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Every co-c.e. closed set (Π0
1 class) in Cantor space is represented by a co-c.e. tree. Our aim is

to clarify the interaction between the Medvedev and Muchnik degrees of co-c.e. closed

subsets of Cantor space and the Turing degrees of their co-c.e. representations. Among other

results, we present the following theorems: if v and w are different c.e. degrees, then the

collection of the Medvedev (Muchnik) degrees of all Π0
1 classes represented by v and the

collection represented by w are also different; the ideals generated from such collections are

also different; the collections of the Medvedev and Muchnik degrees of all Π0
1 classes

represented by incomplete co-c.e. sets are upward dense; the collection of all Π0
1 classes

represented by K-trivial sets is Medvedev-bounded by a single Π0
1 class represented by an

incomplete co-c.e. set; and the Π0
1 classes have neither nontrivial infinite suprema nor infima

in the Medvedev lattice.

1. Introduction

1.1. Summary

The complexity Π0
1 is known to be the first level in the arithmetical hierarchy, that can

define a nonempty class S ⊆ 2ω without computable elements. Therefore, the study of

computability-theoretic complexities of Π0
1-definable classes (Π0

1 classes) in 2ω is expected

to be as interesting as that of the Turing degrees of Σ0
1-definable sets (computably

enumerable sets) in ω. Actually, in recent years, the degree-theoretic complexity of the Π0
1

classes has become an important topic in the computability theory. It is to be noted that

there are numerous nontrivial interactions between the global and local structures of Π0
1

classes, which are described by basis and nonbasis theorems. These results motivate us to

study the relationship between the global and local information contents of Π0
1 classes.

Formally, we deal with the following degree-theoretic notions.

1.1.1. Turing degrees. A closed set F in Cantor space is Π0
1 (or co-c.e.) if the tree

TF = {σ ∈ 2<ω : [σ] ∩ F �= �} is Π0
1 (i.e. co-c.e.), where [σ] is the clopen set in 2ω

consisting of all infinite binary strings extending σ. The Turing degree of TF measures

the global information content of every co-c.e. closed set F . A closed set F is computable

if TF is computable, i.e. the Turing degree of TF is 0.

1.1.2. Medvedev and Muchnik degrees. The notions of the Medvedev/Muchnik degree

(Medvedev 1955; Muchnik 1963) offer alternatives to the Turing degree for analysing
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computability-theoretic complexities of type-two objects. Let us think of F ⊆ ωω as the

solution set of some mathematical problem. The Medvedev/Muchnik degree of F measures

the degree of difficulty in constructing a solution to the problem. Roughly speaking, these

degrees estimate locally easiest Turing degrees contained in F . In this sense, we may think

of the Medvedev/Muchnik degree of F as a local information content of it. A set F ⊆ ωω

contains a computable element if and only if the Medvedev/Muchnik degree of F is 0.

The Medvedev and Muchnik degree structures of Π0
1 classes have also been widely studied

by many authors. For more information on the degree structures of Π0
1 classes, see also

(Simpson 2005, 2011).

With regard to the relationship between the global and local information contents of

Π0
1 classes in Cantor space, the following results are known:

— Every computable closed subset of 2ω contains a computable element. In other words,

if the Turing degree of TF is 0, then the Medvedev/Muchnik degree of F is also 0.

— If all the elements of a co-c.e. closed set F ⊆ 2ω have PA degrees (or Martin-Löf

random degrees), then the Turing degree of TF is 0′, which is the Turing degree of the

halting problem.

— Simpson (2005) and (Binns 2007) clarified that the thin Π0
1 classes (i.e. Π0

1 classes

defined as the consistent complete extensions of Martin/Pour-El theories) show

interesting behaviours for the Medvedev and Muchnik degree structures. These Π0
1

classes have been known to be represented by co-c.e. trees of array noncomputable

degrees (see Cholak et al. (2001)).

— Barmpalias et al. (2009) studied the structure of the Medvedev degrees of co-c.e. closed

sets with K-trivial representations and showed that every such set has a K-trivial

solution.

Our aim is to investigate techniques for controlling the Medvedev and Muchnik degrees

of co-c.e. closed sets F and the Turing degrees of their representations TF simultaneously

and to clarify the relation between them. Among other results, we present the following

theorems.

Theorem 1. If v and w are different c.e. degrees, then the collection of the Medvedev

(Muchnik) degrees of all Π0
1 classes represented by v and the collection represented by w

are also different. Indeed, the ideals generated from such collections are different.

Theorem 2. The collections of the Medvedev and Muchnik degrees of all Π0
1 classes P

with TP <T �′ are upward dense.

Theorem 3. There is a Π0
1 class P with TP <T �′ such that Q �M P for all Π0

1 classes Q

with K-trivial representations.

Theorem 4. The Π0
1 classes have neither nontrivial infinite suprema nor infima in the

Medvedev lattice. In particular, for every computable sequence {ai}i∈ω of Medvedev

degrees of Π0
1 classes, we have the following:

1. If {ai}i∈ω is strictly ascending, then there is no Π0
1 class whose Medvedev degree is a

least upper bound of {ai}i∈ω .

https://doi.org/10.1017/S0960129513000303 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000303


Comparing the Medvedev and Turing degrees of Π0
1 classes 1651

2. If {ai}i∈ω is strictly descending, then there is no Π0
1 class whose Medvedev degree is a

least lower bound of {ai}i∈ω .

1.2. Preliminaries

We refer the reader to Soare (1987) and Nies (2009) for the basic notions of computability

theory and algorithmic randomness, respectively.

Throughout this paper, we identify a set A ⊆ ω with its characteristic function, i.e. an

element of 2ω . We now prepare some of the formal basic notations and definitions. Fix an

effective enumeration {Φe}e∈ω of all partial computable functionals. For σ, τ ∈ 2<ω ∪ 2ω ,

|σ| denotes the length (the height) of σ, and σ�τ denotes the concatenation of σ and τ,

defined by (σ�τ)(n) = σ(n) for n < |σ| and (σ�τ)(|σ| + n) = τ(n) for n < |τ|. The restriction

σ to n (denoted by σ � n) is the unique initial segment of σ of height n. A predicate σ ⊆ τ

expresses that |σ| � |τ| and τ � |σ| = σ. The join of σ and τ is defined by (σ⊕ τ)(2n) = σ(n)

and (σ ⊕ τ)(2n + 1) = τ(n) for each n. A tree T is a collection of strings closed under

taking initial segments. For each tree T ⊆ 2<ω let [T ] denote the set of all infinite paths

through T .

A topology on the set 2ω of all infinite binary sequences is induced by basic open sets

[σ] = {f ⊇ σ} for each string σ ∈ 2<ω . This topological space is called Cantor space.

We let TP denote a tree representation of a closed set P of Cantor space 2ω , that is,

TP = {σ ∈ 2<ω : [σ] ∩P �= �}. For a closed set P ⊆ 2ω , if TP is co-c.e. (i.e. Π0
1 definable)

then we say that P is a Π0
1 class or a co-c.e. closed set. (Whenever we say that P is a Π0

1

class in this paper, it is assumed that P is a subset of Cantor space.) As TP is co-c.e., we

have a computable approximation {T ∗
P ,s}s∈ω of TP , i.e. T ∗

P ,0 = 2<ω and TP =
⋂

s T
∗
P ,s. In

place of {T ∗
P ,s}s∈ω , we use TP,s = {τ ∈ 2<ω : (∀σ ⊆ τ) σ �∈ T ∗

P ,s}. We note that computable

approximations (of tree representations) enable us to perform priority constructions of

Π0
1 classes, in the same way as c.e. sets in ω do.

