configuration.
Section 3.2 utilizes the Laplacian transformation to derive a continuous-time control algorithm steering
the multi-agent system (1) to a desired configuration. Section 3.3 extends the results of Section 3.2
by relaxing the continuous-time assumption to derive a distributed, self-triggered controller where
agents periodically connect to a cloud server for updates regarding their neighbors’ states.

3.1. Graph transformation
Tools from linear algebra enable derivation of a mapping that transforms the kernel of the graph
Laplacian L to a desired configuration vector. The resulting transformed Laplacian matrix P has a
specified kernel vector c, such that Pc = 0.

Consider a similarity transform that produces similar Laplacian matrices26 L and P. The similarity
relationship is [28]

P = RLR−1, (3)

where R ∈ RN×N is an invertible matrix. By definition, similar matrices have equal eigenvalues. This
implies that, for the Laplacian L of undirected graph G, λk (P) = λk (L) ≥ 0, where λk (P) represents
the kth eigenvalue of P.26,28 Though the eigenvalues of P are equal to those of L, the eigenvectors of
P are determined by the transformation matrix R. The following lemma shows that choosing

R = diag
(

c
||c||

)
, (4)

where ck > 0, ∀k = 1, . . . , N , transforms the undirected graph Laplacian L into the Laplacian P of a
weighted digraph with equivalent edges whose weights are determined by the desired configuration
c.29 This paper considers desired configurations with strictly positive elements, though simulation
results indicate the theoretical results remain valid for any configuration with non-zero elements.

https://doi.org/10.1017/S0263574718000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718000231


Self-triggered control for coordination of autonomous multi-agent configurations 1081

Fig. 1. (Left) Undirected graph G and (right) weighted digraph G∗ produced by transformation (5).

Lemma 1. The similarity transform (3) with transformation matrix (4) maps the Laplacian of an
unweighted, undirected graph G to the Laplacian of a weighted, directed graph G∗ whose edge from
vertex ni to n j has weight ci/c j .

Proof. Without loss of generality, assume ||c|| = 1. Since R and D are diagonal matrices, using
(4) in (3) with (2) gives

P = RDR−1 − RAR−1 = D − RAR−1. (5)

Note that given the prescribed constraints on R, the degree matrix is unchanged. Define the transformed
adjacency matrix A∗ � RAR−1. With R diagonal, the ith row of A is multiplied by ci and the jth column
of A is multiplied by 1/c j ; zero elements remain unchanged. Therefore, A∗

i, j = ci/c j corresponding
to the edge between agents ni and n j has weight ci/c j , whereas A∗

j,i = c j/ci has weight c j/ci. This
implies edges i, j and j, i from A are retained in A∗ but have reciprocal weights. By definition, P and
A∗ are, respectively, the Laplacian and adjacency matrices of the weighed digraph G∗ with the same
edges as G but directed edge i, j in G∗ is weighted by ci/c j . �

Figure 1 illustrates the graph similarity transformation applied to a system of four agents.
Figure 1(left) shows the undirected, unweighted graph G, whereas Fig. 1(right) shows the similarity
transformed graph G∗ transformed by the desired configuration vector c = [c1, c2, c3, c4]T. Note the
inter-agent communication edges are equal; however, G∗ weights directional communication between
agents.

By definition, the similarity relation between Laplacians P and L preserves eigenvalues between
the two matrices while changing the basis.28 This change of basis allows the kernel of L to be mapped
to a desired kernel of P through the relation c = αRv where equality holds since v = 1. The non-zero
term α is added for convenience to enable scaling in magnitude along the directions defined by v and
c. Invoking properties of the similarity transform gives the following.29

Theorem 1. The transformed Laplacian (3), where L is the Laplacian matrix of a strongly
connected, undirected graphG and R, given by (4) is an N-dimensional transformation matrix relating
the kernel of L (defined as v = 1) to the kernel of matrix P (defined as c �= 0), satisfies Pc = 0.

Proof. Define v ∈ ker(L), ||v|| �= 0 and c such that ck > 0, ∀k = 1, . . . , N . Let R be defined by
(4) such that it satisfies c = αRv for α = ||c||/||v||. Multiplying c on the left by P and using (3) gives

Pc = RLR−1c = αRLR−1Rv = αRLv = 0, (6)

since v ∈ ker(L), thereby completing the proof. �

3.2. Continuous-time multi-agent configuration control
This section leverages the results of Section 3.1, using the transformed graph Laplacian P to derive a
continuous time control algorithm steering agents to the desired configuration c while using inter-agent
communication specified by the graph G.
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Consider the potential function

Va = 1
2 (R−1x)TL(R−1x) = 1

2 xTR−1LR−1x ≥ 0, (7)

where R is diagonal and given by (4). Since R is diagonal with positive diagonal elements and L
is positive semi-definite for an undirected, connected graph, the matrix R−1LR−1 is symmetric and
positive semi-definite by construction. The time derivative of (7) with agent kinematics (1) is

V̇a = 1
2

(
uTR−1LR−1x + xTR−1LR−1u

)
. (8)

Let the ith agent’s control be

ui = −K
∑
j∈Ni

(
xi − ci

c j
x j

)
, (9)

where K > 0 and Ni is the set of neighbors of agent i, such that the vector of agent control inputs is

u = −KPx, (10)

where P is the transformed Laplacian defined by (5). The control (9) uses ci, leading one to believe
that every agent must be informed of its desired position and neighbor positions, which would seem
to defeat the purpose of requiring agents to communicate. However, an agent need not know the exact
desired position, only the ratio wi, j � ci/c j between it and its neighbors, which we henceforth refer
to as the weight. Assuming agent i receives weights wi, j ∀ j ∈ Ni from its neighbors along with state
information, an uninformed agent i need never exactly know ci.

