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Abstract We give a topological criterion for the minimality of the strong unstable (or stable) foliation
of robustly transitive partially hyperbolic diffeomorphisms.

As a consequence we prove that, for 3-manifolds, there is an open and dense subset of robustly
transitive diffeomorphisms (far from homoclinic tangencies) such that either the strong stable or the
strong unstable foliation is robustly minimal.

We also give a topological condition (existence of a central periodic compact leaf) guaranteeing (for
an open and dense subset) the simultaneous minimality of the two strong foliations.
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1. Introduction

Robustly transitive diffeomorphisms are one of the archetypes of chaotic dynamics: they
are transitive (i.e. there are points whose forward orbits are dense in the whole ambient
manifold) and the transitivity persists after C1-perturbations. The first known examples
are the Anosov (hyperbolic) ones. More recently non-hyperbolic robustly transitive dif-
feomorphisms were constructed using one of the following three methods: bifurcations
from hyperbolic diffeomorphisms (see the derived from Anosov examples in [4,10,20]),
skew products [2,27], and perturbations of the time-one of Anosov flows [2].

For volume preserving diffeomorphisms the prototype should be the stably ergodic
diffeomorphisms, that is, volume preserving diffeomorphisms whose volume preserving
perturbations are ergodic (with respect to the volume). These two theories (robust tran-
sitivity and stable ergodicity) have been systematically developed in recent years and
run in parallel. As a general rule, examples can be translated from one theory to the
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other (see, for example, the example in [28]), and many problems are common to both
theories (see the survey [9] on stable ergodicity).

Robustly transitive diffeomorphisms always satisfy some weak form of hyperbolicity:
they are uniformly hyperbolic in dimension two [21], partially hyperbolic in dimension
three [13], and they admit a dominated splitting in higher dimensions [5].

In this paper we deal with robustly transitive diffeomorphisms defined on 3-manifolds
which are partially hyperbolic (but not Anosov). This means that the tangent bundle of
the ambient manifold can be split into two or three invariant sub-bundles as follows.

• TM = Es ⊕ Ec, where Es is one dimensional and uniformly hyperbolic and Ec is
two dimensional, undecomposable (i.e. it does not admit any dominated splitting)
and not uniformly hyperbolic.

• TM = Ec⊕Eu, where Eu is one dimensional and uniformly hyperbolic (expanding)
and Ec is two dimensional, undecomposable and not uniformly hyperbolic.

• TM = Es ⊕ Ec ⊕ Eu, where the three bundles are one dimensional, Es and Eu

are uniformly hyperbolic (contracting and expanding, respectively) and Ec is not
uniformly hyperbolic.

In the first two cases it is possible to perturb the initial diffeomorphism to get a new
diffeomorphism exhibiting a homoclinic tangency (i.e. there is a hyperbolic periodic point
whose invariant manifolds are non-transverse) (see [13, Corollary G]). In this paper we
deal with the third situation, so-called strongly partially hyperbolic (see a more precise
definition below), where the diffeomorphisms are far from homoclinic tangencies. For
instance, the three-dimensional examples in [2,20,28] have this property.

In the strongly partially hyperbolic context, due to the uniform hyperbolicity of the
bundles Es and Eu, there exist one-dimensional foliations tangent to Es and Eu, called
strong stable Fs and strong unstable Fu foliations, respectively (see [8,19]). However,
we do not know if in general the central bundle is (uniquely) integrable and so the central
foliation is not a priori defined, in fact this is an important open problem in this area.

Some key problems in the study of (robustly) transitive diffeomorphisms are the fol-
lowing.

• Characterization of robust transitivity or stable ergodicity.

• Which 3-manifolds can support robustly transitive diffeomorphisms? Let us recall
that Anosov diffeomorphisms in dimension 3 are always conjugate to a finite quo-
tient of a linear Anosov map on the torus T 3 (see [16, 22, 23]). We conjecture
that there are no robustly transitive diffeomorphisms on the sphere S3. Theorem H
in [13] verifies this conjecture in a more restrictive context.

• State the ergodic properties of these systems, in particular, the existence and finite-
ness of SRB measures (for results on this subject see [1,4,14]).

In this paper we will begin the topological description of the strong stable or unstable
foliation, motivated by the two following ideas.
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• For describing the global dynamics of strongly partially hyperbolic diffeomorphisms
one often attempts to propagate topological or measurable local properties along
the leaves of the strong stable or unstable foliations to the whole manifold.

• The support of SRB-measures of strongly partially hyperbolic diffeomorphisms is
saturated for the strong unstable foliation. For instance, Bonatti and Viana [4] use
the hypothesis of the density of the unstable leaves to prove the uniqueness of the
SRB-measure.

A foliation is minimal if all its leaves are dense in the ambient manifold.

Problem 1.1. Are the strong stable and strong unstable foliations minimal for an open
and dense subset of the set of robustly transitive, strongly partially hyperbolic diffeo-
morphisms?

Before stating our results, let us recall that this problem has a long history in the
uniformly hyperbolic context.

• The stable and unstable foliations of transitive Anosov diffeomorphisms are always
dense.

• For transitive Anosov flows on 3-manifolds, the strong stable and unstable foliations
are both minimal, except for a very specific case: the suspension of an Anosov
diffeomorphism of T 2 (see [25]). This study begun with the geodesic flows of surface
having constant negative curvature, where the strong stable and unstable foliations
correspond with the horocyclic flows and are uniquely ergodic (see [17]). Then
the property of unique ergodicity was generalized to the strong stable or unstable
foliation of Anosov flows (see [7]).

In this paper, assuming that the central bundle admits an invariant orientation, we
prove that the minimality of at least one of the two strong foliations is an open and dense
property (see Theorem 1.3). Moreover, if the central bundle is uniquely integrable, we
also prove that the minimality of both strong foliations is an open and dense property
among the diffeomorphisms having a periodic compact central leaf (see Theorem 1.6).

Let us now state our results precisely.

Statement of results

Let f : M → M be a diffeomorphism of a compact manifold. Let us recall that an
f∗-invariant splitting E ⊕ F of TM is dominated if the fibres of the bundles have con-
stant dimension and there are a Riemannian metric ‖ · ‖ and a constant λ < 1 such that
‖f∗(x)|E‖ · ‖f−1

∗ (f(x))|F ‖ < λ, for all x ∈ M .
An f∗-invariant splitting TM = Es ⊕ Ec ⊕ Eu with three bundles is called dominated

if the splittings Ecs ⊕ Eu and Es ⊕ Ecu are both dominated, where Ecs = Es ⊕ Ec and
Ecu = Ec ⊕ Eu.

Definition 1.2. A diffeomorphism f of a compact 3-manifold M is strongly partially
hyperbolic if there is a f∗-invariant dominated splitting TM = Es ⊕ Ec ⊕ Eu with three
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one-dimensional bundles such that Es and Eu are, respectively, uniformly contracting
and expanding.

Given a compact closed manifold M of dimension 3 the set of robustly transitive
diffeomorphisms of M is, by definition, open in Diff1(M). As dominated splittings persist
by C1-perturbations, the set of strongly partially hyperbolic diffeomorphisms is open.
The property of the central bundle not being hyperbolic is not open. However, Mañé’s
result [21] implies that every diffeomorphism which is robustly transitive and strongly
partially hyperbolic but not Anosov can be C1-approximated by one having hyperbolic
periodic points of different indices (dimension of the stable manifold). This property is
clearly open.

We now denote by T (M) the open set of robustly transitive and strongly partially
hyperbolic diffeomorphisms having hyperbolic periodic points of different indices (of
index 1 and 2). We endow T (M) with the C1-topology. Define by T +(M) the sub-
set of T (M) of diffeomorphisms f such that the bundles Es, Eu and Ec are orientable
and f∗ preserves these orientations. This set is open in T (M).

A property of diffeomorphisms is called robust if whenever it holds for a diffeomorphism
it also holds for a C1-neighbourhood of that diffeomorphism.

Denote by Os(M) (respectively Ou(M)) the subset of T (M) of diffeomorphisms f

whose strong stable (respectively unstable) foliation is robustly minimal. In other words,
Os(M) (respectively Ou(M)) is the interior of the subset of T (M) of diffeomorphisms f

with a minimal strong stable (respectively unstable) foliation.
Similarly, let Oi+(M) = Oi(M) ∩ T +(M), i = s, u.

Theorem 1.3. The open subset O+(M) = Os+(M) ∪ Ou+(M) of diffeomorphisms with
a robustly minimal strong stable or unstable foliation is dense in T +(M).

Let us first state a dynamical consequence of this result. Recall that a diffeomorphism
f is topologically mixing if for every pair of open sets U and V there is a positive n0 =
n(U, V ) such that fn(U)∩V �= ∅ for all n � n0. One easily verifies that, if f has a strong
foliation which is minimal, then it is topologically mixing. Then we have the following
corollary.

Corollary 1.4. There is an open and dense subset of T +(M) consisting of topologically
mixing diffeomorphisms.

