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Spin-down of a barotropic vortex by irregular
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This study examines the impact of small-scale irregular topographic features on the
dynamics and evolution of large-scale barotropic flows in the ocean. A multiscale theory is
developed, which makes it possible to represent large-scale effects of the bottom roughness
without explicitly resolving small-scale variability. The analytical model reveals that the
key mechanism of topographic control involves the generation of a small-scale eddy
field associated with considerable Reynolds stresses. These eddy stresses are inversely
proportional to the large-scale velocity and adversely affect mean circulation patterns.
The multiscale model is applied to the problem of topography-induced spin-down of a
large circularly symmetric vortex and is validated by corresponding topography-resolving
simulations. The small-scale bathymetry chosen for this configuration conforms to
the Goff–Jordan statistical spectrum. While the multiscale model formally assumes a
substantial separation between the scales of interacting flow components, it is remarkably
accurate even when scale separation is virtually non-existent.

Key words: ocean circulation, topographic effects

1. Introduction

The variation in sea-floor depth is known to influence ocean circulation on a wide range
of spatial and temporal scales (e.g. Merryfield & Holloway 1997, 1999; Nikurashin et al.
2014; Sansón & van Heijst 2014; Trossman et al. 2017). Bathymetry can regulate ocean
currents through several mechanisms, which include topographic steering (e.g. Marshall
1995; Wåhlin 2002), bottom pressure torque (e.g. Hughes & de Cuevas 2001; Olbers et al.
2004), lee-wave drag (e.g. Arbic et al. 2019; Klymak et al. 2021) and the topographic
control of the flow stability (e.g. Chen, Kamenkovich & Berloff 2015; Brown, Gulliver
& Radko 2019). A distinct group of studies explored configurations where bathymetry
affects transient eddies that, in turn, modulate time-mean flows (e.g. Dewar 1998; Radko
& Kamenkovich 2017). An interesting and counterintuitive example of such dynamics was
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Figure 1. Schematic diagram illustrating the set-up of the sandpaper model. The upper plane shows the
streamfunction pattern of a large-scale vortex spinning above the irregular sea floor.

presented by Holloway (1987, 1992), who noted that the interaction between topography
and eddies can induce secondary circulation patterns that, in some cases, reinforce the
mean flows. Another illustration (e.g. LaCasce et al. 2019; Radko 2020) of the significance
of bathymetry is the dramatic impact of sea-floor roughness on the intensity of mesoscale
variability, traditionally defined as flow components with a lateral extent of 10–100 km.

Particularly relevant to the present investigation are the findings of Gulliver & Radko
(2022), who analysed the effects of irregular topography on the stability and longevity
of ocean rings. This study explored the parameter regime in which the lateral extent of
primary flows greatly exceeded that of individual topographic features – the configuration
aptly dubbed the ‘sandpaper model’. The name was chosen to invoke the associations
with fine abrasive particles of sandpaper that may be individually insignificant but have a
tangible cumulative effect in grinding down much larger objects. A series of simulations
in Gulliver & Radko (2022) revealed dramatic dissimilarities in the evolution of coherent
vortices in flat-bottom basins and in the presence of realistic topographic patterns. The
set-up of these experiments is illustrated by the schematic diagram in figure 1. We shall
revisit this configuration in the present study (§ 4) to validate the theoretical descriptions
of topographic effects.

The present work attempts to further develop the sandpaper model by (i) identifying
the dominant physical mechanisms controlling the flow/topography interaction and
(ii) developing an explicit analytical description of the large-scale effects of bottom
roughness. The principal theoretical challenge in this endeavour is to connect the
statistical properties of bathymetry with the associated forcing of large-scale flows.
One of the pragmatic outcomes could be an improved representation of unresolved
topography-induced processes in coarse-resolution numerical models. This development,
in turn, is expected to enhance the fidelity of global climate simulations at millennial time
scales, which still fall short of fully resolving mesoscale components despite continuous
advancements in high-performance computing.

To this end, the present investigation explores the influence of mesoscale topographic
features on basin-scale (∼1000 km) circulation patterns. Analytical progress is achieved
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by employing techniques of multiscale homogenization theory, a highly effective and
widely used approach that is reviewed, for instance, by Mei & Vernescu (2010). Multiscale
models represent the interaction of processes operating on dissimilar scales using multiple
sets of spatial and temporal variables (e.g. Gama, Vergassola & Frisch 1994; Manfroi
& Young 1999, 2002; Novikov & Papanicolau 2001; Balmforth & Young 2002, 2005;
Radko 2011a,b). The key step in the development of such models is the derivation of
solvability conditions that describe the evolution of the system entirely on large scales.
Strictly speaking, this approach assumes substantial scale separation between interacting
components, which may not always be realized in nature. However, multiscale models are
known to be consistently accurate even in cases where scale separation is not pronounced
or virtually non-existent (Radko 2016, 2020; Radko & Kamenkovich 2017). Another
attractive feature of multiscale methods is that they are based directly on governing
equations. Therefore, such methods do not require empirical parameterizations and ad hoc
assumptions, commonly used in other analytical approaches. As a result, the evolutionary
large-scale models they produce are expected to be robust and dynamically transparent.

There have already been several promising attempts to address the flow/topography
interaction problems using multiscale techniques (e.g. Bobrovich & Reznik 1999; Reznik
& Tsybaneva 1999; Radko & Kamenkovich 2017; Radko 2020). Much progress was made
in modelling large-scale effects of one-dimensional bathymetry (e.g. Benilov 2000, 2001;
Vanneste 2003), which permits a fully analytical description of small-scale processes. The
representation of more realistic irregular two-dimensional topographic features is more
challenging and explicit solutions have been derived only for special cases (e.g. Vanneste
2000; Goldsmith & Esler 2021). In the present study, we develop a new and sufficiently
general multiscale model that leads to a closed set of large-scale equations. Tractability is
achieved by identifying two dynamically distinct spatial scales and focusing the analysis
on the corresponding oceanographically relevant asymptotic sector of the parameter space.
This procedure is illustrated by applying it to the observationally derived spectrum of
bathymetry (Goff & Jordan 1988). To validate the resulting parameterization, we consider
the problem of the topographic spin-down of a large-scale circular vortex. The close
agreement of the topography-resolving and corresponding parametric numerical solutions
instils confidence in the efficacy of the proposed approach.