Using definition (5), Eq. (8) can be written as

V̇a = −K/2
(
xTPTR−1LR−1x + xTR−1LR−1Px

)
= −K/2xT(R−1LRR−1LR−1 + R−1LR−1RLR−1)x
= −KxTR−1L2R−1x ≤ 0,

(11)

since the quantity R−1L2R−1 is symmetric and positive semi-definite as shown in the appendix. This
implies the following.

Theorem 2. Given a time-invariant configuration vector c = [c1, . . . , cN ] ∈ RN where ci > 0,
∀i = 1, . . . , N and K > 0, all solutions of the multi-agent kinematics (1) with control (10) converge
to the configuration x = αc for some constant α ∈ R.

Proof. The potential function (7) is non-negative and proper in the reduced space of agent
configurations relative to c.30 Since (7) is decreasing under control (10), the Invariance Principle
stipulates that solutions converge to the largest invariant set for which V̇a = 0.31 From (11), V̇a = 0
when LR−1x = 0. Note that

R−1x =
[

x1

c1
, . . . ,

xN

cN

]T

,

implying that LR−1x = 0 only when

x1

c1
= x2

c2
= · · · = xN

cN
.

Thus, V̇a = 0 only when x = αc for some constant α ∈ R. Therefore, solutions converge to the
configuration x = αc. �

The control (10) drives agents to a scaled multiple of the desired configuration. To control agents
to the exact configuration we introduce the concept of informed agents.18 Let ai = 1 if the ith agent
has exact knowledge of ci and zero otherwise. Define the knowledge vector a = [a1, . . . , aN ]T and
let � = diag(a) be a diagonal matrix with ai on the ith diagonal.
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We now augment the potential function to include configuration error terms only for those agents
with information about their desired location. Consider the potential function

V = 1
2 eTW e ≥ 0, (12)

where e = x − c is the configuration error and W = R−1(L + �)R−1 is a symmetric matrix by
construction and is positive definite if at least one agent is informed; proof showing W is positive
definite is found in the appendix. Substituting the definition of the configuration error e with the fact
that R−1LR−1c = 0, we have

V = 1
2 eTW e = 1

2 xT(R−1LR−1)x + 1
2 eTR−1�R−1e, (13)

illustrating that (12) is simply the sum of (7) and a term corresponding to the square of the configuration
error only for informed agents. The disagreement function is non-negative with respect to e with
minimum occurring at e = 0, implying x = c.

Given the agent kinematics (1), the time-derivative of (12) can be written as

V̇ = eTR−1(L + �)R−1ẋ, (14)

motivating use of the vector of agent control inputs

u = −K (P + �)e = −KR(L + �)R−1e = −KPx − K�e, (15)

where K > 0. Equation (15) implies the ith agent applies the control

ui = −Kai (xi − ci) − K
∑
j∈Ni

(
xi − wi, jx j

)
, (16)

where wi, j = ci/c j is agent i’s weight term shared by agent j.
Substituting (15) into (14) and simplifying give

V̇ = −KeTQe ≤ 0, (17)

where

Q = R−1(L + �)2R−1. (18)

The matrix Q is symmetric and positive definite if ai = 1 for at least one agent and positive semi-
definite otherwise (see Lemma 4 in the appendix). Therefore, V̇ ≤ 0 and equals zero only when e = 0,
which implies x = c and the following theorem.

Theorem 3. Given a time-invariant configuration vector c = [c1, . . . , cN ] ∈ RN where ci > 0
∀i = 1, . . . , N, K > 0, and at least one informed agent, all solutions of the multi-agent kinematics
(1) with control (16) converge to the configuration x = c.

Proof. The potential function (13) is non-negative and proper in the reduced space of agent
configurations relative to c.30 Since (13) is decreasing under control (15), the Invariance Principle
stipulates that solutions converge to the largest invariant set where31 V̇ = 0. Given that Q is
positive definite, this occurs only when e = 0 implying x = c. Therefore, solutions converge to the
configuration c. �

Figure 2 illustrates simulation of N = 5 agents with kinematics (1), control (16), and random
initial conditions. The desired positions are uniformly distributed from twenty to sixty. Figure 2(left)
shows the communication topology. Agent three is informed of the exact configuration; all other
agents are uninformed. Figure 2(middle) shows agent positions over time. Solid lines represent agent
positions, whereas dashed lines represent the desired configuration. Note all agents approach the
desired configuration. Figure 2(right) shows the potential function (12) versus time, plotted on a log
scale. Note the potential function (12) decreases toward zero.
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Fig. 2. N = 5 agents communicating according to the graph topology shown at (left) converging to a desired
configuration (middle). (Right) The potential function (12) plotted vs. time.

Prior works1,18 have proposed solving the distributed time-invariant formation problem with a
variable transformation that defines the consensus variable ξ = x − c. ξ → α1 is imposed using
standard consensus control techniques. The resulting formation achieves desired relative spacing
between agents with an arbitrary translational degree of freedom. The advantage of the graph
transformation approach proposed in this paper is that it is equivalent to the consensus problem
when c = 1, it achieves the exact prescribed configuration in absolute coordinates, and it can simply
extend consensus results to time-varying formation tracking. The authors’ previous work29 shows that
the controller (16) can be adapted to track time-varying configurations c(t ) with provably bounded
configuration error. Additionally, this work extends the multitude of results addressing agent consensus
problems to multi-agent formation problems by introducing the concept of a shared weight amongst
agents. The following section shows a natural extension of self-triggered control to the multi-agent
formation control problem.