Now let us discuss the hypotheses of Theorem 1.3. The condition on the existence
of an f∗-invariant orientation on the stable and unstable bundles is purely technical
and can easily be dropped (see Proposition 7.1 in § 7). The hypothesis on the invariant
orientation of the central bundle of f is much more delicate and subtle. Of course, this
difficulty can be bypassed if either its lift to the orientation covering remains transitive
or if the central bundle is orientable (f does not preserve this orientation) and f2 is
transitive. The robust transitivity of f2 is guaranteed if f has some periodic point of
odd period (see Lemma 7.3). The robust transitivity of the lift of f to the orientation
covering is guaranteed if f has a hyperbolic periodic point p of period k such that fk

∗ (p)
reverses the orientation of Ec(p) (see Remark 7.5).
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Another way to guarantee the transitivity of the lifts is to assume the accessibility
hypothesis. More precisely, a point y is accessible from a point x if there is a path going
from x to y consisting of segments contained in strong stable or strong unstable leaves.
Accessibility is an equivalence relation. A diffeomorphism f has the accessibility property
if there is only one accessibility class. Similarly, f has the robust accessibility property if
every diffeomorphism g C1-close to f has the accessibility property.

Theorem 1.5. The open set of diffeomorphisms with a robustly minimal strong stable
or unstable foliation is dense in the set Ta(M) of diffeomorphisms f ∈ T (M) having the
robust accessibility property.

The accessibility assumption does not seem to be too restrictive: Pugh and Shub con-
jecture that the accessibility property is valid for an open and dense subset of T (M) [26],
and recently Dolgopyat and Wilkinson [15]∗ have announced the proof of this conjecture.
For a partial answer for this conjecture see [24]. Assuming this result our theorems can
be reformulated as follows.

The set O(M) = Os(M) ∪ Ou(M) of diffeomorphisms with a robustly minimal strong
stable or unstable foliation is dense in T (M).

The previous results only give the robust minimality of one of the strong foliations. We
now introduce a subset of T (M) for which we have been able to prove the minimality of
both foliations. Consider the subset T0(M) of T (M) consisting of the diffeomorphisms f

verifying the following two extra geometrical assumptions:

• robust coherence, that is, unique integrability of the bundles Ec, Ec ⊕ Es and
Ec ⊕ Eu, for every diffeomorphism g in a C1-neighbourhood of f ; and

• existence of a compact and periodic central leaf.

A compact periodic central leaf is a normally hyperbolic invariant manifold; therefore,
from [19], to have such a compact periodic central leaf is a C1-open property in the set
of partially hyperbolic systems, so that T0(M) is a C1-open subset of T (M).

In the partially hyperbolic setting the coherence assumption is quite common and
natural, and it has often been used in the context of stably ergodic systems (see, for
example, [14,26]). Unfortunately, it is not known whether dynamical coherence is a C1-
open property. If the central foliation is plaque expansive (see [19] for the definition),
then dynamical coherence is verified in a C1-neighbourhood of f . On the other hand, all
the known examples of robustly transitive diffeomorphisms are plaque expansive.

As above we consider the subset T +
0 (M) = T0(M) ∩ T +(M).

Theorem 1.6. The open set Os(M) ∩ Ou(M) of diffeomorphisms whose strong stable
and unstable foliations are both robustly minimal is dense in T +

0 (M).

∗ The definition of partial hyperbolicity in these papers is a bit more restrictive than the one we use
here: in their definition, for any pair of points x and y and every unitary vectors u ∈ E and v ∈ F one
has |f∗(x)(u)|/|f∗(y)(v)| < k for some k < 1, and in our definition we only consider the case x = y.
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Again, we can substitute the hypothesis on the orientations by the robust accessibility
property (see § 7.2).

Finally, Theorem 1.3 remains valid in any dimension for robustly transitive diffeomor-
phisms whose central bundle has dimension 1 and is uniquely integrable.

Theorem 1.7. Let M be a compact manifold of dimension n � 3. Denote by T1(M) ⊂
Diff1(M) the set of robustly transitive diffeomorphisms whose central bundle has dimen-
sion one, is uniquely integrable, and has an f -invariant orientation.

Then Ou(M)∪Os(M) contains a dense open subset of T1(M), where Ou(M)∪Os(M)
is the set of diffeomorphisms f ∈ T1(M) having a robustly minimal strong unstable or
stable foliation.

The theorems above follow from a result on the existence of complete transverse sec-
tions adapted to the dynamics.

Definition 1.8. Let f be a strongly partially hyperbolic diffeomorphism of a compact
3-manifold M .

• A compact surface T with boundary, transverse to the strong unstable foliation of f ,
is a u-section for f if f(T ) is contained in the interior of T and ω(T ) = ∩n�0f

n(T )
is the union of finitely many segments and circles tangent to the central direction.

• A u-section T is complete if its interior intersects each strong unstable leaf Fu(x)
transversely, x ∈ M .

We define s-section and complete s-section for f by replacing f by f−1 in the definition
above.

By the f -invariance, every complete u-section is tangent to the centre stable bundle
Ec ⊕ Es.

The proof of our results follows from the following heuristic principle: generically a
complete u-section contains finitely many periodic points; we will show that the closure
of any leaf of Fu contains the leaf through one of these periodic points. So the minimality
of the foliation will follows from the density of these finitely many unstable manifolds.

Denote by U(M) (respectively S(M)) the subset of T (M) of diffeomorphisms admitting
complete u-sections and s-sections, respectively.

Theorem 1.9.

(1) The sets S(M) and U(M) are open in T (M).

(2) The union S(M) ∪ U(M) is dense in T +(M).

(3) Both S(M) and U(M) are dense in T +
0 (M).

(4) There is an open and dense subset Mu(M) of U(M) such that the strong unstable
foliation is minimal for all f in Mu(M). Similarly, there is an open and dense
subset Ms(M) of S(M) such that the strong stable foliation is f -minimal for all f

in Ms(M).
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Theorems 1.3 and 1.6 are both direct consequences of Theorem 1.9, and the different
items of this theorem correspond to the steps of the proofs of Theorems 1.3 and 1.6.

Let us return to the known examples of three-dimensional robustly transitive diffeomor-
phisms with a strongly partially hyperbolic structure [2,20,28]. The examples in [2,28]
have closed periodic orbits and thus the two strong foliations are minimal. On the other
hand, in the derived from Anosov examples in [20] our results only ensure the minimality
of one of the strong foliations. In fact, our proof shows that if the initial Anosov diffeo-
morphism has a one-dimensional stable (respectively unstable) bundle then the strong
stable (respectively unstable) foliation of the derived map is minimal. This leads us to
the following question.

Problem 1.10. Is having (simultaneously) minimal strong stable and unstable foliations
a dense property in T (M)?

Concerning three-dimensional robustly transitive diffeomorphisms, we can now con-
sider those admitting only a splitting with two bundles (see the constructions in [4]),
for instance, having a splitting of the form Eu ⊕ Ec, where Eu is one dimensional and
uniformly hyperbolic (expanding) and Ec is two dimensional, undecomposable and non-
hyperbolic. The hyperbolicity of Eu ensures the existence of the strong stable foliation.

Problem 1.11. Consider the robustly transitive diffeomorphisms of a compact 3-mani-
fold having a splitting Ec ⊕ Eu where dim(Ec) = 2. Is the robust minimality of Fu a
dense property for these diffeomorphisms?

In higher dimensions the panorama of robustly transitive diffeomorphisms seems to be
much more open. For instance, the existence of a hyperbolic direction (and therefore of
an invariant foliation) is not guaranteed (see examples in [4]). So it should be important
to understand which geometrical object would replace the invariant foliations of the
partially hyperbolic theory.

This paper is organized as follows.
In § 2 we prove that there is an open and dense subset of T (M) of diffeomorphisms

such that both stable and unstable manifolds of a periodic point are dense.
In § 3 we prove that the existence of a complete s- or u-section is an open property.
In § 4 we show that the existence of a complete u-section generically implies the robust

minimality of the unstable foliation.
In § 5 we show that every Kupka–Smale diffeomorphism of T +(M) has a complete s-

or u-section. The first step of this section is to prove the existence of invariant manifolds
tangent to the central bundle of the periodic points, this property will substitute the
unique integrability of the central bundle. In the second step we get a complete section
by considering the union of the strong stable or strong unstable leaves through the points
in these central curves.

In § 6 (under the hypotheses of Theorem 1.6) we see that the local stable and unstable
manifolds of any compact periodic leaf of the central foliation are complete u- and s-
sections.

In § 7 we explain how to extend our results to the non-orientable case, assuming the
accessibility property (Theorem 1.5).
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In § 8 we extend our results to higher dimensions (Theorem 1.7).

2. Robust density of invariant manifolds of hyperbolic periodic points

Given a diffeomorphism f and a hyperbolic periodic orbit Pf of f we say that the
stable manifold of Pf , W s(Pf ), is robustly dense in M if there is a C1-neighbourhood
of f consisting of diffeomorphisms g such that W s(Pg) is dense in M , where Pg is the
continuation of Pf for the diffeomorphism g. We define in the same way the robust density
of the stable manifold of the orbit of Pf , and of the unstable manifold of Pf or its orbit.

In this section we show that the invariant manifolds of periodic orbits of generic diffeo-
morphisms of T (M) are robustly dense in M . This property is just a remark (see Propo-
sition 2.1) when the invariant manifold is two dimensional. For the one-dimensional man-
ifolds the key idea is to use the Hayashi’s Connecting Lemma [18], to get heterodimen-
sional cycles. After unfolding this cycle one gets that the closure of this one-dimensional
manifold contains in a robust way the two-dimensional stable manifold of a saddle of
different index (see [12] and § 2.1). Then, using Proposition 2.1, this one-dimensional
invariant manifold is robustly dense in the whole M .

