
242 Book reviews

download SWI-Prolog, work your way to the first practical session on page 16

of Learn Prolog Now! and your first Prolog queries give their answers. This is a

fantastic way to learn a piece of Prolog.

Bart Demoen

doi:10.1017/S1471068408003281

Constraint Logic Programming using ECLiPSe Krzysztof Apt and Mark Wallace

Cambridge University Press, 2007 Hardback: ISBN 9780521866286, Price: £35, 348

pages.

This book is an introduction to constraint logic programming (CLP) in the ECLiPSe

language. It aims to introduce CLP to senior students in Computer Science and also

describe the ECLiPSe language. This book is a good introduction to CLP, which is

filled with many examples. The book is also timely as it coincides with the release

of ECLiPSe as open-source software free for everyone to use.

The book is divided into four parts. The first part is an introduction to logic

programming while the second part describes the Prolog part of ECLiPSe. The third

part, entitled programming with passive constraints, begins by discussing constraint

programming (CP) in theory, and then introduces iteration for ECLiPSe, control of

search, and the suspend library which extends ECLiPSe to allow goals to suspend

until variables are fixed. The fourth part, the core of the book, introduces CP in

ECLiPSe including the main solver libraries, search strategies, and optimization. The

book also includes a short introduction and overview, exercises for each chapter,

and sample solutions for some exercises.

The first chapter of the book introduces logic programming and pure Prolog. It

does this rather succinctly, and my feeling is that the book is probably not the

right place to get an introduction to logic programming. A reader should probably

start with Clocksin and Mellish if they have no familiarity with Prolog. Still this

material has to be there for self-containedness. The chapter introduces how to use

the ECLiPSe system, discusses unification, lists, and gives a couple of simple logic

programs. One of the strengths of the book is the numerous example programs, with

example queries and full output of the ECLiPSe system, and this is true right from

Chapter 1.

The second chapter is rather puzzling. It introduces a small programming language

L0 and gives this an operational semantics. It then shows how Prolog programs can

be translated to L0, and how L0 can be translated (or read) as a logical formula. This

seems repetitive without being very elucidating. The only real difference between the

two views is that the logical reading L0 captures the program completion semantics

of Clark, but the book really makes no use of this. Overall I am curious as to why

the authors thought the chapter was worth including.

Chapter 3 introduces (Prolog style) arithmetic in ECLiPSe, that is, the evaluation

and testing of arithmetic expressions. It begins with a succinct definition of arithmetic

expressions and then introduces is and the arithmetic comparison predicates.

It does a good job of explaining the difficulties using these features that arise

https://doi.org/10.1017/S1471068408003281 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003281


Book reviews 243

with instantiation. The chapter also introduces the differentiation between active

constraints which can affect variables, which is currently the only term equality, and

passive constraints or tests which cannot affect variables, but can cause failure. The

chapter concludes with a discussion of operators and precedence and ECLiPSe op

declarations. The example program introduced in this chapter will be cleverly reused

later on when better arithmetic is available.

Chapter 4 discusses the control and meta-programming facilities of ECLiPSe, in

particular the representation of programs as terms (the ECLiPSe equivalent to) call,

if-then-else, disjunction, and negation, once, the cut, and clause. The ubiquitous

solve meta interpreter is introduced, and extended to give derivation lengths, or to

handle the arithmetic comparison predicates of the previous chapter (but strangely

not is)! The modification in this chapter of the unification algorithm introduced in

Chapter 1 to support functors with the same name and different arity seems strange.

There would have been no harm in using the modified version in Chapter 1.

Chapter 5 introduces all the structure testing, comparison, and decomposition

built-ins we are used to for Prolog, like var, ==, and functor. The comparison

family @< is missing, but not required in the rest of the book that will concentrate

on constraints rather than term manipulation. As with the rest of the book these

chapters are concise, clear, and well illustrated by examples.