The manuscript is organized as follows. Section 2 describes the model configuration
and governing equations. The multiscale theory is presented in § 3. The resulting
parameterization of mesoscale topographic processes is implemented in a numerical
model, which is used to simulate the spin-down of a large-scale vortex (§ 4). The
parametric solutions are then compared with their topography-resolving counterparts. The
results are summarized, and conclusions are drawn, in § 5.

2. Formulation

The minimal framework for the analysis of the interaction of large-scale barotropic flows
with topography is the quasi-geostrophic rigid-lid model (e.g. Pedlosky 1987):

∂∇2ψ∗

∂t∗
+ J(ψ∗,∇2ψ∗)+ β∗ ∂ψ∗

∂x∗ + f ∗
0

H∗
0

J(ψ∗, η∗) = ν∗∇4ψ∗ − γ ∗∇2ψ∗, (2.1)

where ψ∗ is the streamfunction associated with the velocity field (u∗, v∗) =
(−∂ψ∗/∂y∗, ∂ψ∗/∂x∗), η∗ is the depth variation, J is the Jacobian, ν∗ is the lateral eddy
viscosity and γ ∗ is the Ekman bottom drag coefficient. The constant reference values of
the ocean depth and the Coriolis parameter are denoted by H∗

0 and f ∗
0 , respectively, and
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β∗ ≡ ∂f ∗/∂y∗ is the meridional gradient of planetary vorticity. The asterisks hereafter
represent dimensional quantities.

This study is focused on the interaction of large-scale flow patterns of the lateral extent
O(L∗) with much smaller scales O(L∗

S) that are present in topography. We assume that
these small scales are limited to a finite range L∗

min < L∗
S < L∗

C. The range of small scales
is constrained from below to ensure that the dynamics of all flow components is adequately
represented by the quasi-geostrophic model. Thus, the Rossby numbers, including those
based on the small scales (RoS), must be much less than unity:

RoS = U∗

f ∗
0 L∗

S
� 1, (2.2)

where U∗ is the representative velocity. To conform to this requirement, our analysis targets
the intermediate range of topographic scales that satisfy the inequality

U∗

f ∗
0

� L∗
min < L∗

S < L∗
C�L∗. (2.3)

The number of controlling parameters is reduced by non-dimensionalizing variablesψ∗,
x∗, y∗ and t∗ using U∗ and L∗ as the units of velocity and length, respectively:

ψ∗ = U∗L∗ψ, x∗ = L∗x, y∗ = L∗y, t∗ = L∗

U∗ t. (2.4a–d)

For convenience, the depth variation is non-dimensionalized in a different manner:

η∗ = U∗H∗
0

f ∗
0 L∗ η. (2.5)

To be specific, we assume the following representative oceanic values of relevant scales:

U∗ = 0.1 m s−1, L∗ = 106 m, H∗
0 = 4000 m, f ∗

0 = 10−4 s−1. (2.6a–d)

The non-dimensionalization in (2.4) and (2.5) reduces the governing equation (2.1) to

∂∇2ψ

∂t
+ J(ψ,∇2ψ)+ β

∂ψ

∂x
+ J(ψ, η) = ν∇4ψ − γ∇2ψ, (2.7)

where

β = L∗2

U∗ β
∗, ν = ν∗

U∗L∗ , γ = L∗

U∗ γ
∗. (2.8a–c)

To explore the interaction between flow components of large and small lateral extent,
we introduce the scale-separation parameter

ε = L∗
C

L∗ � 1. (2.9)

This parameter is used to define the new set of spatial and temporal scales (xS, yS) that
reflect the dynamics of small-scale processes. These variables are related to the original
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ones through

(xS, yS) = ε−1(x, y), (2.10)

and the spatial derivatives in the governing system (2.7) are replaced accordingly:

∂

∂x
→ ∂

∂x
+ ε−1 ∂

∂xS
,

∂

∂y
→ ∂

∂y
+ ε−1 ∂

∂yS
. (2.11a,b)

We assume that β and γ are O(1) quantities, whilst the lateral viscosity (ν) is small and
therefore rescaled in terms of ε:

ν = ε2ν0. (2.12)

Equation (2.12) implies that friction could be significant on small scales but its direct
impact on the large-scale dynamics is weak.

Topographic patterns considered in the following model vary on both large and small
scales:

η = ηL(x, y)+ ηS(xS, yS). (2.13)

In practical applications, the decomposition of bathymetry into the small- and large-scale
components requires a specific prescription. The most natural approach – and the one that
will be used in the present study (§ 4) – is based on the Fourier transform of η:

η = 1√
ΔkΔl

∫∫
η̃(k, l) exp(ikx + ily) dk dl, (2.14)

where (k, l) are the wavenumbers in x and y, respectively, and tildes hereafter denote
Fourier images. Note the normalization factor 1/

√
ΔkΔl in the definition of Fourier

transform, where (Δk,Δl) = (2πL−1
x , 2πL−1

y ), and (Lx, Ly) is the domain size. This factor
is introduced to ensure that the Parseval identity, to be used in subsequent developments,
takes a convenient form:

〈ab〉x,y =
∫∫

ãconj(b̃) dk dl. (2.15)

Angle brackets hereafter represent mean values, with the averaging variables listed in the
subscript.