Proposition 2.1. For every diffeomorphism f ∈ T (M) and every hyperbolic periodic
point P of index 1 of f , the unstable manifold of the orbit of P is robustly dense in M .
Similarly, the stable manifold of the orbit of any hyperbolic periodic point of f of index 2
is robustly dense in M .

Proof. Consider f ∈ T (M) and any hyperbolic periodic point P of f of index 1. Con-
sider any point z ∈ M whose forward orbit is dense in M . Then there is some big i such
that w = f i(z) is close enough to P so that the strong stable leaf F s(w) of w intersects
transversely the interior of Wu(P ) at some point y. Now, using that f exponentially
contracts the leaves of the strong stable foliation of f , one has that the ω-limit sets of
y, w and z are equal. In particular, one has ω(y) = ω(w) = ω(z) = M . So the orbit of
Wu(P ) is dense in M , that is, the stable manifold of the orbit of P is dense in M . As
the set T (M) is open and the density holds for any f ∈ T (M), the stable manifold of
the orbit of P is robustly dense in M , ending the proof of the lemma. �

The arguments in the proof of the previous proposition give somewhat more.

Scholium 2.2.

• Every f -invariant surface immersed in M transversely to Fs
f or Fu

f is dense in M .

• Proposition 2.1 and the item above hold in any dimension for robustly transitive
diffeomorphisms having a partial hyperbolic structure Es ⊕ Ec (Es is a uniformly
contracting bundle). In that case, every dim(Ec)-dimensional unstable manifold of
a periodic orbit is dense in M . A similar result holds for the stable manifolds.

The main result of this section is the following proposition.
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Proposition 2.3. Let V be an open subset of T (M) such that, for every f in V, there
is a hyperbolic periodic point Pf of index 1 depending continuously on f ∈ V.

Then there is an open and dense subset V1 of V such that, for every f ∈ V1, the stable
manifold of the orbit of Pf is dense in M .

Proof. By definition of T (M) any f ∈ T (M) has some periodic point Qf of index 2.
Up to cover V by open subsets, we can assume that Qf depends continuously on f ∈ V.

By the robust transitivity of f ∈ V we have that Pf and Qf belong to the same
transitive set (the ambient manifold M). Now [3, Proposition 1.1] implies that there is
a dense subset W ⊂ V such that, for every f ∈ W, one has that Wu(Pf ) ∩ W s(Qf ) �= ∅
and W s(Pf ) ∩ Wu(Qf ) �= ∅ (in fact, this part of the proposition is a direct consequence
of Hayashi’s Connecting Lemma).

Observe that, by the strong partial hyperbolicity of f , every point in Wu(Pf )∩W s(Qf )
corresponds to a transverse intersection of these two-dimensional invariant manifolds,
and each point in W s(Pf ) ∩ Wu(Qf ) is a quasi-transverse intersection of these one-
dimensional invariant manifolds. So Pf and Qf belong to a generic heterodimensional
cycle of codimension one as in [12]. Moreover, the strong partial hyperbolicity of f implies
that this cycle is far from homoclinic tangencies.

Now the fact in the proof of [6, Lemma 7.2] (which is just a reformulation of [12,
Proposition 3.6(b)]) implies that any f ∈ W belongs to the closure of an open set
Vf consisting of diffeomorphisms g such that the stable manifold of Pg meets any 2-
disk intersecting W s(Qg) and transverse to the strong stable foliation. In particular,
the closure of W s(Pg) contains W s(Qg), which is dense in M (recall Proposition 2.1).
Thus W s(Pg) is dense in M for every g ∈ Vf . In the next subsection we will state more
precisely the result on heterodimensional cycles which is the key of this argument (see
Proposition 2.6).

Finally, by construction, the set V1 =
⋃

f∈W Vf is the announced dense open subset of
V. The proof of the proposition is now complete. �

Remark 2.4. Let P be a hyperbolic periodic point (of any index) of f ∈ T (M) such
that the stable manifold W s(P ) of its orbit is dense in M . Then given any surface Σ

transverse to Fs
f one has that W s(P ) ∩ Σ is dense in Σ. This follows from the fact that

W s(P ) is saturated by the leaves of the strong stable foliation.

Corollary 2.5. Under the hypotheses of Proposition 2.3, the homoclinic class of Pf is
equal to M for all f ∈ V1.

As a consequence, there is an open and dense subset of T (M) of diffeomorphisms
whose hyperbolic periodic points of index 1 (or index 2) are dense in M .

2.1. Heterodimensional cycles: Proposition 2.6

We say that a diffeomorphism f has a codimension-one heterodimensional cycle if
there are hyperbolic periodic points Pf and Qf of indices k + 1 and k, respectively, such
that W s(Pf ) and Wu(Qf ) have non-empty transverse intersections and Wu(Pf ) and
W s(Qf ) have a quasi-transverse intersection (i.e. there is a point x of Wu(Pf )∩W s(Qf )
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such that TxWu(Pf ) + TxW s(Qf ) has dimension dim(M) − 1, where M is the ambient
manifold). This heterodimensional cycle is far from homoclinic tangencies if every g

in a C1-neighbourhood of f has no homoclinic tangencies associated neither to Pg nor
Qg.

Proposition 2.6. Let f be a C1-diffeomorphism having a codimension-one hetero-
dimensional cycle associated to the hyperbolic periodic points Pf and Qf , where the
index of Pf is bigger than the index of Qf . Suppose that the cycle is far from homoclinic
tangencies. Then there is a C1-open set Uf whose closure contains f such that

W s(Pg) ⊂ closure(W s(Qg)) and Wu(Qg) ⊂ closure(Wu(Pg))

for every diffeomorphism g ∈ Uf .

This kind of phenomenon, an invariant manifold of dimension k + 1 being contained
in the closure of the corresponding invariant manifold of dimension k, was first exhibited
in [11] for the unfolding of some heterodimensional cycles (in the context of parametrized
families of diffeomorphisms). In [2] using the blenders (a kind of skew horseshoe) was
shown that the unfolding of some heterodimensional cycles is a key mechanism for obtain-
ing robust transitivity. In fact, the blenders give a mechanism guaranteeing that (for
instance) the closure of a stable manifold of dimension k contains a stable manifold of
dimension strictly bigger than k in a robust way.

Later, in [12] was introduced the generalized blenders (hyperbolic sets with skew
Markov partitions) and proved that the previous result always holds in the context
of bifurcations of heterodimensional cycles in parametrized families of diffeomorphisms
(i.e. the closure of a stable manifold of the point of index k in the cycle contains the
stable manifold of the point of index k + 1 of the cycle in a robust way).

Proof. Proposition 2.6 is obtained as follows. The fact in the proof of [6, Lemma 7.2]
(which is just a reformulation of [12, Proposition 3.6(b)]) ensures that f belongs to
the closure of an open set Vf of diffeomorphisms g such that the stable manifold of Qg

transversely meets any (dim(M)−k)-disk intersecting W s(Pg) and transverse to a strong
stable foliation of W s(Pg). In particular, the closure of W s(Qg) contains W s(Pg).

To prove the proposition observe that Pg has a transverse homoclinic point and that
the stable manifold of Pg is contained in the closure of the stable manifold of Qg for
all g ∈ Vf . The Connecting Lemma now implies that there is a dense subset of Vf

consisting of diffeomorphisms g having a heterodimensional cycle associated to Pg and
Qg. By hypothesis, these cycles are far from tangencies. In this way one gets a sequence
gn, gn ∈ Vf , converging to f and such that every gn has a heterodimensional cycle far
from homoclinic tangencies.

Arguing as above, but now applying the previous construction to g−1
n , for each n we

get an open set Vn ⊂ Vf whose closure contains gn such that the closure of Wu(Pg)
contains Wu(Qg) for all g ∈ Vn. Finally, it is enough to take Uf = ∪nVn. �
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3. Proof of Theorem 1.9 (1): the existence of a complete section is an open
property

The aim of this section is to prove the following proposition (corresponding to Theo-
rem 1.9 (1)).

Proposition 3.1. The sets S(M) and U(M) of diffeomorphism admitting complete s

and u-sections, respectively, are open in T (M).

The first step of the proof is a general lemma about transverse sections of one-
dimensional foliations. Consider a foliation G of dimension one, a submanifold (with
boundary) T of M is a complete section if it cuts transversely every leaf of G.

Lemma 3.2. Consider a foliation G of dimension one having a complete section T . Then
there is KT = K > 0 such that every segment γ of length bigger than K contained in
a leaf of G intersects transversely the interior of T . As a consequence, the interior of T

contains a compact subset T0 which also is a complete section.

Proof. The proof is by contradiction. Suppose that the result is false. Then there is a
sequence of segments γn of length n contained in leaves of G such that γn ∩ T = ∅ for all
n. Let xn be the middle point of γn. Taking a subsequence, if necessary, we can assume
that (xn) converges to some point x. Since T is a complete section, there is a segment
γ containing x and contained in a leaf of G that intersects transversely T in its interior.
This implies that γn also intersects transversely T for all n big enough. This leads to a
contradiction and ends the first part of the lemma.