By �T and ≡T , we denote Turing reducibility and Turing equivalence, respectively.

Additionally, degT (A) denotes the Turing degree of A ⊆ ω. For each closed set F ⊆ ωω ,

degT (F) means degT (TF ). For sets A,B ⊆ ωω , A is Medvedev reducible to B (written as

A �M B) if there exist a computable functional from B to A. Then A is Muchnik reducible

to B (denoted by A �w B) if every element of B computes an element of A. The Medvedev

(resp. Muchnik) degree of A (denoted by degM(A) and degw(A)) is the equivalent class

of A by the Medvedev (resp. Muchnik) equivalence. The set PM (resp. Pw) of Medvedev

(resp. Muchnik) degrees of all nonempty Π0
1 classes forms a lattice with a supremum

operator induced by A ⊗ B = {f ⊕ g : f ∈ A & g ∈ B} and an infimum operator induced

by A ⊕ B = {0�f : f ∈ A} ∪ {1�g : g ∈ B}. It is known that there exists a Π0
1 class of

the greatest Medvedev (resp. Muchnik) degree among all nonempty Π0
1 classes, and we

call such a Π0
1 class Medvedev (resp. Muchnik) complete. The set CPA of all consistent

complete extensions of Peano arithmetic, and the set DNC2 of all {0, 1}-valued diagonally

noncomputable functions, are major examples of Medvedev (also Muchnik) complete Π0
1

classes. Here, a function f is diagonally noncomputable if f(e) �= Φe(e) for every e. By 1

(resp. 0), we mean the top (resp. bottom) element of PM and Pw . For two given disjoint
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c.e. sets A and B, the set S(A,B) = {X ⊆ ω : A ⊆ X ⊆ ω \ B} forms a Π0
1 class in Cantor

space. Such a Π0
1 class is called a separating class.

2. Results

2.1. Basic properties

For any Medvedev (resp. Muchnik) degree p and c.e. degree w, we say that p is planted

in w if there is a nonempty Π0
1 class P of Medvedev (resp. Muchnik) degree p such that

the corresponding well-pruned co-c.e. tree TP = {σ ∈ 2<ω : (∃f ∈ P ) σ ⊆ f} is of Turing

degree w.

Proposition 5.

1. No nonzero Medvedev degree p ∈ PM is planted in the bottom c.e. degree 0.

2. For every Medvedev degree p ∈ PM , if p is planted in a c.e. degree v, then p is planted

in any c.e. degree w � v. In particular, the bottom Medvedev degree 0 is planted in

any c.e. degree.

3. There exists a Muchnik degree d ∈ Pw such that d < 1 and every p � d cannot be

planted in any c.e. degree w < 0′. In particular, the top Muchnik (hence, Medvedev)

degree 1 cannot be planted in any c.e. degree w < 0′.

Proof. (2) For each c.e. set W ⊆ ω, put PW = {0n1ω : n �∈ W } ∪ {0ω}. Then PW is

clearly Π0
1 class, PW ≡T W , and every element of PW is computable. Thus, for any Π0

1

class P , we have degM(P ⊗ PW ) = degM(P ) and degT (P ⊗ PW ) = degT (P ) ∨ degT (PW ).

(3) By the Arslanov completeness criterion (see (Nies 2009, Theorem 4.1.11.)) if a

c.e. set computes a diagonally noncomputable function then it is just c.e. complete.

Simpson (2005) showed that there exists a Π0
1 class D ⊆ 2ω such that D is Muchnik

equivalent to DNC, which is Muchnik incomplete. Here, DNC is the set of all diagonally

noncomputable functions. Moreover, the leftmost path of any Π0
1 class has a c.e. degree

and is Turing reducible to its corresponding tree. Thus, any nonempty Π0
1 class P with

TP <T �′ has a c.e. path fP �T TP <T �′. Thus, we get D ��w P .

For any c.e. degrees v, by PM(v) (resp. Pw(v)), we denote the set of all Medvedev (resp.

Muchnik) degrees of nonempty Π0
1 classes planted in the c.e. degree v. For any c.e. degrees

v, set Pr(< v) =
⋃

w<v Pr(w) for each r ∈ {M,w}. For any collection of c.e. degrees,

C ⊆ RT , we also use the notation Pr(C) =
⋃

w∈C Pr(w) for each r ∈ {M,w}. Then, the

previous proposition states that (1) PM(0) = {0}; (2) If v � w then PM(v) ⊆ PM(w); (3)

Pw(< 0′) ∩ [d, 1]w = � for some Muchnik degree d < 1. Here [d, 1]w denotes the Muchnik

interval {p ∈ Pw : d � p}.
Note that, if I ⊆ RT is an ideal of RT , then PM(I) (resp. Pw(I)) forms a sublattice of

PM (resp. Pw). To see this, let I ⊆ RT be an ideal of RT . For any p, q ∈ PM(I), there are

Π0
1 classes P ∈ p and Q ∈ q such that degT (P ) = v and degT (Q) = w for some v,w ∈ I .

Then clearly degT (P ⊕ Q) = degT (P ⊗ Q) = v ∨ w ∈ I .

As a consequence, for every c.e. degree v, we can see that Pr(v) forms a sublattice of Pr for

each r ∈ {M,w}. This is because, for any c.e. degree v, the interval [0, v] = {u ∈ RT : u � v}
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forms an ideal of RT , and we have Pr(v) = Pr([0, v]) for each r ∈ {M,w} by Proposition

5 (2).

By using a technical tool from Section 3, we can show Theorem 1. In fact, we can see

the following.

Theorem 6. For any c.e. degrees v and w, the condition v � w holds if and only if

PM(v) ⊆ PM(w) if and only if Pw(v) ⊆ Pw(w).

Proof of Theorem 6 from Lemma 16 (see Section 3). We only show that Pw(v) ⊆ Pw(w)

implies v � w. Assume that v �� w. Then, by Lemma 16 (see Section 3), there is a nonempty

Π0
1 class P ⊆ 2ω such that degw(P ) ∈ Pw(v), and P has no w-computable path. Note that,

for every q ∈ Pw(w) and Q ∈ q, Q �w R for some Π0
1 class R ⊆ 2ω whose corresponding

tree TR is w-computable. Especially, the leftmost path fR of the tree TR must be w-

computable. Then Q contains an fR-computable path since we have Q �w R and fR ∈ R.

Therefore, Q must have a w-computable path. Hence, degw(P ) ∈ Pw(v) \ Pw(w).

Remark 1. For a collection of Muchnik degrees, Q ⊆ Pw , let ↓ Q denote the downward

closure of Q. Then, our proof of the previous theorem actually implies that, v � w

if and only if Pw(v) ⊆ ↓ Pw(w), for all c.e. degrees v and w. Moreover, by Remark 2

(Section 3), for each r ∈ {M,w}, if v �� w, then there are r, s ∈ Pr(v)\ ↓ Pr(w) such

that r contains a positive measure Π0
1 class and s contains a separating Π0

1 class. Note

that the order-preserving embedding from (RT ,�) into (P(Pw),⊆) given by v �→ Pw(v)

does not preserve the supremum, where P(Pw) denotes the power set of Pw . Indeed, for

any c.e. degrees v,w < 0′, Pw(v) ∪ Pw(w) does not contain the Muchnik interval [d, 1]w .