Since the Fourier transform is linear, it can be conveniently separated into the
contributions from high and low wavenumber as follows:

η = 1√
ΔkΔl

∫∫
κ<2π/LC

η̃(k, l) exp(ikx + ily) dk dl

︸ ︷︷ ︸
ηL

+ 1√
ΔkΔl

∫∫
κ>2π/LC

η̃(k, l) exp(ikx + ily) dk dl

︸ ︷︷ ︸
ηS

, (2.16)

where κ ≡ √
k2 + l2. The ηL component of decomposition (2.16) gently varies on

relatively large scales, and ηS represents small-scale variability. The choice of the cutoff
wavelength (LC � 1) is necessarily problem-dependent.

For representative magnitudes of depth variation η∗ ∼ 300 m (Goff & Jordan 1988;
Goff 2020), their non-dimensional counterparts significantly exceed unity: η ∼ 75 .
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This variability is mostly associated with relatively small spatial scales (100 km or less),
which motivates rescaling the small-scale depth variation as

ηS = ε−1η0. (2.17)

We note in passing that the sought-after expression for the topographic forcing can
also be obtained by considering the asymptotic sector with ηS = O(1), albeit in a more
complicated manner. Here, we present the simplest derivation based on (2.17).

Using (2.11)–(2.13) and (2.17), the governing equation (2.7) is expressed in terms of the
entire set of independent variables:

∂ς

∂t
+ J(ψ, ς)+ ε−1JxS,y(ψ, ς)+ ε−1Jx,yS(ψ, ς)+ ε−2JxS,yS(ψ, ς)+ J(ψ, ηL)

+ε−3JxS,yS(ψ, η0)+ β
∂ψ

∂x
+ ε−1β

∂ψ

∂xS
= ε2ν0∇2ς − γ ς,

ς = ∇2ψ, ∇ ≡ ∂2

∂x2 + 2ε−1 ∂2

∂x∂xS
+ ε−2 ∂2

∂x2
S

+ ∂2

∂y2 + 2ε−1 ∂2

∂y∂yS
+ ε−2 ∂2

∂y2
S
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.18)
where ς is vorticity, JxS,yS(a, b) ≡ (∂a/∂xS)(∂b/∂yS)− (∂a/∂yS)(∂b/∂xS) denotes the
Jacobian in (xS, yS) ,while JxS,y and Jx,ySare based on (xS, y) and (x, yS) ,respectively.

3. Multiscale model

We now proceed to develop a parametric version of the sandpaper model. To represent the
interaction of large-scale circulation patterns with small-scale topography, the solution for
ψ is sought in terms of power series in ε � 1:

ψ = ψ0(x, y, t)+ εψ1(x, y, xS, yS, t)+ ε2ψ2(x, y, xS, yS, t)+ · · · . (3.1)

The expansion opens with a large-scale pattern ψ0 that does not vary on small scales.
Series (3.1) are substituted in (2.18), and terms of the same order in ε are combined.

The leading-order balance, which is realized at O(ε−2) , is solved by assuming the steady
small-scale pattern ψ1(xS, yS) that satisfies

∇2
Sψ1 + η0(xS, yS) = 0, (3.2)

where ∇2
S ≡ ∂2/∂x2

S + ∂2/∂y2
S. The solution for ψ1 can be readily obtained for any given

pattern of topography by inverting the Laplacian in (3.2).
As discussed in Radko (2020), balance (3.2) represents the small-scale homogenization

of the net potential vorticity (PV):

q = ∇2ψ + η + βy. (3.3)

The PV homogenization controls the dynamics of numerous geophysical systems (e.g.
Rhines & Young 1982; Dewar 1986; Marshall, Williams & Lee 1999) and is the
cornerstone of the present model as well.
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Spin-down of a barotropic vortex by irregular small-scale topography

The O(ε−1) balance is(
∂ψ0

∂x
+ ∂ψ1

∂xS

)
∂ς2

∂yS
−
(
∂ψ0

∂y
+ ∂ψ1

∂yS

)
∂ς2

∂xS
= ν0∇4

Sψ1 − γ∇2
Sψ1, (3.4)

where ς2 ≡ ∇2
Sψ2, and the O(1) balance amounts to

∂∇2ψ0

∂t
+ J(ψ0,∇2ψ0 + ηL)+ β

∂ψ0

∂x
+ γ∇2ψ0 + ∂ψ1

∂xS

∂∇2ψ0

∂y

− ∂ψ1

∂yS

∂∇2ψ0

∂x
+ β

∂ψ1

∂xS
− ν0∇4

Sψ2 + γ∇2
Sψ2 + ∂∇2

Sψ2

∂t
+ ∂ψ2

∂xS

∂∇2
Sψ2

∂yS

− ∂ψ2

∂yS

∂∇2
Sψ2

∂xS
+
(
∂ψ0

∂x
+ ∂ψ1

∂xS

)
∂∇2

Sψ3

∂yS
−
(
∂ψ0

∂y
+ ∂ψ1

∂yS

)
∂∇2

Sψ3

∂xS

+
(
∂ψ0

∂x
+ ∂ψ1

∂xS

)(
∂3ψ2

∂x2
S∂y

+ 2
∂3ψ2

∂xS∂yS∂x
+ 3

∂3ψ2

∂y2
S∂y

)

−
(
∂ψ0

∂y
+ ∂ψ1

∂yS

)(
3
∂3ψ2

∂x2
S∂x

+ 2
∂3ψ2

∂xS∂yS∂y
+ ∂3ψ2

∂y2
S∂x

)
= 0. (3.5)

The evolutionary large-scale equation is obtained as a solvability condition by averaging
(3.5) in small-scale variables, which yields

∂∇2ψ0

∂t
+ J(ψ0,∇2ψ0 + ηL)+ β

∂ψ0

∂x
+ D + γ∇2ψ0 = 0, (3.6)

where

D =
〈
∂ψ1

∂xS

∂ς2

∂y
− ∂ψ1

∂yS

∂ς2

∂x

〉
xS,yS

. (3.7)

Term D in (3.6) represents the topographic forcing of the large-scale flow by small-scale
bottom roughness – the sought-after quantity in our analysis. The analytical developments
detailed in Appendix A make it possible to eliminate ς2 between (3.4) and (3.7), which
leads to an explicit expression (A13) for D in terms of large-scale velocities.