To prove the second part of the lemma consider a finite compact covering Ci of M

such that for each i there is a continuous function φi : Ci → int(T ) which associates to
each point x ∈ Ci a point of intersection of int(T ) and the segment of length K centred
at x and contained in a leaf of G. Then the compact set T0 is the union of the compact
sets φi(Ci). This completes the proof of the lemma. �

We are now ready to prove Proposition 3.1.

Proof. We prove, for instance, that the set U(M) is open. Let f ∈ T (M) and Tf be a
complete u-section. By Lemma 3.2 above, there are K > 0 and a compact subset T ′

f of
the interior of Tf such that every unstable segment of length K intersects transversely
T ′

f .
Consider now a compact neighbourhood T ∗

f of T ′
f in the interior of Tf such that

f(T ∗
f ) ⊂ int(T ∗

f ). One can choose T ∗
f containing f(Tf ). By the normal hyperbolicity of the

transverse section T ∗
f , for every g sufficiently C1-close to f , there is defined a continuation

T ∗
g of T ∗

f which is a g-invariant compact submanifold with boundary, i.e. g(T ∗
g ) ⊂ int(T ∗

g ).
For g close enough to f denote by T ′

g the projection of T ′
f into T ∗

g along the leaves of
Fu

f . Thus every segment of length 2K contained in a leaf of Fu
f meets transversely T ′

g.
Using now the continuous dependence of the foliations Fu

g on g, for every g sufficiently
C1-close to f , we have that every segment of length 3K of Fu

g intersects transversely T ∗
g .

So T ∗
g is a complete section for g.
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It remains to see that T ∗
g is a u-section. This follows from the normal hyperbolicity

of ω(Tf ) = ∩n�0f
n(Tf ). More precisely, since Tf is a complete u-section, ω(Tf ) consists

of normally hyperbolic circles and central segments (not necessarily pairwise disjoint)
whose extremes are periodic points of f (not necessarily hyperbolic). By the choice of T ∗

f ,
ω(Tf ) = ω(T ∗

f ). Observe now that the circles of ω(T ∗
f ) admit a continuous continuation

for every g close to f . On the other hand, the central segments of ω(T ∗
f ) only have (in

general) a lower semicontinuous continuation. Such a semicontinuity is due to the possible
disappearance of the non-hyperbolic extremities of the segments.

Take ω(T ∗
g ) = ∩n�0g

n(Tg). By the previous comment, for every g sufficiently close to f ,
the set ω(T ∗

g ) is the union of circles and central segments: the circles being continuations
of the circle components of ω(T ∗

f ) and the segments being the lower semicontinuous
continuation of the central segments of ω(T ∗

f ). This ends the proof of the proposition. �

Remark 3.3.

(1) The sections T ∗
g in the proof of Proposition 3.1 are complete u-sections depending

continuously on g in a neighbourhood of f .

(2) Observe that the constants KT ∗
g

in Lemma 3.2 can be taken independent of the
diffeomorphism g if the neighbourhood of f is small enough.

4. Proof of Theorem 1.9 (4)

In this section we prove the following proposition (corresponding to Theorem 1.9 (4)).

Proposition 4.1. There is a dense open subset Um(M) (respectively Sm(M)) of U(M)
(respectively S(M)) consisting of diffeomorphisms having a minimal strong unstable
(respectively stable) foliation.

We prove this proposition for the set U(M), the proof for S(M) is the same.

4.1. Perfect sections

A complete u-section Σ of Fu
f is called perfect if it is the (disjoint) union of finitely

many local stable manifolds of hyperbolic periodic points of f of index 2. In particular,
every perfect u-section is a complete u-section.

Let Up(M) be the subset of U(M) of diffeomorphism having a perfect u-section.

Proposition 4.2. The set Up(M) is a dense open subset of U(M).

Proof. We only need to prove that the set Up(M) is dense in U(M): in fact, Proposi-
tion 3.1 and Remark 3.3 (1) ensure that if f admits a perfect u-section then every g close
to f also has a perfect u-section (i.e. to have perfect sections is an open property).

We now prove the density of Up(M) in U(M). Take any f ∈ U(M) and let Tf be a
complete u-section for f . Observe first that, after a perturbation of f , we can assume
that f is Kupka–Smale (i.e. density and hyperbolicity of the periodic points and general
position of their invariant manifolds). Hence its dynamics is Morse-Smale in restriction
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to ω(Tf ). Thus given any point z of Tf there are two possibilities: either it belongs to
the stable manifold of a (hyperbolic) periodic point of index 2, or it belongs to the stable
manifold of a point of index 1.

Consider now all the periodic points Q1, . . . , Qm of index 1 of ω(Tf ). Take a constant
K = KTf

> 0 as in Lemma 3.2 and for each i ∈ {1, . . . , m} consider a segment γi of length
K contained in the strong unstable leaf of Qi and such that γi does not contain Qi. By
Lemma 3.2, every curve γi intersects Tf at some point zi (which is, by construction,
different from Qi). Now, after an arbitrarily small perturbation of f preserving the set
ω(Tf ) and its Morse-Smale dynamics, we can assume that the points zi do not belong to
the (one-dimensional) stable manifolds of the points Q1, . . . , Qm.

The λ-lemma now implies that the orbit of any strong unstable leaf of the new diffeo-
morphism f intersects the stable manifold of some point of index 2 in ω(Tf ).

To end the proof of the proposition we need the following lemma.

Lemma 4.3. Let Σ be a u-section of Fu
f intersecting the forward orbit of any leaf of

Fu
f . Then Σ is a complete u-section.

Proof. By hypothesis, given any x ∈ M there is n = nx such that the unstable leaf
through fn−1(x) intersects Σ, so the unstable leaf of fn(x) meets f(Σ) ⊂ int(Σ). By
transversality, there is a finite covering of M by open sets Ui such that for each i there
is ni such that the unstable leaf through fni(x) intersects the interior of Σ for every
x ∈ Ui.

Take n = sup(ni). Then f−n(Σ) is a complete u-section. By Lemma 3.2 there is K

such that any unstable segment of length K intersects the interior of f−n(Σ). Let
λ � supx∈M ‖f∗(x)‖ and take any unstable segment γ of length bigger than λn · K. Then
f−n(γ) is a unstable segment of length larger than K, and so f−n(γ) intersects the inte-
rior of f−n(Σ). Thus γ intersects the interior of Σ, and so Σ is a u-complete section,
ending the proof of the lemma. �

To end the proof of the proposition consider the periodic points P1, . . . , Pk of index 2
of ω(Tf ) and the union Σ of the local stable manifolds of these points. Recall that (by
the comment before the Lemma 4.3) the forward orbit of any strong unstable leaf of f

intersects Σ. Lemma 4.3 now implies that Σ is a complete u-section. To see that this
section is perfect just observe that, by construction, ω(Σ) = {P1, . . . , Pk}. The proof of
Proposition 4.2 is now complete. �

4.2. Minimality of the strong unstable foliation

In this section we end the proof of Proposition 4.1 by proving that the strong unstable
foliation of any diffeomorphism f in a dense open subset Um(M) of Up(M) is minimal.
Since, by Proposition 4.2, Up(M) is an open and dense subset of U(M), this implies
Proposition 4.1.
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We begin with the following lemma.

Lemma 4.4. Let f ∈ Up(M) and Tf be a perfect u-section for f with ω(Tf ) =
{P1, . . . , Pm}. Then the closure of any leaf of the strong unstable foliation Fu

f contains
the closure of the unstable manifold of some Pi ∈ ω(Tf ).

Proof. Observe that Lemma 4.3 implies that fn(Tf ) is a perfect u-section for every
n ∈ Z. Moreover, for every n > 0 sufficiently large, the set fn(Tf ) is contained in the
union of arbitrarily small local stable manifolds of the points Pi. This means that each
unstable leaf passes arbitrarily close to some of the Pi. The lemma now follows easily
from this fact. �

Lemma 4.5. Let f be a diffeomorphism of a compact manifold M and G an f -invariant
foliation such that the orbit of any leaf of G is dense in M . Then the leaf of G of any
periodic point p of f is dense in M .

Proof. Consider a periodic point p of f (of period k) and let C0 be the closure of the
leaf of G containing p. We need to prove that C0 = M . Let Ci = f i(C0). By hypothesis,
M = C0 ∪ C1 ∪ · · · ∪ Ck. As a finite union of compact sets with empty interiors has empty
interior, there is i such that Ci has non-empty interior. Thus every Cj also has non-empty
interior. Observe that, by construction, each set Ci is saturated for G.

We now claim that given any j ∈ {1, . . . , k} either the interiors of C0 and Cj are
disjoint or C0 = Cj . To prove this claim it suffices to observe that if int(C0) ∩ Cj �= ∅
then the leaf through f j(p) intersects C0 and so (since the set C0 is saturated by the
foliation G) the set Cj is contained in C0. This implies that Cj ⊂ C0. As a consequence,
C0 ∩ int(Cj) �= ∅. The inclusion C0 ⊂ Cj follows analogously, ending the proof of our
claim.

