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Nontame Morse–Smale flows and odd
Chern–Weil theory
Daniel Cibotaru and Wanderley Pereira
Abstract. Using a certain well-posed ODE problem introduced by Shilnikov in the sixties, Minervini
proved the currential “fundamental Morse equation” of Harvey–Lawson but without the restrictive
tameness condition for Morse gradient flows. Here, we construct local resolutions for the flow of
a section of a fiber bundle endowed with a vertical vector field which is of Morse gradient type
in every fiber in order to remove the tameness hypothesis from the currential homotopy formula
proved by the first author. We apply this to produce currential deformations of odd degree closed
forms naturally associated to any hermitian vector bundle endowed with a unitary endomorphism
and metric compatible connection. A transgression formula involving smooth forms on a classifying
space for odd K-theory is also given.

1 Introduction

The well-known Morse Lemma gives the canonical form of a Morse function f on a
compact, Riemannian manifold (M , g) around a critical point but does not provide
information about the gradient flow. On the other hand, the Hartman–Grobman
theorem gives the topological conjugacy class of the gradient flow around a critical
point. However, there are important situations where both of these classical results
are insufficient as in the next context. Suppose one is interested in taking a smooth
submanifold S and “flow it through” a critical point. More precisely, suppose S lies
within a regular level c − ε of the Morse function “before” a critical level and we look
at its “trace” at a regular level c + ε, meaning the intersection of the (forward) flow lines
determined by S with level c + ε. Obviously, this “trace” can be empty if S is contained
in the stable manifold of the critical point. So a transversality condition with the stable
manifold is naturally imposed. The natural question is can one say anything about
the structure of the closure of the “trace” at level c + ε? One expects to get at least a
rectifiable set because of transversality. In order to show this, one aims in general to
prove something slightly stronger, namely the existence of a manifold with corners
of the same dimension as the submanifold and a proper “projection” which maps to
the closure of the trace and is one-to-one almost everywhere. This is the resolution.
In order to make this rigorous, a “tameness” condition on the triple (M , g , f ) is very
helpful. We recall the definition from [12]. A Morse function f is called tame if around
each critical point one can find coordinates that fulfill two requirements, the metric is
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flat in these coordinates and the Morse function has the canonical form of the Morse
Lemma. An immediate consequence of tameness is that the eigenvalues of the Hessian
of f are ±1. This gives an idea of how restrictive tameness is. On the positive side, the
flow has the simplest form possible and one can prove, by performing a blow-up of
the intersection of the submanifold S with the stable manifold of the critical point
that a resolution of the closure of the “trace” is available. In fact, one can prove that
such a manifold with corners resolution is available also for the closure of the entire
“flow-out” of the submanifold between levels c − ε and c + ε. More general situations
are contemplated in [5, 15].

The existence of such resolutions has important consequences. The “fundamental
Morse equation” proved by Harvey–Lawson in [12] says that for the gradient flow φ ∶
R ×M → M induced by a tame f, which additionally satisfies Smale’s transversality
condition there exists a rectifiable current T on M ×M such that

dT = Δ − ∑
p∈Crit( f )

Up × Sp ,

where Δ is the diagonal and Up and Sp are the unstable, resp. the stable manifold of the
critical point p. To be a bit more precise, the submanifold in this case is the diagonal
and the flow is on M ×M via φ in the first component of the product and keeping fixed
the second component. In his PhD thesis, Latschev [15] also used the resolution idea
and extended these results to Morse–Bott–Smale flows. The first author developed this
point of view further in [5] in order prove a generalization of the “fundamental Morse
equation” this time for sections of fiber bundles, satisfying adequate transversality
conditions. Even with the tameness condition in place, the rigorous details of the
construction of the resolution are quite involved. This is related to the fact that
flowing the image of the section of a fiber bundle through the critical locus raises
new challenges, bearing in mind that the transversality conditions naturally imposed
do not give information about how the section intersects the critical locus, but just
how it intersects the stable manifolds.

Completely new ideas are necessary in order to deal with the nontame case. In his
PhD thesis, Minervini [18] used a combination of results of Shilnikov [22] on a certain
type of ODE problems together with objects he introduced, called “horned stratified
spaces” in order to prove the Harvey–Lawson theorem without the tameness condi-
tion. Applications to Morse–Novikov theory were given by Harvey and Minervini in
[14]. In this article, we take the next natural step and remove the tameness condition
from the currential homotopy formula of [5]. One slight simplification is added in,
the model flows in each fiber are assumed here Morse as opposed to Morse–Bott in
[5]. We plan to return to the Morse–Bott case somewhere else.

The novelty here is that we implement a combination of ideas of Latschev [15] and
Minervini [18] in our present approach and hence we do not rely on the “horned
stratified spaces” of the latter. Roughly, we use Shilnikov–Minervini local analysis of
the closure of the graph of the flow which will give a local resolution (see Theorem
2.6) of the flow-out of the section, but use induction on the critical levels ala Latschev
for the proof of the next homotopy formula.

Theorem 1.1 Let π ∶ P �→ B be a fiber bundle with compact fiber. Let X be a horizon-
tally constant Morse–Smale vertical vector field and denote by Φ ∶ R × P → P the flow
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induced by X. Let s ∶ B �→ P be a section transverse to all the stable manifolds S(F)
associated to the critical manifolds F of X and let ξt(b) ∶= (Φt(s(b)), s(b)), b ∈ B. Then

T = ξ([0,+∞) × B)

defines a (n + 1)-dimensional rectifiable current of locally finite mass and if B is compact
then T is of finite mass.

Moreover, the following equality of currents holds in P ×B P:

dT = ∑
F

U(F) ×F s(s−1(S(F))) − (ξ0)∗(B),(1.1)

where U(F) are the unstable manifolds of X.

Recall that a vertical vector field X on the total space of a fiber bundle P → B is
called horizontally constant if there exist local trivializations of the fiber bundle such
that X has a zero horizontal component in this trivialization. As a consequence, the
flow induce by X is, up to diffeomorphism, the same in every fiber. It also means that
if the flow in the fiber is Morse–Bott, then the critical sets F of X are manifolds and so
are the sets S(F) and U(F).

An immediate consequence (see Corollary 3.3) of Theorem 1.1 is the explicit
computation of the following limits in the weak sense

lim
t→∞

s∗t ω,

where st ∶= Φt ○ s and ω ∈ Ω∗(P). This immediately justifies a transgression formula
for closed forms ω

lim
t→∞

s∗t ω − s∗ω = dT(ω)(1.2)

by using the standard yoga of kernels versus operators.
This Poincaré duality type of result is a source of many applications (see [6])

even in the tame case. In an early preprint of [5] posted on arXiv an application to
(1.2) concerning certain odd degree forms on the unitary group was included. The
flow used, however, did not satisfy the tameness hypothesis and the application was
removed from the published version. We present it here in a more general context, but
not before revisiting a classical topic and introducing some new objects which seem
of independent interest.

Chern–Weil theory is an important source of closed forms arising from geometric
data. To any complex vector bundle E → B of rank n endowed with a connection∇ and
a GL(n) invariant polynomial P in the entries of an n × n matrix one has an associated
closed form P(F(∇)). For homogeneous P one gets that P(F(∇)) is of even degree,
more precisely twice the degree of P. The deRham cohomology class of P(F(∇)) does
not depend on ∇.

In order to get odd degree forms we endow E → B with an automorphism A ∶
E → E. Then, we associate to the quadruple (E , A,∇, P) a closed form TP(E , A,∇)
which satisfies the following properties: it is natural with respect to pull-back, the
cohomology class determined by TP(E , A,∇) does not depend on the connection
∇, the same cohomology class does not change under deformations of A in the
same homotopy class. We prove all these properties in Section 5 for hermitian vector
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bundles but the interested reader can adapt the results without difficulty to other
structure groups. While these objects are instances of the Chern–Simons difference
forms, they should not be confused with what are widely called Chern–Simons forms
[2], forms that live on the total space of a principal bundle and which are not closed.
Related formulas for the transgression of the Pfaffian form have appeared in [1, 8].

Let P = ck be the invariant polynomial induced by the kth elementary symmetric
polynomial. The following statement, which generalizes a result of Nicolaescu ([19],
Proposition 57) also gives a description of the Poincaré duals to Tck(E , g ,∇).
Theorem 1.2 Let E → B be a trivializable hermitian vector bundle of rank n over an
oriented manifold with corners B endowed with a compatible connection. Let g ∶ E → E
be a smooth gauge transform. Suppose that a complete flag E = W0 ⊃ W1 ⊃ ⋯ ⊃ Wn =
{0} (equivalently a trivialization of E) has been fixed such that g as a section of U(E) is
completely transverse to certain (see (6.1)) submanifolds S(UI) determined by the flag.
Then, for each 1 ≤ k ≤ n there exists a flat current Tk such that the following equality of
currents of degree 2k − 1 holds:

Tck(E , g ,∇) − g−1(S(U{k})) = dTk ,(1.3)

where

g−1(S(U{k})) = {b ∈ B ∣ dim Ker (1 + gb) ∩ (Wk−1)b = 1,
dim Ker (1 + gb) ∩ (Wk)b = 0}.

In particular, when B is compact without boundary, then Tck(E , g ,∇) and
g−1(S(U{k})) are Poincaré duals to each other and (1.3) is a spark equation [2, 13].

The condition that E → B be trivializable is related to the nontame flow used in
the proof which requires the existence of a complete flag E = W0 ⊃ ⋯ ⊃ Wn = {0} of
vector sub-bundles. It is an interesting question of how one can describe the Poincaré
duals to Tck(E , g ,∇) for a general E.

The next application is to families of self-adjoint Fredholm operators. Fix H a
Hilbert space. The space of unitary operators U ∈ U(H) such that 1 +U is Fredholm
is a classifying space for odd K-theory. This space is a Banach manifold but is
“too big” to build smooth differential forms. Restricting the attention to the Palais
classifying spaces Up which are unitary operators of type 1 + S where S belongs to
some Schatten ideal, e.g., trace class or Hilbert–Schmidt operators then Quillen [21]
was able to construct several families of smooth forms all representing the components
of the odd Chern character. When one has a smooth family of Dirac operators Db∈B
parametrized by a smooth and finite dimensional manifold B then by taking the Cayley
transforms one gets a smooth map φ ∶ B → Up . The pull-backs of the Quillen forms
compute the cohomological analytic index determined of the family.

Let us remark that in the finite dimensional case, the Quillen forms on U(n) have
explicit formulas in terms of the odd Chern–Weil forms arising from the trivial vector
bundle C

n over U(n) endowed with the tautological unitary endomorphism and
trivial connection, i.e., in terms of the standard deRham generators of the cohomology
ring of U(n).

On the other hand, in [4], we produced explicit representatives for the Poincaré
duals of these classes using the infinite dimensional analogues of the stable manifolds
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S(U{k}) which appear in Theorem 1.2. We used sheaf theory in [4] in order to be
able to define cohomology classes arising from certain stratified spaces, called quasi-
manifolds on an infinite dimensional Banach manifold. Here, we exchange the sheaf
theoretical approach from [4] with the currential approach and show that under the
expected transversality hypothesis one can produce a transgression formula, strength-
ening thus the results from [4]. Transgression formulas in an infinite dimensional
context have appeared also in [24].
Theorem 1.3 Let φ ∶ B → Up be a smooth map from a compact, oriented manifold B,
possibly with corners such that φ ⋔ Z p

I for every I. Let Ωk be a Quillen form of degree
2k − 1 that makes sense on Up. Then for every such Ωk , there exists a flat current Tk such
that:

φ−1Z{k} − (−1)k−1(k − 1)!φ∗Ωk = dTk .(1.4)

In particular, when B has no boundary, (−1)k−1

(k−1)! φ−1Z p
{k} represents the Poincaré dual of

ch2k−1([φ]), where [φ] ∈ K−1(B) is the natural odd K theory class determined by φ.
The proof of this result reduces to Theorem 1.2 via symplectic reduction.
A few more comments about the structure of the article are in order. Section 2

which revisits Shilnikov theory, also adds some details to Minervini’s presentation in
[18]. In particular, Theorem 2.4 introduces some flow-convex neighborhoods that are
fundamental later on. The main technical part of the proof of the main Theorem 1.1 is
contained in the rather long Section 4. We felt it necessary to present many complete
arguments. The proof is by induction and the amount of data one has to carry from
one step to another is quite substantial. That is why we paid special care in proving
properties like properness or injectivity of the flow-resolution map. To get a feel for
the level of technicality the reader can take a quick glance at Proposition 4.9 which
is the key step in the induction. In essence, the main idea of the proof of the main
Theorem is to follow the same steps as the induction proof presented in the Appendix
of [5], but to substitute the oriented blow-up technique which takes care of the local
picture in [5] with Minervini’s Theorem 1.3.21 which appears here as Theorem 2.6. The
advantage of the presentation in [5] via blow-ups is that several maps are explicit and
several properties come for free (e.g., a blow-down map is proper). This, of course,
is a consequence of tameness. On the negative side, one works hard in [5] to show
that the relevant maps have regularity C1 while here the regularity is C∞ and it is a
consequence of the Minervini–Shilnikov theory.

The models in the fiber are classical Morse–Smale flows associated to gradients of
Morse functions. The results ought to hold also for the Morse–Smale quasi-gradients
as defined in [17]. One point that made us cautious is contained in Remark 2.5 and is
related to the properties of the flow-convex neighborhoods of Theorem 2.4.

A proof of the main Theorem appeared in the PhD thesis [20] of the second author.
Some arguments have been simplified in this presentation.

2 Minervini-Shilnikov theory

We review some results about certain well-posed ODE problems studied by Shilnikov
in the 1960s. We borrowed the terminology that gives the title of this section from the
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main reference [18]. Where the complete proofs were skipped, the reader will find the
details in chapter 1 of [18].

Let (x , y) be coordinates in R
s ×Ru . With respect to this decomposition, let

L = [L− 0
0 L+] be a constant, real coefficients matrix, in which the real parts of the

eigenvalues of L− are strictly negative, say −λs ≤ ⋯ ≤ −λ1 < 0, and those of L+ are
strictly positive, say 0 < μ1 ≤ ⋯ ≤ μu . For the situation, we are interested in, L is
symmetric.

Consider the ODE system in R
s ×Ru :

{ ẋ = L−x + f (x , y)
ẏ = L+y + g(x , y),(2.1)

where F = ( f , g) ∶ Rs ×Ru �→ R
s ×Ru is a differentiable function satisfying

F(0, 0) = (0, 0) and dF(0, 0) = (0, 0).

Given a triple (x0 , y1 , τ) ∈ Rs ×Ru × [0,+∞) a boundary value problem (BVP) for
the ODE (2.1) has the following form

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ = L−x + f (x , y)
ẏ = L+y + g(x , y)
x∗(0) = x0
y∗(τ) = y1 ,

(2.2)

where the solution (x∗(t), y∗(t)) is defined in the interval [0, τ]. The solution at time
t to the BVP (2.2) with data (x0 , y1 , τ) is denoted

(x∗(t, x0 , y1 , τ), y∗(t, x0 , y1 , τ)).

The “end point” (x∗1 , y∗0) for the BVP solution is

x∗1 (x0 , y1 , τ) = x∗(τ, x0 , y1 , τ)
y∗0(x0 , y1 , τ) = y∗(0, x0 , y1 , τ).(2.3)

We compare this with the solution at time t of the initial value problem with data
(x0; y0 , t = 0) for which the following notation is used

(x(t, x0 , y0), y(t, x0 , y0)).

Notice that
x(t, x0 , y0) = x∗(t, x0 , y(τ, x0 , y0), τ)
y(t, x0 , y0) = y∗(t, x0 , y(τ, x0 , y0), τ)
x∗(t, x0 , y1 , τ) = x(t, x0 , y∗(x0 , y1 , τ))
y∗(t, x0 , y1 , τ) = y(t, x0 , y∗0(x0 , y1 , τ)).