At this point, the multiscale analysis is complete, and the rest of the material is presented
in terms of original variables. To lighten up the notation, we omit the subscripts ‘0’ in
describing the leading-order components, which reduces (A13) to

D = G
(
∂

∂x

(
v

u2 + v2

)
− ∂

∂y

(
u

u2 + v2

))
, (3.8)

where (u, v) = (−∂ψ/∂y, ∂ψ/∂x) and

G = 2π

∫
|η̃S|2

(γ
κ

+ νκ
)

dκ, κ =
√

k2 + l2. (3.9)

In (3.9), (k, l) are the wavenumbers, and η̃S represents the Fourier image of the small-scale
component of topography.

Note that topographic forcing D in the evolutionary equation (3.6) originates from
the averaged nonlinear advective term in the governing equation (2.1) and, therefore,
represents the eddy-induced mixing of momentum. Thus, the essential role of topography
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in the sandpaper model is the generation of small-scale eddies, which affect large-scale
flows through the associated Reynolds stresses. The topographic ‘form drag’ acting
directly on primary flows, on the other hand, does not affect the large-scale circulation
at the leading order.

Equation (3.8) suggests that the magnitude of topographic forcing generally decreases
with the increasing speed of the large-scale flow. This peculiar inverse relation seems
counterintuitive at first, as one expects the topography-induced drag to be more
intense in swift currents. However, it can be physically rationalized by considering the
advection–dissipation balance (3.4). The dissipative terms on its right-hand side are
controlled by topography and are independent of the large-scale speed. Thus, to maintain
the net advection, which is represented by the left-hand side of (3.4), an increase in
flow speed should be compensated by the equivalent reduction in the magnitude of the
perturbation (ς2). Weaker perturbations, in turn, imply weaker Reynolds stresses and
smaller topographically induced drag.

It should also be emphasized that the coefficient G in the topographic forcing term (3.9)
is uniquely determined by the bathymetric spectrum and the explicit dissipation parameters
(γ, ν). Thus, (3.8)–(3.9) can be viewed as a rigorous parameterization of the effects of
small-scale topography on large-scale circulation patterns. Another interesting feature
revealed by the multiscale model is the catalytic nature of topographic forcing. Equation
(3.9) indicates that G vanishes in the non-dissipative limit (ν, γ ) = (0, 0), and so does the
forcing term (3.6). Thus, while bathymetry can dramatically amplify dissipative effects,
the explicit frictional processes are essential for engaging the topographic spin-down
mechanisms.

4. Spin-down of a large-scale vortex

To assess the skill of the sandpaper model (3.6) in representing the effects of small-scale
bathymetric variability, we now perform a series of topography-resolving simulations and
compare them with their parametric counterparts.

The spectrum of bottom topography for lateral scales of several hundred metres and
more is adequately captured by the empirical representation of Goff & Jordan (1988).
Dimensionally, this spectrum is given by

P∗
η = h∗2(μ− 2)

(2π)3k∗
0l∗0

(
1 +

(
k∗

2πk∗
0

)2

+
(

l∗

2πl∗0

)2 )−μ/2
. (4.1)

According to Nikurashin et al. (2014), typical topographic patterns can be represented by
the following parameters:

μ = 3.5, k∗
0 = 1.8 × 10−4 m−1, l∗0 = 1.8 × 10−4 m−1, h∗ = 305 m. (4.2a–d)

For k∗
0 = l∗0, the Goff–Jordan spectrum is isotropic and therefore satisfies all assumptions

of the parametric model (§ 3).
After non-dimensionalization, (4.1) reduces to

Pη = C
(

1 +
(

κ

2πL∗k∗
0

)2)−μ/2
, C = μ− 2

(2π)3

(
f ∗
0 h∗

U∗H∗
0k∗

0

)2

. (4.3a,b)

To construct topographic patterns that conform to the Goff–Jordan spectrum, we prescribe
the Fourier image of topography (η̃) as follows:

η̃ = √
Pη exp(iϕ), (4.4)
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Spin-down of a barotropic vortex by irregular small-scale topography

where randomly generated distributions are used for the phase ϕ = ϕ(k, l). The only
constraint that we impose on ϕ is that of antisymmetry: ϕ(k, l) = −ϕ(−k,−l), which
ensures that η is real. The patterns of η(x, y) designed in this manner are used in all
subsequent examples.

To quantify and further explore the effects of small-scale bathymetry on large-scale
flows, we turn to the vortex spin-down model illustrated in figure 1. The large-scale
circulation is initiated using the Gaussian streamfunction pattern – a common choice in
theoretical and numerical models of coherent vortices (e.g. Early, Samelson & Chelton
2011; Sutyrin & Radko 2019):

ψG = exp(−r2), r =
√

x2 + y2. (4.5a,b)

Without loss of generality, the effective non-dimensional radius is set to unity. To
accurately represent the vortex evolution, it is important to ensure that the relevant
dynamics is captured by the quasi-geostrophic model (2.7). The quasi-geostrophic
approximation is appropriate for flows with low Rossby numbers (2.2), which excludes
structures that are exceedingly swift and narrow. Therefore, we impose an upper limit on
the range of wavenumbers contained in the bathymetric spectrum:

κ < κmax = 2π

Lmin
. (4.6)

The minimal spatial scale of bathymetry is set to Lmin = 0.01, which is dimensionally
equivalent to L∗

min = 10 km. This restriction ensures that the maximal Rossby numbers,
estimated here as

Romax = max
x,y,t

( |∇2ψ∗|
f ∗
0

)
(4.7)

do not exceed Romax = 0.2 in any of the presented experiments.
The following simulations are performed using the de-aliased pseudo-spectral model

employed in our previous works (e.g. Sutyrin & Radko 2019; Radko 2021). To limit
the effects of doubly periodic boundary conditions on vortex evolution, we use a
relatively wide computational domain of size (Lx, Ly) = (8, 8) . The topography-resolving
simulations employ a fine mesh with (Nx,Ny) = (6144, 6144) grid points. In our baseline
configuration, the bottom drag coefficient is assigned a value of γ = 0.01 and the lateral
viscosity is ν = 10−4. Motivated by the considerations of simplicity, we ignore the beta
effect (β = 0).