If all the sets Ci are equal to C0 we have C0 = M and we are done. Otherwise, the
boundary ∂C0 of C0 is a non-empty set saturated for G. Hence, by hypothesis, the f -
orbit of ∂C0 is dense in M . Thus there is j such that f j(∂C0) ∩ int(C0) �= ∅. In other
words, ∂Cj ∩ int(C0) �= ∅. By the claim C0 = Cj and so ∂C0 ∩ int(C0) �= ∅, which is a
contradiction. This ends the proof of the lemma. �

We can now finish the proof of Proposition 4.1.

Proof. Recall that, as Up(M) is a dense open subset of U(M) (Proposition 4.2), it is
enough to exhibit a dense open subset of Up(M) with minimal strong unstable foliations.

Consider any f ∈ Up(M) and let Tf be a perfect u-section for f . Let P1,f , . . . , Pn,f be
the periodic points of index 2 whose union of local stable manifolds is Tf . Take a small
open neighbourhood Uf of f such that, for any g ∈ Uf , the union Tg of the local stable
manifolds of the continuations P1,g, . . . , Pn,g is a perfect u-section for g.

Proposition 2.3 implies that there is an open and dense subset Vf of Uf of diffeo-
morphisms g such that the unstable manifold of the orbit of any point Pi,g is dense in
M .

Lemma 4.4 now implies that, for any g ∈ Vf , the closure of any leaf of Fu
g contains

a leaf through one of the Pi,g. In particular, the g-orbit of any leaf of Fu
g is dense in

https://doi.org/10.1017/S1474748002000142 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748002000142


Minimality of strong stable and unstable foliations 527

M . By Lemma 4.5 the unstable leaf through each Pi,g is dense. Finally, applying again
Lemma 4.4, we get that every unstable leaf of Fu

g is dense in M , for all g ∈ Vf . This
ends the proof of Proposition 4.1. �

5. Generic robust minimality of one of the two strong foliations: Proof of
Theorem 1.9 (2)

The goal of this section is to prove Theorem 1.9 (2). Recall that the Kupka–Smale dif-
feomorphisms form a residual subset of Diff1(M). By Corollary 2.5, the set of diffeomor-
phisms of T (M) whose hyperbolic periodic points are dense in M is open and dense in
T (M). Let now T +

K (M) be the residual subset of T +(M) consisting of Kupka–Smale
diffeomorphisms having periodic points dense in M . Recall that if f ∈ T +(M) then the
bundles Es, Eu and Ec are orientable and f preserves these orientations.

Theorem 1.9 (2) claims the density in T +(M) of the diffeomorphisms admitting com-
plete u- or s-sections, this fact follows immediately from the next proposition.

Proposition 5.1. Every diffeomorphism f ∈ T +
K (M) has a complete u- or s-section.

The steps of the proof of Proposition 5.1 are the following.

• Construction of invariant central curves of periodic points (§ 5.1 and Lemma 5.2).

• Analysis of the topology and the dynamics of the invariant central curves and classi-
fication of the periodic points according to this analysis (§ 5.2 and Proposition 5.6).

• Using the invariant central curves one constructs u-sections (or s-sections according
to the case) by considering the union of the local stable leaves of the points in this
central curve (§ 5.3 and Proposition 5.8).

5.1. Invariant central curves for periodic points

In this section we prove the following lemma.

Lemma 5.2. Let f ∈ T +
K (M) and p be a periodic point of f (of period k). Then there is

a periodic curve (of period k) γp : [−1, +∞[ → M starting at p (i.e. γp(0) = p), tangent
to Ec and positively oriented (according to the orientation of Ec) such that either γp

contains a periodic circle or it is an injective immersion of infinite length.

Observe that this lemma is trivial if the central bundle Ec is uniquely integrable. For
a generalization of this lemma without the orientation assumption see Remark 5.5.

In what follows we call the curves tangent to the central bundle Ec central curves.
We start the proof of Lemma 5.2 with a local argument guaranteeing the existence of

an fk-invariant local central curves tangent to Ec.

Lemma 5.3. Let p be a hyperbolic fixed point of index 2. Then there is an f -invariant
curve γ tangent to Ec and embedded in W s

loc(p), γ : [−1, 1] → M , such that γ(0) = p

and f(γ) ⊂ int(γ).

Observe that this result does not follow directly from the existence of weak stable
manifolds: we need a curve tangent to the central bundle at any point.
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Proof. Observe first that W s(p) is tangent at any point to the centre stable bundle
Ec ⊕ Es, hence Es and Ec define invariant line-fields in W s

loc(p). In fact, Es is tangent
(in W s(p)) to the local strong stable foliation of the restriction of f to W s

loc(p).
Consider now a rectangle R contained in W s

loc(p) and centred at p such that f(R) is
contained in the interior of R and whose boundary is the union of four segments �, r, u

and d, where � and r are contained in leaves of the local strong stable foliation and u

and d are transverse to the strong stable foliation. Moreover, oriented local stable leaves
go from d to u and oriented local central leaves go from � to r.

Choosing the rectangle R sufficiently thin in the central direction, we can assume that
any curve in R tangent to Ec and containing p does not intersect u ∪ d. Thus, by the
Cauchy’s theorem of existence of solutions of continuous differential equations, every
local solution through p (i.e. a curve tangent to Ec containing p) can be extended to a
maximal solution reaching both � and r.

By transversality, every maximal solution in R intersects any local leaf of Fs
f in R in

exactly one point. Since the stable leaves are oriented, for any family (γσ) of maximal
solutions starting at p in R and any local stable leaf we can consider the supremum of
the intersections of such a local leaf with the solutions γσ. We now define the supremum
γ of the family of solutions (γσ) taking the set of the suprema in each leaf.

It is easy to verify that the supremum of two maximal solutions is also a maximal
solution. From this one deduces that the supremum of an arbitrary family of maximal
solutions (γσ) can be obtained as the limit of an increasing sequence of maximal solutions.
Then, by the compacity of the set of maximal solutions (Ascoli–Arzelá), the supremum
is a maximal solution.

Denote by γ the supremum of the family of all the maximal solutions in R. We claim
that γ is f -invariant (this claim implies the lemma).

To prove the claim observe that, since f preserves the orientations of Es and Ec and
these bundles are f∗-invariant, the image of γ by f is the supremum of all maximal
solutions in f(R) ⊂ R. Notice that γ ∩ f(R) is a maximal solution in f(R), so it is below
f(γ). Let γ1 be an extension of f(γ) to a maximal solution in R. By definition of γ, the
curve γ1 is below γ. Hence the curves γ and γ1 coincide over f(R). We have shown that
f(γ) = γ ∩ f(R), ending the proof of the claim (and thus of the lemma). �

Let us observe that there are similar results for periodic points of index 2 and for
periodic points of index 1.

Lemma 5.4. Let p be a hyperbolic periodic point of period k and index 2 of f and
γ : [0, 1] → M be an fk-invariant central curve starting at p (i.e. γ(0) = p) and contained
in W s(p). Let Υp = ∪n∈Nf−nk(γ). Then there are two possibilities:

• either the length of Υp is infinite; or

• the closure of Υp is a compact central segment whose extremes are p and q, where
q is a hyperbolic periodic point of index 1 whose period is a divisor of k.

There is a similar result for points p of index 1, in this case if the length of Υp is finite
then the extreme q has index 2.
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Proof. Assume that the length of Υp is finite (otherwise we are done). By construction,
the extreme q of Υp different from p is a periodic point whose period divide k. Analysing
the dynamics of fk in this segment, since it is tangent to Ec, we have that (except the
point p) this curve is contained in the unstable manifold of q. Thus Ec ⊕ Eu is the
unstable bundle of q. Thus q has index 1, ending the proof of the lemma. �

We are now ready to end the proof of Lemma 5.2. We repeat the procedure in
Lemma 5.4 starting at the point p = p0 and argue inductively. Observe that the existence
of the curves γ satisfying Lemma 5.4 follows from Lemma 5.2. At each inductive step we
obtain an fk-invariant curve having either infinite length (and in this case we are done)
or a point of different index and period bounded by k (the period of the initial periodic
point).

In this way we get a sequence of points p0, q0, p1, q1, . . . , pk, qk, where the pi have
index 2 and the qi index 1, qi is a extreme of Υpi , and pi+1 is a extreme of Υqi . Since
the number of periodic points of f of period less than k is bounded, at some stage of the
construction we get a curve of infinite length (and we are done) or a first j such that
pi = pj or qi = qj for some i < j. In this last case and assuming (for instance) that
pi = pj , we have that the curve Υ = ∪j−1

t=0 (Υpt ∪ Υqt
) contains a circle. More precisely,

observing that, by construction, Υqj−1 is tangent to pj and that the curves Υr follows
the orientation of Ec we have that the curve ∪j−1

t=i (Υpt ∪ Υqi) is a circle. The proof of
Lemma 5.2 is now complete. �

Let us make two remarks about the proof of Lemma 5.2 that we will use in the non-
orientable case.

Remark 5.5 (extensions of Lemma 5.2).

Non-transitive case: the conclusions in Lemma 5.2 also hold (and the proof is exactly
the same) for Kupka–Smale diffeomorphisms f with a partially hyperbolic splitting
TM = Es ⊕ Ec ⊕ Eu defined in the whole manifold such that the bundles Es, Eu and
Ec are orientable and f preserve these orientations.

Non-transitive and non-orientable case: suppose now that Ec is orientable and f

preserves this orientation, but either some of the bundles Es or Eu is non-orientable
or the bundles Es and Eu are orientable and f does not preserve some of these orien-
tations. In this case Lemma 5.2 can be stated in the following way.