(2.4)

Let

δk
ε ∶= sup

∣x , y∣≤ε
∑
∣m∣≤k

∣ ∂∣m∣F
∂(x , y)m ∣ < +∞,(2.5)

where ∣x , y∣ ∶= max{∣x∣, ∣y∣} and ∣ ⋅ ∣ denotes the euclidian norm.
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Figure 1: Boundary Value Problem

Quite similarly to the Cauchy problem for ODE and proceeding in the standard
way, i.e., writing the BVP as a system of integral equations and using Banach Fixed
Point theorem, the following general result holds:

Theorem 2.1 Suppose ε > 0 is such that the the estimate δ1
2ε < min{λ1 , μ1} holds. Then

the BVP for the system (2.2) is solvable for any data (x0 , y1 , τ) in the “ball” ∣x0 , y1∣ < ε.
The solution is unique, it depends smoothly on all its arguments and satisfies:

∣x∗(t), y∗(t)∣ ≤ 2∣x0 , y1∣, ∀t ∈ [0, τ].
It turns out that the integral equations equivalent to the BVP (2.2) make sense also

for τ = ∞ in which the only given spatial coordinate is x∗(0) ∶= x0. The correspon-
dence x0 → y∗(0) is smooth and its graph is an invariant manifold of the flow, tangent
to y = 0 at the origin. This is in fact the stable manifold of the origin and using the
obvious change in coordinates that takes the graph diffeomorphically to the domain
of definition one notices that the original vector field

X ∶= (X1 , X2) = (L−x + f (x , y), L+y + g(x , y))
gets conjugated to one for which the stable and unstable manifolds coincide with the
x and the y axes at least locally.

Theorem 2.2 There are smooth coordinates centered at the origin such that (2.1) can be
written as

{ ẋ = L−x + f̃ (x , y)x
ẏ = L+y + g̃(x , y)y,(2.6)

where f̃ ∶ Rs+u �→ End(Rs) and g̃ ∶ Rs+u �→ End(Ru) are square matrices of func-
tions that vanish at the origin. Moreover, in a neighborhood of the origin in the new
coordinates, the stable and unstable manifolds are given by S0 = {y = 0} and U0 =
{x = 0}.
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Gronwall Lemma is used to prove some useful estimates for solutions of BVP in
straighten coordinates.

Theorem 2.3 Let ε, α > 0 be such that δ ∶= δ1
2ε < α < max{λ1 , μ1}. Then the solution of

the BVP defined by system (2.6) with spatial data ∣x0 , y1∣ ≤ ε satisfies for any τ ∈ [0,∞)
and t ≤ τ the following inequality

{ ∣x∗(t, x0 , y1 , τ)∣ ≤ ∣x0∣e−(α−δ)t

∣y∗(t, x0 , y1 , τ)∣ ≤ ∣y1∣e(α−δ)(t−τ).(2.7)

In particular,

{ ∣x∗1 (x0 , y1 , τ)∣ ≤ ∣x0∣e−(α−δ)τ

∣y∗0(x0 , y1 , τ)∣ ≤ ∣y1∣e−(α−δ)τ .(2.8)

Estimates are available also for any partial derivative ∂k x∗1
∂(x0 , y1 ,τ) or ∂k y∗0

∂(x0 , y1 ,τ) of order k
in the form:

∣ ∂k x∗1
∂(x0 , y1 , τ) ∣(x0 , y1 ,τ)∣ ≤ Ck e−(α−kδ)τ , ∣ ∂k y∗0

∂(x0 , y1 , τ) ∣(x0 , y1 ,τ)∣ ≤ Ck e−(α−kδ)τ

(2.9)

for some constant Ck which does not depend on (x0 , y1 , τ).

Let Ω be a neighborhood around the origin and suppose the vector field X has the
form (2.6).

We will choose a “cube” Cε = {(x , y) ∈ Rs ×Ru ; ∣x , y∣ ≤ ε} ⊂ Ω of radius ε > 0
which satisfies the hypothesis of Theorem 2.1. The cube has the following boundary
pieces:

∂+Cε = {(x , y) ∈ Rs ×Ru ; ∣x∣ = ε, ∣y∣ ≤ ε}

and

∂−Cε = {(x , y) ∈ Rs ×Ru ; ∣x∣ ≤ ε, ∣y∣ = ε}.

Denote

V ε
0 = {(x , y) ∈ Cε ∣ ∣x∣ ⋅ ∣y∣ = 0} = S0 ∪U0 .

In order to state the next result the partial order notation for the flow determined
by X is useful, i.e.,

p1 ≺ p2

will say that there exists a forward flow line from p1 to p2.

Theorem 2.4 Suppose L− and L+ are symmetric.
Then for ε small enough X is transverse to ∂+Cε and to ∂−Cε . In addition, the

following properties hold for Cε with respect to X:
(1) Flow-convexity: for every pair q1 ≺ q2 with q1 , q2 ∈ Cε and every q1 ≺ p ≺ q2 one

has p ∈ Cε and
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Figure 2: Dulac map and the neighborhoods V ε
γ

(2) Dulac map: there exists a “first encounter” diffeomorphism

μ = (μ1 , μ2) ∶ ∂+Cε/S0 �→ ∂−Cε/U0

induced by the flow that satisfies

μ(x , y) = (x , y), ∀(x , y) ∈ ∂+Cε ∩ ∂−Cε

(3) Continuity of μ1 close to S0: for every 0 < γ ≤ ε, there exists 0 < γ0 ≤ ε such that

∀(x , y) ∈ ∂+Cε with ∣y∣ ≤ γ0 one has ∣μ1(x , y)∣ ≤ γ;

(4) Fundamental neighborhoods: let 0 < γ ≤ ε and

V ε
γ ∶= {p ∈ Cε ∣ ∃ q = (x1 , y1) ∈ ∂−Cε , ∣x1∣ < γ, p ≺ q} ∪ V ε

0

Then V ε
γ is a flow-convex neighborhood of V ε

0 in Cε such that

V ε
γ → V ε

0 ,

i.e., for every neighborhood U of V ε
0 there exists γ0 > 0 such that V ε

γ0
⊂ U.

The following figures illustrate the properties encountered in Theorem 2.4.

Remark 2.5 Without the symmetry property of L = L− ⊕ L+ the claim about
transversality of X with ∂+Cε , ∂−Cε fails even in the linear case. This seems to have

been overlooked in [18]. Take s = 0, u = 2, L+ ∶= ( 1 2
0 1 ), g̃ = 0. Then

⟨L+(y1 , y2), (y1 , y2)⟩ = (y1 + y2)2 .
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Hence, X = L+ on R
2 is hyperbolic but has points of tangency along the antidiagonal

with any coordinate sphere.

Proof The tangent spaces to the cylinders ∂+Cε and ∂−Cε at points (x , y) are
described via:

T(x , y)∂+Cε = {(v1 , v2) ∈ Rn ∣ ⟨v1 , x⟩ = 0},

T(x , y)∂−Cε = {(v1 , v2) ∈ Rn ∣ ⟨v2 , y⟩ = 0}.

Hence, we need to look at

⟨X1(x , y), x⟩ = ⟨L−x , x⟩ + ⟨ f̃ (x , y)x , x⟩

and

⟨X2(x , y), y⟩ = ⟨L+y, y⟩ + ⟨g̃(x , y)y, y⟩.

We have that ⟨ f̃ (x , y)x , x⟩ = o(∣x∣2) uniformly in y and ⟨g̃(x , y)y, y⟩ = o(∣y∣2) uni-
formly in y since f̃ and g̃ are continuous and vanish at the origin.

The symmetry and definiteness of L− and L+ imply now that there exists ε1 and ε2
such that

⟨L−x , x⟩ + ⟨ f̃ (x , y)x , x⟩ < 0 ∀ 0 < ∣x∣ ≤ ε1 ,∀ ∣y∣ ≤ ε1

and

⟨L+y, y⟩ + ⟨g̃(x , y)y, y⟩ > 0 ∀ 0 < ∣y∣ ≤ ε2 ,∀ ∣x∣ ≤ ε2 .

For ε ≤ min{ε1 , ε2} we get the transversality of X with both ∂±Cε .
Proof of (1). Let q1 = (x1 , y1) ≺ q2 = (x2 , y2), q1 , q2 ∈ Cε . Let τ > 0 be the time

needed to “travel” from q1 to q2, i.e., (x2 , y2) = (x(τ, x1 , y1), y(τ, x1 , y1)). Now,
consider the BVP defined by X with data (x1 , y2 , τ). Since ∣x1 , y2∣ ≤ ε, it follows from
the Theorem 2.3 that for all 0 ≤ t ≤ τ, the following holds:

∣x∗(t, x1 , y2 , τ)∣ ≤ ∣x1∣e−(α−δ)t < ∣x1∣ < ε,

∣y∗(t, x1 , y2 , τ)∣ ≤ ∣y2∣e(α−δ)(t−τ) < ∣y2∣ < ε.

Therefore, the portion of the trajectory comprised between q1 and q2 is contained
in Cε .

Proof of (2). Consider (x0 , y0) ∈ ∂+Cε with ∣y0∣ < ε. The normal vectors v at
(x0 , y0) to ∂+Cε that point to the interior of Cε are described by the inequality
⟨v1 , x0⟩ < 0 and we already chose ε so that the vector field X satisfies such an inequality.
Hence, either the trajectory (x(t, x0 , y0), y(t, x0 , y0))will belong to the interior of Cε
for small t > 0 or (x0 , y0) ∈ ∂+Cε ∩ ∂−Cε i.e. ∣y0∣ = ε, which is not the case.

Suppose t > 0. For y0 ≠ 0 we have lim
t→+∞

(x(t), y(t)) ≠ (0, 0) and the trajectory cuts
again the boundary of Cε . This happens because in the cube Cε the function t → ∣x(t)∣
is decreasing while t → ∣y(t)∣ is increasing. Indeed the derivatives of the square of
these functions are equal to

⟨X1(x , y), x⟩ and ⟨X2(x , y), y⟩, respectively
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and by our choice of ε above the first one is negative while the second one is positive
as long as they are not 0 which would happen for a stable or unstable flow line.

Let (x1 , y1) ∈ ∂+Cε ∪ ∂−Cε be the first point where this trajectory hits the boundary
again and τ > 0 the time needed to get from (x0 , y0) to (x1 , y1).

Since ⟨X1(x , y), x⟩ is a continuous function we see that (x1 , y1) ∉ ∂+Cε/S0 and
moreover ∣x1∣ < ε, because

∣x1∣ = ∣x∗(τ, x0 , y1 , τ)∣ ≤ ∣x0∣e−(α−δ)τ < ∣x0∣ ≤ ε.(2.10)

Define μ, for the time being, as the map that associates to every (x0 , y0) ∈
∂+Cε/(S0 ∪ ∂−Cε) the point of “first encounter” (x1 , y1) ∈ ∂−Cε/(U0 ∪ ∂+Cε) which
lies on the same trajectory.

Suppose now that ∣x0∣ = ∣y0∣ = ε. If there exist τ0 > 0 such that
(x(τ0 , x0 , y0), y(τ0 , x0 , y0)) = (x′0 , y′0) ∈ Cε , define the BVP with data (x0 , y′0 , τ0).
Then, we get a contradiction from the estimates

ε = ∣y0∣ = ∣y∗(0, x0 , y′0 , τ0)∣ ≤ ∣y′0∣e−(α−δ)τ0 < ∣y′0∣ < ε.

Hence, for ∣x0∣ = ∣y0∣ = ε, the trajectory determined by (x0 , y0) only intersects Cε in
(x0 , y0). Therefore, the natural extension of μ to ∂+Cε ∩ ∂−Cε is equal to the identity
on this set.

The map μ is clearly bijective. The differentiability of μ is standard and proved
along the following lines. The essential part is to prove the differentiability of the time-
function that associates to each (x0 , y0) the time t(x0 , y0) it takes to get to μ(x0 , y0).
Fix one such (x0 , y0) and use the diffeomorphism of the flow that corresponds to
time t(x0 , y0) to flow a small open neighborhood of (x0 , y0) inside ∂+Cε which
does not contain points in the stable manifold to an n − 1 dimensional manifold
H which contains μ(x0 , y0) and is still transverse to X. Since μ(x0 , y0) is not a
critical point put coordinates in order to turn X into the generator of the first
coordinate-translation by unit-time. One arrives thus at the problem of having to
prove differentiability of the time-function obtained by going from one hypersurface
to another hypersurface through the origin and both transverse to the first coordinate.
That is simply the difference in height functions where the height is the first coordinate,
hence a differentiable function.

Proof of (3). Suppose that there exists 0 < γ ≤ ε and a sequence (x0n , y0n) such that
∣x0n ∣ = ε, ∣y0n ∣ �→ 0 (y0n ≠ 0) when n →∞ and ∣x1n ∣ ≥ γ for all n where μ(x0n , y0n) =
(x1n , y1n) ∈ ∂−Cε . Let τn > 0 be the sequence of moments such that

(x(τn , x0n , y0n), y(τn , x0n , y0n)) = (x1n , y1n).

It follows from the following estimates (see also (2.10))

γ ≤ ∣x1n ∣ ≤ ∣x0n ∣e−(α−δ)τn ≤ εe−(α−δ)τn(2.11)

that τn ≤ ln( ε
γ
) 1

α − δ
.

We can therefore select a convergent subsequence (x0nk , τnk) �→ (x′0 , τ′). Note
that τ′ > 0, because if τ′ = 0 then ∣y0nk ∣ �→ ε. Indeed, the only points for which it
takes 0-time to go from ∂+Cε to ∂−Cε are the points on ∂+Cε ∩ ∂−Cε and it is not
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hard to see that, due to the continuity of the time-function, the shorter the time it
takes to get to ∂−Cε the closer to ∂+Cε ∩ ∂−Cε the starting point has to be.

Since ∣y(τnk , x0nk , y0nk)∣ = ∣y1nk ∣ = ε we get that a contradiction with

y(τnk , x0nk , y0nk) → y(τ′ , x′ , 0) = 0.

The later holds because the trajectory determined by (x′ , 0) is stable.
Proof of (4). The flow-convex property is immediate from the analogous property

of Cε .
Suppose the V ε

γ is not a neighborhood of V0. Hence, there exists a sequence
(xn , yn) ∈ Cε/V ε

γ with (xn , yn) �→ (v1 , v2) ∈ V ε
0 . Thus either xn �→ 0 or yn �→ 0.

As none of the points (xn , yn) is on S0 ∪U0 there exist points of “first encounter”
(x0n , y0n) ∈ ∂+Cε and (x1n , y1n) ∈ ∂−Cε such that

(x0n , y0n) ≺ (xn , yn) ≺ (x1n , y1n).

Since (xn , yn) ∉ V ε
γ it follows that ∣x1n ∣ ≥ γ.

The case xn → 0 is disposed immediately by considering the BVP (xn , y1n , τn)
where τn is the time it takes to go from (xn , yn) to (x1n , y1n). Then, we get a
contradiction in

γ ≤ ∣x1n ∣ ≤ ∣xn ∣e−(α−δ)τn ≤ ∣xn ∣ → 0.

For the case yn → 0 consider the BVP with data (x0n , y1n , τ′n) where τ′n now is the
time it takes to get from (x0n , y0n) to (x1n , y1n). Recall that ∣x0n ∣ = ∣y1n ∣ = ε. We obtain

γ ≤ ∣x1n ∣ ≤ ∣x0n ∣e−(α−δ)τ′n ⇒ τn ≤ ln( ε
δ
) 1

α − δ
.

∣y0n ∣ ≤ ∣yn ∣e−(α−δ)sn ≤ ∣yn ∣,

where 0 < sn ≤ τ′n . Since ∣yn ∣ �→ 0, we have y0n �→ 0.
Now, since ∣x0n ∣ = ε and τ′n are bounded and y0n → 0, we are in the same scenario

that led to a contradiction in the proof of item (3).
In order to prove that limγ→0 V ε

γ = V ε
0 as defined in the statement it is enough to

prove that

⋂V ε
γn
= V ε

0(2.12)

for any decreasing sequence γn → 0. Indeed if (2.12) holds then fix one such sequence
γn . Suppose ∃un ∈ V ε

γn
/U for all n. Since V ε

γn+1
⊂ V ε

γn
and V ε

γn+1
(the closure in Cε) is

compact we get that we can extract a convergent subsequence unk whose limit neces-
sarily belongs to⋂V ε

γn
= V ε

0 . But this is a contradiction with U being a neighborhood
of V ε

0 .
In order to prove (2.12), take a point a = (x , y) ∈ ⋂V ε

γn
such that x ≠ 0 ≠ y. Since

y ≠ 0 it follows that a ∉ S0 and therefore a lies on a trajectory which hits ∂−Cε in a
point b = (x′ , y′) ∉ U0, i.e., x′ ≠ 0. But a ∈ ⋂V ε

γn
implies that ∣x′∣ < γn for all n, hence

x′ = 0. Contradiction. ∎

The properties of these neighborhoods will enable us in Section 3 to control the
deformation of subsets by the flow of a vector field.

https://doi.org/10.4153/S0008414X21000353 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000353


Nontame Morse–Smale flows and odd Chern–Weil theory 1591

The fundamental local tool we will use in the next sections is Theorem 1.3.21 in [18]
which we now state.