However, if v ∨ w = 0′ then Pw(v ⊕ w) = Pw � Pw(v) ∪ Pw(w).

Question 7. Is v �→ Pw(v) an embedding from (RT ,�) into (L(Pw),⊆) preserving the

supremum? Here, L(Pw) denotes the set of all sublattices of Pw .

2.2. Separating classes

A set A ⊆ ω is K-trivial if there is a constant c such that K(A � n) � K(0n) + c for any

n, and a closed set P ⊆ 2ω is K-trivial if its tree representation TP is K-trivial. Here,

the symbol K refers to the prefix-free Kolmogorov complexity. For more information on

K-trivial closed sets, see also Barmpalias et al. (2009) and Melnikov and Nies (2013). Note

that, in Barmpalias et al. (2009), a closed set P ⊆ 2ω is said to be K-trivial if its code xP
is K-trivial. However, xP is Turing equivalent to TP , and K-triviality is invariant under

degree-preserving maps (see Nies (2009)). So our definition of K-triviality is equivalent to

that of Barmpalias et al. (2009).

Let K ⊆ RT denote the set of all Turing degrees of K-trivial c.e. sets. In order to

establish the dense splitting property in PM(K), Barmpalias et al. (2009) asked whether

every K-trivial Π0
1 class should be bounded by some K-trivial Π0

1 separating class, in the

sense of Medvedev degrees. First, we need to show the following.

Proposition 8. For every Π0
1 class Q, there exists a Π0

1 separating class S such that S �M Q

and TS ≡tt TQ hold.
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Proof. We may assume that Q is nonempty. For the eth binary string σ ∈ 2<ω in the

lexicographic order, we define num(σ) = e. Clearly, num is computable. Put Si
Q = {num(σ) :

(∃s) σ ∈ TQ,s & σ�i �∈ TQ,s} for each i < 2. By our definition of the approximation

{TQ,s}s∈ω of the tree TQ, the sets S0
Q and S1

Q are disjoint. So we let S be the separating

class generated by S0
Q and S1

Q. We now show that TS ≡tt S
0
Q ⊕ S1

Q ≡tt TQ. First, in order

to show S0
Q ⊕ S1

Q �tt TQ, define a partial computable function mTQ which, for given input

σ, computes the minimal stage s such that σ �∈ TQ,s. Then, it is easy to observe that

num(σ) �∈ Si
Q if and only if either the condition σ�i ∈ TQ holds or the conditions σ �∈ TQ,

σ�i �∈ TQ and mTQ(σ) � mTQ(σ�i) hold. Next, to establish TQ �tt S0
Q ⊕ S1

Q, we show

that σ ∈ TQ holds if and only if num(σ � i) �∈ S
σ(i)
Q for each i < |σ|. The ‘only if’ part

follows easily by induction. The ‘if ’ part also holds since, for minimal i < |σ| such that

σ � i + 1 �∈ TQ, we have σ � i ∈ TQ,s for every stage s and σ � i + 1 �∈ TQ,t for almost

all stage t. Thus, the conditions σ � i ∈ TQ,s and σ � i + 1 �∈ TQ,s hold for some stage s

simultaneously, and so num(σ � i) is enumerated into S
σ(i)
Q .

Now, we construct a total computable procedure Γ such that, if X separates S0
Q and S1

Q

(i.e. S0
Q ⊆ X ⊆ (S1

Q)�) then Γ(X) must belong to Q. For X ∈ 2ω , put Γ(X)(0) = X(num(�)),

and Γ(X)(n) = X(num(Γ(X) � n)) for every n. For any X ∈ S , we inductively show that

Γ(X) � n ∈ TQ for all n. For n = 0, num(�) ∈ Si
Q if and only if 〈i〉 �∈ TQ, since � ∈ TQ. Since

n ∈ S0
Q implies X(n) = 1, and since n ∈ S1

Q implies X(n) = 0, if Γ(X)(0) = X(num(�)) = i

then 〈i〉 ∈ TQ, that is, Γ(X) � 1 ∈ TQ. We assume Γ(X) � n ∈ TQ. We will show

Γ(X) � n + 1 ∈ TQ. By our assumption, we again observe that num(Γ(X) � n) ∈ Si
Q if and

only if (Γ(X) � n)�i �∈ TQ. Hence, we also have that if Γ(X)(n) = X(num(Γ(X) � n)) = i

then (Γ(X) � n)�i ∈ TQ, that is, Γ(X) � n + 1 = (Γ(X) � n)�X(num(Γ(X) � n)) ∈ TQ.

Recall that K-triviality is invariant under tt-preserving maps. By using an argument

from Barmpalias et al. (2009), we now establish a dense splitting result for K-trivial Π0
1

classes.

Corollary 9. For every K-trivial Π0
1 class Q, there exists a K-trivial Π0

1 separating class

S �M Q. Moreover, for any K-trivial Π0
1 classes Q <M P , there exist K-trivial Π0

1 classes

P 0 and P 1 such that Q <M P 0, P 1 <M P and P 0 ⊗ P 1 ≡M P .

Proof. By Proposition 8, we can straightforwardly show the first half of the statement.

For the last half, let S = S(A,B) �M P be a K-trivial Π0
1 separating class. By Binns’

splitting theorem (Binns 2003), we get a partition A0 �A1 = A such that P ��M ({Ai} ⊗Q)

for i < 2. Put P i = P ⊕ (S(Ai, B) ⊗ Q) for each i < 2. Then P 0 and P 1 are the desired Π0
1

classes, by an observation of Barmpalias et al. (2009).

Corollary 10. For every nonzero a ∈ RT , the set PM(a) contains s which is incomparable

with d and r, where d and r are the Muchnik degrees of the diagonally noncomputable

functions and Martin-Löf random reals, respectively.

Proof. By Proposition 5 (3), if a < 0′ then every p ∈ Pw(a) satisfies d �� p, and hence

r �� p (see Simpson (2005)). Moreover, if a is nonzero, then, for any p ∈ Pw(a), the degree

s of the separating class S in Proposition 8 with Q ∈ p satisfies p � s ∈ Pw(a) \ {0}. By

Jockusch and Soare (1972), U(S), the upward closure in the Turing degrees of S , is of
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measure 0. Let MLR denote the set of all Martin-Löf random reals. Since μ(MLR) = 1,

almost all Martin-Löf random reals α ∈ MLR belong to the complement of U(S). This

means s �� r. In particular, s �� d.

Let (L,�,∪,∩, 0, 1) be a lattice. An element a ∈ L is branching if a = b ∩ c holds for

some b, c ∈ L. Alfeld (2007) showed that nonbranching degrees are downward dense in

PM \ {0}.

Corollary 11.

1. Nonbranching degrees are upward dense in PM(K).

2. Nonbranching degrees are upward dense in PM(< 0′).

Proof. We will show that neither PM(K) nor PM(< 0′) has a maximal element. Hence,

for each a ∈ PM(K), by Proposition 8 we have the degree s > a of a separating class,

where s is contained in PM(K). By an observation of Alfeld (2007), the Medvedev degree

of a separating Π0
1 class is nonbranching.