Given any hyperbolic periodic point p of f of period k there is a periodic
curve (of period less than 4k) γp : [−1, +∞[ → M starting at p (i.e. γp(0) =
p), tangent to Ec and positively oriented (according to the orientation of Ec)
such that either γp contains a periodic circle or it is an injective immersion
of infinite length.

Proof: it is enough to consider a lift f̃ of f to a covering of M corresponding to the
possible local orientations of Es and Eu. This lift may be not transitive, but it is
Kupka–Smale and strongly partially hyperbolic (for completeness see comments in § 7).
Thus we can apply the first item of this remark.
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5.2. Topology and the dynamics of central manifolds:
classification of the periodic points

We now classify the periodic points p of f ∈ T +
K (M) in three (a priori non-disjoint)

classes. Observe that, since Ec is not necessarily uniquely integrable, to a periodic point
p it is possible to associate (a priori) several central curves γp satisfying Lemma 5.2.

By construction, the period of any periodic point in γp divide the period of p. Thus,
since the diffeomorphism f is Kupka–Smale, the curve γp only contains finitely many
periodic points. Hence, if γp is an injective immersion, the last periodic point of γp

(running γp in the positive orientation) is well defined. Denote such a point by q(γp).

(1) Let Γ1 be the set of periodic points p of f such that there is an fk-invariant central
curve γp containing a periodic closed curve (k is the period of p).

(2) Let Γ2 be the set of periodic points p of f such that there is an fk-invariant central
curve γp being an injective immersion and whose last periodic point q(γp) has index
2 (so q(γp) is an attractor for the restriction of fk to γp).

(3) Let Γ3 be the set of periodic points p of f such that there is an fk-invariant central
curve γp which is an injective immersion and whose last periodic point q(γp) has
index 1 (so q(γp) is a repellor for the restriction of fk to γp).

As f preserves the orientation of Ec each set Γi is f -invariant. Moreover, the union of
the sets Γi is the set of periodic points of f which (by hypothesis) is dense in M . Hence
the closure of some Γi has non-empty interior. Thus, by the transitivity of f , such a Γi

is dense in M . Proposition 5.1 now follows directly from Proposition 5.6 below.

Proposition 5.6. Let f ∈ T +
K (M). The following hold.

• If Γ2 is dense in M , then there is a complete u-section for f .

• If Γ3 is dense in M , then there is a complete s-section for f .

• If Γ1 is dense in M , then there are (simultaneously) complete u- and s-sections for
f .

We will prove that if the union Γ of Γ1 and Γ2 is dense in M , then there exists a
complete u-section for f . This will be done in the next section.

5.3. Construction of u-sections

We say that a compact central curve J is c-contracting if it is a circle or a simple
segment such that fk(J) is contained in the interior of J for some k > 0. The local stable
manifold of a central curve J , denoted by W s

loc(J), is the union of the local stable leaves
of the points in J .

Lemma 5.7. Let J be a c-contracting central curve. Then the local stable manifold of
the orbit of J is a u-section.
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Proof. Remark that the only thing to verify is that this local stable manifold is a
surface tangent to Es ⊕ Ec. This fact follows as in the proof of the local stable manifold
theorem. �

Proposition 5.8. Suppose that Γ = Γ1 ∪ Γ2 is dense in M . Then given any point z

there are a c-contracting central curve J and a neighbourhood Uz of z such that the local
unstable leaf of y intersects W s

loc(J) for every y ∈ Uz.

This proposition immediately implies Proposition 5.6: by compacity, there are finitely
many points z1, . . . , zn such that the neighbourhoods Uz1 , . . . , Uzn

cover M , then the
union of their corresponding u-sections is a complete u-section.

We will use the following remark which follows immediately from the continuity of the
central bundle Ec.

Remark 5.9. There is δ > 0 such that every central curve of length less than δ has no
auto-intersections. In particular, the length of any circle contained in a central curve is
at least δ.

Lemma 5.10. Suppose that the set Γ is dense in M . Then for every z ∈ M there are
a neighbourhood Uz of z, a periodic point p ∈ Γ , and a segment I of length δ (δ as
Remark 5.9) contained in a curve γp given by Lemma 5.2 such that the union of the local
strong stable manifolds of the points in the interior of I intersects the local unstable leaf
of every point in Uz.

Proof. Consider the local unstable leaf Fu
loc(z) of z and the topological surface ∆

obtained considering the union of the local stable leaves of the points in Fu
loc(z). The

set (Uz \ ∆) has two connected components, say U �
z and Ur

z , where the points in U �
z

are at the left of the points Ur
z (following the orientation of the central leaves). By the

density of Γ in M , there is a hyperbolic periodic point p ∈ Γ ∩ U �
z . If Uz is sufficiently

small (diameter less than δ/2), then the segment I of length δ in γp starting at p meets
∆, ending the proof of the lemma. �

Proof of Proposition 5.8. To prove the proposition we now need to modify (by extend-
ing or shrinking) the segment I given by Lemma 5.10 in order to get the announced
c-contracting curve J .

Recall that I is contained in the curve γp, γp : ]−1, +∞[ → M , parametrized following
the positive orientation of Ec. Let I = γp([0, s]) and k the period of p.

To construct J we need to distinguish four cases, according to the indices of the first
and the last periodic points of I.

The point p has index 2 and the last periodic point γp(t) in I has index 2.
Then s � t and, for every ε > 0 small enough, the curve J = γp([−ε, s + ε]) contains
the same periodic points as γp([0, t]) and fk(J) is contained in the interior of J . In
this case J is a c-contracting curve.

The point p has index 1 and the last periodic point γp(t) in I has index 2. Then
s � t and, for every ε > 0 small enough, the curve J = γp([ε, s + ε]) contains every
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periodic point of γp([0, s]) except the point p, and fk(J) is contained in the interior of
J . In this case J is a c-contracting curve.

Moreover, the union of the local strong stable manifolds of the points in J intersects
transversely the local strong unstable manifold of every point close to z.

The point p has index 2 and the last periodic point γp(t) in I has index 1. As
p ∈ Γ , there is a periodic point q = γp(r), r > s, of index 2. Then, for every ε > 0
small enough, the curve J ′ = γp([−ε, r + ε]) is such that fk(J ′) is contained in the
interior of J ′.

Observe that J ′ may exhibit auto-intersections and there are the following possibilities:
J ′ is either a circle or a c-contracting curve (in these cases we take J = J ′) or the
union of a circle C and a segment H having one extremity in the circle (where C ∩ H

is a periodic point). In this last case we need to shrink J ′.

The point p has index 1 and the last periodic point γp(t) in I has index 1.
Since p ∈ Γ , there is a periodic point q = γp(r), r > s, of index 2. Then, for every
ε > 0 small enough, the curve J ′ = γp([ε, r + ε]) is such that fk(J ′) is contained in the
interior of J ′.

Moreover, if ε is small enough, the union of the local strong stable manifolds of the
points in J ′ meets transversely the local strong unstable manifold of every point close
to z.

As above, J ′ is either a circle or a c-contracting curve (in this case, J = J ′) or the
union of a circle C and a segment H. In this last case we will shrink J ′.

It remains to consider the case where J ′ = C ∪ H (C is a circle, H is a segment, and
H ∩ C is a periodic point), corresponding to items (3) and (4) above. In such a case we
will replace J ′ by a smaller curve J being a circle or a c-contracting curve.

Let w be the point of J ′ whose local strong stable leaf intersects the local unstable leaf
of z. There are the following possibilities for the position of w in J ′.

• w ∈ C: in this case we let C = J (a circle).

• w �∈ C (i.e. w is in the interior of H): by construction of J ′, there are two possibil-
ities.

– Either the point w belongs to the stable manifold of some periodic point q of
index 2: in this case let J be the intersection of the local stable manifold of q

and J ′. Observe that J is a c-contracting curve.
– Or w is a periodic point of index 1: In this case, by construction of J ′, there

are two periodic points q1 and q2 of index 2 in the curve J ′, q1 ∈ H and
q2 at the right of w, such that the sub-interval [q1, q2] of J ′ joining q1 and
q2 contains w. Then we take J as the intersection of J ′ and the local stable
manifold of [q1, q2]. The resulting interval is a c-contracting curve.

The comments above end the proof of Proposition 5.8. �
The proof of Proposition 5.6 is now complete. �
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6. Proof of Theorem 1.6 (Theorem 1.9 (3))

First let us recall that, for f ∈ T0(M) the bundle Ec is uniquely integrable, so there is
a central foliation Fc

f tangent to Ec. Moreover, for f ∈ T +
0 (M) the foliations Fs

f , Fc
f

and Fu
f are all orientable and the diffeomorphism f preserves these orientations. Finally,

by Propositions 3.1 and 4.1, to prove Theorem 1.6 it is enough to construct a pair of
complete (u- and s-) sections for a dense subset of T +

0 (M).
Let γ be a periodic compact leaf of the central foliation. For simplicity, we will assume

that γ is fixed, the periodic case follows similarly. The curve γ is a normally hyper-
bolic compact manifold, so that one can speak of the stable and unstable manifolds,
W s(γ) and Wu(γ), of γ. These manifolds are the union of the stable and unstable leaves
(respectively) through the points in γ. As the bundles Es and Eu are one dimensional
and oriented, the manifolds W s(γ) and Wu(γ) are two-dimensional cylinders. Then the
set (W s(γ)\γ) has two connected components, denoted by W s

−(γ) and W s
+(γ), following

the convention that the oriented leaves of Fs
f go from W s

−(γ) to W s
+(γ). Both W s

−(γ)
and W s

+(γ) are f -invariant so, by Scholium 2.2, they are both dense in M .
Similarly, given any point x we let F c

−(x) and F c
+(x) be the two connected components

of (F c(x) \ x), where the points in F c
−(x) are at the left of the points of F c

+(x) following
the orientation of the central manifold.