Theorem 2.6 Let Cε ⊂ Ω be a cube as in Theorem 2.4 and let C̊ε be its interior. If
ψt denotes the flow of the vector field X = (L− + f , L+ + g), then the closure of the
submanifold

W = {(t, ψ t
1−t
(x , y), x , y); (x , y) ∈ Rs ×Ru , 0 < t < 1} ∩ (R × C̊ε × C̊ε)

(2.13)

inside (C̊ε × C̊ε ×R) is a smooth submanifold with boundary

∂W = {1} × (U0 ∩ C̊ε) × (S0 ∩ C̊ε)⋃{0} ×△C̊ε
,(2.14)

where△C̊ε
= {(p, p) ∣ p ∈ C̊ε} denotes the diagonal in C̊ε × C̊ε .

Proof (Sketch) The idea is to turn to BVP coordinates via (2.4) in

W = {(τ, x∗1 (x0 , y1 , τ
1 − τ

) , y1 , x0 , y∗0 (x0 , y1 , τ
1 − τ

)) ∣ ∣x0 , y1∣ < ε, τ ∈ (0, 1)} .

Use now (2.9) to conclude that x∗1 and y∗0 converge uniformly to 0 when τ → 1 together
with their derivatives, obtaining thus that W is the graph of a smooth function over
C̊ε × [0, 1]. ∎

Remark 2.7 It is easy to see that the projection of W onto the C̊ε × C̊ε components
coincides with the intersection ⋃t≥0 ψ̃t(ΔC̊ε

) ∩ (C̊ε × C̊ε) where ψ̃ is the flow on
R

s+u ×Rs+u that is equal to ψ in the first component and leaves the points fixed
in the second component. Take (a, b) ∈ ⋃t≥0 ψ̃t(ΔC̊ε

) ∩ (C̊ε × C̊ε). Then, there exist
tn ≥ 0 and un ∈ Rs+u such that (ψtn(un), un) → (a, b). Since a, b ∈ C̊ε one has that
un , ψtn(un) ∈ C̊ε for n big enough. In fact, by passing to a subsequence either tn
converges or tn →∞. Let sn ∈ [0, 1) be such that tn = sn

1−sn
we get that (a, b) = lim zn

where (zn , sn) ∈ W converges in [0, 1] × C̊ε × C̊ε . The other inclusion is also obvious.

Remark 2.8 We will need a slight extension of this results in the simplest situation
when there exists a central manifold. If the vector field Y on R

s ×Ru ×Rc is of type
(X , 0)with X as before, not depending on z ∈ Rc then rather than taking the graph of
the flow ψY of Y in R

s ×Ru ×Rc ×Rs ×Ru ×Rc , it makes sense to forget about one
stationary variable Rc and consider the corresponding W Y of Theorem 2.6 to be

W Y ∶= {(t, ψX
t

1−t
(x , y), x , y, z) ∣ t ∈ (0, 1)} ∩ [0, 1] × C̊ε × C̊ε ×Rc .

The closure will be a manifold with boundary

∂W Y = {1} × (U0 ∩ C̊ε) × (S0 ∩ C̊ε) ×Rc ⋃{0} ×△C̊ε
×Rc .

We do this rather than considering the graph of ψY in the full ambient space with an
eye to keep the bookkeeping simpler and avoid using fiber products later on.

We have a useful Corollary of Theorem 2.4.
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Corollary 2.9 Let (q, 0), (0, r) ∈ Cε be two points in the stable, respectively the
unstable manifold of the origin. Let Bu(q, ε′) ∶= {(q, y) ∣ ∣y∣ ≤ ε′} be a small trans-
verse slice to S0 that passes through (q, 0). Then there exists two sequences of points
(q, y′n), (xn , yn) ∈ Cε such that

(i) (q, y′n) ∈ Bu(q, ε′) and yn → 0;
(ii) (xn , yn) → (0, r); and

(iii) (q, y′n) ≺ (xn , yn).

Finally, we will need the following consequence of the Flowout theorem [16] which
is proved with the same ideas as the differentiability of the Dulac map μ from Theorem
2.4. Let M be a compact smooth Riemannian manifold and let ψ denote the gradient
flow of a function f.

Proposition 2.10 Let N ⊂ M be a submanifold which does not contain any critical
points of f and is transverse to the gradient vector field∇ f . Let f −1(θ) be a regular level
set of f such that N ∩ f −1(θ) = ∅ and suppose that for every n ∈ N there exists a time
tn ≥ 0 such that ψtn(n) ∈ f −1(θ). Then the function n → tn is smooth and moreover the
set {ψtn(n) ∣ n ∈ N} is a smooth submanifold of f −1(θ) diffeomorphic to N.

3 A general homotopy formula

Consider π ∶ P �→ B a locally trivial fiber bundle with compact fiber M over a n-
dimensional, oriented manifold B. Let X ∶ P �→ V P be a vertical vector field on P
where the vertical tangent space V P ∶= Ker dπ represents the collection of all the
tangent spaces to the fibers. Suppose X a horizontally constant Morse–Smale vector
field. Recall that this means that for every b ∈ B there exists an open set b ∈ B0 ⊂ B and
a local trivialization α ∶ P∣B0 �→ M × B0 such that

α∗(Xp) = (grad fα1(p), 0), ∀p ∈ P∣B0 ,(3.1)

where f ∶ M �→ R is a Morse–Smale function for same Riemannian metric on M.
This in particular implies that the critical set of X is a fiber bundle over B (with various
components) and the same thing stays true about the stable and unstable manifolds.

In fact the critical manifolds of X in the local trivialization α are F = {p} × B0 with
p satisfying∇p f = 0 and the stable and unstable manifolds are

S(F) = S(p) × B0 , U(F) = U(p) × B0 .

Let s ∶ B �→ P be a transversal section to all the stable bundles S(F) relative to the
critical manifold F ⊂ P.

We follow the ideas in [11]. Consider the fiber bundle P ×B P �→ B and the
vertical vector field X̃ = (X , 0) on P ×B P. It is not difficult to verify that the vector
field X̃ is horizontally constant Morse–Bott–Smale and that its flow is Θt(v1 , v2) =
(Φt(v1), v2), where Φt ∶ P �→ P denotes the flow of the vector field X. Thus, the stable
and unstable manifolds relative to a critical manifold F̃ of X̃ are

S(F̃) ∶= S(F) ×B P and U(F̃) ∶= U(F) ×B P.(3.2)
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Now define the family of sections ξ ∶ [0,∞) × B → P ×B P ∶

ξt(b) ∶= Θt(s(b), s(b)) = (Φt(s(b)), s(b))

transverse to all stable manifolds of X̃.

Remark 3.1 The transversality of s and S(F) translates into the transversality of ξ0
and S(F̃)

The question we will be concerned with in this section is whether the following
family of currents in P ×B P has a limit:

lim
t→+∞

(ξt)∗(B)?

For each t > 0, Stokes Theorem and the commutativity of d with push-forward
implies:

(ξt)∗(B) − (ξ0)∗(B) = d[ξ∗([0, t] × B)].(3.3)

From (3.3) and of the continuity of the (exterior) differential operator of currents,
we have reduced our analysis to the existence of the limit lim

t→+∞
ξ∗([0, t] × B). The

following result presents a positive response to the existence of this limit without the
tameness condition of [5].

Theorem 3.2 Let π ∶ P �→ B be a fiber bundle with compact fiber and let X be
a horizontally constant Morse–Smale vertical vector field. If s ∶ B �→ P is a section
transversal to the stable manifolds S(F), then

T = ξ([0,+∞) × B)

defines a (n + 1)-dimensional current of locally finite mass and if B is compact then T is
of finite mass. Moreover, the following equality of kernels holds:

dT = ∑
F

U(F) ×F s(s−1(S(F))) − ξ∗(B).(3.4)

We deduce from Theorem 3.2 that

ξ∞(B) ∶= lim
t→+∞

(ξt)∗(B) = ∑
F

U(F) ×F s(s−1(S(F))).(3.5)

Another consequence of the Theorem 3.2 is expressed in terms of operators:

Corollary 3.3 Let π ∶ P �→ B be an fiber bundle with compact oriented fiber on a n-
dimensional smooth, oriented B. Let X ∶ P �→ V P be a horizontally constant Morse–
Smale vertical vector field and let s ∶ B �→ P be a section transversal to all stable
manifolds S(F) of X. Assume that for each critical manifold F ⊂ P the bundle U(F) �→
F is oriented. Let st = Φt ○ s ∶ B �→ P be the induced family of sections. Then for each
closed form ω on P of degree k ≤ n, the following identity of flat currents in B is
true:

lim
t→+∞

s∗t ω = ∑
codimS(F)≤k

Resu
F(ω)[s−1(S(F))],(3.6)
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where Resu
F(ω) = τ∗F (∫U(F)/F

ω) and τF ∶ s−1(S(F)) → F is the composition of πs
F ∶

S(F) → F with s ∶ s−1(S(F)) �→ S(F). Moreover, there is a flat current T∞(ω) such
that

∑
codimS(F)≤k

Resu
F(ω)[s−1(S(F))] − s∗ω = d[T∞(ω)].(3.7)

Remark 3.4 One can extend Theorem 3.2 and Corollary 3.3 without extra effort
to the case when B is a manifold with corners and s ∶ B → P is a smooth section
completely transverse to all S(F). This happens because any smooth map on a
manifold with corners can, by definition, be extended locally in a neighborhood of
the corner a smooth map defined on an open set in R

n . Since the same applies to the
trivialization maps, one can extend smoothly the whole fiber bundle structure and the
section to be defined on an open set in R

n . The transversality condition being open, it
will hold in an open subset. Then one uses the corresponding results of Theorem 3.2
and Corollary 3.3 in this open set, only to restrict it afterwards.

In order to prove Theorem 3.2, we notice that due to the sheaf property of currents
it is enough to prove it for a convenient open covering of B. Namely, if there exists
an open covering B = ∪B i such that Ti ∶= T ∣Pi

exists, where Pi ∶= P∣B i
×B i P∣B i

, it is of
locally finite mass and (3.4) holds then the same thing is true over B. This happens
first because on the overlap Pi ∩ Pj the restriction of the limits ξ∗([0, t] × B i/ j) are
the same. This allows the patching of (Ti)i∈I to a single current. A similar argument
works for the right hand side of (3.4).

Remark 3.5 One has to worry always if an embedded oriented submanifold really
determines a current especially when it is not properly embedded, i.e., the inclusion is
not a proper map. This is the case of each U(F) ×F s(s−1(S(F))) and is not clear apriori
that they exist globally. But if (3.4) holds on an open covering Pi then the patching of Ti
to a single current implies the patching of U(F) ×F s(s−1(S(F)))∣Pi

to a single current
globally and (3.4) stays true everywhere.

Remark 3.6 Notice that if Fmax represents a “maximal” critical manifold, in other
words, the critical manifold for which S(Fmax) is an open subset of P the transversality
condition of s ⋔ S(Fmax) is automatically satisfied for all points b ∈ s−1S(Fmax). In the
open set s−1(S(Fmax)) ⊂ B relation (3.4) is trivial to prove and the limit

lim
t→∞

ξt(s−1(S(Fmax))) = Fmax ×Fmax s(s−1(S(Fmax))

holds even in the C∞ sense. The open sets s−1(S(Fmax)) will always be part of the
open coverings of B and we will not mention them again.

We will therefore work with a convenient covering of B, each of its members being
contained into a trivializing neighborhood for X, by which we mean a neighborhood
U where (3.1) holds.

The strategy is now roughly the following. We show that around each point b0 ∈ B
there exists a trivializing neighborhood B0 and a finite open covering M j of the fiber
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M ∶= Pb0 such that Theorem 3.2 holds for the restrictions of all the currents to the open
sets:

M j ×M × B0 ≃ (M j × B0) ×B0 (M × B0),

where we have already used a trivializing diffeomorphism P∣B0
≃ M × B0.

In order to achieve this on each of the open sets M j ×M × B0 we construct a
“resolution of the flow,” namely a proper map

Ψ ∶ N → M j ×M × B0

from a manifolds with corners N of dimension n + 1 such that
(a) Im Ψ = ξ([0,∞) × B0) ∩ (M j ×M × B0).
(b) Ψ is a diffeomorphism from an open subset of full measure in N to an open subset

of full Hn+1-measure in ξ([0,∞) × B0) ∩ (M j ×M × B0).
Point (b) makes sense in view of the fact that ξ([0,∞) × B0/Z) is a smooth

submanifold of P ×B P of dimension n + 1 where Z ∶= ⋃
F

s−1(F) are the fixed points of

the section with respect to the flow.

Remark 3.7 We assume of course that B0 is a small neighborhood of a point b0 ∉
Fmax and therefore Z will have zero Hn measure.

We then use the following

Lemma 3.8 Let N n+1 be a manifold with corners and let Ψ ∶ N �→ X be a smooth
map to a smooth manifold X. If Ψ is a proper map, then Ψ(M) has locally finite n + 1-
dimensional Hausdorff measure and

d(Ψ∗(N)) = Ψ∗(∂N).

This Lemma will allow not only to conclude that the restriction of T ∣B0×M j×M is of
locally finite mass, but also to compute its boundary as the push-forward of ∂N . In
order to do that, we will need a full understanding of ∂N and of the map Ψ.

4 The local flow resolution

This section contains the heart of the proof of Theorem 3.2.
As we discussed in the previous section, it is enough to localize around each point

b0 in the base space B. We will therefore consider first an open neighborhood B0 of b0
where the fiber bundle P∣B0

is trivial and the vector field X is horizontally constant and
given by the gradient of a function f ∶ Pb0 → R. With the notation M ∶= Pb0 already
introduced, we have the following data
(a) a flow on M induced by the gradient of f and denoted ψ.
(b) a family of (local) sections st ∶ B0 → M × B0

st(b) = (ψt(s0(b)), b)

originating from s∣B0
= (s0 , idB0) ∶ B0 → P∣B0

= M × B0.
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We are interested in the closure of the forward flow-out of the graph of s. In other
words, let ξt ∶ B0 → M ×M × B0 be the family of sections:

ξt(b) = (ψt(s0(b)), s0(b), b).

The function f̃ ∶ M ×M × B0 → R, f̃ (m1 , m2 , b) ∶= f (m1) will be used occasionally.
We will aim to construct a “manifold with corners resolution” of a piece of

⋃t≥0 ξt(B0) to be described momentarily.
Let

p1 ∶= lim
t→∞

ψt(s(b0)) ∈ M

be a critical point. We will assume that p1 is not a point of a local maximum for f, i.e.,
dim Up1 > 0. The case dim Up1 = 0 can be treated quite easily as, locally, everything
flows when t →∞ to the critical manifold determined by {p1} as already noticed in
Remark 3.6.

For simplicity, we will also assume that f (p1) = 0.
We allow the situation p1 = s0(b0). At the other extreme, s0(b0) might be “far”

from p1. If that is the case, we notice that nothing interesting happens with the flow-
out of ξ0(B0) before we get close to {p1} ×M × B0. So, we might assume without
restriction of the generality that s0(b0) is in a neighborhood D of p1 where the
Straighten Coordinates Theorem is valid. Then, we will also assume that B0 was
first chosen so that s0(B0) ∈ C̊ε for some fixed ε, where Cε ⊂ Rs ×Ru satisfies the
hypothesis of Theorem 2.4. Hence, ξ0(B0) ⊂ C̊ε ×M × B0.

We will need to work with certain particular neighborhoods of {∣x∣ ⋅ ∣y∣ = 0} ×M ×
B0 of type V ε

γ ×M × B0 where V ε
γ is as in Theorem 2.4.