3.3. Asynchronous self-triggered control
The results of the Section 3.2 assume that the agents update their control continuously. This requires
all agents to communicate at every time step, which may increase bandwidth capacity requirements
of the network. This section derives a distributed self-triggered control algorithm where each agent
periodically connects to a cloud server. When an agent connects to the cloud it receives time-stamped
state information about its neighbors and, if informed, about its desired state. The agent then computes
its control and the next time it will connect to the cloud, uploads its information, and disconnects.
Upon disconnecting from the cloud it applies its computed control for the specified interval of time
until it re-connects.

The self-triggered control derivation in this section is inspired by the work in refs. [2] and [1] who
derived a self-triggered, asynchronous control algorithm driving agents to a consensus state. This
paper extends these works to steer the multi-agent system to a desired configuration and additionally
allows the cloud to “push” desired configuration updates if desired. For consistency with previous
works, we use the notation formulated in ref. [2].

When agent i makes its lth connection to the cloud at time t l
i , it must compute its control u(t l

i ) to
apply over the interval t ∈ [

t l
i , t l+1

i

)
such that its contribution to the potential function (12) is negative

over the interval. In order to compute its control using (16) and choose t l+1
i , we assume the ith agent

downloads:

1. The state of its neighbors at the last time they connected to the cloud, i.e., x j (t last
j ) ∀ j ∈ Ni

2. The control of its neighbors at the last time they connected to the cloud, u j (t last
j ) ∀ j ∈ Ni

3. The weight associated with its neighbors’ interaction, wi, j ∀ j ∈ Ni

4. The next time its neighbors will connect to the cloud, t next
j ∀ j ∈ Ni

5. The time at which its neighbors’ control will expire t expire
j ∀ j ∈ Ni, at or prior to its next connection

to the cloud
6. The maximum control its neighbors may apply over its current interval, referred to as the control

promise of its neighbors, Mj ∀ j ∈ Ni

7. The desired position ci only if it is an informed agent.
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After downloading the information and computing its control and next connecting time, the agent
then uploads its

1. State, xi(t l
i )

2. Control, ui(t l
i )

3. Time of last connection, t l
i

4. Time of next connection, t l+1
i

5. Time of control expiration, t expire
i

6. Control promise, Mi

We assume that the time required to connect, compute the necessary control quantities, and disconnect
is negligible compared to the duration of the interval. Therefore, the goal is to use (12) to calculate the
control ui(t l

i ), next connecting time t l+1
i , and any necessary control expiration times t expire

i to achieve
the desired formation. The necessity for downloading and uploading these quantities will be justified
in the derivation that follows.

Consider the potential function (12). At time t , the time derivative of (12) can be written

V̇ (t ) =
N∑

i=1

ẋi(t )
[
aic

−2
i (xi(t ) − ci) + Wix(t )

]
(19)

=
N∑

i=1

ui(t )

⎡
⎣aic

−2
i (xi(t ) − ci)+

∑
j∈Ni

c−2
i xi(t ) − (cic j )

−1x j (t )

⎤
⎦ , (20)

where Wi is the ith row of W . Note that the ith term in the summation over i represents the contribution
to the potential function due to agent i. By defining

V̇i(t ) � ui(t )
[
ai (xi(t ) − ci) + ∑

j∈Ni
xi(t ) − wi, jx j (t )

]
, (21)

(19) becomes

V̇ =
N∑

i=1

c−2
i V̇i. (22)

The potential can then be written as

V (x(t )) = V (x(0)) +
∫ t

0
V̇ (x(τ ))dτ = V (x(0)) +

N∑
i=1

c−2
i

∫ t

0
V̇i(x(τ ))dτ. (23)

The goal of the self-triggering algorithm is for the ith agent to compute intervals t ∈ [
t l
i , t l+1

i

)
, for

discrete cloud communication instances l = 1, 2, . . . over which it can apply the constant control
ui(t l

i ) such that V̇i(t ) ≤ 0.
When agent i downloads information from the cloud at time t l

i , it is able to update its understanding
of the state of a neighbor up to that neighbor’s next cloud connection, t next

j . Therefore, for t ∈ [t l
i , t next

j )

x j (t ) = x j (t last
j ) + u j (t last

j )
(

t − t last
j

)
. (24)

Consistent with ref. [2], define Ti = min j∈Ni t
next
j as the first time a neighbor will re-connect to the

cloud. Agent i can compute agent j’s state exactly until Ti. In the interval t l
i ≤ t ≤ Ti the ith agent’s

contribution to the potential function derivative (19) is

V̇i = u(t l
i )

[
ai(xi − ci) + c2

i Wix(t l
i ) + (t − t l

i )
(
aiu(t l

i ) + c2
i Wiu(t l

i )
)]

. (25)
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Let t∗ be the smallest time for which (25) is less than zero. If t∗ < Ti, then agent i sets its ideal next time
to connect to the cloud t ideal

i = t∗, t expire
i = t ideal

i , uploads its information to the cloud, and disconnects.
Note, under certain circumstances t l+1

i = t ideal
i ; however, cases exist in which t l+1

i �= t ideal
i , which are

discussed in Section 3.4.
Note that the term

c2
i Wix(t l

i ) = c2
i

∑
j∈Ni

c−2
i xi(t

l
i ) − (cic j )

−1x j (t
l
i ) =

∑
j∈Ni

xi(t
l
i ) − wi, jx j (t

l
i )

in (25) is used as shorthand and does not require the ith agent to have knowledge of the full state
vector x(t l

i ) or ci. Uninformed agents calculate t∗ using

u(t l
i )

⎡
⎣

⎛
⎝∑

j∈Ni

xi(t
l
i ) − wi jx j (t

l
i )

⎞
⎠+(t −t l

i )

⎛
⎝∑

j∈Ni

ui(t
l
i ) − wi ju j (t

last
j )

⎞
⎠

⎤
⎦ ≤ 0. (26)

If t∗ > Ti, agent i can no longer precisely predict its contribution to (19). Agent i’s projected state
is

xi(t ) = xi(Ti) + ui(t
l
i ) (t − Ti) . (27)

Moreover, for t > Ti, agent i’s understanding of its neighbor j’s state is

x j (t ) = x j (Ti) +
∫ t

Ti

ẋ j(τ )dτ. (28)

Following refs. [2] and [4], we assume that the jth agent uploads a promise Mj (t ) ≥ 0 that its control
will not exceed

∣∣ẋ j (t )
∣∣ = |u j (t )| ≤ Mj (t ).