We now construct a complete u-section for f . The construction of the complete s-
section is obtained analogously.

Proposition 6.1. Every local stable manifold of γ is a complete u-section for f .

Proof. One of the difficulties of the proof of the proposition arises from the fact that
W s(γ) is not a priori saturated by the central foliation (recall that it is saturated for
Fs

f ). The next lemma allows us to bypass this difficulty.

Lemma 6.2. Consider the component W s
+(γ) of W s(γ). There is i ∈ {−, +} such that,

for all x ∈ W s
+(γ), the component F c

i (x) is contained in W s
+(γ).

There is a similar result for the component W s
−(γ).

Proof. The fact that the lemma holds for x in a small neighbourhood U of γ in W s
+

is a general fact for foliations on surfaces in the neighbourhood of a compact leaf. Now,
observing that W s

+(γ) =
⋃

i∈Z
f i(U), we extend this property to the whole W s

+(γ). �

End of the proof of Proposition 6.1. Given f ∈ T +
0 (M) consider any leaf Fu of

the strong unstable foliation and an (arbitrarily small) segment Lu of it. For each point
x ∈ Lu take a small segment of the central foliation centred at x, say Lc(x) ⊂ F c(x). As,
by hypothesis, f is dynamically coherent the union of these central segments is a disk
Σ tangent to Ec ⊕ Eu, thus transverse to the strong stable foliation. Denote by Σ− and
Σ+ the two connected components of (Σ \ Lu), where the central leaves go from Σ− to
Σ+.

Notice that W s
+(γ) remains dense after removing from it the local stable manifold of

γ. Let W s
+,0(γ) be this reduced separatrix. By construction, there is δ > 0 such that, for
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each x ∈ W s
+,0(γ), the stable segment of length δ centred at x is contained in W s

+(γ).
Now, using the density of W s

+,0(γ), we get that W s
+(γ) ∩ Σ is dense in Σ.

We fix a pair of points x− ∈ Lc
−(x) ⊂ Σ− and x+ ∈ Lc

+(x) ⊂ Σ+. Since W s
+(γ) ∩ Σ is

dense in Σ there are intersections z± of W s
+(γ) ∩ Σ± arbitrarily close to the points x±.

Observe that by definition (orientation criterion) one has that

• F c
+(z−) intersects Lu,

• F c
−(z+) intersects Lu.

Let i ∈ {+, −} be such that the component F c
i (w) of (F c(w)\w) is contained in W s

+(γ)
for all w ∈ W s

+(γ), recall Lemma 6.2. By the previous comment it follows that if i = +
then F c

+(z−) intersects Lu. Otherwise, i = −, F c
−(z+) intersects Lu. In both cases we

have that W s
+(γ) intersects (transversely) Lu, ending the proof of the proposition. �

7. Extensions of the theorems for non-orientable bundles

The proof of Proposition 5.1 in the general case allows many possibilities: each bundle
Es, Eu and Ec may be orientable or not, and the diffeomorphism f may preserve or not
these orientations. We split T (M) into the following subsets.

• T c+(M) is the subset of T (M) of diffeomorphisms f such that Ec is orientable
and f preserves this orientation. This set is open and closed in T (M) and contains
T +(M).

• T odd(M) is the subset of T (M) of diffeomorphisms f such that Ec is orientable, f

reverses this orientation, and f has a hyperbolic periodic of odd period. This set is
open in T (M).

• T −(M) is the set of diffeomorphisms f in T (M) having a hyperbolic periodic orbit
p (of period k) such that fk

∗ (p) reverses the orientations of Ec(p). Observe that this
set is open.

• T ±(M) is the interior of (T (M) \ (T c+(M) ∪ T −(M))), that is, the set of diffeo-
morphisms f ∈ T (M) such that Ec does not admit any f -invariant orientation,
but for every periodic point q of f and every g close enough to f , gr

∗(q) preserves
the orientations of Ec(q) (where r is the period of q).

As in the previous sections we denote by T c+
K (M), T −

K (M) and T ±
K (M) the subsets of

T c+(M), T −(M) and T ±(M), respectively, consisting of Kupka–Smale diffeomorphisms
whose periodic points are dense in M .

By definition, the union T ±(M) ∪ T c+(M) ∪ T −(M) is a dense open subset of T (M).
Recall that Ta(M) is the subset of T (M) of diffeomorphisms having the robust accessi-
bility property.

The next result generalizes Proposition 5.1 and implies Theorem 1.5.

Proposition 7.1. The set S(M) ∪ U(M) contains a dense open subset of T c+(M) ∪
T odd(M) ∪ T −(M) ∪ Ta(M).

In the next subsections we will prove this result.
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7.1. Existence of central invariant curves in the non-orientable case.
Proof of Proposition 5.1 for f ∈ T c+(M)

We begin this section by doing some general comments about coverings of M , the lift
of transitive diffeomorphisms to these coverings, and their u- and s-sections.

Lifts of transitive diffeomorphisms

Given f ∈ T (M) let π : M̃ → M be the covering of 8 leaves corresponding to the
different orientations of the stable, unstable and central bundles of f . The diffeomorphism
f acts in a natural way on these orientations, so that f has a lift f̃ defined on M̃ . Observe
that diffeomorphism f̃ is strongly partially hyperbolic, its stable, unstable and central
bundles are orientable, and f̃ preserves these orientations. However, f̃ may fail to be
transitive. In fact, this is the main difficulty that appears in the non-orientable case. For
diffeomorphisms in T c+(M) ∪ T −(M) ∪ T odd(M) this difficulty may be bypassed. For
diffeomorphism in T ±(M) we will use the accessibility property (in fact, this is the only
point in the paper where this condition is used).

Consider also the covering πc : Mc → M of two leaves corresponding to the two orien-
tations of the central bundle. Denote by fc the corresponding lift of f to Mc. As above,
fc is strongly partially hyperbolic and it is not necessarily transitive.

Finally, observe that f is Kupka–Smale if and only if fc is Kupka–Smale. Moreover,
the periodic points of f are dense in M if and only the periodic points of fc are dense in
Mc. Similar results hold replacing fc and Mc by f̃ and M̃ .

Projections and lifts of sections

First, observe that M̃ is a covering of Mc and f̃ is a lift of fc.
Observe that the projection by πc of any complete s- or u-section for fc (in Mc) onto

M is a complete s- or u-section for f . Conversely, the lift of any complete u-section for
f (in M) to Mc is a complete u-section for fc.

By the comments above and Remark 5.5, Lemma 5.2 can be now applied to the lift f̃

of f , obtaining the following.

Remark 7.2. Let p be a periodic point of f (of period k), pc a lift of p in Mc, and p̃

a lift of pc in M̃ . Denote by γ̃ the f̃ k̃-invariant curve starting at p̃ (k̃ is the period of
p̃) given by Remark 5.9. Let γc be the projection of γ̃ onto Mc. Then γc is f k̃

c -invariant
curve positively oriented. Observe that the period of pc is k̃, k̃/2 or k̃/4.

Moreover, if the bundle Ec is orientable and f preserves this orientation, the projection
γ of γ̃ is a f k̃-invariant curve positively oriented.

7.1.1. Proof of Proposition 7.1 for diffeomorphisms in T c+(M)

Consider any f ∈ T c+
K (M), that is the bundle Ec is orientable and f preserves this

orientation. Then the sets Γ1, Γ2 and Γ3 defined exactly as in § 5 are f -invariant and their
union is dense in M . As in the case f ∈ T +

K (M), the closure of some Γi has non-empty
interior. Thus, by the transitivity of f , such a closure is the whole M . From this fact we
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now deduce that any f ∈ T c+
K (M) has a complete u- or s-section, ending the proof of

Proposition 7.1 for diffeomorphisms in T c+(M).

7.1.2. Proof of Proposition 7.1 for diffeomorphisms in T odd(M)

As in the previous case, for f ∈ T odd
K (M) the orientability of Ec allows us to define

the sets Γi, whose union is dense in M . These sets are not necessarily invariant, but they
are f2-invariant. Thus if f2 is transitive the proof of the previous case works in this one.
The next lemma ensures that f2 is transitive for generic diffeomorphisms f of T odd

K (M),
implying Proposition 7.1 for f ∈ T odd

K (M).

Lemma 7.3. Let f ∈ T odd
K (M). Suppose that f has a periodic point p of odd period

such that its homoclinic class is the whole M . Then the set of periodic points of odd
period of f is dense in M and f2 is transitive.

Proof. Just observe that the homoclinic class of p is the closure of a union of hyperbolic
sets containing p and having a Markov partition. Now given any point q there are periodic
orbits passing arbitrarily close to p and q. If all these orbits have even periods then we
can consider new orbits whose itineraries are obtained by adding the itinerary of p (i.e. an
odd number of iterates). This completes the proof of the first part of the lemma.