2.3. Upper bounds

An ideal of RT is uniformly generated if it is generated by a uniformly c.e. sequence of

c.e. sets. Yates showed that each Σ0
3 ideal of RT is uniformly generated. In Barmpalias and

Nies (2011), it is shown that K forms a Σ0
3 ideal of RT , and K has a low2 c.e. upper bound.

A collection A of Π0
1 classes is T -incomplete if there is a computable enumeration {Qi}i∈ω

of A, and the ideal generated by {degT (Qi)}i∈ω is proper. Then, the set of all K-trivial Π0
1

classes is T -incomplete. Moreover, there is a low2 c.e. degree v such that PM(K) ⊆ PM(v).

In particular, PM(K) ⊆ PM(< 0′). However, PM(v) may not be a principal ideal. Then

it is natural to ask whether the Medvedev degrees of all nonempty K-trivial Π0
1 classes,

PM(K), is bounded by a single Medvedev degree p ∈ PM(< 0′). Theorem 3 provides an

answer to this question. Indeed, by using results from Section 5, we can show the following

theorem.

Theorem 12. Let A be a T -incomplete family of Π0
1 classes. There exists a Π0

1 class P

with degT (P ) <T �′ such that Q �M P for any Q ∈ A.

Proof. By Lemma 23 (see Section 5).

One may ask whether every T -incomplete family has the least upper bound which is

planted in an incomplete c.e. degree. However, the answer is ‘no’. Our priority argument

to show Theorem 12 also works for showing Theorem 4 which states that any nontrivial

computable set {ai}i∈ω of Medvedev degrees has no least upper bound. Here, a set of

Medvedev degrees, A, is nontrivial if there is no finite subset B ⊂ A such that every

element of A is bounded by
∨
B. For example, PM(0) = {0} and PM(0′) = PM is trivial,

but PM(K) is nontrivial by the result from Barmpalias et al. (2009). Then, the best possible

answer to the previous question is the following:
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Theorem 13. Let {ai}i∈ω be a nontrivial set of Medvedev degrees of a T -incomplete family

of Π0
1 classes. If b ∈ PM is an upper bound of {ai}i∈ω , then there is a ∈ PM(< 0′) which

bounds {ai}i∈ω such that b �� a.

Proof. See Section 5.2.

Note that PM(< 0′) is not T -incomplete. It is natural to ask whether PM(< 0′) has a

Medvedev incomplete upper bound. The first half of Theorem 2 provides an answer to

this question. Indeed, we will show the following theorem in Section 4.

Theorem 14. For every Medvedev incomplete Π0
1 class Q, there exists a Π0

1 class P such

that degT (P ) < 0′ and P ��M Q.

Proof. By Lemma 17 (see Section 4).

As a corollary, we see that no upper bound of PM(< 0′) exists, except for maxPM .

Cenzer and Hinman (2003) showed that PM is (upward) dense. However, the similar

problem for Pw is still open (Simpson 2005, Remark 5.6). In response, Barmpalias et al.

(2009) showed that Pw(K) is upward dense by constructing a K-trivial Π0
1 class without

path computable in a fixed low c.e. degree. The remaining part of Theorem 2 provides the

upward density of a large sublattice of Pw .

Theorem 15. Pw(< 0′) is upward dense.

Proof of Theorem 15 from Lemma 16 (Section 3). Let Q be a given Π0
1 class with

Q <T �′. By the Sacks density theorem (see Soare (1987)), there exists a c.e. set V such that

Q <T V <T �′. To prove our theorem, it is only necessary to construct a Π0
1 class P �T V

with no TQ-computable paths. This is because the leftmost path fQ of Q is computable in

TQ, so P ��w Q is witnessed by fQ, and then Q <w P ⊗Q �T V ⊕TQ ≡T V <T �′. Then,

by setting W to be the complement of TQ, Lemma 16 (Section 3) implies the existence of

such P .

As corollaries of Theorem 14 (resp. Theorem 15), we can see that there is no T -

incomplete family of Π0
1 classes whose Medvedev (resp. Muchnik) degrees includes all of

PM(< 0′) (resp. Pw(< 0′)). To see this, by Theorem 12, a Π0
1 class P such that P <T �′

and Q �M P (hence Q �w P ) holds for every Q ∈ A. In the case of the Muchnik degrees,

by using Theorem 14, we get a Π0
1 class R <T �′ with R ��M P . If S ≡M R then we

also have S ��M P and so S cannot belong to the family A. In the case of the Muchnik

degrees, by using Theorem 15, we get a Π0
1 class R <T �′ with R >w P .

3. Main lemma for Theorem 1 and the last half of Theorem 2

This section deals mainly with Lemma 16, which is used to show Theorem 6 (hence,

Theorem 1) and Theorem 15 (hence, the last half of Theorem 2).
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3.1. Permitting method

Lemma 16. For c.e. sets V ,W ⊆ ω, if V ��T W , then there is a nonempty Π0
1 class P ⊆ 2ω

such that P �T V and P has no W -computable path.

Proof. To prove the theorem, it suffices to meet the following requirements.

Requirements. We need to construct a Π0
1 class P ⊆ 2ω such that, for each e ∈ ω, the

following conditions are met:

G : (∃Γ) Γ(V ) = TP ;

Pe : Φe(W ) ∈ P → (∃Δe) Δe(W ) = V .

Here, Γ and Δe range over all partial computable functionals.

Construction. Fix e ∈ ω. The nth location of the Pe-strategy is defined as 〈e, n〉. The length

function l(e, s) is defined as follows:

l(e, s) = max{n ∈ ω : Φe,s(Ws) � n + 1 ∈ TP,s}.

For n ∈ ω, If n ∈ Vs+1 \ Vs, 〈e, n〉 � l(e, s), and V does not permit n at stage t � s, then

V permits n at stage s + 1. At each stage s + 1, if V permits some n, then let n(e, s + 1)

denote the least such n. If V permits no n at stage s+1, then n(e, s+1) is undefined. Then

the tree-approximation of P at stage s is defined as follows:

TP,s+1 = 2<ω \ {Φe,t(Wt) � 〈e, n(e, t + 1)〉 + 1 : e < t � s}.

Finally, we set P = [
⋂

s TP ,s+1].

Claim. P is nonempty.

Proof. For each e, n ∈ ω, at most one string of length 〈e, n〉 + 1 is removed from TP .

For each σ of length 〈e, n〉 � s, if Γ(V ; σ) is undefined at the beginning of stage s, then

set Γs(V ; σ) = TP,s(σ) with use n.

Claim. Γ(V ) = TP .

Proof. Fix σ ∈ 2<ω . Note that σ ∈ TP,s \ TP,s+1 holds only when there is a string τ ⊆ σ

of length 〈e, n〉+1 for some e, n such that n ∈ V [s+1]\V [s]. Therefore, TP,s+1(σ) �= TP,s(σ),

then Γ(V ; σ) is undefined at the beginning of stage s + 1. Then Γs+1(V ; σ) is defined to

be TP,s+1(σ).