Our first experiment (ExpR) explores the configuration in which scales of topography
and the dominant flow pattern are clearly separated, thereby conforming to the design of
the multiscale model (§ 3). To this end, we introduce the cutoff scale of LC = 0.1 and
exclude from the topographic spectrum (4.3) all spectral components with wavelengths
exceeding LC:

κ > κmin = 2π

LC
. (4.8)

Such filtering is equivalent to setting the small parameter of the multiscale model to
ε = 0.1.

Figure 2(a,b) shows the streamfunction patterns in ExpR at t = 0 and t = 1, respectively,
revealing a rapid and substantial (∼50%) reduction in the vortex intensity. To better
illustrate the pattern of small-scale flow features, figure 2(c) shows the vorticity ς = ∇2ψ
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Figure 2. The topography-resolving experiment ExpR in which the bathymetric spectrum is restricted to
relatively small-scale components (2πκ−1 < LC = 0.1). Panels (a) and (b) show the streamfunction patterns
at t = 0 and t = 1, respectively. Panels (c) and (d) present enlarged views of the vorticity (ς) and depth
perturbation (η) in the small area (4.9).

at t = 1 in a small region (Ω) in the vortex interior, where

Ω = {0.5 < x < 0.6, 0.5 < y < 0.6}. (4.9)

The most striking feature of the vorticity distribution (figure 2c) is its strong anticorrelation
with the corresponding pattern of topography (figure 2d), with a correlation coefficient of
rcorr = −0.97. Vorticity and topography essentially mirror each other (ς ≈ −η) , which
reflects the homogenization tendency of the net PV (3.3). This tendency represents the
cornerstone of the multiscale theory (§ 3) and is captured by the leading-order asymptotic
balance (3.2).

In the next example (figure 3), the spectrum of bathymetry is not restricted to small
scales. This unrestricted experiment (ExpU) represents a much more stringent test of
the parametric model. The entire development of the asymptotic theory (§ 3) is based
on the expansion in the small parameter (ε) quantifying the scale separation. Thus,
the analysis of ExpU will make it possible to determine whether the scale-separation
requirement (ε � 1) is essential for the fidelity of our theory-based parameterizations.
The instantaneous patterns of the streamfunction at t = 1 and 2 in this simulation are
shown in figures 3(a) and 3(b) respectively. Adding large-scale bathymetric components
visibly affects the flow patterns (cf. figures 2b and 3a) making them more irregular and
asymmetric. Nevertheless, the average intensities of flows realized in the experiments in
figures 2 and 3 at corresponding stages are comparable.

We now go on to determine whether the flow evolution in the foregoing
topography-resolving experiments is captured by the parametric model. However, two
technical issues must be addressed before performing parametric simulations. First,
the topographic forcing term (3.8) is singular in locations where the absolute velocity
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Figure 3. The streamfunction patterns realized in the topography-resolving experiment ExpU at t = 1 and
t = 2 are shown in (a) and (b), respectively.

V = √
u2 + v2 is zero, which hinders numerical integrations of the parametric model.

This problem is mitigated by introducing the modified velocity

Vm = V

tanh2(δV)
, (4.10)

where δ � 1. While Vm ≈ V for most of the vortex area, (4.10) guarantees that the
modified velocity is non-zero at any given point. The expression for D is adjusted
accordingly:

Dm = G
(
∂

∂x

(
v

VVm

)
− ∂

∂y

(
u

VVm

))
, (4.11)

which regularizes its singular pattern and ensures that the topographic forcing term
vanishes in quiescent regions (V → 0). Extensive experimentation with the parametric
model revealed that the results are not sensitive to the choice of δ as long as it greatly
exceeds unity. However, excessively large values of δ are associated with the appearance of
sharp features in the flow field that demand high resolution. In all parametric simulations
presented here, we used δ = 25, which made these experiments both accurate and efficient.

Another complication is that the leading-order vorticity equation (3.6) does not include
small lateral dissipation (ν∇2ψ) since it appears at O(ε2) in the expansion. However,
lateral viscosity is needed to control the numerical stability of simulations, and therefore
it is now reintroduced in the parametric model:

∂∇2ψ

∂t
+ J(ψ,∇2ψ + ηL)+ β

∂ψ

∂x
+ Dm + γ∇2ψ = ν∇4ψ. (4.12)

The parametric integrations were performed using a pseudo-spectral model that, aside
from the inclusion of the topographic forcing term Dm in the vorticity equation (4.12), is
identical to the one used for topography-resolving experiments. The coefficient G in (3.9)
is readily evaluated for the Goff–Jordan spectrum:

G = 2π

κmax∫
κmin

C
(

1 +
(

κ

2πL∗k∗
0

)2)−μ/2 (γ
κ

+ νκ
)

dκ. (4.13)

For the controlling parameters (ν, γ, κmin, κmax) used in ExpR, (4.13) yields

G = 0.1050, (4.14)

and the corresponding parametric simulation is referred to as ExpRP. For the experiment
ExpU, in which the range of wavenumbers in η is not restricted from below, we assign κmin
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Figure 4. The time series of mean kinetic energy (Ek) in the topography-resolving (ExpR and ExpU) and
parametric (ExpRP, ExpUP and ExpHP) experiments. Also shown is the record of Ek(t) in the corresponding
flat-bottom simulation (Exp0).

the value based on the size of the computational domain κmin = 2π/Ly. This only slightly
increases G to

G = 0.1067, (4.15)

and the corresponding parametric simulation is referred to as ExpUP. Finally, we have
also performed a hybrid experiment (ExpHP) in which large-scale components (2πκ−1 >
LC = 0.1) of the Goff–Jordan spectrum are resolved and the small scales (2πκ−1 <
LC) are parameterized. Since parametric simulations do not require the resolution
of small-scale bathymetry, they can be performed on relatively coarse meshes. The
simulations employing grids as small as (Nx,Ny) = (384, 384) are very close to their
better-resolved counterparts. In the following examples, we use (Nx,Ny) = (3072, 3072).