The next technical statement prepares the field for the next step of the induction,
namely when we will go from the first critical level (that of p1) to the second critical
level in the direction of the flow.

Proposition 4.1
(a) There exist γ ≤ ε and θ > 0 a regular value of f such that the trajectory determined

by any p ∈ V ε
γ ∩ f −1(−∞, θ] that intersects f −1(θ) does so before intersecting ∂C−ε

when t →∞.
(b) If p1 is not a point of minimum then we can take θ and γ such that the trajectory

determined by any p ∈ V ε
γ ∩ f −1[−θ , θ] that intersects f −1(−θ) does so before

intersecting ∂C+ε when t → −∞.
Moreover, after shrinking B0 the following holds:

(i) s0(B0) ⊂ V ε
γ ∩ f −1(−∞, θ′) for some θ′ with 0 < θ′ < θ and

(ii) (⋃t≥0 ξt(B0)) ∩ f̃ −1(θ) ⊂ V ε
γ ×M × B0.

Proof In the cube Cε of Theorem 2.4, there exists 0 < γ < ε such that

inf
u∈Tγ

f (u) > 0,

where Tγ = {(x , y) ∈ ∂−Cε ; ∣x∣ < γ, ∣y∣ = ε} since f > 0 on the compact ∂−Cε ∩Up1 .
Fix such a γ.
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Choose now θ > 0 with

0 < θ < inf
u∈Tγ

f (u).(4.1)

Notice that each trajectory that starts inside V ε
γ either ends up at the critical point

or leaves V ε
γ through Tγ . Let p ∈ V ε

γ ∩ f −1(−∞, θ]. On one hand, f is increasing and
continuous along the trajectories and on the other hand, V ε

γ ∩ γp
1is connected by the

flow-convex property of V ε
γ . It follows that γp meets f −1(θ) before reaching Tγ by

(4.1).
Part (b) is analogous.
Since s0(b0) ∈ Sp1 we have that f (s(b0)) ≤ 0 and therefore one can choose B0 with

s0(B0) ⊂ V ε
γ ∩ f −1(−∞, θ′).

Part (ii) is an immediate consequence of (i) and the first part of the proof. ∎
From now on the neighborhood B0 of b0 will satisfy the properties of Proposition

4.1 for a certain θ and γ.
We define now the first piece of the transverse intersection, we will use later.
Let C̃ε ∶= Cε × Cε × B0 and ˚̃Cε ∶= C̊ε × C̊ε × B0 and consider W1 ⊂ [0, 1] × ˚̃Cε be the

analogue of W from Theorem 2.6 for this context:

W1 = {(t, ψ t
1−t
(x , y), x , y, b) ; 0 < t < 1} ∩R × C̊ε × C̊ε × B0 .

In other words, modulo a permutation of the last two coordinates we have:

W1 = W × B0 ⊂ ([0, 1] × C̊ε × C̊ε) × B0 ,

where W is as in Theorem 2.6.
It follows then from Theorem 2.6 that W1, the closure inside [0, 1] × C̊ε × C̊ε × B0

is a smooth (m + 1 + n)-dimensional manifold with boundary:

∂W1 = {1} × (Up1 ∩ C̊ε) × (Sp1 ∩ C̊ε) × B0
?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@A@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@B

∂1 W1

⋃{0} × ΔC̊ε
× B0

?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@A@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@B
∂0 W1

.

For future reference, let

Wp1 ∶= [0, 1] × {p1} × {p1} × B0 ⊂ W1 .(4.2)

be the set of fixed points in W 1.
We look now at the second piece of transverse intersection mentioned before. Let

Vθ ∶= V̊ ε
γ ∩ f −1((−∞, θ]) ⊂ C̊ε ,

where ε, γ and θ are as in Proposition 4.1.
Consider the following set:

Z1 ∶= R × Vθ × s(B0) ⊂ R × C̊ε × (C̊ε × B0).

Lemma 4.2 The set Z1 is a manifold of dimension m + n + 1 with boundary

∂Z1 = R × (V̊ ε
γ ∩ f −1(θ)) × s(B0).

1the trajectory γp is determined by p.
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Figure 3: The neighborhoods Vθ

Proof For any regular value θ the intersection U ∩ f −1(−∞, θ] is a manifold with
boundary for any open U ⊂ M such that f −1(θ) ∩U ≠ ∅. ∎
Lemma 4.3 The manifolds with boundary Z1 and W1 are completely transverse inside
R × C̊ε × C̊ε × B0, meaning that the different strata are all transverse. This implies that
Z1 ∩W1 is a manifold with corners of dimension dim B + 1.

Proof Notice that W̊ 1 = W1.
We start with the intersection W1 ∩ Z̊θ . The transversality is immediate from the

fact that W1 is a graph over the first plus the last two variables, i.e., R × C̊ε × B0 while
the first component of Z̊θ is an open subset of C̊ε .

A similar reasoning applies for q ∈ ∂0W1 ∩ Z̊θ . In fact, due to the transversality of
the flow to a regular level, set f −1(θ) this also proves the transversality of W1 with ∂Zθ .

Notice that ∂0W1 ∩ ∂Zθ = ∅ since a point q ∈ ξ0(B0) cannot satisfy f̃ (q) = θ due
to property (i) of Proposition 4.1.

The transversality of ∂1W1 with Z̊1 follows from the transversality of s(B0) and
Sp1 × B0.

Finally, the transversality of ∂1W1 with ∂Z1 follows from the transversality of Up1

and f̃ −1(θ) together with the transversality of s(B0) and Sp1 × B0. ∎
Lemma 4.4 Let N1 and N2 be submanifolds with corners of type k and l respectively,
inside a manifold (with no corners) N. If they are completely transverse then N1 ∩ N2 is
a manifold with corners of type at most k + l .

Proof We use a standard trick. Clearly, N1 × N2 is a manifold with corners of type
k + l . Then the complete transversality of N1 and N2 is equivalent with the complete
transversality of N1 × N2 and the diagonal submanifold Δ in N × N . The conclusion
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then is that (N1 × N2) ∩ Δ is a manifold with corners (for this see Proposition A.3
in [7]). ∎

Following Lemma 4.2 denote

A1 ∶= Z1 ∩W1 .(4.3)

The codimension 1 boundary has the following decomposition in components:

∂1A1 = {1} × (Up1 ∩ f −1(−∞, θ]) × s(s−1(Sp1 × B0))
?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@A@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@B

∂1
1A1

⋃{0} × ξ0(B0)
?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@A@@@@@@@@@@@@@@@@@@@@@@@@@@@@@B

∂1
0A1

⋃

⋃W1 ∩ ([0, 1] × f −1(θ) × s(B0))
?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@A@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@B

∂1
2A1

,(4.4)

where

∂1
1A1 ∶= ∂1W1 ∩ Z1 , ∂1

0A1 ∶= ∂0W1 ∩ Z1 , ∂1
2A1 ∶= W1 ∩ ∂Z1 .

The codimension 2 stratum is given by

∂2A1 ∶= ∂1
1A1 ∩ ∂1

2A1 = {1} × (Up1 ∩ f −1(θ)) × s(s−1(Sp1 × B0)).(4.5)

We define the resolution map now. Let

R ∶ A1 → Vθ ×M × B0

be the restriction to A1 ⊂ [0, 1] × C̊ε × C̊ε × B0 of the projection onto the (last) three
spacial coordinates. Notice that in fact the image of R is contained in Vθ × Vθ × B0.

Proposition 4.5 The map R is proper.

Proof Recall that for locally compact metric spaces X , Y , a map F ∶ X → Y is
proper if and only if for any sequence (xn)n∈N ∈ X such that lim

n→∞
xn = ∞ one has

lim
n→∞

F(xn) = ∞. By definition,

lim
n→∞

xn = ∞

if for every K ⊂ X compact there exists n0 ∈ N such that xn ∈ X/K for all n ≥ n0. Notice
that such a sequence does not have any convergent subsequence in X and the converse
is also true. It follows easily then that a map F ∶ X → Y is not proper if and only if there
exists (xn)n∈N ∈ X , xn →∞ such that F(xn) → y ∈ Y .

Assume therefore that (un)n∈N ∈ A1 satisfies un →∞ while R(un) → ũ. Now un
has 4 components:

un = (tn , a′n , an , bn) ∈ [0, 1] × Vθ × Vθ × B0 .(4.6)

By passing to a subsequence of un , we can assume tn converges. There are two
possibilities.

Either tn → t′ < 1 or tn → 1. We analyze them separately.
First, the triple R(un) = (a′n , an , bn) converges in Vθ × Vθ × B0. From un ∈ Z1 we

get (an , bn) = (s0(βn), βn) for some βn ∈ B0. Hence, βn converges to β ∈ B0 and
s0(βn) → s0(β).
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If tn → t′ < 1 then for n big enough we have that un ∈ W1/{t = 1} and therefore

a′n = ψ tn
1−tn
(an).

Hence an = s0(βn) → s0(β) and a′n → ψ t′
1−t′
(s0(β)) and by hypothesis this is in Vθ .

We conclude that

un → (t′ , ψ t′
1−t′
(s0(β)), s0(β), β)

and this limit belongs to Z1 ∩W1 = A1. Contradiction with un →∞.
If tn → 1, we have that un = (tn , a′n , s0(βn), βn) and the convergence of

(a′n , s0(βn), βn) to a point in Vθ × Vθ × B0 implies again that βn → β ∈ B0. Since
s0(B0) ⊂ Vθ , we have that s0(βn) → s0(β) ∈ Vθ . We get therefore that the sequence un
converges in [0, 1] × Vθ × Vθ × B0 since all its coordinates converge. In order to reach
a contradiction, we need only check that it converges to some element u of Z1 ∩W1.
We have that

un → u ∈ R × C̊ε × C̊ε × B0 .

On the other hand, since un ∈ W1 and the closure of W1 is taken within R × C̊ε ×
C̊ε × B0 we get that u ∈ W1. One sees easily that u ∈ Z1 since (a′n , s0(βn), βn) = R(un)
converges to a point (a′ , s0(β), β) ∈ Vθ × Vθ × B0. ∎

Let Ṽθ ∶= Vθ ×M × B0 be the codomain of R. We show two things:

(i) the currential formula (3.4) holds on ˚̃Vθ , the interior of Ṽθ and
(ii) there exists a map from a manifold with corners N to ∂Ṽθ = V ε

γ ∩ f −1(θ) that
allows us to continue the process.

First we list some set-theoretic and differential properties of R.

Proposition 4.6 The map R ∶ A1 �→ Ṽθ satisfies:

(1) R(A1) = ⋃
t≥0

ξt(B0)⋂ Ṽθ =∶ Aθ where the closure is taken within M ×M × B0;

(2) R(∂1
1A1) = (Up1 ∩ f −1(−∞, θ]) × s(s−1(Sp1 × B0));

(3) R(∂1
0A1) = ξ0(B0);

(4) R(∂1
2A1) = Aθ ∩ f̃ −1(θ);

(5) the restriction of R is a bijection from A1/Wp1 (see (4.2)) onto its image; and
(6) the restriction of R to ∂1

2A1 is a bijection onto the image.

Proof At (1), let q ∈ W1 ∩ Z1. On one hand

q = lim
n→∞

(tn , ψ tn
1−tn

(xn , yn) , xn , yn , bn) ,

where bn ∈ B, (xn , yn) ∈ C̊ε , tn ∈ [0, 1]. From q ∈ Z1 it follows that (xn , yn , bn) →
(s0(β), β). Suppose tn → t′ < 1. Then

ψ tn
1−tn
(xn , yn) → ψ t′

1−t
(s0(β)).

Hence, in this case, R(q) = (ψ t′
1−t′
(s0(β)), s0(β), β) ∈ ξ t′

1−t′
(B0).
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When tn → 1, q ∈ W1 implies that (xn , yn , bn) → (s0(β), β) ∈ Sp1 × B0, i.e., β ∈
s−1(Sp1 × B0) and ψ tn

1−tn
(xn , yn) → q1 ∈ Up1 ∩ Vθ .

We argue that due to the transversality of s with Sp1 × B0 all points in Up1 ∩
(Vθ × s(s−1(Sp1 × B0))) are limits of type ξtn(s0(βn), s0(βn), βn), tn ≥ 0. Fix first
q2 = (x2 , 0, b2) ∈ s(s−1(Sp1 × B0)). Since s ⋔ B0 we can provide a submanifold B′0 ⊂ B0
of dimension equal to dim Up1 such that s0∣B′0 ⋔ Sp1 and q2 ∈ s(B′0). Take then a
transverse small disk D in q2 + Tq2 s(B′0) centered at q2. The trajectories originating in
this disk will cut s(B′0) exactly once due to the transversality of s(B′0) to the flow. This
stays true even if q2 = (0, 0, b2) is critical. By Corollary 2.9 which can be applied also to
“slanted” disks, given any point (0, y2) ∈ Up1 there exists a sequence of points un ∈ D
with un → q2 and a corresponding sequence of points on trajectories determined by
un that converges to (0, y2).

This finishes the inclusion R(A1) ⊂ ⋃t≥0 ξt(B0).
Conversely, let (a, b, c) ∈ ⋃t≥0(ξt(B0))⋂ Ṽθ . Then there exist tn ≥ 0 and bn ∈ B0

such that

lim
n→∞

(ψtn(s1(bn)), s1(bn), bn) = (a, b, c)

with c ∈ B0. By passing to a subsequence one can assume that tn → t0 or tn →∞. Since
a ∈ Vθ ⊂ V̊ ε

γ and the latter is open in M we can consider ψtn(s1(bn)) ∈ V̊ ε
γ for n big

enough. However, ψtn(s1(bn))might not be in Vθ for infinitely many n, since it could
happen that f (ψtn(s1(bn))) > θ for a subsequence.

Let rn ∶= tn
1+tn

. We have that

un ∶= (rn , ψtn(s1(bn)), s1(bn), bn) ∈ W1 .

Since rn , bn and ψtn(s1(bn)) all converge we have that in fact un converges to a point
u ∈ [0, 1] × Vθ × C̊ε that necessarily lies in W1. The limit u = (r, a, b, c) will also be a
point in Z1 since (b, c) ∈ s(B0) and a ∈ Vθ . Hence, (a, b, c) ∈ R(A1).

Statements (2) and (3) are trivial from the description of ∂1
1A1 and ∂1

0A1.
For (4) the inclusion ⊂ is straightforward. For the inclusion ⊃ notice that if

(a, b, c) ∈ A1 then either f (a) < θ in which case a ∈ V̊θ and so (a, b, c) ∈ Z̊1 ∩W1 or
f (a) = θ in which case (a, b, c) ∈ ∂Z1 ∩W1 =∶ ∂1

2A.
For (5) one notices that for t ≠ 1 the (restriction of the) map R is injective away

from the points corresponding to s−1({p1} × B0). Moreover, R is injective when t = 1.
For p ≠ q with tp ≠ 1 and tq = 1, R(p) ≠ R(q) unless p, q ∈ Wp1 .

For (6) one notices that Wp1 ∩ ∂1
2A1 = ∅. ∎

Corollary 4.7 The equality of currents (3.4) holds on the open set V̊θ ×M × B0.

Proof The intersection Å1 ∶= A1 ∩ (V̊θ ×M × B0) is a manifold with boundary since
∂1

2A1 gets eliminated in the intersection. Since R is proper we can push-forward any
current. Use:

d(R∗(Å1)) = R∗(dÅ1) = R∗(∂1
1A1) −R∗(∂1

0A1).
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Now R∣
Å1

away from a set of zero measure2 is a bijection onto

ξ([0,∞) × B0) ∩ V̊θ ×M × B0 .

It follows from the area formula that

R∗(Å1) = T ∣V̊θ×M×B0
,

where T is the current appearing in (3.4). ∎
This is the first step. In order to proceed further we will use the restriction R ∶

∂1
2A1 → f −1(θ) ×M × B0 = f̃ −1(θ). We fix now another critical point p2 with f (p2) >

f (p1). In order to implement the program, we need the following.
Lemma 4.8 The restriction of R denoted σ ∶ ∂1

2A1 �→ f̃ −1(θ) is completely transverse
to Sp2

×M × B0 within f̃ −1(θ) for all critical points p2.
First, we need to clarify a point. The complete transversality for the map σ is meant

here both within the ambient space f̃ −1(θ) (with Sp2 ×M × B0 ∩ f̃ −1(θ)) and within
the ambient space M ×M × B0. The two statements are clearly equivalent due to the
transversality of Sp2 to f −1(θ) for every regular θ.
Proof Since ∂1

2A1 is a manifold with boundary ∂2A1, as defined in (4.5), we need to
show transversality at points
(1) q ∈ σ(∂2A1) ∩ (Sp2

×M × B0) and
(2) q ∈ σ(∂1

2A1/∂2A1) ∩ (Sp2
×M × B0).