By downloading the promised value from agent j, agent i can predict bounds on the state of agent j
for t > Ti given by

x j (Ti) − (t − Ti)Mj (t ) ≤ x j (t ) ≤ x j (Ti) + (t − Ti)Mj (t ). (29)

The process of choosing a promise Mj (t ) is described in Section 3.4. Substituting (27) and (28) into
(21) gives

V̇i(t ) = ui(t l
i )

[
ai(xi(Ti) − ci) + c2

i Wix(t l
i ) + aiui(t l

i )(t − t l
i )

]
+ui(t l

i )
[∑

j∈Ni
ui(t l

i ) − wi, j
∫ t

t l
i

ẋ j (τ )dτ
]
.

(30)

Using (30) with the bounding relationship (29) reveals the interval of time upon which agent i can
ensure V̇i ≤ 0. If u(t l

i ) < 0, the sufficient condition for V̇i ≤ 0 is

(t −Ti)

⎡
⎣aiui(t

l
i )+

∑
j∈Ni

ui(t
l
i )−wi jMj (t )

⎤
⎦≥ ai (ci−xi(Ti)) +

∑
j∈Ni

xi(Ti) − wi jx j (Ti). (31)

Similarly, if u(t l
i ) > 0

(t −Ti)

⎡
⎣aiui(t

l
i )+

∑
j∈Ni

ui(t
l
i )+wi jMj (t )

⎤
⎦≤ ai (ci−xi(Ti)) +

∑
j∈Ni

xi(Ti) − wi jx j (Ti). (32)
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Define T ∗
i as the smallest time T ∗

i > Ti that condition (31) or (32) is no longer satisfied. By defining
T ∗

i in this fashion, agent i guarantees its contribution to the potential function V̇i ≤ 0 for all times in
the interval t ∈ [

t l
i , T ∗

i

]
.

We allow small intervals where V̇i can be positive so long as the overall contribution over the
interval [t l

i , t l+1
i ] remains negative;1,2 specifically,

�V l
i �

∫ t l+1
i

t l
i

V̇i(τ )dτ < 0. (33)

To compute the allowed time in which the contribution to V̇i can be positive, partition the interval
[t l

i , t l+1
i ) into the precisely known and unknown, but bounded portions. Let Bi be the contribution

to the potential function over the interval from t l
i to Ti in which the ith agent can exactly predict its

contribution to the overall potential2

Bi =
∫ Ti

t l
i

V̇i(τ )dτ, (34)

and let Ci be the contribution when the ith agent is no longer certain of its contribution to the potential
function

Ci =
∫ t

Ti

V̇i(τ )dτ. (35)

Using (28) and (30), one can show Ci is bounded such that

Ci ≤ C̄i = γ (t − Ti) + β

2 (t − Ti)2, (36)

where

γ = u(t l
i )

⎡
⎣ai (xi(Ti) − ci) +

∑
j∈Ni

xi(Ti) − wi jx j (Ti)

⎤
⎦ , (37)

and

β =
⎡
⎣aiui

(
t l
i

)2 +
∑
j∈Ni

ui
(
t l
i

)2 + wi jMj (t )
∣∣ui

(
t l
i

)∣∣
⎤
⎦ . (38)

We can then write1

�V l
i = Bi + Ci ≤ Bi + C̄i(t ).

This leads to defining T total
i as the smallest time T total

i ≥ Ti where

Bi + C̄i(T total
i ) < 0, (39)

is no longer satisfied. The time T total
i is the ith agent’s prediction of the longest time it can remain

disconnected from the cloud and still make a beneficial contribution to the potential function (12).
The ith agent can balance its choice of t l+1

i between ensuring V̇i remain negative over [t l
i , t l+1

i ]
(t l+1

i = T ∗
i ) or that its overall contribution to the potential function is negative over [t l

i , t l+1
i ] (t l+1

i <

T total
i ). Define σi ∈ [0, 1] as a parameter weighting the balance between the two choices and let1,2

t ideal
i = (1 − σi) T ∗

i + σiT total
i . (40)

https://doi.org/10.1017/S0263574718000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718000231


1088 Self-triggered control for coordination of autonomous multi-agent configurations

Using σi = 0 ensures V̇i < 0 for the entire interval, which results in faster convergence to the desired
configuration but more triggers over a given time span. Conversely, choosing σi = 1 causes (12) to
decrease at the slowest possible rate but presumably requires fewer triggers over a given time span.

3.4. Selecting and implementing promises and avoiding Zeno behavior
Selection of the next triggering time t l+1

i relies on knowledge of promises from neighboring agents,
Mj (t ). This section stipulates when t l+1

i = t ideal
i from the previous section or when a modification to

t l+1
i and ui(t l

i ) must be applied. Additionally, the derivation in Section 3.3 guarantees the potential
function is strictly decreasing, but does not guarantee an agent will not need to reconnect an infinite
number of times in a finite interval, known as Zeno behavior.14 Fortunately, the method of choosing
promises and avoiding Zeno behavior developed by Bowman et al.2 and its precursor work by Nowzari
and Pappas1 for consensus is equivalently applicable to the distributed consensus-based formation
control approach in this paper. An overview of the method derived in ref. [2] follows. For detailed
discussion, the interested readers are referred to refs. [2], [1], and [4].