For each stage s and n, if 〈e, n〉 � l(e, s) and Δe(W ; n) is undefined at the beginning of

stage s + 1, then set Δe,s+1(W ; n) = Vs+1(n) with W -use ϕe(〈e, n〉), where ϕe(〈e, n〉) is the

W -use of the computation of Φe(W ) � 〈e, n〉 + 1.

Claim. For each e, n, s, if 〈e, n〉 � l(e, s), then Δe,s+1(W ; n) = Vs+1(n).

Proof. Assume that Δe,s+1(W ; n) is defined to be Vt+1(n) because of 〈e, n〉 � l(e, t) for

some t < s− 1. We also assume that, for some u > t, 〈e, n〉 � l(e, u) and Vu+1(n) �= Vu(n) =

Vt+1(n) occur by enumerating n into Vu+1. Fix such u. Then Φe(W ) � 〈e, n〉 + 1 is removed
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from TP . If Δe(W ; n) is not redefined between stages u+1 and s+1, i.e. Δe(W ; n) is defined

at the beginning of stage v + 1 for u � v � s, then W � ϕe(〈e, 〈e, n〉〉) + 1 does not change

between stages u+1 and s+1. In other words, Φe,s(Ws) � 〈e, n〉 +1 = Φe,u(Wu) � 〈e, n〉 +1,

and it is removed from TP,u+1 since V permits n at stage u+1. Therefore, l(e, v) < 〈e, n〉 for

u < v � s. Thus, if l(e, s − 1) < 〈e, n〉 � l(e, s), then Δe(W ; n) is undefined at the beginning

of stage s + 1, and we must redefine Δe,s+1(W ; n) to be Vs+1(n).

On the other hand, if, for some u > t, 〈e, n〉 > l(e, u) and Vu(n) = Vt+1(n) (hence

l(e, u) < l(e, t)), then there are two cases. The first case is that there is m < n such that

V permits m at some stage v + 1 with t < v � u. In this case, for s > u, if 〈e, n〉 � l(e, s),

then Δe(W ; n) is undefined at the beginning of stage s + 1 by a similar argument. The

second case is that there is no m < n such that V permits m at some stage v + 1 with

t < v � u. In this case, l(e, t) > l(e, u) holds only when Φe,u(Wu; k) �= Φe,t(Wt; k) for some

k � l(e, u) < 〈e, n〉. Thus, p ∈ Wu \ Wt for some p � ϕe(〈e, n〉). Therefore, Δe(W ; n) is

undefined at the beginning of stage u + 1.

Claim. lim infs l(e, s) < ∞ for any e.

Proof. For each n, let tn denote the least t such that 〈e, n〉 � l(e, u) for all stage u � t.

If lim infs l(e, s) = ∞, then such tn exists for each n. Therefore, by the previous lemma,

Δe(W ; n) is defined to be V (n) for every n. This contradicts our assumption that V ��T W .

By these lemmata, eventually we construct a Π0
1 class P which satisfies the G and

Pe-requirements. Then, the G-requirement promises that TP is computable in V , and Pe-

requirements ensures that P has no W -computable paths by our assumption of V ��T W .

Remark 2.

— It is easy to see that we can construct P as a positive measure Π0
1 set. Indeed, for any

k, P is assured to have the measure � 1 − 1/k, by replacing the nth location of Pe by

〈e, n〉 + k, since at most one string of height 〈e, n〉 + k + 1 is removed from TP .

— It is easy to see that we can construct P as a nonempty separating Π0
1 set by replacing

the definition of TP,s+1 as follows:

TP,s+1 = 2<ω \ {σ ∈ 2<ω :(∃e, t) e < t � s

& σ(〈e, n(e, t + 1)〉) = Φe,t(Wt; 〈e, n(e, t + 1)〉)}.

4. Main lemma for the first half of Theorem 2

This section deals mainly with Lemma 17, which is used to prove Theorem 14 (hence, the

first half of Theorem 2).

4.1. Coding and preservation

For a pair 〈a, b〉 ∈ (ω ∪ {↑})2 and a string σ ∈ ω<ω , we define σ|ba ∈ ω�b as follows.

If a, b ∈ ω, then σ|ba = σ(a + n) for each n < min{b, |σ| − a}. If a =↑, then σ|ba = 〈〉.
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If a ∈ ω and b =↑, then σ|ba = σ||σ|
a . For any Π0

1 class P ⊆ 2ω , let P |ba denote the set

[{σ ∈ 2<ω : σ|ba ∈ TP }].
For instance, P |↑0 = P , and P |↑↑ = 2ω . Note that, if P is nonempty, then P |ba is also

nonempty. Moreover, if P is separating, then P |ba is also separating.

Let Λ be a set of indices coded as a subset of ω. For a c.e. set We ⊆ Λ ×ω, two partial

computable functions ce, le : Λ → ω are defined as follows:

— ce(α) = min{s ∈ ω : 0 ∈ (We)α[s]} if such s exists.

— le(α) = #(We)α − 1 if 0 < #(We)α < ℵ0.

We also use the following notions.

— For strings σ, τ ∈ ω<ω , we say that σ is left to τ (written σ <left τ) if γ�m ⊆ σ, γ�n ⊆ τ,

and m < n, for some string γ ∈ ω<ω and m, n ∈ ω. Moreover, we write σ �left τ if

σ ⊆ τ or σ <left τ.

— An element δ ∈ ωω is a Σ0
1-path (also called a left-c.e. real) if there is a uniformly

computable �left-increasing sequence of computable reals, {δs}s∈ω , such that δ(n) =

lims δs(n) for any n ∈ ω.

— Then the c.e. active-stage set for a Σ0
1-path δ, denoted Act(δ), is defined by

Act(δ)α = {s ∈ ω : α ⊂ δs, δs+1 & δs(|α|) < δs+1(|α|)},

and Act(δ) = {〈α, m〉 ∈ ω : m ∈ Act(δ)α}.
Note that, if P ⊆ 2ω is a Π0

1 class, and We is the c.e. active stage set for a Σ0
1 path, then

we can ensure the following properties.

1.
⊗

α∈ω<ω P |le(α)ce(α)
is a Π0

1 class.

2.
⊗

α∈ω<ω P |le(α)ce(α)
�M P .

Now we start to show the main lemma in this section.

Lemma 17. Let A be a c.e. set, and let P and Q be nonempty Π0
1 classes. If A ��T � and

P ��M Q, then there exists a nonempty Π0
1 class P̂ �M P such that A ��T P̂ ��M Q.

Proof. We will construct P̂ =
⊗

α∈ω<ω P |L(α)
C(α), where L(α) = le(α) and C(α) = ce(α) for

some c.e. active stage set We for a Σ0
1 path.

Requirements. We need to construct a Π0
1 class P̂ , for each index e, the following conditions

are met:

Ne : Φe(T
ext
P̂

) = A → (∃Γ) Γ = A;

Pe : (∀g ∈ Q) Φe(g) ∈ P̂ → (∃Δ)(∀g ∈ Q) Δ(g) ∈ P .

Here Γ and Δ range over all partial computable functionals.

Assume that a computable well-pruned tree Ts is given.

— The length functions o(α, s) and l(α, s) are defined as follows:

o(α, s) = max{l < s : Φ|α|,s(Ts) � l = A � l},
l(α, s) = max{l < s : (∀σ ∈ TQ,s ∩ 2s) Φ|α|,s(σ) � l ∈ Ts}.
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— Let usee(X, x, s) denote the X-use of computation Φe,s(X) � x, where usee(X, x, s) = 0

if Φe,s(X; n) is undefined for some n < x. The restraint function r(α, s) is defined as

follows:

r(α�o, s) = use|α|(Ts, o + 1, s) + 1.