To systematically compare the topography-resolving and parametric simulations, we
present (figure 4) the corresponding temporal records of the mean kinetic energy Ek =
0.5〈|∇ψ |2〉x,y. All experiments are remarkably consistent in predicting a rapid, nearly
exponential topography-induced decay of energy. By t = 4 , Ek is reduced by more than
four orders of magnitude relative to its initial level. In contrast, the energy dissipation in the
corresponding flat-bottom simulation (Exp0), also shown in figure 4, is much slower. Over
the same period, kinetic energy there reduces merely by 8%. This dissimilarity illustrates
the dramatic impact of the bottom roughness on the evolution of large-scale circulation
patterns.

Figure 5 presents the azimuthally averaged velocity patterns Vav(r) realized at
various times. The experiments in which topographic spectra are restricted to relatively
small scales (ExpR and ExpRP) are shown in figure 5(a). Figure 5(b) combines all
unrestricted-topography simulations (ExpU, ExpUP and ExpHP). These diagnostics, once
again, demonstrate the general consistency of the topography-resolving and parametric
simulations, lending credence to the multiscale theory developed in § 3.

Since the intensity of topographic forcing is ultimately determined by the explicit
dissipation parameters, it also behoves us to explore the parameter space (ν, γ ) with an
eye on the vortex spin-down rates. To be specific, we shall focus on the decay of the kinetic
energy. The foregoing simulations indicate that the patterns of Ek(t) are nearly exponential
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Figure 5. The radial profiles of the azimuthally averaged absolute velocity Vav(r) at t = 1, 2 and 3 are
indicated by blue, red and black curves, respectively. (a) Presents experiments in which the bathymetric
spectrum is restricted to relatively small-scale components (ExpR and ExpRP). The profiles realized in
unrestricted experiments ExpU, ExpUP and ExpHP are shown in (b).

(figure 4), and therefore the energy decay rate can be approximated by its initial value:

λ = − 1
Ek

∂Ek

∂t

∣∣∣∣
t=0
. (4.16)

The initial decay rate can be readily evaluated for any given values of (ν, γ ) as follows.
First, we form the energy equation by multiplying the parametric vorticity equation (4.12)
by ψ and averaging it in (x, y). The result is simplified by integrating selected terms by
parts, subject to periodic conditions at the boundaries of the computational domain, which
yields

∂Ek

∂t
= 〈ψDm − νψ∇4ψ + γψ∇2ψ〉x,y. (4.17)

The topographic effects in (4.17) are represented by the first component on its right-hand
side:

Eηt = 〈ψDm〉x,y. (4.18)

Using (4.11), we express this tendency as

Eηt = −G〈
√

V V−1
m 〉x,y < 0, (4.19)

which proves that topography in our model has an invariably adverse effect on the intensity
of large-scale flows. This is an important conclusion that should not be taken for granted
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Figure 6. (a) The energy decay rate (λ) plotted as a function of dissipation parameters ν and γ . (b) The ratio
of the topography-induced and flat-bottom energy decay rates R(ν, γ ).

since in some models (e.g. Holloway 1987) topography acts to reinforce, rather than resist,
large-scale flows.

To further quantify the contribution of topography to vortex spin-down, the components
of (4.17) are evaluated using the initial Gaussian state (4.5), arriving at

λ = 2
〈νψG∇4ψG − γψG∇2ψG − ψGDm〉x,y

〈|∇ψG|2〉x,y
. (4.20)

The resulting pattern of λ(ν, γ ) is shown in figure 6(a). This plot reveals the relatively
rapid linear increase in the decay rate with increasing lateral viscosity. The effects of
bottom friction, on the other hand, are surprisingly limited. The two order of magnitude
increase in γ elevates λ by less than 20%.

It is also instructive to quantify the differences between the topography-induced decay
rates and their flat-bottom counterparts. To this end, we compute the component of the
decay rate that can be attributed solely to explicit dissipation:

λ0 = 2
〈νψG∇4ψG − γψG∇2ψG〉x,y

〈|∇ψG|2〉x,y
. (4.21)

The ratio of the topography-induced and flat-bottom decay rates R = λ/λ0 is plotted in
figure 6(b) as a function of (ν, γ ). It reveals a wide range of R values, which could be
as high as 103 or more. Such strong topographic intensification of the energy decay is
remarkable, especially given the catalytic role played by bathymetry in the spin-down
dynamics.

Finally, we assess the performance characteristics of the parametric model for various
levels of small-scale depth variability. Oceanographic observations (Goff 2020) reveal
substantial geographic variability in the root-mean-square (r.m.s.) roughness height ηrms =√

〈η2〉x,y. In most of the ocean, it is limited to the range of 40 m < η∗
rms < 400 m, which

is equivalent to
10 < ηrms < 100 (4.22)

in non-dimensional units based on scales (2.6). To explore this range, we perform
a series of simulations, both topography resolving and parametric, in which ηrms is
systematically varied. These simulations are analogous to ExpR and ExpRP in all
respects, except that in each run the topographic spectrum (4.3) is renormalized to
produce the desired r.m.s. height. The vortex spin-down rates (λ) are then evaluated
from the best fit of the kinetic energy records Ek(t) by the exponential patterns

944 A5-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

48
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.488


Spin-down of a barotropic vortex by irregular small-scale topography

0

1

2

3

4

5

6

7

8

λ

20 40 60

ηrms

80 100

Figure 7. The energy decay rate (λ) plotted as a function of the r.m.s. depth variation (ηrms). Parametric
simulations are shown in red, and the topography-resolving experiments are indicated by the black curve.