For both situations, take the unique (by (6) of Proposition 4.6) q′ ∈ ∂1
2A1 such that

σ(q′) = q. The two situations are distinguished by tq′ = 1 (for (1)) or tq′ ≠ 1.
From the explicit expression of ∂2A1 in (4.5), we see that transversality for (1) is

implied by the Smale property of the flow.
For (2) since t ≠ 1, we can give another description to W1/{t = 1} ∩ ( f −1(θ) ×M ×

B0) as the graph of the time map defined over ξ0(B0/s−1(Sp1 × B0)) that associates to
a point p the time tp it needs to reach f̃ −1(θ). We deduce that the intersection of this
time map graph with the flow-invariant Sp2 ×M × B0 can be described as the flow-out
of the intersection ξ0(B0/s−1(Sp1 × B0)) ∩ (Sp2

×M × B0) to the level set f̃ −1(θ). By
the transversality of s with Sp2 , we get that this intersection is transverse. Moreover,
since the flow preserves transversality, we get by Proposition 2.10 the transversality
condition we are after within f̃ −1(θ). ∎

We recall what we did so far. We started with the proper submanifold ξ0(B0) of
Vθ ×M × B0 and we constructed a resolution of its flow-out in the open set V̊θ ×M ×
B0. The resolution took the form of a map R defined on a manifolds with corners A1
to Vθ ×M × B0. Of course, this only solves the problem of the flow-out of ξ0(B0) for
the first critical point encountered. How do we go on from here?

The map σ ∶ ∂1
2A1 → f̃ −1(θ) will play now the role of ξ0 ∶ B0 → M ×M × B0 and

we would like to apply the same ideas to σ .
So we would like to see what properties of σ can be preserved when going through

the next critical level. Clearly by composing with the flow-diffeomorphisms we can

2With respect to any measure induced by the volume form of a Riemannian metric on A1 .
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assume that the image of σ is contained in a regular level of f̃ close to the next critical
level.

There is no harm in assuming that the next critical level lies within f̃ −1(0)by chang-
ing f to f + c for some constant c. Moreover we will be using certain neighborhoods
of the critical sets. First, since the Shilnikov–Minervini results are local around the
critical points we will use different neighborhoods around the critical sets of f̃ −1(0).
• We will denote C̃ε ∶= ⋃p∈Crit( f )∩ f −1(0) Cε(p) ×M × B0, where ε is chosen so that

the results of Section 2 hold for each cube Cε(p) with p in the finite set Crit( f ) ∩
f −1(0).

• For each p ∈ Crit( f ) ∩ f −1(0) we will choose a θ p and γp small enough so that
Proposition 4.1 item (ii) is satisfied (observe that the points p ∈ Crit( f ) ∩ f −1(0)
are not points of local minimum in our context). Then let

θ1 ∶= min θp , γ ∶= min γp

Vθp ∶= V ε
γ (p) ∩ f −1[−θ1 , θ1], Vθ 1 ∶= ∪pVθp

and finally

Ṽθ 1 ∶= Vθ 1 ×M × B0 .

Here is the model result we are after.

Proposition 4.9 Let N be an oriented manifold with corners of dimension n and type
k ≥ 13 and let −θ be a regular level for f̃ such that 0 is a critical level and θ is small
enough. Let θ′ < θ1 and

σ ∶ N → f̃ −1(−θ′) ∩ Ṽθ 1 , σ = (σ1 , σ2 , σ3)
be a smooth map such that
(a) σ is proper.
(b) σ is completely transverse to all stable manifolds Sp ×M × B0 for p ∈ Crit( f );

equivalently σ1 ⋔ Sp, for all p ∈ Crit( f ).
(c) σ ∣N/∂2 N is injective where ∂2N is the collection of strata of codimension at least 2.
(d) σ1∣N0 = α((σ2 , σ3)∣N0) for some function α where N0 is the top stratum of N.
Then there exists a smooth map, called flow resolution Rσ ∶ Aσ �→ Ṽθ 1 defined over an
oriented manifold with corners Aσ of dimension n + 1 and type k + 2 such that
(i) Rσ is proper.

(ii) Rσ(Aσ) = (⋃t≥0 ξt(σ(N))) ∩ Ṽθ 1 where the closure is taken in M ×M × B0.
(iii) Rσ is a bijection from an open subset of Aσ of full measure to an open subset of full

measure of (⋃t≥0 ξt(σ(N))) ∩ Ṽθ 1 .
(iv) Aσ has a distinguished boundary N ′ ∶= ∂1

θ 1
Aσ of dimension n and type k + 1 such

that σ ′ ∶= Rσ ∣N ′ ∶ N ′ �→ f̃ −1(θ1) ∩ Ṽθ 1 is completely transverse to all the stable
manifolds Sp ×M × B0, is injective on N ′/∂2N ′ and the components of σ ′ satisfy
property of item (d) when restricted to (N ′)0.

3The type of a manifold with corners gives the codimension of the smallest strata in the boundary.
Some authors prefer to call this “depth.”
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Remark 4.10 The word distinguished is related to the fact that ∂1
θ 1
Aσ is not the full

boundary of Aσ but one that has a collar neighborhood.

Remark 4.11 It is important to specify the codomain of σ in order to state the
properness property. In the induction process, we are using, the original map R∣∂1

2Aθ

is proper when the codomain is Vθ ×M × B0 ∩ f̃ −1(θ). The later is an open set inside
f̃ −1(θ). Clearly, the inclusion of an open set into the ambient space is not proper.

Remark 4.12 The injectivity property stated in item (c) appears because we want
the current (Rσ)∗(Aσ) to be determined by the image of Rσ . Otherwise, one could
have multiplicities or worse things happening. One cannot expect injectivity to hold
everywhere.

Remark 4.13 The seemingly strange property (d) is to insure the “replication” of the
injectivity property away from the codimension 2 stratum. Property (d) is fulfilled for
the initial σ , i.e., the restriction of R to ∂1

2A. In that case, N0 is the graph of the time
map p → tp for p ∈ ξ0(B0/ξ−1

0 (Sp1
×M × B0)) as described in the proof of Lemma 4.8

while σ projects (tp , p) to p. Since the first component of ξ0 is dependent on the other
two, we get the claim.

In order to prove Proposition 4.9, we also need to deal with the fact that σ(N) is
not necessarily a subspace of Vθ 1 ×M × B0. Hence rather than “flowing” σ(N)we will
consider the graph Γσ . It is convenient to consider first a proper embedding N ↪ R

j

and look at the closure of the set

W2 ∶= {(t, ψ t
1−t
(m1), m1 , m2 , b, n) ∣ 0 < t < 1} ∩R × C̊ε × C̊ε ×M × B0 ×R j

inside R × C̊ε × C̊ε ×M × B0 ×R j .
By Remark 2.8, this closure is a manifold of dimension 2m + n + j + 1 with bound-

ary

∂1
1W2 ∶= ⋃

p∈ f −1(0)∩Crit( f )
{1} × (Up ∩ C̊ε(p)) × (Sp ∩ C̊ε(p)) ×M × B0 ×R j ⋃

∂1
0W2 ∶= {0} ×△C̊ε

×M × B0 ×R j .

Let

Zσ ∶= R × Vθ 1 × Γσ ⊂ R × Vθ 1 × Vθ 1 ×M × B0 × N .

Since Vθ 1 is a manifold with boundary we get that Zσ is a manifold with corners of
dimension m + n + 1 and type k + 1. The codimension 1 boundary components of Zσ
are

∂1
0Zσ ∶= R × (Vθ 1 ∩ f −1(−θ1)) × Γσ(4.7)

∂1
1Zσ ∶= R × (Vθ 1 ∩ f −1(θ1)) × Γσ(4.8)

∂1
j+1Zσ ∶= R × Vθ 1 × Γ

σ∣
∂1

j N

, 1 ≤ j ≤ fN ,(4.9)
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where fN is the number of codimension 1 boundary components of N, i.e., the number
of connected components of ∂1N/∂2N , assumed finite.

Lemma 4.14 The manifolds W2 and Zσ are completely transverse insideR × C̊ε × C̊ε ×
M × B0 ×R j . This implies that Zσ ∩W2 is a manifold with corners of dimension n + 1
and type at most k + 2.

Moreover, the codimension 1 boundary of Zσ ∩W2 has the following components
which are themselves manifolds with corners

∂1
1W2 ∩ Zσ = ⋃

p∈Crit( f )∩ f −1(0)
{1} × (Up ∩ f −1([0, θ1])) × Γσ∣σ−1(Sp×M×B0)

(4.10)

∂1
0W2 ∩ Zσ = {0} × Γσ̃(4.11)

W2 ∩ ∂1
1Zσ(4.12)

W2 ∩ ∂1
j+1Zσ for1 ≤ j ≤ fN ,(4.13)

where σ̃ = (σ1 , σ1 , σ2 , σ3) given that σ = (σ1 , σ2 , σ3). Finally,

W2 ∩ ∂1
0Zσ = ∅.(4.14)

Proof Analogous to the proof of Lemma 4.3.
The reason for (4.14) is that the f -value of the second component of W2 is at least

as big as the f -value of the third component while this is not the case for an element
of ∂1

0Zσ due to f ○ σ1 = −θ′ > −θ1. ∎

Remark 4.15 The reason for which we chose Im σ ⊂ f̃ −1(−θ′) is because we did
not want Im σ ⊂ ∂Ṽθ 1 . That would render Lemma 4.14 false. An alternative approach,
if Im σ ⊂ f̃ −1(−θ1), would be to replace Vθ 1 in the definition of Zσ with V θ′

θ 1
=

f −1([−θ′ , θ1]) ∩ V ε
γ where θ′ < θ1. Then one has to be content with the construction

of the resolution for the flow-out of σ(N) in between levels −θ′ and θ1.

Let Aσ ∶= W2 ∩ Zσ . This is an oriented manifolds with corners because W2 and
Zσ are both oriented. The convention here is that the components which correspond
to graphs of smooth functions over a certain oriented base manifold B′ inherit the
orientation of the manifold B′. Hence, the direction of the flow gives the first vector of
a positively oriented basis. Other than this, we respect the order of factors in a product.

Consider now

Rσ ∶ Aσ → Vθ 1 ×M × B0

to be the restriction of the projection onto the second, fourth, and fifth components
of the product R × C̊ε × C̊ε ×M × B0 ×R j .

Proposition 4.16 The map Rσ is proper.

Proof Suppose, just like in Proposition 4.5 that there exists a sequence un ∈ Aσ such
that un →∞ and Rσ(un) converges. Now, un has six components

un = (tn , a′n , an , mn , bn , zn)
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with tn ∈ [0, 1]. By passing to a subsequence we can assume that tn → t′ ∈ [0, 1]. We
will show that in both cases t′ = 1 and t′ ≠ 1 one reaches a contradiction by showing
that there exists a subsequence of un which converges in Aσ .

For the case t′ = 1, we will use the fact that {t = 1} ∩W ∩ ([0, 1] × Vθ 1 × Vθ 1) is
compact and thus has a compact neighborhood. In fact, one notices that W is com-
pletely transverse to Vθ 1 × Vθ 1 ×R and their intersection is a manifold with corners,
with one of the codimension 1 boundaries being contained in {t = 1}

⋃
p∈Crit( f )∩ f −1(0)

{1} × (Up ∩ Vθ 1) × (Sp ∩ Vθ 1).

This is compact. We conclude that from (a′n , an) we can extract a subsequence
denoted again (a′n , an) that converges to a point in Vθ 1 × Vθ 1 . On the other hand, we
have by hypothesis that (a′n , mn , bn) converges. Hence by passing to a subsequence
we conclude that (an , mn , bn) converges to some point (a, m, b). But (an , mn , bn) =
(σ1(zn), σ2(zn), σ3(zn)) and σ is proper. It follows that we can extract yet another
subsequence this time from zn that converges to z ∈ N (just take σ−1(K) where K is
a compact neighborhood of (a, m, b)). But then by the continuity of σ we get that
(an , mn , bn , zn) converges to (a, m, b, z) ∈ Γσ . Since a′n converges to a point in Vθ 1

we conclude that un converges to a point in Aσ , contradiction with un →∞.
For t′ ≠ 1, we use that a′n = ψ tn

1−tn
(an) and since a′n converges and tn

1−tn
→ t′

1−t′ , we
conclude that an also converges. We claim that an converges to a ∈ Vθ 1 . First a′n →
a′ ∈ Vθ 1 by hypothesis. Now Vθ 1 is a flow-convex neighborhood and a′ = ψ t′

1−t′
(a).

It follows that a ∈ Vθ 1 . Now the contradiction is obtained as before (an , mn , bn) =
(σ1(zn), σ2(zn), σ3(zn)), and so on. ∎

We now complete the proof of Proposition 4.9.

Proof We need only be concerned with items (ii)–(iv). The distinguished boundary
is defined as:

N ′ ∶= ∂1
θ 1
Aσ ∶= W2 ∩ ∂1

1Zσ = W2 ∩ ([0, 1] × f −1(θ1) × Γσ).

Clearly Rσ(∂1
θ 1
Aσ) ⊂ f̃ −1(θ1).

In order to prove (ii), it is useful to consider the projection R̃σ from Aσ onto the
second, fourth, fifth, and sixth components. Then the image of this map will give the
closure of the flow-out of Γσ inside Vθ 1 ×M × B0 ×R j and the proof of this fact follows
the same lines as the proof of item (1) in Proposition 4.6. Then projecting the closure
of the flow-out of Γσ onto Vθ 1 ×M × B0 equals (⋃t≥0 ξt(σ(N))) ∩ Ṽθ 1 and this takes
care of (ii).

The map R̃σ mentioned in the previous paragraph is injective on Aσ/{t = 1} since
on this set all points are of type

(t, ψ t
1−t
(σ1(z)), σ1(z), σ2(z), σ3(z), z), z ∈ N , t ∈ [0, 1),

which get projected to (ψ t
1−t
(σ1(z)), σ2(z), σ3(z), z). Clearly all the points in the

forward-flowout of Γσ that are inside Vθ 1 ×M × B0 ×R j are also in the image of this
projection. In order to obtain a set where Rσ is injective one needs to take out more
points.
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Since σ ∣∂2 N is completely transverse when restricted to all distinguished boundary
pieces ∂2

i N of ∂2N , it follows that, we can define a natural subspace A
σ∣

∂2 N

of Aσ by

taking the union of the corresponding sets W2 ∩ Z
σ∣

∂2
i N

. Since this A
σ∣

∂2 N

will be a

union of manifolds with corners of lower dimension it will have measure zero inside
Aσ . Then Rσ will be injective on Aσ/({t = 1} ∪A

σ∣
∂2 N

) and this takes care of (iii).

In order to prove transversality, we can use Lemma 4.17 in order to reduce to the
proof of transversality of R̃σ ∣∂1

θ1
Aσ

with Sp ×M × B0 ×R j . This then follows the same
scheme as Lemma 4.8.

For injectivity, we note that ∂1
0W2 ∩ ∂1

1Zσ = ∅ and we separate N ′ = ∂1
θ 1
Aσ into two

parts:

N1 ∶= (W2/{t = 1}) ∩ ∂1
1Zσ and N2 ∶= ∂1

1W2 ∩ ∂1
1Zσ .

We observe that Rσ takes N1 and N2 to two disjoint sets in Ṽθ distinguished by the
fact that the first component belongs to ∪p∈Crit( f )∩ f −1(0)Up (in the case of points in
Rσ(N2)) or does not belong to the same set (for Rσ(N1)). We have that N2 is a
distinguished boundary of N ′ while N1 contains the top stratum of N ′. Hence it is
enough to prove the injectivity of Rσ separately on N1/∂2N1 and on N2/∂1N2.