When it connects to the cloud an agent makes promise Mi about its control over the interval
t l+1
i − t l

i . Equations (31), (32), and (39) depend on promises made between agents and dictate the
duration of time an agent may be disconnected from the cloud. Larger promises produce shorter
intervals and faster convergence, whereas smaller promises enable longer intervals but may slow the
rate of convergence. To balance these effects, assume agent i chooses its promise based on its ideal
control,2

Mi = |u∗
i (t l

i )|, (41)

where u∗
i (t l

i ) is given by (16). During the interval an agent is disconnected it must abide by promises
it has made to its neighbors. Therefore, if the promise calculated when an agent connects is greater
than the promise it made over the previous interval, it must limit its control until all neighbors are
aware of its latest promise.

Define

τ l
i j = t next

j (t l
i ), (42)

as the time that neighbor j is made aware of agent i’s promise and

ξi j = arg max
l:τ l

i j≤t
τ l

i j, (43)

the index of the most recent promise made by agent i to its neighbor j. The most recent promise made
by agent i to agent j is then Mi(τiξi j ). Let the set of all promise indices made to all neighbors of i on
the interval [t l

i , t l+1
i ] be defined2

P l
i = {ξi j | j ∈ Ni, t ∈ [

t l
i , t l+1

i

)}. (44)

Given the set of promises P l
i , agent i’s control must be bounded by the minimum of all promises

made to its neighbors,

umax
i (t l

i ) = min
k∈P l

i

M(τiξik ). (45)

The control that agent i must apply is then given in piecewise form as

u(t l
i ) =

{
u(t l

i ) |u∗
i (t l

i )| ≤ umax
i (t l

i )

umax
i (t l

i ) u∗
i (t l

i )
|u∗

i (t l
i |

otherwise.
(46)

Thus, if all agents apply (46), each will abide by their promises, implying that agent states will
converge to the desired configuration c.

To avoid Zeno behavior, the authors in refs. [2] and [4] introduce a fixed dwell time Tdwell > 0
and ensure that agents all agents abide by t l+1

i ≥ t l
i + T dwell

i for all i and l . Agents must remain
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disconnected from the cloud for at least T dwell
i . This implies that if t∗

i < T dwell
i , it may be impossible

for an agent to remain disconnected from the cloud for a duration of T dwell
i yet contribute negatively

to the potential function.
To ensure an agent does not increase the potential function, note in Eq. (21) that if ui(t l

i ) is set
to zero (the agent remains still), then V̇i = 0. If t ideal

i < T dwell
i , then one can partition the interval

into the time until agent i can no longer contribute a decrease to the potential function, followed by
a time that must pass before T dwell

i has elapsed and the agent can trigger again. Define t expire
i as the

interval of time between when an agent triggers and when its contribution to the potential function
is zero. Then, let the control be defined piecewise such that u(t ) is given by (46) for t ∈ [t l

i , t expire
i )

and u(t ) = 0 for t ∈ [t expire
i , t l

i + T dwell
i ). To summarize, if t ideal

i < T dwell
i , set t l+1

i = t l
i + T dwell

i and
t expire
i = t ideal

i . Otherwise, t l+1
i = t ideal

i .
An overview of the self-triggered control algorithm is shown in Algorithm 1. Because the results of

Section 3.1 directly relate the multi-agent formation problem to the multi-agent consensus problem,
Algorithm 1 shares similarity with that proposed in ref. [2] with the exception of the quantities used
to compute the triggering times and the additional configuration weights wi, j = ci/c j shared amongst
agents. The following theorem proves the result of Sections 3.3 and 3.4.

Theorem 4. Given a time-invariant configuration vector c = [c1, . . . , cN ] where ci �= 0 ∀i =
1, . . . , N, K > 0, and at least one informed agent, all solutions of the multi-agent kinematics (1)
with control and triggering times specified by Algorithm 1 converge to the configuration x = c.

Proof. Proof of the theorem follows similarly to ref. [2] with potential function given by (12).
For brevity, an outline of the proof is provided here. The potential function (12) is non-negative
for all x ∈ R. Algorithm 1 stipulates that the ith agent’s contribution to (12) in the time interval[
t l
i , t l+1

i

)
is non-positive, implying that (12) is decreasing. Specifically, the selection of t ideal < T total

ensures �Vi < 0. Furthermore, if t ideal < T dwell , the control expiration time choice t expire ensures the
ith agents contribution to the potential is zero for the remainder of the interval. Since the interval[
t l
i , t l+1

i

)
is greater than or equal to T dwell , Zeno behavior cannot be achieved.

Since (12) is non-negative in the reduced space of agent configurations relative to c and decreasing
under control stipulated by Algorithm 1, the Invariance Principle31 stipulates that solutions converge
to the largest invariant set where V̇ = 0. This occurs only when x = c. Therefore, solutions converge
to the configuration x = c. �

Figure 3 illustrates simulation of N = 5 agents with the equations of motion (1) implementing
the asynchronous self-triggered control algorithm detailed in Algorithm 1 for t = 75 s. The initial
condition of each agent is equal to those in Fig. 2 for comparison purposes. Agents communicate via
the cloud interface and have neighbors specified by the graph shown in Fig. 2(left). Each agent has gain
K = 0.5 and tuning parameter σi = 0.5. Figure 3(top-left) shows agent positions over time. Figure
3(top-right) shows the control inputs. Figure 3(bottom-left) and (bottom-right) shows the potential
function (12) and triggering instances over time, respectively. Note that agents converge to the desired
configuration as indicated in Fig. 3(top-left) and (bottom-left). The cumulative number of triggering
instances is illustrated by the solid black line in Fig. 3(bottom-right); individual agent triggering
instances are also shown. Agent three is informed as indicated in the figure. Note that the informed
agent has the most triggering instances in this case. However, over many trials, numerical simulations
suggest the graph topology and initial conditions influence triggering totals more than informed status.