In Chapter 6 we are introduced to CP. The basic concepts and a number of

short examples which will be reexamined through the book are discussed. There

is a discussion of modelling and modelling choices as well as a brief overview of

local search, top-down search (the combination of propagation and branching), and

branch-and-bound search. This is a good short summary of CP touching on a lot

of issues briefly, and the examples are clearly explained.

Chapter 7 introduces the iteration and array constructs in Eclipse. As a hoary

old Prolog programmer I find the iteration notation confusing, but it is certainly

way more succinct than plain Prolog. I am sure with practice they would become

clear to me. Something I found lacking was an understanding of when (multi)

iterations terminate. For the usual iterators foreach and count it seems clear that

it terminates when the first of these terminates, but this does not appear to be the

case for fromto. While fromto([], Tail, [Head|Tail], Reverse) do Head =

a terminates immediately with Reverse = [] the reverse example

fromto([], Tail, [Head|Tail], Reverse), foreach(El,[a,b,c]) do Head = El

terminates when the foreach terminates with Reverse - [c,b,a]. The array syntax

of ECLiPSe is impressive, giving natural array syntax, although like arithmetic, one

has to be somewhat careful on ensuring the expressions are “evaluated.”

Chapter 8 discusses top-down search with passive constraints, which only check

fixed values. This is CP in Prolog, how we might have tackled constraint satisfaction

problems (CSPs) in Prolog 20 years ago. While the discussion is clear, and the

flexibility of credit based search is impressive (and still not appreciated enough in

the CP community) the question is why have this chapter when three chapters later

we will revisit search, with the much more powerful active constraints? The end

of the chapter introduces non-logical (non-backtracked) variables and uses them

https://doi.org/10.1017/S1471068408003281 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003281


244 Book reviews

to count backtracks. These “nasty” features are essential for some kinds of search

control, and the backtrack counting example also illustrates some of the ambiguities

in quantifying search that plague CP.

Chapter 9 introduces the suspend library, a kind of “poor man’s” constraints,

which can be posted at any time, but wait until all their variables are fixed before

checking. Suspension is ECLiPSe’s version of freeze from Prolog II. There is a

nice modification of the solve meta-interpreter to explain delay, although hardly

novel. The chapter goes on to define constraint satisfaction problems (CSPs) using

the suspend library, illustrating the separation of specification of the problem from

the search. While it may be nice to illustrate this separation before we introduce

active constraints, I am puzzled why the authors bothered with the suspend library.

Active constraints will do the same thing better, with no more complex coding. I

can not see many users of ECLiPSe using suspend, at least for CSPs. General delay

is useful for other things that are not investigated in this book.

Finally in Chapter 10 we reach active (finite domain) constraints, the core of

a CLP system. The chapter begins with symbolic finite domain library sd before

introducing the integer and real finite domain library ic. The symbolic domains

solver is more or less unique to ECLiPSe so it would have been nice to see a longer

example like the map colouring example using it. The description of the ic solver

explains the difference between real and integer variables and revisits the examples

from the previous chapter. Surprisingly, there is no description of the fixpoint

behaviour of the propagation engine, or indeed the difference between bounds and

domain propagation. Since Section 10.3.6 deals with how to prevent the waking up

of constraints this seems a notable omission, although it does not affect usability of

ECLiPSe except for advanced users.

Chapter 11 discusses search in the presence of abstract constraints. Programmable

adaptive search is core to CP and one of the strengths of CLP over other CP

paradigms, so this is an important chapter. The chapter begins with backtrack-free

and shallow backtracking search. Once more I am a bit puzzled by the inclusion of

this material, as they are not very useful. The already introduced credit based search

and its various uses provides a much more practical example of incomplete search

strategies. The chapter provides an excellent discussion of variable ordering heuristics

and value ordering heuristics and the connections between them. It neatly utilizes

the iteration facilities of ECLiPSe to define the heuristics. The chapter concludes

with the introduction of the ECLiPSe generic search predicate.