The points in N1/∂2N1 are of type(t0 , ψ t0
1−t0
(σ1(z)), σ1(z), σ2(z), σ3(z), z)with z ∈

N/∂2N and they get mapped to (a, m, b) ∶= (ψ t0
1−t0
(σ1(z)), σ2(z), σ3(z)) ∈ f −1(θ1) ×

M × B0. Then t0 is the unique time it takes to flow backwards from point a ∈ f −1(θ1)
to level f −1(−θ′), σ1(z) is the point of intersection with level f −1(−θ′) of the
trajectory determined by a, and z ∈ N/∂2N is uniquely determined by σ(z) due to
the hypothesis.

The description N2 = ⋃
p∈ f −1(0)∩Crit( f )

{1} × (Up ∩ f −1(θ1)) × Γ
σ∣

σ−1(Sp×M×B0)

is use-

ful. For the top stratum (N2)0 of N2, one restricts Γσ to σ−1(Sp ×M × B0) ∩ N0.
If p = (u, σ1(z), σ2(z), σ3(z), z) ∈ (N2)0 then u does not determine σ1(z) anymore,
but property (d) says that σ1(z) is determined by (σ2(z), σ3(z)). Since σ is also
injective on N0 we get that p determines z. Hence, the map on (N2)0 that takes p
to (u, σ2(z), σ3(z)) is injective and this finishes the proof of this issue.

Finally, property (d) itself holds for σ ′ ∶ N ′ → Ṽθ 1 ∩ ( f −1(θ1) ×M × B0). This fol-
lows from the description of (N ′)0 = (N1)0 above and the fact that σ is injective on
N0 and also satisfies property (d). ∎

Lemma 4.17 Let σ̃ ∶ Ñ → M̃ ×R j be a smooth map. Then the (complete) transversality
of σ̃ with S̃ ×R j , for some submanifold S̃ ⊂ M̃ implies the (complete) transversality of
π̃ ○ σ with S̃ where π̃ ∶ M̃ ×R j → M̃ is the projection.

Proof Straightforward. ∎

We now derive an important consequence of Proposition 4.9 in terms of currents.
Let Tσ = Rσ(Aσ) be the flow-out of σ(N) between levels −θ′ and θ1. It is a rectifiable
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current, once it is endowed, over the points where Rσ is a bijection, with the orienta-
tion induced by the direction of the flow and the orientation of N0.

Let T
σ∣

∂1
j N

∶= Rσ(W2 ∩ ∂1
j+1Zσ) be the flow-out of σ(∂1

j N) for the jth codimension

1 boundary of N also between levels −θ′ and θ1. This is a rectifiable current of
dimension n.

Corollary 4.18 Let σ be a smooth map as in Proposition 4.9. The following currential
equation holds in the open set Ṽθ 1 ∩ f̃ −1(−θ′ , θ1).

dTσ = ∑
p∈Crit( f )∩ f −1(0)

(Up ∩ f −1[0, θ1)) × (σ2 , σ3)(σ−1
1 (Sp)) +

fN

∑
j=1

T
σ∣

∂1
j N

.(4.15)

Proof One uses Lemma 4.14, Proposition 4.9 and Stokes on the manifold with
corners Aσ pushed-forward via the proper map Rσ . The injectivity property identifies
(Rσ)∗(Aσ) with Tσ and (Rσ)∗(W2 ∩ ∂1

j+1Zσ) with T
σ∣

∂1
j N

for all j. ∎

Remark 4.19 It is important to understand why equation (4.15) was not stated as
an identity directly in the open set f̃ −1(−θ′ , θ1). The conditions in the statement of
Proposition 4.9 do not exclude the possibility that the image of σ oscillates wildly close
to the topological boundary of Ṽθ 1 ∩ f̃ −1(−θ′) inside f̃ −1(−θ′) so that σ∗(N) might
not be extendable as a current outside this neighborhood. This is of course not the case
for the situation where we will apply Proposition 4.9. In the first step of the induction,
σ is the restriction of R to ∂1

2Aθ and the image of this map “away” from Up1
× Sp1

× B0
is simply the flow-out to level θ of ξ0(B0/B′0)where B′0 ⊂ B0 is a smaller neighborhood
around the point of interest b0. Hence, close to the topological boundary of Ṽθ , or
“away” from Up1

× Sp1
× B0 the image of the map is really an embedded submanifold,

extendable beyond the topological boundary. For the other steps of the induction we
make the following observation.

Remark 4.20 Proposition 4.9 is what allows us to cross critical levels at least if the
image of the map lands close to the stable manifold(s) of the critical point(s) at level
0. But when flowing between two consecutive critical levels, nothing guarantees that
the flow-out of the image of the resolution at the first critical level will end-up within
a neighborhood of type Ṽθ 1 so as to satisfy the hypothesis of Proposition 4.9.

One solution is to do the following. Suppose that in fact σ ∶ N → f̃ −1(−θ1) and for
each p ∈ Crit( f ) ∩ f −1(0), there are neighborhoods Dp of ( f −1(θ1) ∩ Sp) ×M × B0
such that σ ∣σ−1(Dp)

is proper. Then one gets a restriction map σ̂ of σ to an open set of
N, which is proper and whose image is contained in Ṽθ 1 as in Propostion 4.9.

What about the rest of N? Take D−θ 1 to be the complement of
⋃p∈Crit( f )∩ f −1(0)( f −1(θ1) ∩ Sp) ×M × B0 in f̃ −1(θ1) and let DN ∶= σ−1(D−θ 1). Look
at σ1 ∶= σ ∣DN

. Use the flow diffeomorphism to get from σ1 a map σ̃1 ∶ DN → f̃ −1(θ1).
We claim that there exists an open subset of DN and an open subset of ∂1

θ 1
Aσ which

are diffeomorphic via a diffeomorphism α such that

Rσ ○ α = σ̃1 .
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Take σ−1(U)where U ∶= D−θ 1 ∩ Ṽθ 1 . This is obviously an open set diffeomorphic with

a open subset of DN . On the other hand, by taking W2 ∩ (R × f −1(θ1) × Γ
σ∣

σ−1(U)

), one

obtains an open subset of ∂1
θ 1
Aσ which is obviously diffeomorphic with σ−1(U).

We can then use the diffeomorphism α in order to “glue” Rσ and σ1 to a smooth
map going from a manifold with corners Ñ to f̃ −1(θ1) and flow to the next critical
level and apply again Proposition 4.9 and this Remark and so on.

Proof of Theorem 3.2 We have already sketched the proof strategy at the end of Sec-
tion 3. We need to explain what are the open sets M j ×M × B0 that cover M ×M × B0
where the currential identity is true. We will discuss only the situations where B0 is a
small neighborhood around a point b0 such that the forward trajectory determined by
s(b0) ends at a nonmaximal point. The remaining situation was already discussed in
Remark 3.6.

Let c0 < ⋯ < c l be the consecutive critical levels of f excluding the maximum with
c0 the first encountered critical level by the forward trajectory of s(b0). It might
even be a minimal level of f, i.e., a level that contains a local minimum if s(b0) is
a local minimum. Let c0 < δ1 < δ2 < c1 < δ3 < δ4 < ⋯ < c l−1 < δ2l−1 < δ2l < c l < δ2l+1
be regular level sets such that δ1 = c0 + θ0 and for k ≥ 1, δ2k = ck − θk and δ2k+1 =
ck + θk where θk is chosen small enough so that we can chose neighborhood Vθ k

around the critical points of level ck satisfying the conditions of Proposition 4.1.
Corollary 4.7 takes care of the first step of induction and implies the formula for

f −1(−∞, δ1) ×M × B0 .

By property (4) of Proposition 4.6 and Lemma 4.14 there exists a map for some ε1 > 0:

σ ∶ ∂1
2A1 → f −1(δ1 − ε1) ×M × B0 ,

whose image contains the closure of the forward-flow of ξ0(B0) intersected with
level δ1 − ε1 and is transverse to all Sp ×M × B0 for all critical p. Moreover, ∂1

2A1 is a
manifold with boundary ∂2A1 = Up1

∩ f −1(δ1 − ε1) × s(s−1(Sp1
) × B0) and σ satisfies

the conditions of Proposition 4.9.
Let T 1

σ to be the current determined by the flow-out of the image of σ in the open
set f −1(δ1 − ε1 , δ2 + ε2) ×M × B0 for some small ε2 where there are no critical points.
Let T 1

∂σ be the flow-out of the image of σ ∣∂2A1
. Both are rectifiable currents with the

obvious orientation. The following identity of currents holds on f −1(δ1 − ε1 , δ2 + ε2) ×
M × B0:

dT 1
σ = T 1

∂σ = (Up1
∩ f −1(δ1 − ε1 , δ2 + ε2)) × s(s−1(Sp1

) × B0)

proving thus the theorem on f −1(δ1 − ε1 , δ2 + ε2) ×M × B0.
From this point on we repeatedly apply Proposition 4.9 and Corollary 4.18. We

notice that (σ2 , σ3)(σ−1
1 (Sp)) can be substituted with (σ2 , σ3)(σ−1

1 (Sp) ∩ N0) and
these points are easy to describe as s(s−1(Sp × B0))where p is any of the critical points
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at ith step. It is not anymore difficult to see that T
σ∣

∂1
j N

is a sum:

∑
p
(Up ∩ f −1(c i − θ i , c i + θ i)) × s(s−1(Sp × B0)),

where the sum here runs over the critical points that have already been crossed. ∎
Remark 4.21 There is a subtlety in the proof of Theorem 3.2, that is easy to miss.
In order to prove an equality of currents, these have to exist to begin with. In
particular, T and U(F) ×F s(s−1(S(F))) should be shown to have locally finite n + 1
and respectively n-Hausdorff measures. But this is a straightforward corollary of the
existence of the flow resolutions we have constructed. As an immediate consequence
we get via Fubini that U(F) and s(s−1(S(F))) have finite Hausdorff measures if B is
compact.

5 Odd Chern–Weil theory

We now start a new topic altogether. Let E → B be a hermitian vector bundle over a
compact manifold B. Denote by U (E) the fiber bundle of unitary isomorphisms and
let U ∈ Γ(U (E)) be a section of this bundle. Let ∇ be a connection compatible with
the metric.

Given any invariant polynomial P, we introduce odd degree forms TP(E , U ,∇) ∈
Ω∗(B), called odd Chern–Weil forms, which satisfy the following properties
(a) d TP(E , U ,∇) = 0;
(b) TP(E , U ,∇) − TP(E , U ,∇′) is exact for any two metric compatible connections

∇,∇′;
(c) if U0 , U1 ∈ Γ(U (E)) are homotopic then TP(E , U0 ,∇) − TP(E , U1 ,∇) is exact;

and
(d) if φ ∶ B1 → B is a smooth map then φ∗ TP(E , U ,∇) = TP(φ∗E , φ∗U , φ∗∇).

Recall the fundamental Theorem of Chern–Weil theory. If P is an invariant poly-
nomial and ∇1 and ∇2 are compatible connections then one can associate to ∇0 and
∇1 two forms P(E ,∇1) and P(E ,∇0) and there exists a nonunique form TP(∇1 ,∇0)
such that

P(E ,∇1) − P(E ,∇0) = d TP(∇0 ,∇1).

The construction of a particular such form TP(∇1 ,∇0) goes as follows. Let π∗2 E →
[0, 1] × B be the pull-back of E with respect to the projection [0, 1] × B → B. Consider
the following connection on π∗2 E

∇̃ ∶= d
dt
+ (1 − t)∇0 + t∇1 .

Then the standard homotopy formula implies that

d (∫
[0,1]

P(π∗2 E , ∇̃)) = P(E ,∇1) − P(E ,∇0),

where integration on the left is over the fibers of π2. Define TP(∇0 ,∇1) to be
∫[0,1] P(π∗2 E , ∇̃).
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It is not hard to see that

TP(∇0 ,∇1) = −TP(∇1 ,∇0).

This is because the diffeomorphism on [0, 1] ×M → [0, 1] ×M, (t, m) → (1 − t, m)
reverses the orientation of the fiber and fiber integration is sensitive to this.

Remark 5.1 If one takes different paths between the connection ∇0 and ∇1, by a
result of Simons and Sullivan [23] the transgression forms obtained for two different
paths differ by an exact form.

In our context, consider the connections∇0 ∶= ∇ and∇1 = U−1∇U on E and write
down the transgression formula from Chern–Weil theory:

P(F(U−1∇U)) − P(F(∇)) = d TP(∇, U−1∇U).

Notice that F(U−1∇U) = U−1F(∇)U . It follows from the fact that P is invariant
that P(F(∇)) = P(F(U−1∇U)), hence the form TP(∇, U−1∇U) satisfies property (a)
above.

The next lemma helps prove property (b) for TP(∇, U−1∇U).

Lemma 5.2 If ∇i , i = 1, 4 and are four metric compatible connections then

∑
i

TP(∇i ,∇i+1)

is exact where ∇5 ∶= ∇1.

Proof If H ∶ C × B → M is a smooth map, C is an oriented, compact manifold with
corners of dimension c and ω is a smooth form on M of degree k ≥ c − 1 then:

∫
C

H∗dω + (−1)c−1d ∫
C

H∗ω = ∫
∂C

H∗ω.(5.1)

To see (5.1), apply first Stokes on C × B to

d(H∗ω ∧ π∗2 η) = dH∗ω ∧ π∗2 η + (−1)k H∗ω ∧ π∗2 dη,

where η ∈ Ωn−k+c−1(B) is a smooth test form and π2 ∶ C × B → B is the projection and
then integrate over the fiber. On the closed, oriented B one has:

0 = d (∫
C

H∗ω) ∧ η + (−1)k−c (∫
C

H∗ω) ∧ dη.(5.2)

Hence, using the orientation of the fiber first convention we get from (5.2)

(−1)k ∫
C

H∗ω ∧ π∗2 dη = (−1)k (∫
C

H∗ω) ∧ dη = (−1)c−1d (∫
C

H∗ω) ∧ η.

Take C = Δ2 be the standard simplex in R
2 with coordinates (s, t) and on π∗2 E → C ×

B consider the connection that “interpolates” between ∇1, ∇2, ∇3:

∇̃ ∶= d
ds
+ d

dt
+∇1 + s(∇2 −∇1) + t(∇3 −∇1),
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where d
ds +

d
dt is the differential on C. The form P(π∗2 E , ∇̃) on C × B is closed and

∫
∂C

P(π∗2 E , ∇̃) = TP(∇1 ,∇2) + TP(∇2 ,∇3) + TP(∇3 ,∇1).

Use now (5.1) for H = idC×B to conclude that the Lemma works for three connections.
Using that TP(∇,∇′) = −TP(∇′ ,∇) one can extend by induction to any finite num-
ber of connections. ∎

One applies the lemma with ∇1 ∶= ∇, ∇2 ∶= U−1∇U , ∇3 = U−1∇′U and ∇4 ∶= ∇′
in order to conclude property (b). Indeed one has

TP(∇2 ,∇3) = TP(∇,∇′) = −TP(∇4 ,∇1).

Property (c) for TP(∇, U−1∇U) is proved as follows. Consider the vector
bundle π∗E → U (E) where π ∶ U (E) → B is the natural projection. Then π∗E
has a connection π∗∇ and it also has a tautological unitary isomorphism U τ ∶
U (E) → U (π∗E). Therefore, there exists a natural transgression closed form
TP(π∗∇, (U τ)−1(π∗∇)U τ) ∈ Ω∗(U (E)).

Let Ut be a smooth homotopy between U0 and U1. Then Ut is a section of

U (π∗2 E) → [0, 1] × B.

Then for any closed form ω on U (π∗2 E) the standard homotopy formula informs that
U∗0 ω and U∗1 ω differ by an exact form on B. Take ω ∶= p∗ TP(π∗∇, (U τ)−1π∗∇U τ)
where p ∶ π∗2 U (E) → U (E) is the natural projection. It is not hard to check that

U∗0 ω = U∗0 TP(π∗∇, (U τ)−1π∗∇U τ) = TP(∇, U−1
0 ∇U0) and(5.3)

U∗1 ω = TP(∇, U−1
1 ∇U1)(5.4)

and this finishes the proof of the third property.
One checks rather immediately the naturality of TP.
Hence, TP(∇, U−1∇U) satisfies the four properties above. Define then the odd

Chern–Weil forms associated to (P, E , U ,∇) by

TP(E , U ,∇) ∶= TP(∇, U−1∇U).