— The current true path δs at stage s is inductively defined by δs(n) = o(δs � n, s) for each

n < s.

— Then, Ts+1 is defined as the corresponding computable well-pruned tree for the Π0
1

class
⊗

α∈ω<ω P |L(α,s+1)
C(α,s+1), where L(α, s + 1) and C(α, s + 1) are defined as follows:

L(α, s + 1) = max{l(α, s) : (∃t � s) α ⊆ δt},

C(α, s + 1) =

{
max({r(β, st(β)) : β ⊆ α} ∪ {st(α)}) if (∃t � s) α ⊆ δt,

↑ otherwise.

Here st(β) denotes min{u : β ⊆ δu}.
Note that, for each stage s, we have C(α, s) =↑ for almost all α. Therefore, the Π0

1 class⊗
α P |L(α,s+1)

C(α,s+1) is clopen, and an index of such a tree Ts+1 can be calculated from an index

of Ts, uniformly in s. Finally, put L(α) = lims L(α, s) and C(α) = lims C(α, s).

For each α and n, Γα(n) and Δα(n) is defined as follows:

Γα(n) = Φ|α|,st(α�n)(Tst(α�n))(n),

Δα(g)(n) = g(〈α, n + C(α, st(α))〉).

Claim (N-Lemma). For every α ∈ ω<ω , lims o(α, s) converges.

Proof. Inductively we assume that lims l(β, s) converges for each β � α. If α �⊆ δs for

almost all s, then lims l(α, s) clearly converges. Otherwise, we have α ⊆ δs for almost all s

by our assumption. Fix t such that α ⊆ δs for all s � t. Then, for each β � α, l(β, s) = l(β, t)

for all s � t. Note that L(β, s) = L(β, t + 1) and C(β, s) = C(β, t + 1) if β � α or β is

incomparable with α. Set un = use|α|(Tst(α�n), n + 1, st(α�n)). Note that, if β ⊇ α�m for

some m � n, then and C(α, s) � un for every s � st(α�n), and, for any other β, we have

l(β, s) = l(β, st(α�n) + 1) for every s � st(α�n). Therefore, Ts � un + 1 = Tst(α�n) � un + 1.

Hence, Γα(n) = Φ|α|,s(Ts)(n) for every s � st(α�n). Thus, if lims o(α, s) = ∞, then Γα = A.

Claim (P -Lemma). For every α ∈ ω<ω , lims L(α, s) converges.

Proof. Assume C(α) converges, and L(α) = lims L(α, s) =↑. Then P |L(α)
C(α) is Medvedev

equivalent to P . Indeed, it is easy to see that Δα(g) ∈ P for every g ∈ Q.

Set P̂ =
⊗

α∈ω<ω P |L(α)
C(α). By N-Lemma and P -Lemma, for each e, there is l such that

Φe(T
ext
P̂

) � l �= A � l, and Φe(g) � l �∈ T ext
P̂

for some g ∈ Q by compactness. That is to say,

we have A ��T P̂ ��M Q as desired.

By modifying our construction, we can easily show the following.

Theorem 18. Let A be a c.e. set, and let {Pi}i∈ω and {Qi}i∈ω be computable sequences

of nonempty Π0
1 classes. If A ��T � and Pi ��M Qi for each i ∈ ω, then there exists a

nonempty Π0
1 class P̂ �M

⊗
i Pi such that A ��T P̂ ��M Qi for each i ∈ ω. �

https://doi.org/10.1017/S0960129513000303 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000303


Comparing the Medvedev and Turing degrees of Π0
1 classes 1661

4.2. Applications

By analysing the proof of Cenzer and Hinman (2003), we can easily check that, for every

Π0
1 classes P ,Q ⊆ 2ω , if P <M Q then P <M P ⊗

⊗
α CPA|le(α)ce(α)

⊕Q <M Q for the c.e. active

stage set We for a Σ0
1 path.

Let (L,�,∪,∩, 0, 1) be a lattice. An element a ∈ L has the anticapping property if there

exists b ∈ (a, 1) such that a < b ∩ c for every c > a. It is not known whether every Π0
1

Medvedev incomplete degree has the anticapping property. By combining the strategies

for Theorem 18 and Cenzer and Hinman (2003), we can show the following anticapping

result.

Theorem 19. Every element of PM(< 0′) has the anticapping property in PM .

Proof (sketch). Let Q be a Π0
1 class with TQ �T �′. Note that Q ∩ C �T �′ for

every clopen set C . Because, for any clopen set C , the corresponding tree TC is clearly

computable; hence, TQ∩C = TQ ∩TC ≡T TQ <T �′. In particular, Q∩C <M CPA for any

clopen set C . Let {Ce}e∈ω be an effective enumeration of all clopen sets. Set Qe = Q ∩ Ce.

Requirements. We need to construct a Π0
1 class P such that for each e, i the following

conditions are met:

R2〈e,i〉 :
(
Qi �= � & (∀f ∈ Qi) Φe(f) ∈ P

)
→ (∃Δe,i)(∀f ∈ Qi) Δe,i(f) ∈ CPA;

R2e+1 : (∃g ∈ Q)
(
(∀f ∈ P ) Φe(f ⊕ g) ∈ CPA

→ (∃Γe)(∀f ∈ Q) Γe(f) ∈ CPA
)
.

Here, Δe,i and Γe range over all partial computable functionals, for each e and i.

Combine the strategies to show Theorem 18 and Cenzer and Hinman (2003).

By analysing the previous proof, we can prove that for every Π0
1 class Q, the Medvedev

degree of Q has the anticapping property if Q ∩ C <M CPA holds for any clopen set

C . Unfortunately, being PM(< 0′) is not characterized by the anticapping property, by

following observation.

Proposition 20. There is a Medvedev degree r ∈ PM \PM(< 0′) which has the anticapping

property.

Proof. Recall that MLR denotes the set of all Martin-Löf random reals. Then there

exists a universal Martin-Löf test {Ui}i∈ω such that MLR =
⋃

i(2
ω \ Ui). Then, the

Π0
1 class R1 = 2ω \ U1 ⊆ MLR has measure � 1/2. Hence, the set R1 is nonempty.

Since DNC �w MLR, every α ∈ R1 ⊂ MLR computes a diagonally noncomputable

function. The set TR1
computes the leftmost path of R1, so it computes a diagonally

noncomputable function. By the Arslanov Completeness Criterion, TR1
≡T �′. Hence,

r = degM(R1) ∈ PM \ PM(< 0′). We claim that, for every clopen set C , if R1 ∩ C �= �,

then we have μ(R1 ∩ C) > 0. Otherwise R1 ∩ C is a null Π0
1 class, so it contains no

Kurtz random real. Hence, this contradicts that R1 ∩ C contains a Martin-Löf random

real. If R1 ∩ C �= � then R1 ∩ C <M CPA, since CPA is not Medvedev reducible to a
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positive measure Π0
1 class (see Simpson (2005)). Thus, the Medvedev degree of R1 has the

anticapping property by our previous observation.