Efit = E0 exp(−λt) and plotted as a function of ηrms in figure 7. These results indicate
that the parametric and topography-resolving simulations are remarkably consistent over
the entire oceanographically relevant range (4.22). In all runs, the relative error of the
multiscale model is less than 8%. It should also be emphasized that all values of λ in
figure 7 greatly exceed their flat-bottom counterpart (λ0 = 0.0201). Even for the smallest
and rarely observed value of topographic height (ηrms = 10), bathymetry increases the
decay rate by a factor of R = 4.38. For a more representative height of ηrms = 100, the
amplification factor increases to R = 352.5.

5. Discussion

This work explores the interaction of broad oceanic flows with irregular smaller-scale
bathymetry – the configuration referred to as the sandpaper model. The analytical
developments are based on the multiscale homogenization theory and lead to a closed
set of large-scale equations. The resulting system represents a rigorous asymptotics-based
parameterization of the flow forcing by the sea-floor roughness. Bathymetry is introduced
in the multiscale theory by assuming a statistically representative spectral distribution of
the ocean depth. The specific calculations are performed using the observationally derived
spectrum of Goff & Jordan (1988), and the associated theoretical predictions are validated
by topography-resolving simulations.

All evidence, analytical and numerical, gathered in this investigation consistently points
to a profound influence of topography on the dynamics of large-scale flows. For instance,
we demonstrate that the topographic spin-down rates of a barotropic vortex can exceed
those induced by explicit dissipation by as much as 2–3 orders of magnitude. This
observation becomes particularly striking when we recall that the role of topography in the
multiscale model is fundamentally catalytic: the leading-order topographic forcing term
(D) vanishes in the non-dissipative limit.

Given such a strong adverse impact of irregular bathymetry on large-scale flows, one
may wonder why it is seldom considered in theoretical and idealized numerical studies
of ocean circulation. Traditionally, conceptual models have focused on the effects of
the Ekman bottom drag and lateral friction (Stommel 1948; Munk 1950). A natural
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development of the circulation theory should involve supplanting these direct dissipative
processes with more efficient topographic spin-down mechanisms. Perhaps the lingering
lack of progress in this direction can be attributed to the perceived complexity of
governing equations in the presence of realistic bathymetry, which may impede analytical
developments. In this regard, the concise representation of topographic effects by the
sandpaper model may prove to be highly beneficial, opening new pathways for the
advancement of the general circulation theory.

The present investigation has also brought some new insights into the physics of the
topographic spin-down. The key strength of multiscale methods, such as employed in
this study, is their dynamic transparency. The users can identify and interpret the entire
sequence of cross-scale interactions by examining balances that arise at each order in
the asymptotic expansion. Following this strategy, we conclude from the leading-order
balance that the topographic spin-down is initiated by the homogenization of PV (e.g.
Rhines & Young 1982). The homogenization creates a stationary small-scale flow that is
rigidly constrained by the topography. This pattern interacts with the large-scale current
to produce a secondary perturbation that also contains fine structures but is modulated
over large scales. Since these primary and secondary small-scale components are not
orthogonal, their nonlinear interaction results in large-scale forcing. This finding implies
that the spin-down of a large-scale flow in our model is caused solely by the lateral eddy
mixing of momentum. The large-scale effects of topography are indirect and limited to
the generation of a small-scale eddy field associated with considerable Reynolds stresses.
In contrast, the topographic form drag acting directly on the large-scale current does
not contribute to the spin-down at the leading order. Somewhat counterintuitively, the
topography-induced stresses are inversely proportional to the large-scale speed, which
can be rationalized by considering the advective–dissipative balance for the secondary
perturbation.

It is also interesting that the small-scale homogenization of PV, which is borne out
very clearly in both topography-resolving simulations and the asymptotic model, is seldom
considered in multiscale flow–topography interaction theories (e.g. Vanneste 2000, 2003;
Goldsmith & Esler 2021). The distinguishing feature of our approach is the focus on
relatively swift large-scale currents. As they impinge on rapidly varying topography,
homogenization allows Lagrangian particles to maintain their net PV without dramatic
reorganization of the flow pattern. Slow flows, on the other hand, respond to the depth
variation in a fundamentally different manner, by developing stationary Taylor columns
that trap fluid in their interior (Taylor 1923; Johnson 1978). Thus, while our multiscale
model accurately represents the dynamics of realistically fast oceanic flows, it may not be
applicable in stagnant regions. The tell-tale sign of this limitation is the singularity of the
expression for topographic forcing, which increases without bound with decreasing flow
speed. In this regard, it would be highly desirable to develop a universal asymptotic model
that can capture both slow and fast flow limits in a single framework.