We will also denote this by TP(U ,∇) when the bundle is clear from the context.

Remark 5.3 There is an alternative way of thinking about TP(E , U ,∇) that reminds
one of the clutching construction. Consider the fiber bundle π∗2 E → R × B where now
π2 ∶ R × B → B.

Then Z acts on π∗E → R × B as follows:

k ∗ (t, b, v) = (t − k, b, U k
b v).

We get thus a vector bundle Ẽ = T(E , U) = π∗2 E/Z. A smooth section of Ẽ is a smooth
family of sections (st)t∈R ∈ Γ(E) satisfying:

st−k(b) = U k
b st(b), ∀b ∈ B, k ∈ Z, t ∈ R.
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Suppose∇t is a smooth family of connections on E → B satisfying:

∇t+k = U−k∇tU k ,(5.5)

Then the connection T(∇t) = d
dt +∇t on π∗2 E “descends” to a connection on Ẽ as the

next computation shows:

(T(∇t)s)t−k(b) =
∂s
∂t
(t − k, b) dt +∇t−k st−k(b) =

= U k
b

∂s
∂t
(t, b) dt +U k

b∇t(U−k
b U k

b st)(b) = U k
b (T(∇t)s)t)(b).

Now, the affine family (1 − t)∇ + tU−1∇U defined for t ∈ [0, 1] satisfies (5.5) for
k = 1 and t = 0. Unfortunately, one cannot extend it to a smooth family satisfying (5.5)
so one cannot say that ∇̃ is a smooth connection on Ẽ.

However, one can show that TP(E , U ,∇) represents the cohomology class

∫
S 1

P(Ẽ),

where P(Ẽ) is the deRham cohomology class of the vector bundle Ẽ → S1 × B. This is
because the transgressions between∇ and U−1∇U determined by the affine path and
by a path satisfying (5.5) differ by an exact form. If one starts with a connection on Ẽ
of type T(∇t), the integral over S1 of P(F(T(∇t))), is really the integral over [0, 1]
of the same quantity and is just the transgression between∇ and U−1∇U given by the
path of connections∇t . This justifies the claim.

All vector bundles over S1 × B when B is compact arise up to isomorphism via the
clutching construction. This is because the pull-back of such a bundle to [0, 1] × B is
isomorphic with the pull-back of a vector bundle from B. The isomorphism of the
fiber at 0 with the fiber at 1 gives the desired gauge transformation.

Example 5.4 Consider the trivial vector bundle C
n → U(n). It has a tautological

gauge transformation Ũ(U) ∶= U . Let d be the trivial connection. Then the difference
between the Ũ−1dŨ and d is just the Maurer-Cartan 1-form of U(n) usually denoted
g−1(dg). Then the transgression forms Tck(Ũ , d) corresponding to the elementary
symmetric polynomials ck in the eigenvalues of a matrix, or if you want to the standard
Chern classes are constant multiples of the forms

tr∧2k−1 g−1(dg).

We determine these constants now. Let ω ∶= g−1(dg). Consider the family of connec-
tions over Cn :

d + tg−1(dg) = d + tω.

Then the induced connection on C
n → [0, 1] × B is ∇̃ = d + tπ∗2 ω. Using the Maurer–

Cartan identity dω + ω ∧ ω = 0 we get that

F(∇̃) = dt ∧ π∗2 ω + (t2 − t)π∗2 ω ∧ π∗2 ω.
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Then, by definition, the component of degree k of the Chern character is

chk(∇̃) = (
i

2π
)

k 1
k!

tr(F(∇̃)k).

But letting A = dt ∧ π∗2 ω and B = (t2 − t)ω ∧ ω, we see that A2 = 0 and AB = BA and
so (A+ B)k = Bk + kBk−1A. We therefore get

chk(∇̃) = (
i

2π
)

k 1
(k − 1)!(t2 − t)k−1dt ∧ tr(∧2k−1π∗2 ω) + ( i

2π
)

k 1
k!

tr(∧2k π∗2 ω).

The last term vanishes before integration because ∧2k π∗2 ω = 1
2 [π

∗
2 ω, π∗2 ω] and the

trace vanishes on commutators. Hence,

chk(∇̃) = (
i

2π
)

k 1
(k − 1)!(t2 − t)k−1dt ∧ tr(∧2k−1π∗2 ω).(5.6)

On the other hand, ∫[0,1](t2 − t)k−1dt = (−1)k−1B(k, k) = (−1)k−1 [(k−1)!]2
(2k−1)! .

We conclude that

Tchk(Ũ , d) = ∫
[0,1]

chk(∇̃) = (−1)k−1 ( i
2π
)

k (k − 1)!
(2k − 1)! tr(∧2k−1 g−1(dg)).(5.7)

We emphasize that this is the same form as (−2πi)−k+1/2γ2k−1 where γ2k−1 appears in
Definition 5.1 of [21]. In fact, Quillen shows in his Proposition 5.23, by a rather long
argument, that the form (−2πi)−k+1/2γ2k−1 represents the integral of chk(Ẽ) over S1,
where Ẽ is the vector bundle on S1 ×U(n) constructed from the trivial bundle via the
clutching construction with respect to the tautological gauge transform. Remark 5.3
gives a more straightforward justification of this fact.

Now, the symmetric polynomials chk and ck are related via the Newton identities.
One has an identity of type:

ck = (−1)k−1(k − 1)! chk +R,

where R stands for a sum of products of chi with i < k. A quick glance at (5.6)
convinces us that R(∇̃) = 0. Hence after integration over [0, 1] we get that

Tck(Ũ , d) = ( i
2π
)

k [(k − 1)!]2

(2k − 1)! tr(∧2k−1 g−1(dg)).(5.8)

For k = 1 one gets Tc1(Ũ , d) = − 1
2πi tr(g−1(dg)).

Let us end this example by giving a simple application.

Lemma 5.5 Let k ≤ n and ιk−1,n ∶ U(k − 1) → U(n) be the natural inclusion. Then
ι∗k−1,n Tcl(Ũ , d) is exact for l ≥ k.

Proof It is enough to prove the Lemma for l = k, and derive the general property
from the inclusions U(k − 1) ↪ U(l − 1) ↪ U(n). We look at the “clutching” bundle
determined by C

n = Ck−1 ×Cn−k+1 over S1 ×U(k − 1) where U(k − 1) acts trivially
on C

n−k+1. Denote this bundle by Ẽk ,n . Clearly, Ẽk ,n will have n − k + 1 linearly
independent sections, namely the vectors ek , . . . , en of the canonical basis get glued
to themselves and hence determine an trivial rank n − k + 1 subundle of Ẽk ,n . It
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follows that ck(Ẽk ,n) = 0 in cohomology and hence also ∫S 1 ck(Ẽk ,n) = 0. By Remark
5.3 and naturality of the odd Chern–Weil forms, this is the same as the class of
ι∗k−1,n Tck(Ũ , d). ∎

Remark 5.6 The odd Chern–Weil theory associates to a gauge transformation
certain odd cohomology classes. For simplicity we presented it here for structure
group U(n), but it can be easily adapted to principal bundles P → B endowed with a
gauge transform g and principal connection 1-form ω. Then one gets a new principal
connection g−1ωg and integrating over [0, 1] the invariant polynomial in the curvature
entries of (1 − t)ω + tg−1ωg gives a transgression closed form on the base space that
satisfies analogous properties as TP(U ,∇).

Recall that Chern–Simons theory constructs typically nonclosed odd forms living
in the total space of the principal bundle as follows. Take a principal bundle π ∶ P → B
with structure group G, connection 1-form ω and an invariant polynomial Q. Then
π∗P = P ×B P → P is a trivial principal bundle with the trivializing section given by
the diagonal embedding. It is endowed with two connections: π∗ω and the pull-
back of the Maurer–Cartan connection 1-form π∗2 g−1(dg) via the projection π2 ∶
P → G induced by the trivialization. Using the affine family of connections between
π∗2 g−1(dg) and π∗ω one gets the Chern–Simons form TQ(ω) on P. Since the
curvature of g−1(dg) is zero it follows that dTQ(ω) = π∗Q(ω). The form TQ(ω)
“descends” to a form on B only under very special circumstances.

The odd Chern–Weil theory on the other hand can be constructed in the same
spirit, only that one is using the bundle of gauge transformations which is the bundle
associated to P → B via the adjoint action of G onto itself.

6 The Chern classes of a gauge transform

In this section, we show how the main transgression identity from Corollary 3.3 can
be applied to simplify the proof and give an extension to a result of Nicolaescu in [19].
This application was previously announced in a preprint of the first named author and
posted on arxiv, using the tame version of the Corollary 3.3. However, the flow used
did not satisfy the condition of tameness. We revisit this application under a renewed
framework. The generalization has to do with the use of the odd Chern–Weil forms
introduced in the previous section.

The starting question is the following. Let E → B be a hermitian vector bun-
dle of rank n endowed with a gauge transform U ∈ Γ(U(E)) and a compatible
connection∇.

Give a description of the Poincaré dual of Tck(U ,∇), one in terms of pointwise
spectral data of U.

In order to achieve this purpose, we will use a horizontally constant, vertical
Morse–Smale vector field on fiber bundle over B with total space U (E).

Let π ∶ U (E) → B be the projection and π∗U (E) = U (E) ×B U (E) → U (E) be
the pull-back. It has a tautological section U τ (the diagonal embedding of U (E)
in π∗U (E)) which is obviously a gauge transform of π∗E. With the help of the
connection π∗∇ we can construct Tck(U τ , π∗∇) ∈ Ω∗(U (E)) and the naturality of

https://doi.org/10.4153/S0008414X21000353 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000353


1616 D. Cibotaru and W. Pereira

Tck shows that

U∗ Tck(U τ , π∗∇) = Tck(U ,∇).

The form ω ∈ Ω∗(U (E)) to be “flown” will be ω = Tck(U τ , π∗∇). What is the flow
then? In order to define it, we need to fix a complete flag of sub-bundles

E = W0 ⊃ ⋯ ⊃ Wn = {0}.

For 1 ≤ i ≤ n let E i ∶= Wi−1/Wi (better said the orthogonal of Wi in Wi−1) and

A ∶= ⊕
1≤k≤n

k idE i

be a self-adjoint endomorphism of E with distinct eigenvalues. Then the function

f ∶ U (E) → R, f (U) = Re Tr(AU)
has a fiberwise or vertical gradient which can be described as gradv f (U) = A−UAU .
The restriction to each fiber U (Eb) is a Morse–Smale function on the unitary group,
thoroughly explored in [19]4 We recall the essential properties. The critical points
are in one-to-one correspondence with the invariant subspaces of A. More precisely,
let ⟨e1 , . . . , en⟩ be a basis of Eb such that (Wk)⊥b = ⟨e1 . . . , ek⟩. The critical points
are reflections UI ∶= − idV ⊕ idV⊥ where V = ⟨e i1 , . . . , e ik ⟩ for some ordered set I =
{i1 , . . . , ik} ⊂ {1, . . . , n}. There are 2n such critical points with the absolute minimum
(of f ∣Eb

) corresponding to V = Eb and the absolute maximum to V = {0}.
The flow is given by the expression [9]

(t, U) → (sinh (tA) + cosh (tA)U)(cosh (tA) + sinh (tA)U)−1 .

From this, we deduce that the stable and unstable manifolds can be described by the
following incidence relations (compare with Corollary 16 in [19]):

S(UI) = {U ∈ U(Eb) ∣ dim[Ker (1 +U) ∩Wm] = k − p, ∀0 ≤ p ≤ k,
∀ip ≤ m < ip+1}

U(UI) = {U ∈ U(Eb) ∣ dim[Ker (1 −U) ∩Wm] = n − k − q, ∀0 ≤ q ≤ n − k,
∀ jq ≤ m < jq+1},(6.1)

where we set i0 ∶= 0, ik+1 ∶= ∞ and { j1 < ⋯ < jn−k} = Ic is the complement of I. We
note that dim U(UI) = codim S(UI) = ∑i∈I 2i − 1.5

Remark 6.1 It is shown in [19] (Proposition 17 and Corollary 18) that the flow satisfies
the Smale property. Moreover, their closures U(UI) and S(UI) are real algebraic sets.
One can show that in fact S(UI) has a stratification with no codimension 1 strata
(see the comments after Corollary 5.1 in [4]) and by reversing the flow (or using
the involution U → −U) the same is true about U(UI). In other words, S(UI) and
U(UI) are pseudo-manifolds and S(UI) and U(UI) determine closed currents once

4The analysis in [19] is on the Grassmannian of hermitian Lagrangians but, by a Theorem of Arnold
a clever way of writing the Cayley transform makes this space diffeomorphic to the unitary group.

5We ignore the indication of the point b in the flag so as not to complicate notation. It should be
clear from the context whether we refer to the fiber component or the entire fiber bundle.
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an orientation is chosen. Their volume is finite by the results of [12] (see Remark
4.21). This also implies in particular that the Morse–Witten complex associated to the
Morse–Smale flow induced by f is perfect, i.e., all the differentials are zero. This is not
the case for the analogous flow on the real orthogonal group.

We will need the following two computational results interesting in their own right.
Recall the forms Tck(Ũ , d) from (5.8). We use the same notation for the analogous
forms on U(Eb). In order to keep the notation simple, for this part, we will forget
about the point b and use E and W for Eb and Wb , and so on.

Lemma 6.2 Let I ≠ {k}. Then

∫
U(UI)

Tck(Ũ , d) = 0.

Proof Clearly this is true by definition if dim U(UI) ≠ dim U(U{k}) = 2k − 1. If
dim U(UI) = 2k − 1 but UI ≠ U{k} then we infer that ι ∶= max{i ∈ I} ≤ k − 1. We
claim that this implies that

Ker(1 −U) ⊃ Wk−1 , ∀U ∈ U(UI).

Indeed, let m ≥ ι = max I. We first estimate p which satisfies jp ≤ m < jp + 1, where
jp ∈ Ic . Let l ∶= ∣I∣. Then, for some s ≥ 0, we have

m = ι + s < jι−l+s+1 .(6.2)

To see this more clearly consider first s > 0 and notice that in fact ι + s = jι−l+s as there
are exactly ι − l + s of j’s in Ic which are smaller or equal than ι + s, which itself lies in
Ic . For the case s = 0, one still has m = ι < jι−l+1 since there are exactly ι − l numbers
smaller or equal ι which are not in I.

Then (6.2) implies that p ≤ ι − l + s = m − l . Therefore for U ∈ U(UI) one has:

dim [Ker (1 −U) ∩Wm] = n − l − p ≥ n −m = dim Wm .

Hence U ∣Wm
= idWm for all m ≥ max I and this applies to m = k − 1. It follows then that

the (proper) inclusion map:

ιk−1,n ∶ U(W⊥
k−1) → U(E), U → U ⊕ idWk−1

takes U(UI) ⊂ U(W⊥
k−1) diffeomorphically to U(UI) ⊂ U(E).6 Now U(UI) is a

closed current in U(W⊥
k−1) irrespective of the orientation. Then Lemma 5.5 and

Remark 6.1 finish the proof. ∎
In order to compute Tck(Ũ , d) over U(U{k}), we need to fix an orientation. Notice

first that U(U{k}) = ιk ,n(U(U{k})), where the latter lies within U(W⊥
k ) by the same

type of argument that was used in Lemma 6.2 for U(UI). Moreover, by the naturality
of Tck(Ũ , d), one has ι∗k ,n Tck(Ũ , d) = Tck(Ũ , d).

6Of course we abused notation by not making any difference between the unstable manifold
corresponding to UI in U(E) and in U(W⊥

k−1), respectively.
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It is only natural then to work on U(W⊥
k ). Notice that we have a natural flag on W⊥

k
defined by W ′

i ∶= Wi/Wk , 0 ≤ i ≤ k. Then

U(U{k}) = {U ∈ U(W⊥
k ) ∣ dim[Ker (1 −U) ∩Wm] = k − 1 −m, ∀0 ≤ m ≤ k − 1}.

In fact U(U{k}) is an open dense subset of the following manifold defined by a single
incidence relation:

U(Uκ) ∶= {U ∈ U(W⊥
k ) ∣ dim Ker (1 −U) = k − 1}.