Question 21. Does every degree p ∈ PM have the anticapping property?

Our finite injury priority construction also works for showing the absence of nontrivial

computable infima in the co-c.e. closed Medvedev degrees PM .

Theorem 22 (The first half of Theorem 4). PM has no infima of any nontrivial computable

collection.

Proof (sketch). For any computable sequence {Pe}e∈ω with Pe >M Pe+1, and a Π0
1 class

P ⊆ 2ω , if P �M Pe for any e ∈ ω, then we can construct a Π0
1 class Q ⊆ 2ω such

that P ��M Q and Q �M Pe by defining Q = CPA�{(CPA|lP (e)
0 ) ⊗ Pe}e∈ω with some lower

semi-computable function lP . Here, we fix a computable set {ρe}e∈ω of all leaves of the

computable tree T with [T ] = CPA, and then CPA�{Se}e∈ω means CPA ∪
⋃

e∈ω ρe
�Se.

Requirements. We construct a Π0
1 class Q meeting the following requirements:

Ge : Q �M Pe;

Ne : Φe(P ) ⊆ Q → (∃Δe) Δe(P ) ⊆
⊗
i<e

Pi.

Here, Δe ranges over all computable functionals.

The parameter lP is defined to be the length of agreement of Φe(P ) ⊆ Q, i.e. lP (e) is the

maximal value l such that there is i � e with Φi(f) � l ∈ TQ for any f ∈ P . If Φe(P ) ⊆ Q,

then eventually Q is constructed to be a Π0
1 class which is Medvedev equivalent to

⊗
i<e Pi,

since lP (k) =↑ for any k � e. Therefore, the Ne-requirements are satisfied. The definition

of Q also ensures the success of the Ge-requirements.

5. Main lemma for Theorem 3

This section deals mainly with Lemma 23, which is used to prove Theorem 12 (hence,

Theorem 3).

5.1. Coding and preservation

— An element δ ∈ ω�ω is a Σ0
2-path if there is a uniformly computable sequence of

computable reals, {δs}s∈ω , such that δ(n) = lim infs δs(n) for any n ∈ ω.

— For a given Σ0
2-path δ ∈ ω�ω and its computable approximation {δs}s∈ω , we define the

number of times which α is initialized along δ by stage s as follows:

inδ(α, s) = #{t � s : δt <left α}.

— Then the c.e. active-stage set for a Σ0
2-path δ, denoted Act(δ), is defined by

Act(δ)α,n = {s ∈ ω : inδ(α, s) = n & α ⊂ δs},

and Act(δ) = {〈α, n, m〉 ∈ ω : m ∈ Act(δ)α,n}.
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Claim (coding). If a c.e. set We is an active-stage set for some Σ0
2-path δ, then Qi �M⊗

α,n Q|α||le(α,n)ce(α,n)
for any i ∈ ω.

Proof. If δ is a Σ0
2-path then, for every t ∈ ω, lims inδ(δ � t, s) converges to some

n(t) ∈ ω, since δs <left δ � t occurs at most finitely many s. Then, Act(δ)δ�t,n(t) is infinite,

since δ(n) = lim infs δs(n), hence δ � t ⊂ δs for infinitely many s. Therefore, ce(δ � t, n(t)) ↓,

and le(δ � t, n(t)) ↑. Hence, Qt|le(δ�t,n(t))
ce(δ�t,n(t)) ≡M Qt.

Lemma 23. Let {Qi}i∈ω be a computable sequence of Π0
1 classes, and assume that there

is a c.e. set U with U ��T

⊕
i�n Qi for any n ∈ ω. Then, there is a nonempty Π0

1 class

P ⊆ 2ω such that U ��T P and P �M Qi for any i ∈ ω.

Proof. We construct a Σ0
2 path TP , and define P =

⊗
α,n Q|α||le(α,n)ce(α,n)

for its active-stage

set. Fix an effective enumeration {Qe}e∈ω of a given T -incomplete family.

Requirements. We need to construct a Π0
1 class P such that, for each index e, the following

conditions are met:

Ge : (∃Γe) Γe(P ) ⊆ Qe;

Ne : Φe(TP ) = U → (∃Δe) Δe(
⊕
i<e

TQi
) = U.

Here, Γe, Δe and Θe are Turing functionals which will be constructed by us, for each e.

Strategy. The tree of strategies O is ω<ω . We assign a node of length 2e to a requirement

Ne, and 2e+1 to a requirement Ge. We say that α is to the left of β (or β is to the right of α) if

γ�〈m〉 ⊆ α and γ�〈n〉 ⊆ β hold for some γ ∈ O and m < n. We say that α has higher priority

than β if α is to the left of β or α � β. For a fixed computable injection π : ω<ω → ω,

the symbol ω[α] denotes the π(α)-section of ω, that is, ω[α] = {〈π(α), n〉 : n ∈ ω}. First, we

describe an outline of our strategy.

A. The Ge-strategy α acts as follows at stage s. As a first step, for any n, pick a coding

location cα(n) ∈ ω[α] which is the nth smallest new number greater than any restraints

defined until now. If ρ has been removed from TQe
at this stage, then, we remove all

τ ⊇ σ from TP for any σ of height cα(|ρ| − 1) + 1 such that σ(cα(n)) = ρ(n) for each

n < |ρ|. Then, we put Γα
e(f)(n) = f(cα(n)) for each f ∈ 2ω and n ∈ ω.

B. The Ne-strategy α acts as follows at stage s.

B0. For the first step, put lα = 0.

B1. Wait until U � lα + 1 = Φe(TP ) � lα + 1. Go to state (B2) when this occurs,

B2. Set Δα
e(

⊕
i<e TQi

; lα) = U(lα) with
⊕

i<e TQi
-use δ(lα), where δ(lα) is the maximal k

such that cβ(k) � ϕ(lα) for some G-strategy β of higher priority than α. Here, ϕ(lα)

denotes the TP -use of computations Φe(TP ) � lα + 1. Also protect the computation

Φe(TP ) � lα + 1 by restraining TP � ϕ(lα) + 1. Now, go back to state (B1) with lα + 1

in place of lα, and go to next state (B3).

B3. Wait until (
⊕

i<e TQi
) � δ(lα) changes, or until lα is enumerated into U. Go to state

(B4) when the former case occurs, and go to state (B5) when the latter case occurs.

https://doi.org/10.1017/S0960129513000303 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000303


T. Kihara 1664

B4. Cancel all actions for l′ > lα, remove any restraint for l′ � lα, and go back to state

(B2).

B5. Stop all actions for l′ > lα, and wait for the former case in state (B3) to occur. When

it does, go to state (B4).

Outcome. Intuitively, at stage s, the outcome of this strategy is the greatest lα which is

reached by some stage t � s and uncanceled between t + 1 and s. The current true path

TPs will be defined to be TPs(|α|) = lα.