4. Experimental Results and Simulated Application
The distributed self-triggered control result of Section 3.3 may be beneficial to many applications
requiring the coordination of positions, orientations, power production, or computational resource
distribution of agents to a prescribed configuration. For example, Algorithm 1 can be used to orient an
array of solar reflectors distributed over large spatial distances to concentrate light for power or heat
generation, or for coordinating the positions of mobile vehicles incapable of direct communication. For
unmanned underwater vehicles operating on large spatiotemporal scales where the complex vehicle
dynamics can be approximated by a holonomic motion model, the self-triggering algorithm specifies
agent surfacing times and ensuing velocities over the next submerged interval. More generally, the
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Algorithm 1 Self-triggered coordination to a specified configuration

At time t l
i agent i ∈ {1, . . . , N} does the following:

1: if Agent i is informed then
2: Download t last

j , t expire
j , t next

j , x j (t last
j ), u j (t last

j ), Mj , wi j for all j ∈ Ni and ai and ci from the cloud
3: else
4: Download t last

j , t expire
j , t next

j , x j (t last
j ), u j (t last

j ), Mj , wi j for all j ∈ Ni from the cloud
5: end if
6: Update neighbor positions to current time using (24)
7: Compute ideal control u∗

i (t l
i ) = −Kai(xi(t l

i ) − ci) − K
∑

j∈Ni
xi(t l

i ) − wi jx j (t l
i ) ignoring the first

term if uninformed
8: Compute umax

i (t l
i ) using (45) and (42)

9: Compute applied control ui(t l
i ) using (46)

10: Compute soonest connection time by all neighbors Ti = min j∈Ni t next
j

11: Compute t∗ using (25) as first time when V̇i ≤ 0 is not satisfied
12: if t∗ < Ti then
13: Set t ideal

i = t∗
14: else
15: if u(t l

i ) = 0 then
16: Set t l+1

i = Ti + Tdwell

17: else
18: if u(t l

i ) < 0 then
19: Compute T ∗

i as the soonest time when (31) is no longer satisfied
20: else
21: Compute T ∗

i as the soonest time when (32) is no longer satisfied
22: end if
23: Compute Bi using (34)
24: Compute T total

i as the first time when (39) is no longer satisfied
25: Set t ideal

i using (40)
26: end if
27: end if
28: if t ideal

i < t l
i + T dwell

i then
29: Set t expire = t ideal

i

30: Set t l+1
i = t l

i + T dwell
i

31: else
32: Set t expire

i = t l+1
i = t ideal

i
33: end if
34: Upload promise (41) to the cloud
35: Upload t last

i = t l
i , t next

i = t l+1
i , t expire

i , u(t l
i ), and xi(t l

i ) to cloud
36: Disconnect from the cloud, set ui(t ) = u(t l

i ) for t ∈ [t l
i , t expire

i ), ui(t l
i ) = 0 for t ∈ [t expire

i , t l+1
i )

self-triggered control output specifying a necessary velocity can be used as a reference for
coordination of unmanned vehicles with traditionally non-linear dynamics.12 As a proof of concept,
the experimental results in this section use DC motor modules as generic “agents” whose angular
velocity is specified by the distributed, self-triggered controller in Algorithm 1. Building on the
experimental results, we follow with a simulation applying the self-triggered controller to drive a
group of unmanned quadrotors to a desired formation.

4.1. Experimental results: DC motor control
To validate the proposed self-triggered control algorithm of Section 3.3, eight DC motor modules
comprised of a 22-V DC Motor (GMX-6MP009A, Matsushita Electric) with an optical position
encoder (1600 pulses per revolution after 8:1 gearing), an embedded microcontroller (mbed LPC1768,
ARM mbed), and a motor driver (MC33926 Motor Driver Carrier, Pololu Robotics & Electronics) were
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Fig. 3. Simulation of N = 5 agents with kinematics (1) and control calculated using Algorithm 1 converging to
a desired configuration (top-left). (Top-right) The control plotted vs. time, the potential function (12) plotted vs.
time (bottom-left) and the total triggers vs. time (bottom-right).

Fig. 4. (Left) A single DC motor modules used to implement Algorithm 1. (Right) Eight motor modules were
used in the experiments, each communicates with the central computer (cloud) using a serial interface. (Bottom)
Each motor module utilizes an inner loop PI controller to track the desired speed specified by Algorithm 1.

used.(2) Figure 4(top-left) shows a single module with important components labeled for reference.
Each module is powered by a 20-V DC power supply (PA-1700-02, Safety Mark) resulting in a
maximum achievable motor speed of approximately 30 rad/s. Figure 4(top-right) shows a schematic
of the eight DC motor modules used during testing. Each module communicates with the cloud (central

(2)Extensive documentation of the mbed-based single board computer can be found at:
https://developer.mbed.org/users/jebradshaw/code/mbedWSEsbc/wiki/Homepage
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Fig. 5. N = 8 DC Motor modules with serial communication to the cloud and implementing control calculated
using Algorithm 1. (Top-left) Agent communication topology. (Top-right) Agent positions over time, (bottom-
left) control inputs of DC motor modules, and (bottom-right) the potential function (12) plotted vs. time.

computer) through a serial connection. The central computer allows the user to specify the topology
of the communication graph and the desired configuration used to generate communication weights.