This is because, generically, a hyperplane of W⊥
k (like Ker (1 −U) for U ∈ U(Uκ) will

intersect W ′
m in dimension k − 1 −m for m ≥ 1. Now

U(Uκ) = {U ∈ U(W⊥
k ) ∣ dim Ker (1 −U) ≥ k − 1} = U(Uκ) ∪ {idW⊥

k
}.

We use the following map

ϕ ∶ S1 × P(W⊥
k ) → U(W⊥

k ), (λ, L) → λ idL ⊕ idL⊥

and note that for {λ ≠ 1}, this map is a smooth bijection onto U(Uκ)while on {λ = 1}
it “collapses” P(W⊥

k ) to idW⊥
k

.

Remark 6.3 Notice that the map ϕ induces an homeomorphism between ΣCPk−1

(the Thom space of the trivial real line bundle over CPk−1) and U(Uκ).

Now, S1 × P(W⊥
k ) has a canonical orientation. We put the orientation on U(Uκ)

(implicitly also on U(U{k})) that makes ϕ orientation reversing. The reason for this
choice is the next result.

Lemma 6.4

∫
U(U{k})

Tck(Ũ , d) = ∫
U(Uκ)

Tck(Ũ , d) = 1.

Proof Fix L ∈ P(W⊥
k ). We write ϕ in the “chart” S1 ×Hom(L, L⊥):

ϕ(λ, A) = (
λ+A∗A
1+A∗A (λ − 1)(1 + A∗A)−1A∗

(λ − 1)(1 + AA∗)−1A 1+λAA∗
1+AA∗

) ,

where the decomposition of ϕ(λ, A) on the right is relative L ⊕ L⊥. The differential at
the point (λ, 0) in this chart is:

dϕλ ,L(w , S) = ( w (λ − 1)S∗
(λ − 1)S 0 )

Hence,

ϕ−1(λ, L)dϕλ ,L(w , S) = ( λ̄w (1 − λ̄)S∗
(λ − 1)S 0 ) .

The right hand side is always a skew-symmetric matrix. This is of course the pull-back
of g−1(dg) to S1 × P(W⊥

k ). It should be looked at as a 1-form with values in �(k) =
�(τ ⊕ τ⊥)where τ is the tautological bundle overP(W⊥

k ) pulled-back to S1 × P(W⊥
k ).
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Then we see that

ϕ∗(g−1dg)(λ, L) = ( λ−1dλ −α(λ)dS∗L
α(λ)dSL 0 ) α(λ) = λ − 1,

where dS denotes (the pull-back of) the 1-form with values in the bundle
Hom(τ, τ⊥) ≃ T(1,0)

P(W⊥
k ), obtained by differentiating idP(W⊥

k )
and dS∗ is the con-

jugate of dS. The important point is that dS is globally defined not just in the chart
centered at L.

We need to compute ∧2k−1ϕ∗(g−1dg). Write then

ϕ∗(g−1dg) = C + B,

where

C ∶= ( λ−1dλ 0
0 0 ) B ∶= ( 0 −α(λ)dS∗

α(λ)dS 0 ) .

We need also C1 = (
0 0
0 −λ−1dλ ⊗ id ).

The following relations are straightforward

C2 = 0, C2
1 = 0, B2C = CB2 , B2C1 = C1B2 ,

CC1 = C1C = 0, BCB = B2C1 , C1BC = 0, CBC1 = 0.

Let ∧0B ∶= id. We prove by induction that for all j ≥ 1 the following holds.

∧2 j−1ϕ∗(g−1dg) = ∧2 j−2B ∧ [ jC + ( j − 1)C1] + ∧2 j−1B.(6.3)

Indeed the equality is trivially true for j = 1. Let ω ∶= ϕ∗(g−1dg) and write ω j ∶= ∧ jω.
Then the following computation finishes the proof of (6.3):

ω2 j−1 = ω2 j−3 ∧ ω2 = [B2 j−4(( j − 1)C + ( j − 2)C1) + B2 j−3](CB + BC + B2) =

= B2 j−4(( j − 1)C + ( j − 2)C1)B2 + B2 j−3CB + B2 j−2C + B2 j−1 =

B2 j−2(( j − 1)C + ( j − 2)C1) + B2 j−2C1 + B2 j−2C + B2 j−1

= B2 j−2( jC + ( j − 1)C1) + B2 j−1 .

Now B2 j−1 is block anti-diagonal, hence tr B2k−1 = 0 and we conclude that:

tr∧2k−1ω = tr B2k−2 ∧ ( jC + ( j − 1)C1) =

= [(−1)k−1∣α(λ)∣2k−2 λ−1dλ] ⋅w-str(Dk−1),

where w-str( T1 0
0 T2

) = k tr T1 − (k − 1)T2 and D = ( dS∗ ∧ dS 0
0 dS∗ ∧ dS ) .
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We have thus written tr∧2k−1ϕ∗g−1(dg) as a product of pull-backs of forms from
S1 and P(W⊥

k ) respectively. Since ϕ is orientation reversing we have

∫
U(Uκ)

tr∧2k−1 g−1(dg) = ∫
S 1
(−1)k ∣α(λ)∣2k−2 λ−1dλ ⋅ ∫

P(W⊥
k )

w-str(Dk−1).(6.4)

We use the orientation preserving Cayley transform t → t−i
t+i to turn the integral:

∫
S 1
(−1)k ∣α(λ)∣2k−2 λ−1dλ = (−1)k2k−1 ∫

S 1
(1 − Re λ)k−1 λ−1dλ

into

22k−1(−1)k i ∫
R

1
(1 + t2)k dt = (−1)k2πi(2k − 2

k − 1
).(6.5)

In order to compute the integral of w-str(Dk−1), we notice first that w-str(Dk−1)
is a U(W⊥

k ) invariant form on P(W⊥
k ) and therefore has to equal a constant multiple

times the Fubini–Study volume form of P(W⊥
k ). If we fix a point L0 ∈ P(W⊥

k ) we can
describe dS and dS∗ in terms of a canonical basis of the chart centered at L0 as

dSL0 =
⎛
⎜⎜⎜
⎝

dz1
dz2
. . .

dzk−1

⎞
⎟⎟⎟
⎠

dS∗L0
= ( dz̄1 dz̄2 ⋯ dz̄k−1 )

Therefore,

dS∗L0
∧ dSL0 =

k−1
∑
i=1

dz̄ i ∧ dz i , and (dSL0 ∧ dS∗L0
)i j = dz i ∧ dz̄ j , ∀ 1 ≤ i , j ≤ k − 1.

We get

(S∗L0
∧ dSL0)k−1 = (k − 1)!(−1)k−1dz1 ∧ dz̄1 ∧⋯∧ dzk−1 ∧ dz̄k−1 .

One checks rather easily that (dSL0 ∧ dS∗L0
)k−1 is diagonal and each diagonal entry is

up to a sign equal to (k − 2)!dz1 ∧ dz̄1 ∧⋯∧ dzk−1 ∧ dz̄k−1. In fact

(dSL0 ∧ dS∗L0
)k−1 = (−1)k−2(k − 2)!dz1 ∧ dz̄1 ∧⋯∧ dzk−1 ∧ dz̄k−1 ⊗ id

and thus

w-str Dk−1
L0

= (−1)k−1(2k − 1)(k − 1)!dz1 ∧ dz̄1 ∧⋯∧ dzk−1 ∧ dz̄k−1 .

The Kähler form at the point L0 on P(W⊥
k ) (see [10], p. 31) is

ηL0 ∶=
i

2π

k−1
∑
j=1

dz j ∧ dz̄ j

and

∫
P(W⊥

k )
∧k−1η = 1.
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We compare ∧k−1ηL0 and w-str (Dk−1
L0
) and deduce, due to the fact that they are

invariant forms that

w-str (Dk−1) = (−1)k−1(2k − 1) (2π
i
)

k−1
∧k−1 η

and therefore

∫
P(W⊥

k )
w-str (Dk−1) = (−1)k−1(2k − 1) (2π

i
)

k−1
.(6.6)

Putting together (6.4)–(6.6) we conclude that

∫
U(Uκ)

tr∧2k−1 g−1(dg) = −2πi(2k − 2
k − 1

)(2k − 1) (2π
i
)

k−1
= (2π

i
)

k (2k − 1)!
[(k − 1)!]2 . ∎

We will keep the notation UI , S(UI) and U(UI) for the corresponding criti-
cal/stable/unstable manifolds in U(E).
Theorem 6.5 Let E → B be a trivializable hermitian vector bundle of rank n over an
oriented manifold with corners B endowed with a compatible connection. Let g ∶ E → E
be a smooth gauge transform. Suppose that a complete flag E = W0 ⊃ W1 ⊃ ⋯ ⊃ Wn =
{0} (equivalently a trivialization of E) has been fixed such that g as a section of U(E) is
completely transverse to all the manifolds S(UI) determined by the flag. Then, for each
1 ≤ k ≤ n there exists a flat current Tk such that the following equality of currents of
degree 2k − 1 holds:

Tck(E , g ,∇) − g−1(S(U{k})) = dTk ,(6.7)

where

g−1(S(U{k})) = {b ∈ B ∣ dim Ker (1 + gb) ∩ (Wk−1)b = 1,
dim Ker (1 + gb) ∩ (Wk)b = 0}.

In particular, when B is compact without boundary, then Tck(E , g ,∇) and
g−1(S(U{k})) are Poincaré duals to each other.

Proof We use Corollary 3.3 for the fiber bundle U(E)with the flow described in this
section and form ω = Tck(U τ , π∗∇) where π ∶ U(E) → B. All the necessary residue
computations have been performed. ∎
Remark 6.6 The current Tk is a spark in the terminology of Harvey and Lawson.

Remark 6.7 While the transversality condition of g with the stable manifolds S(UI)
such that S(UI) ⊂ S(U{k}) is a reasonable requirement for the existence of the current
g−1(S(U{k})), it seems unnatural that one needs to impose the transversality of g
with all stable manifolds S(UI) in order to obtain (6.7) as one does in Theorem 7.
We conjecture that (6.7) is true under the weaker hypothesis.

7 A Fredholm transgression formula

In [21], Quillen introduced various smooth differential forms that live on (infinite
dimensional) Banach manifolds that are classifying for even and odd K-theory. Fix
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H a complex, separable Hilbert space and let L , L +, K be the space of bounded,
bounded and self-adjoint, respectively compact operators on H. Inside K there exists
a sequence of two-sided ideals, called Schatten spaces, denoted Schp .

The Palais spaces are the spaces of unitary operators Up ∶= U(H) ∩ (idH + Schp)
and it is well-known that they are smooth Banach manifolds (modeled on Schp ∩L +)
and also classifying for odd K-theory, i.e., they have the weak homotopy type of
the topological direct limit of spaces U(∞) ∶= lim U(n). Quillen defined different
families of smooth closed forms γt

2k−1, γt
2k−1,q , Φu

2k−1 where t ∈ C, Re t > 0, n ∈ N,
u > 0 which are well-defined on the finite dimensional unitary groups U(n) and on
certain Palais spaces as follows (see Theorem 5 in op. cit.):
(1) γt

2k−1 on Up when p ≤ 2k − 1;
(2) γt

2k−1,q on Up when p ≤ 2k − 1 + 2q; and
(3) Φu

2k−1 on Up for all p.
The forms γt

2k−1, γt
2k−1,q , and Φ1

2k−1 are all cohomologous and represent the degree
2k − 1-component of the odd Chern character ch2k−1 of the universal K−1-class, i.e.
the class induced by the identity map idU(∞). We will call each of them a Quillen
form.

In [4] we gave alternative construction to the pull-backs φ∗ch2k−1 when φ ∶ B → Up

when B is a compact oriented manifold and φ is smooth. In fact, the theory works for
maps φ ∶ B → U−, where U− is the open subset of unitary operators U such that 1 +U
is Fredholm. This is another manifold classifying space for K−1 that contains Up for
every p, however, it does not come with any easy to describe smooth differential forms
on it. Under a certain finite set of transversality conditions, the classes φ∗ch2k−1 were
described (up to multiplication by a rational number) via preimages φ−1Z{k} where
Z{k} are stratified subspaces of codimension 2k − 1 in U−. In fact, the Schubert cell
Z{k} is defined by the same incidence relations as the stable manifold S(U{k})we saw
in last section.

We used local (sheaf) cohomology in order to associate to a finite codimensional,
cooriented stratified space a cohomology class, which behaves well under transverse
pull-back. Here, we take a different path and show that in fact under a different but
still finite set of transversality condition one can define the current φ∗Z{k} and this is
Poincaré dual to (−1)k−1

k−1)! φ∗Ωk where Ωk is a Quillen form. In fact something stronger
is true.

We will assume that a complete flag

H ⊃ W0 ⊃ ⋯ ⊃ Wk ⊃

has been fixed with codim Wk = k. For every I = {i1 < ⋯ < ik} a k-tuple of positive
integers, let

Z p
I ∶= {U ∈ Up ∣ dim Ker(1 +U) = k, dim Ker(1 +U) ∩Wm = k − p, ∀0 ≤ p ≤ k,

∀ip ≤ m < ip+1},

where as usual i0 = 0, ik+1 = ∞.
We notice that for every smooth map φ ∶ B → Up and every p from a compact

manifold B there exists a subspace WN of the flag such that Ker(1 + φ(b)) ∩WN = {0}
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for all b ∈ B. This is because if U ∈ Up then 1 +U is Fredholm and this is an open
condition. It follows that the collection of transversality condition φ ⋔ Z p

I is trivially
satisfied if there exists a > N such that a ∈ I since then φ−1(Z p

I ) = ∅. Hence, φ ⋔ Z p
I

for every I is a generic condition.
Theorem 7.1 Let φ ∶ B → Up be a smooth map from a compact, oriented manifold B,
possibly with corners such that φ ⋔ Z p

I for every I. Let Ωk be a Quillen form of degree
2k − 1 that makes sense on Up. Then for every such Ωk , there exists a flat current Tk such
that:

φ−1Z{k} − (−1)k−1(k − 1)!φ∗Ωk = dTk .(7.1)

In particular, when B has no boundary, (−1)k−1

(k−1)! φ−1Z p
{k} represents the Poincaré dual of

ch2k−1([φ]), where [φ] ∈ K−1(B) is the natural odd K theory class determined by φ.
Proof We use symplectic reduction. For each linear subspace W ⊂ H of finite
codimension there exists a smooth (even real analytic) map RW ∶ Up

W → U(W⊥),
where

U
p
W ∶= {U ∈ Up ∣ Ker(1 +U) ∩W = {0}}

is an open subset of Up . The expression of RW relative to the decomposition U =

( X Y
Z T ) vis-a-vis H = W ⊕W⊥ is:

RW(U) = T − Z(1 + X)−1Y .

The map RW 7 has some nice properties. For example it can be shown that together
with the “0-section”:

ι ∶ U(W⊥) ↪ U
p
W , U → − idW ⊕U

is diffeomorphic to a vector bundle over U(W⊥) (see Corollary 4.1 in [4]). Hence,
by choosing W = WN a subspace of the flag, we get that Im φ ⊂ Up

W and there exists a
smooth homotopy h ∶ [0, 1] × B → Up between ψ ∶= RW ○ φ and φ. The Quillen forms
Ωk have finite dimensional counterparts ΩW⊥

k such that ι∗Ωk = ΩW⊥

k . Hence there
exists a smooth form β(Ωk) on B such that

φ∗Ωk − ψ∗Ωk = d(β(Ωk)).

Another important, straightforward property is that RW(Z p
I ) = S(UI) and in fact

the stronger (RW)−1(S(UI)) = Z p
I holds. It follows that φ−1(Z p

{k}) = ψ−1(S(U{k})).
Therefore we can use Theorem to conclude that (7.1) holds for Ωk = γ1

2k−1 which
coincides with Tchk . Since the Quillen forms of degree 2k − 1 are all cohomologous
in the finite dimensional case we get the result for such forms. ∎
Remark 7.2 The coorientation (implicitly the orientation) of φ−1Z{k} is discussed in
detail in [4].

7It is called symplectic reduction because under Arnold’s theorem which identifies the unitary
group Up with the (Hermitian) Lagrangian Grassmannian of Schatten class p it corresponds to the
homonymous process well-known in symplectic topology.
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