Optimization is the topic of Chapter 12. After introducing the minimize optim-

ization predicate, and discussing the knapsack problem, there is a nice discussion

about the currency design problem, illustrating the use of redundant constraints,

and using the answer of one problem to set up the next problem. The next example

is solving and generating Sudoku puzzles, a beautiful illustration of the power of

CLP and ECLiPSe in particular. I doubt any other language could manage Sudoku

generation in 3 (small) pages of code (even other CLP languages). Next the chapter

explores the more sophisticated optimization predicate bb min which allows the user

to weaken the optimization by accepting answers that are close but not necessarily

optimal, and to control the kind of optimization search: continuing from the current

https://doi.org/10.1017/S1471068408003281 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003281


Book reviews 245

position in the search, restarting the search from scratch, or using dichotomic search.

These somewhat subtle features are well explained.

Chapter 13 discusses constraint programming over reals using interval constraint

solving. It nicely characterizes the kinds of problems including reals that can be

tackled and illustrates each kind. Interval constraint solving over reals has a number

of subtleties which can trip up naive users and these are well explored. The effect

of the propagation threshold which controls the accuracy of interval propagation is

well illustrated. Search with interval solving using the locate search predicate, and

shaving using the squash predicate, and in particular optimization over real interval

solving and its dangers is discussed in detail.

Chapter 14 considers the linear programming facilities of ECLiPSe available

through its eplex library. The eplex library is quite different to other constraint

libraries, requiring explicit initialization and solving calls, and returning its solutions

in a different way. The chapter exposes some subtleties in ECLiPSe where the

expression W :: [0..10] which would declare W as an integer variable in the ic

solver only has the effect of declaring W to have integer bounds in the eplex

solver, and hence can succeed with a value 2.5, with a warning about integrality

not being enforced. Presumably there are reasons for this design choice, and it is

certainly better to expose it than let a bewildered user find it for themselves, but

it seems odd to me. The chapter continues with a delightful example of solving a

non-linear optimization problem using repeated addition of linear constraints. This

is good illustration of the power of the combination of linear constraint solving

and backtracking search. Next the chapter explains the use of the linear solver as

a constraint propagator where triggers are used to control when the propagator is

invoked, and the non-linear optimization problem is revisited. The chapter concludes

with increasingly more complex versions of facility location problems, culminating

in a non-linear version which illustrates the power and conciseness of ECLiPSe very

well.

The principle strengths of the book are the clarity of the writing and the use of well

chosen examples. The programs are very well written, with efficiency considerations

often subtly included. After digesting the book, and trying out examples and exercises

in ECLiPSe, a reader will come away with solid grasp of CP, and the flexibility of

ECLiPSe.

I found some of the choices of material included in the book and the arrangement

of the material odd. I realize every arrangement of material in any book fails to

satisfy some of the desires of its authors, but obviously my “objective function” is

quite different from the other authors. I would have loved to see another chapter

where hybrid solutions using both the eplex and ic libraries were explored, since

this is one of the strongest capabilities of ECLiPSe. I was a bit disappointed that

the presentation of the Prolog part of ECLiPSe was so standard. Prolog can be

presented as CLP over Herbrand terms without introducing unification as anything

more than a constraint solver. Admittedly ECLiPSe users may well be better off

with the traditional view when interacting with arithmetic, structure inspection, and

other “non-logical” features of the language.

https://doi.org/10.1017/S1471068408003281 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003281


246 Book reviews

In summary, this book is a valuable addition to the canon of CP texts. It provides

a well-exampled introduction to ECLiPSe and a good basis for an advanced course

on CP using ECLiPSe as its CP language.

Peter J. Stuckey

University of Melbourne, Australia

(e-mail: pjs@cs.mu.oz.au)

https://doi.org/10.1017/S1471068408003281 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068408003281