The mbed microcontroller implements an inner loop proportional-integral (PI) controller tuned to
reach a specified speed with settling time of 0.1 s. The PI controller is implemented using Tustin’s
bilinear approximation32 with sampling frequency of 100 Hz. As shown in Fig. 4(bottom), the inner
loop PI controller receives the desired speed command u(t l

i ) from the distributed self-triggered
controller outlined in Algorithm 1. The hierarchical control structure consisting of an inner loop for
speed control and a self-triggered outer loop to specify the speed was specifically chosen reminiscent
of autonomous underwater,33 ground,12 and air34 vehicle control architectures with inner loop and
outer loop characteristics.

For experimental testing and data collection purposes, each module communicates with a central
computer over a serial connection. The central computer acts as the cloud server, which in this
architecture transmits the control ui(t l

i ), the interval duration (t l+1
i − t l

i ), and the expiration time within
the interval (t expire

i − t l
i ) at triggering times specified by Algorithm 1. Given the maximum speed of the

motor, we use a saturation function on the control signal ui(t l
i ) and promise Mi(t ) to remain within the

feasible speed range of the motor. The distribution of the control and triggering times is performed in a
centralized manner from the main computer for proof of concept, data collection, and post-processing
purposes of this paper; full decentralization is the subject of ongoing research. Each module streams
its measured angular position in radians, measured speed in rad/s, and applied motor duty cycle for
data post-processing purposes. The cloud is updated with an agent’s necessary information only at
triggering intervals. The dwell time for all experiments is T dwell

i = 0.4 s corresponding to four times
the settling time of the inner loop PI controller. The self-triggering weighting term was σ = 0.5 for
all agents.

Figure 5 illustrates results of the experimental implementation of Algorithm 1 with N = 8 DC motor
modules for t = 30 s. The modules communicate with the cloud and are given neighbor information
according to the cyclic communication topology shown in Fig. 5(top-left). The angular position of
each motor module is shown in Fig. 5(top-right). Solid lines illustrate the encoder measured angular
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Fig. 6. Experimental results comparing the self-triggered control in Algorithm 1 to a time-periodic
implementation triggered every 0.5 s. The self-triggered (left) and time-periodic (middle) responses are similar
in structure, but the self-triggered algorithm requires fewer control updates (right).

position in radians, whereas dashed lines represent the desired configuration. Agent one, shown in dark
blue, is the only informed agent. All others rely only on inter-agent weights. Note in this experiment
two agents suffer dropouts in encoder measurements. Agent eight, illustrated by the black line, loses
encoder measurements around t = 3 s, and agent six, shown in light blue, loses encoder measurements
near t = 6.3 s. The agent positions still converge to the desired configuration. Figure 5(bottom-left)
shows the control inputs ui(t l

i ), i = 1, . . . , 8 for all agents over time. Figure 5(bottom-right) shows
the potential function (12) over the duration of the experiment, plotted on a log scale. The potential
function decreases over the duration of the experiment, with a momentary increase caused by loss of
measurements from agent six.

Additional experiments were conducted to compare the performance of Algorithm 1 to a
traditional time-periodic implementation. Both the self-triggered and time-periodic algorithms were
implemented with the same initial conditions on the motor module network. The cyclic graph
communication network shown in Fig. 5(top-left) was used for both experiments. The time-periodic
implementation updated each agent control every 0.5 s consistent with the theoretical stability limit
defined by �tmax = 2/ maxk (λk (L)), where λk (L) denotes the kth eigenvalue of the graph Laplacian.
The interval was found to be quite accurate as longer intervals produced unstable motor responses.
The self-triggered algorithm used σ = 0.5 for all agents consistent with a balanced trade-off of
convergence time and number of triggering instances. Both experiments were run for t = 30 s.

Figure 6 illustrates a comparison of both experiments. Figure 6(left) shows the angular position
of each motor over the duration of the self-triggered experiment, whereas Fig. 6(middle) shows the
angular positions during the time-periodic implementation. Note the state trajectories are similar with
comparable convergence times. Figure 6(right) compares the cumulative triggering instances of both
algorithms. The magenta line shows the number of time-periodic triggers over time. Every agent
updates at a triggering event so cumulative number of triggers increases by N = 8 at every trigger.
The black line shows the cumulative triggers using Algorithm 1. Note that the self-triggered algorithm
uses 121 fewer triggering instances than the periodic implementation.

4.2. Simulated application: Quadrotor formation control
The experimental results of Section 4.1 show the utility of the self-triggered controller when applied
to a collection of DC motors with inner loop PI controllers. This section utilizes a similar inner- and
outer-loop approach to simulate control of a collection of nonlinear quadrotor aircraft to a desired
formation.

Figure 7(top) illustrates a block diagram of a single quadrotor model in the multi-quadrotor
system. The state of the quadrotor, q ∈ R12, describes the position (x, y, z), orientation Euler angles
(roll, pitch, and yaw), and translational and angular velocities in the body-fixed reference frames
(u, v, w), (p, q, r), repsectively. The dynamics of each quadrotor are governed by Newton’s second
law, derivation of which can be found in ref. [36]. The total force and moment are determined by the
sum of thrust forces produced by each motor, which are mapped to four control inputs consisting of
the total thrust and moments about each body axis. An attitude controller stabilizes the quadrotor to a
desired orientation that minimizes error between the actual and desired total thrust. The desired force
is calculated by a velocity controller that compares the desired and actual inertial velocities, where
the desired velocity is provided by the self-triggered controller. Note, we assume the attitude and
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Fig. 7. Simulation of N = 5 quadrotors implementing Algorithm 1 to achieve a formation in three dimensions.
(Top) block diagram of control implementation, (bottom-left) quadrotor trajectories, (bottom-middle) Euler
angles of Agent 3 vs. time, and (bottom-right) cumulative triggers.

velocity controllers are updated continuously, whereas the self-triggered controller, which relies on
communication with the cloud, updates only on intervals calculated using Algorithm 1. For derivation
and proof of stability of the attitude controller, the interested reader is referred to ref. [36].