Another notable outcome of this study is the assessment of the applicability and
performance characteristics of the multiscale model itself. For instance, the model
formally assumes a substantial separation between scales of the interacting flow
components. However, we find that this condition may not be critical. Even the parametric
simulation in which the entire spectrum of topography is treated as small-scale variability
still offers a surprisingly accurate description of the flow field. The ability of the multiscale
model to retain its predictive skill under such unfavourable conditions is encouraging. It
indicates that the techniques developed here can be successfully applied to flows realized
in nature, which usually lack clear-cut scale separation.
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The present study can be extended in several ways. An obvious step towards realism
would be the generalization of our analysis to baroclinic flows, more representative
of typical oceanic circulation patterns. In this regard, the present homogeneous
theory offers a convenient roadmap for the development of analogous multilayer and
continuously stratified models. An even more significant undertaking would be the
transition from the quasi-geostrophic framework to more general hydrodynamic models,
such as the shallow-water and Navier–Stokes systems. The principal limitation of the
quasi-geostrophic approximation is that it may inadequately represent submesoscale
(∼10 km or less) flow components. At the same time, such features remain largely
unresolved by the current generation of general circulation models, which motivates the
development of reliable parameterizations of submesoscale processes. Another benefit of
adopting a more general framework is an opportunity to capture the effects of internal
lee waves, which are a priori excluded in the quasi-geostrophic model. The topographic
wave-induced drag is known to substantially affect the large-scale circulation of the ocean
and remains a subject of keen interest in oceanography (Eden, Olbers & Eriksen 2021;
Klymak et al. 2021). We believe that many pressing challenges in the flow–topography
interaction theory can be met through the systematic application of multiscale methods, as
illustrated here using the minimal spin-down model.
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Appendix A. Auxiliary steps in the development of the multiscale model

The following analysis leads to an explicit expression of the topographic forcing function
(3.7) in terms of the properties of the large-scale flow. This is achieved by combining the
advection–dissipation balance (3.4) and expression (3.7) in a manner that eliminates ς2.
We start with the transition to the flow-following small-scale coordinate system:

x′
S = xS cos θ + yS sin θ,

y′
S = −xS sin θ + yS cos θ.

}
(A1)

The flow-orientation variable θ in (A1) is defined by

cos(θ) = u0

V0
, sin(θ) = v0

V0
, (A2a,b)

where (u0, v0) ≡ (−∂ψ0/∂y, ∂ψ0/∂x) and V0 =
√

u2
0 + v2

0. Note that components of (3.4)
and (3.7) are invariant with respect to the transition to the flow-following frame of
reference. Therefore, in the new coordinate system, (3.4) takes the form

V0
∂ς2

∂x′S
+ Jx′S,y′

S(ψ1, ς2) = ν0∇′4
S ψ1 − γ∇′2

S ψ1, (A3)

and (3.7) is written as

D = ∂

∂y
(DV cos θ − DU sin θ)− ∂

∂x
(DV sin θ + DU cos θ), (A4)
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where

DV =
〈
∂ψ1

∂x′S
ς2

〉
x′S,y′

S

, DU =
〈
∂ψ1

∂y′
S
ς2

〉
x′S,y′

S

(A5a,b)

Term DU represents the effects associated with the eddy-induced mixing of vorticity in
the direction of large-scale flow and it can be shown to be inconsequential based on its
symmetries. For instance, reversing the x’-orientation of small-scale bathymetry ηS →
ηS(−x′

S, y′
S) corresponds to reversing the vorticity sign ς2 → −ς2(−x′

S, y′
S) and therefore

reverses the sign of DU . Thus, any statistical averaging that assigns equal weights to a given
pattern of ηS and its mirror image will result in the cancellation of the net contribution of
individual realizations to DU .

To obtain an explicit expression for DV , we integrate (A5) by parts: DV =
−〈ψ1(∂ς2/∂x′

S)〉x′S,y′
S and eliminate ∂ς2/∂x′

S using (A3), which yields

DV = V−1
0 〈ψ1Jx′S,y′

S(ψ1, ς2)〉x′S,y′
S︸ ︷︷ ︸

DJ

−V−1
0 ν0〈ψ1∇′4

S ψ1〉x′S,y′
S︸ ︷︷ ︸

Dν

+ V−1
0 γ 〈ψ1∇′2

S ψ1〉x′S,y′
S︸ ︷︷ ︸

Dγ

.

(A6)
The first (DJ) component of (A6) is eliminated by virtue of the following identity:

〈ψ1Jx′S,y′
S(ψ1, ς2)〉x′S,y′

S =
〈
∂

∂x′S

(
ψ2

1
2
∂ς2

∂y′
S

)
− ∂

∂y′
S

(
ψ2

1
2
∂ς2

∂x′S

)〉
x′S,y′

S

= 0. (A7)

The treatment of Du and Dv is based on the Parseval theorem (2.15). For instance, Dν is
expressed as

Dν = −V−1
0 ν0

∫∫
ψ̃1conj(κ4

S ψ̃1) dk′
S dl′S, (A8)

where (k′
S, l′S) are the wavenumbers in the flow-following coordinate system:

k′
S = kS cos θ + lS sin θ,

l′S = −kS sin θ + lS cos θ,

}
(A9)

and κ2
S = k′2

S + l′2S = k2
S + l2S.

Using (3.2), we express ψ̃1 in terms of η̃0:

κ2
S ψ̃1 = η̃0. (A10)

In this study, we consider statistically isotropic patterns of bathymetry, with power spectra
that are uniquely determined by the absolute wavenumber: |η̃0|2 = F(κS). Such spectra
are invariant with respect to the change of the coordinate system. Therefore, (A8) can be
reduced, using (A10), to

Dν = −2πV−1
0 ν0

∫
|η̃0|2κS dκS. (A11)

The contribution of the bottom drag component is determined in a similar manner:

Dγ = −2πV−1
0 γ

∫ |η̃0|2
κS

dκS. (A12)
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Spin-down of a barotropic vortex by irregular small-scale topography

Finally, we evaluate the net topographic forcing term (A4):

D = G
(
∂

∂x

(
cos θ

V0

)
− ∂

∂y

(
sin θ
V0

))
, (A13)

where

G = 2π

∫ (
γ

κS
+ ν0κS

)
|η̃0|2 dκS. (A14)

Note that G vanishes in the non-dissipative limit (γ → 0, ν0 → 0). Thus, (A13) and
(A14) imply that topographic forcing is fundamentally catalytic. Nevertheless, numerical
simulations (§ 4) reveal that it can dramatically affect the flow dynamics and spin-down
rates even for modest values of explicit lateral friction and/or bottom drag.
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