Consider now a point x whose forward orbit is dense in M and a point q of odd period
k. Then there is a sequence ni such that fni(x) converges to q. Observe that fni+k(x)
also converges to q. Then either ni or ni + k contains a subsequence of even numbers.
Thus the closure of the orbit of x by f2 contains all the periodic points of odd period
and so it is dense in M . This completes the proof of the lemma. �

7.1.3. Lift of homoclinic classes. Proof of Proposition 7.1 for diffeomorphisms in
T −(M)

Let us state a general result about the lift of homoclinic classes. Given a hyperbolic
periodic point denote by H(p, f) its homoclinic class (the closure of the transverse inter-
sections of its invariant manifolds).

Lemma 7.4. Let p be a hyperbolic periodic point of f and p1 and p2 the lifts of p to
Mc. Then

πc(H(p1, fc)) = πc(H(p2, fc)) = H(p, f),

the homoclinic classes of p1 and p2 are interchanged by the automorphism of the covering
πc, and

H(p1, fc) ∪ H(p2, fc) = π−1
c (H(p, f)).

Moreover, if the points p1 and p2 are in the same fc-orbit or they are homoclinically
related, then H(p1, fc) = H(p2, fc) = π−1

c (H(p, f)).

Proof. Observe that the invariant manifolds of pi projects onto the (corresponding)
invariant manifold of p and that W i(p1) ∪ W i(p2) = π−1

c (W i(p)), i = s or u.
Consider a homoclinic point x of p, x ∈ W s(p) ∩ Wu(p), and let x1 and x2 be the

two lifts of x to Mc. Up to changing the indices of these points, we can assume that
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x1 ∈ W s(p1). Then, using the automorphism of the covering, we get that x2 ∈ W s(p2).
Similarly, if x1 ∈ Wu(p2) then x2 ∈ W s(p1), and if x2 ∈ Wu(p2) then x1 ∈ W s(p1).

Suppose first that x1 ∈ Wu(p2) and x2 ∈ Wu(p1). Therefore, x1 ∈ W s(p1) ∩ Wu(p2)
and x2 ∈ Wu(p1) ∩ W s(p2). By the partial hyperbolicity of f̃ , these intersections are
transverse. Thus p1 and p2 are homoclinically related and their homoclinic classes are
equal. Now it is easy to check that H(pi, fc) = π−1

c (H(p, f)).
For the remaining case, i.e. for every homoclinic point x ∈ W s(p)∩Wu(p) one has that

the lifts x1 and x2 are such that (up to change of indices) xi ∈ W s(pi)∩Wu(pi), i = 1, 2.
In this case, to get H(pi, fc) = π−1

c (H(p, f)), it is enough to consider the closure of these
transverse intersections of W s(pi) and Wu(pi). This ends the proof of the lemma. �

Remark 7.5. Let p be a hyperbolic periodic point of f of period k.

• If fk reverses the orientations of Ec(p), then the lifts p1 of p2 of p in Mc are in the
same fc-orbit. Thus, by Lemma 7.4, the lift of the homoclinic class of p to Mc is a
homoclinic class of fc.

• Otherwise, if fk preserves the orientations of Ec(p), Lemma 7.4 ensures that the lift
of the homoclinic class of p is the union of two homoclinic classes (corresponding
to the homoclinic classes of the two lifts p1 and p2 of p), which (a priori) may be
different.

We are now ready to prove Proposition 7.1 for diffeomorphisms f in T −
K (M). Follow-

ing [3, Théorème B], there is a residual subset R−
K(M) of T −

K (M) of diffeomorphisms
such that the homoclinic class of any periodic point of f is the whole M . By defini-
tion of T −

K (M), there is a periodic point p of f such that fk
∗ (p) (k the period of p)

reverses the orientation of Ec(p). The first part of Remark 7.5 implies that the homo-
clinic class of pc is the whole Mc, where pc is any lift of p in Mc. In particular, fc is
transitive.

Observing that fc preserves the orientation of the central bundle Ec, the proof follows
(in Mc) as for f ∈ T +

K (M). This ends the proof of Proposition 7.1 for diffeomorphisms
in T −(M).

7.1.4. End of the proof of Proposition 7.1: the case f ∈ T ±
K (M)

In view of the two previous subsections to end the proof of Proposition 7.1 it remains
to consider the diffeomorphisms f in T ±

K (M). As in previous cases, there is a residual
subset R±

K(M) of T ±
K (M) of diffeomorphisms such that every homoclinic class is equal

to M . By Lemma 7.4, if there is some periodic point p of f having a homoclinic class
whose lift to Mc is a unique homoclinic class then such a class is Mc. In this case we
can construct a complete section as in the previous section. Thus it remains to consider
the case where the lift to Mc of any homoclinic class of f is the union of two different
homoclinic classes. To deal with this situation we need the following proposition.
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Proposition 7.6. Let f ∈ T (M) be a diffeomorphism such that

• there is a hyperbolic periodic point p of f whose homoclinic class is equal to M ,
and

• f satisfies the accessibility property.

Then the lift of the homoclinic class of p to Mc is the whole M . In particular, the lift fc

of f is transitive.

Arguing as in the previous cases we have that this proposition implies Proposition 7.1
for f ∈ T ±

K (M).

Proof. The proof is by contradiction: let p1 and p2 be the two lifts of p to Mc. Assume
that H(pi, fc) �= Mc, i = 1, 2. By Lemma 7.4, the orbits of p1 and p2 are disjoint and these
two points are not homoclinically related. Moreover, again by Lemma 7.4, H(p1, fc) ∪
H(p2, fc) = Mc and these homoclinic classes are interchanged by the automorphism of
the covering πc. Thus these two classes have both non-empty interior and the union of
their interiors is dense in Mc.

We claim that if the intersection A of these two interiors is non-empty, then A is dense
in Mc. In fact, we have the following:

• the projection of A by πc in M is f -invariant, hence it is dense in M (due to
transitivity of f),

• the set A is invariant by the automorphism of the covering.

These two facts imply that the homoclinic classes of p1 and p2 are both Mc, ending the
proof of the proposition when A is non-empty.

It remains to consider the case in which these two interiors are disjoint (A = ∅). In
this case the boundaries of the homoclinic classes of p1 and p2 are equal and fc-invariant.
Denote by ∂ such a boundary.

Lemma 7.7. The set ∂ is saturated by Fs
f and Fu

f .

Before proving this lemma, let us observe that it contradicts the accessibility hypoth-
esis, ending the proof of Proposition 7.6.

Proof. By continuity of the foliations Fs
f and Fu

f , it is enough to see that the interiors
of the homoclinic classes of p1 and p2 are both saturated by Fs

f and Fu
f .

As the periodic orbits homoclinically related to p1 are dense in H(p1, fc), there is a
periodic orbit q homoclinically related to p1 in the interior of H(p1, fc). Observe that
H(p1, fc) is fc-invariant, thus the invariant manifolds of q are contained in the interior
of H(p1, fc). Thus, since H(p1, fc) is closed,

closure(W s(q)) ∪ closure(Wu(q)) ⊂ H(p1, fc).

To see the converse inclusion, observe that, since q is homoclinically related to p1, the
closure of each invariant manifold of q contains the corresponding invariant manifold of
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p1, which, on its turn, contains a dense subset of H(p1, fc). Thus the invariant manifolds
of q are both dense in H(p1, fc). Hence

H(p1, fc) ⊂ closure(W s(q)), closure(Wu(q)).

Thus
closure(W s(q)) = closure(Wu(q)) = H(p1, fc).

As the closure of saturated set is saturated, and W s(q) and Wu(q) are saturated sets,
this ends the proof of the lemma. �

Now the proof of Proposition 7.6 is complete. �

7.2. Theorem 1.6 in the non-orientable case

We have the following generalization of Theorem 1.6.

Theorem 7.8. Consider the subset T a
0 (M) of T0(M) of diffeomorphisms satisfying the

robust accessibility property. Then the open set Os(M) ∩ Ou(M) of diffeomorphisms
whose strong stable and unstable foliations are both robustly minimal is dense in T a

0 (M).

The proof follows arguing exactly as in the previous subsections, where the orientation
hypothesis was replaced by the robust accessibility property.

As in § 7.1.4, if f ∈ T0(M) has a unique accessibility class, then it admits a transitive
lift f̃ on some orientations covering.

8. Generalization to higher dimensions. Proof of Theorem 1.7

Let M be a compact manifold of any dimension. Let us recall that T1(M) denotes the
set of robustly transitive diffeomorphisms f of M whose central bundle has dimension 1,
is uniquely integrable and admits an f -invariant orientation.

Proposition 8.1. Every Kupka–Smale diffeomorphism of T1(M) whose periodic points
are dense in M has a complete s- or u-section.

The proof of this proposition is identical to the proof of Proposition 5.1, observing
that the unique integrability of the central bundle substitutes trivially Lemma 5.2. As
the Kupka–Smale diffeomorphisms whose periodic points are dense in M is dense in
T1(M), this completes the proof of Theorem 1.7. �

As in the previous cases, we can state Theorem 1.7 in the non-orientable case for
diffeomorphisms with the robust accessibility property.
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