The asynchronous, self-triggered control in Algorithm 1 is extended to two dimensions such that
the desired velocity vector �u(t l

i ) = [ux(t l
i ), uy(t l

i )]T ∈ R2 specifies the planar velocity over the time
interval t ∈ [t l

i , t l+1
i ). Without loss of generality, the altitude is commanded to a constant value using

a proportional altitude controller incorporated into the velocity control block.
Figure 7(bottom) illustrates simulation of N = 5 quadrotors commanded to evenly spaced positions

about a circle centered at position (30, 40) m with 20 m radius and an altitude of 2.5 m. We assume
Agent 3 is the only quadrotor informed of its desired location in the formation, all others must rely on
communication with neighbors to achieve their desired position. Agents communicate according to
the network topology illustrated in Fig. 2. Figure 7(bottom-left) shows the vehicle trajectories in three
dimensions. Gray spheres illustrate the desired configuration positions, whereas green spheres show
the achieved vehicle positions at t = 120 s. Note that vehicles approach the desired configuration.
Figure 7(bottom-middle) shows the Euler angle orientation (roll, pitch, and yaw angles) of quadrotor
3 during the course of the simulation. Note, Agent 3 undergoes a transient phase for approximately
40 s while tracking the desired velocity as it asynchronously updates; after 40 s the quadrotor is in
a near hover state as it approaches the desired configuration location. Figure 7(bottom-right) shows
the cumulative triggering instances of each agent and the group during the simulation. There are a
total of 345 triggering instances, which correspond to the cloud providing information at an average
of 2.875 Hz. Total triggering instances vary between agents with average triggering rates between
0.375 Hz and 0.917 Hz.

5. Conclusion
This paper leverages tools from graph theory, Lyapunov-based control, and self-triggered control
to derive theoretically justified, distributed control algorithms driving a multi-agent group of agents
to a desired configuration. We present a kernel construction and graph transformation technique
that invokes properties of the similarity transformation to map the kernel of the Laplacian of an
unweighted, connected, undirected graph to the kernel of the Laplacian of a weighted, directed graph
with equal topological edges. The transformed graph Laplacian is used to derive a distributed controller
in continuous time that steers agents to a desired configuration using the underlying inter-agent
communication topology.
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Leveraging the derivation of the continuous-time distributed control algorithm and results from
self-triggered control,1,2 we derive a self-triggered controller in which agents asynchronously update
their control and communicate with neighbors via a cloud server. The algorithm drives agents to the
desired configuration and does not require agents to synchronously update their control at periodic
intervals, which decreases the total number of triggering instances.

We validate the theoretically justified algorithms experimentally using a network of eight DC
motor modules. Each module uses an mbed microcontroller and a DC motor with an encoder. The
microcontroller incorporates an inner-loop PI controller to drive the motor at a desired speed, which
is specified by the distributed, self-triggered controller. Results show that the self-triggered algorithm
successfully drives the network of agents to a desired configuration of angular positions and decreases
communication instances compared to a traditional periodic implementation. Furthermore, simulation
of a multi-quadrotor system suggests the self-triggered control approach is a viable option for driving
autonomous agents to a desired formation with fewer control update instances required.

Ongoing and future work seeks to extend the graph transformation results to a wider array of graph
topologies including directed, weakly connected, and time-varying graphs. These results combined
with ongoing control design may enable derivation of self-triggered control approaches capable of
steering agents to time-varying configurations while limiting communication between neighbors. We
additionally seek to extend the results of this work to higher fidelity models of agent motion including
double-integrator dynamics, vehicle-specific models, and heterogeneous agent systems.
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Appendix

Proof of positive semi-definiteness of R−1L2R−1

Lemma 2. Given the diagonal positive definite matrix R defined by (4) and the Laplacian L of
a strongly connected, undirected graph, G, the quantity R−1L2R−1 is positive semi-definite and
symmetric.

Proof. The graph Laplacian is a symmetric, positive semi-definite matrix for strongly connected,
undirected graphs.26 R and therefore, R−1 are symmetric, positive definite matrices by construction.
R−1L2R−1 is positive semi-definite since the product of two symmetric positive semi-definite (definite)
matrices are positive semi-definite (definite) if and only if the product is normal.35 Normality can be
shown since R and L are symmetric. �
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Proof of positive definiteness of W = R−1(L + �)R−1

Lemma 3. Given the diagonal positive definite matrix R defined by (4), the Laplacian L of a connected,
undirected graph,G, and the informed agent matrix �, the quantityW = R−1(L + �)R−1 is symmetric
and positive definite if at least one agent is informed.

Proof. The quantity L + � equivalently represents an undirected, connected graph with self-loops,
where a self-loop is defined as an agent with a communication edge with itself. The Laplacian of a
connected graph with self-loops is positive definite;37,38 therefore, L + � is positive definite.

Since R−1 is positive definite and diagonal and L + � is positive definite and symmetric, the
product R−1(L + �) is positive definite because it is normal.35 By the same logic, R−1(L + �)R−1 is
positive definite since each term is symmetric and positive definite.35 Symmetry of W follows since
each matrix composing it is symmetric. �

Positive definiteness of Q

Lemma 4. Given the diagonal positive definite matrix R defined by (4), the Laplacian L of a strongly
connected, undirected graph, G, and the informed agent matrix �, the quantity Q = R−1(L + �)2R−1

is positive definite if at least one agent is informed.

Proof. The proof of Lemma 4 follows from Lemmas 2 and 3 and is omitted for brevity. �
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