Remark 3. In (B2), the use δ(lα) may be defined. Assume that the strategy α is never

injured after some stage s, and δ(lα) is defined at some stage t � s. At some stage u � t,

it can happen that Us(l
α) �= Uu(l

α) = Φe(TP ; lα), because of the enumeration of lα into U

and the change of TP � ϕ(lα). Pick the least such lα. After stage s, until the computation

Δα
e(

⊕
i�e TQi

; lα) is destroyed, only strategies β ⊆ α�lα or lower priority strategies than

α�lα are eligible to act, i.e. only such strategies can be an initial segment of current true

paths. However, any lower priority strategy β than α�lα can make changes of TP only

above cβ(0). Moreover, in (A), the strategy β ensures cβ(0) > ϕ(lα), since, if cβ(0) has been

already defined before (B1) happens, then cβ(0) is initialized and redefined to be greater

than ϕ(lα). Thus, the change of TP � ϕ(lα) must be made by the actions (A) of strategies

β ⊆ α�lα. In other words, TQ|β| � cβ(k) changes for some β ⊆ α, where cβ(k) � ϕ(lα).

Hence,
⊕

i�e TQi
� δ(lα) must change. Then, the strategy goes to (B4), and recovers

Δα
e(

⊕
i�e TQi

; lα) = U(lα). Therefore, this strategy ensures that Φe(TP ) � lα +1 = U � lα +1

always implies Δα
e(

⊕
i�e TQi

; lα) = U(lα).

Observation. Now, we assume that the infimum limit of outcomes of α is lα. Then the

Ne-requirement is satisfied as follows:

1. If α waits at (B1) for lα forever, then clearly U �= Φe(TP ) is satisfied.

2. Suppose the former case of (B3) occurs infinitely many times for lα. We notice that,

when the former case of (B3) occurs for lα, the computation Φe(TP ; lα) is also destroyed

by the definition of δ in (B2). Thus, in this case, Φe(TP ; lα) is eventually undefined,

and so Φe(TP ) �= U.

3. If α waits at (B5) for lα forever, then we get 1 = U(lα) �= Φe(TP ; lα) = 0.

4. If the infimum limit of lα diverges, then we observe that Δα
e(

⊕
i<e TQi

) = Φe(TP ) = U

holds, and this contradicts that
⊕

i<e TQi
<T U.

Construction. Now, we describe the formal strategy of our construction. The construction

proceeds in stages. A stage s consists of substages t � s. At each substage t of stage s,

just one strategy α ⊆ TPs of length t is eligible to act, where TPs is inductively decided

in our construction at substages of stage s. At the beginning of stage s + 1, initialize all

right strategies of TPs by making all its parameters undefined, and at end of the stage

s + 1, for all α of the left of TPs+1, put r(α, s + 1) = r(α, s). We now describe an action of

α = TPs+1 � t at substage t of stage s + 1.

Assume that a computable well-pruned tree Ts is given.
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— Let in(α, t) denote the number of times α is initialized by stage t. Then the set of all

(α, n)-stages is defined by STα,n[s] = {t � s : in(α, t) = n & α ⊂ TPt}. If α ⊂ TPs, i.e. s

is (α, in(α, s))-stage, then we also say that α is eligible to act at stage s.

— The length function l(α, s) is defined as follows:

l(α, s) = max{l < s : Φ|α|,s(Ts) � l = Us � l}.

— The outcome o(α, s) is defined as follows. If s is the first (α, n)-stage, i.e. if s =

min STα,n[s], then put o(α, s) = l(α, s). Otherwise, let s− = max{t < s : t ∈ STα,n[s]}. In

the case that l(α, s) < l(α, s−) because of enumerating l(α, s−) into U at stage between

s− and s as in the latter case of (B3), we put o(α, s) = o(α, s−). Otherwise, we put

o(α, s) = l(α, s).

— The restraint function is defined as follows:

r(α�o, s) = ϕ(o + 1) + 1,

where ϕ(k) denotes the Ts-use of computations Φe,s(Ts) � k.

— The current true path TPs ∈ ωs at stage s is inductively defined by TPs(n) = o(TPs �
n, s) for each n < s.

— Then, Ts+1 is defined as the corresponding computable well-pruned tree for the Π0
1

class
⊗

(α,n)∈ω<ω P |L(α,n,s+1)
C(α,n,s+1), where L(α, n, s+ 1) and C(α, n, s+ 1) are defined as follows:

L(α, n, s + 1) = max STα,in(α,s)[s],

C(α, n, s + 1) =

{
max({r(β, st(β)) : β �left α} ∪ {st(α)}) if STβ,n[s] �= �,

↑ otherwise.

Here, st(β) = min STβ,in(α,s)[s].

For our construction, by induction, The true path TP is defined to be TP (n) =

lim infs→∞{o ∈ O : (TP � n)�〈o〉 ⊆ TPs}. Finally, we define P =
⋂

s[Ts].

Claim. P �= �.

Proof. Each Ge-strategy α enumerates some strings into TP only when some strings are

enumerated into TQe
, and α’s coding locations ⊆ ω[α] for distinct α’s are disjoint. So, our

assumption that Qe �= � for each e ensures P �= �.

Claim. The G-requirements are satisfied.

Proof. Fix e, and let α ∈ TP be a Ge-strategy. Thus, α is not initialized after some stage

s. Suppose Γα
e(f) = 〈f(cα(n))〉n∈ω �∈ Qe. Then 〈f(cα(n))〉n�k for some k is enumerated into

TQe
at some stage s′, and so f � cα(k) + 1 must be removed from TP since α acts infinitely

many times for s′′ � max{s, s′}. This ensures that Γα
e(P ) ⊆ Qe.

Claim. The N -requirements are satisfied.

Proof. Fix e and let α ∈ TP be a Ne-strategy. We construct Δα
e(

⊕
e<i TQi

) as described

in (B2). Let s be the stage after which α is not initialized, let u + 1 be the next stage � s

at which α is eligible to act, and let v + 1 also be the next stage > u + 1 with α ∈ TPv+1.

We observe that, if l(α, v + 1) is differ from l(α, u + 1) because of changing Φe(TP ; k) for
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some k then such k must be less than TPu+1(|α|), and this change forces us to destroy

the computation of Δα
e(

⊕
i<e TQi

; k). This is because any G-strategies of lower priority

than α cannot injure the computation Φe(TP ; k) since our construction makes a restraint

r(α, u + 1) = ϕ(TPu+1(|α|)) on TP , and the outcome TP (|α|) grows whenever r(α) grows.

Moreover, Gj-strategies for j � e of higher priority than α never act after stage s since the

actions of these strategies causes an initialization of the strategy α, and this contradicts

the assumption of s. So only Gi-strategies for i < e can make a change of TP � ϕ(k) + 1

by changing (
⊕

i<e TQi
) � δ(k). Thus, Δα

e,v(
⊕

i<e TQi,v; x) correctly computes Φe,v(TP,v; x) at

every stage v � s at which α is eligible to act, whenever Δα
e,v(

⊕
i<e TQi,v; x) is defined. So

if lim infs l(α, s) = ∞ then we get Δα
e(

⊕
i<e TQi

) = Φe(TP ) = U and this contradicts our

assumption
⊕

i<e TQi
<T U. Hence, lim infs l(α, s) must be some finite value l(α), and so

Φe(TP ; l(α)) �= U(l(α)) as seen in previous observation.

The Ge-requirements assure that Qe �M P via Γe, and Ne-requirements assure that

U ��T TP holds since the condition Δe(
⊕

i<e TQi
) = U cannot occur by our assumption.

Hence, we obtain a desired Π0
1 class P such that U ��T TP and Q �M P for every Q ∈ A.

5.2. Applications

Recall that the c.e. Turing degrees have no nontrivial countable suprema, by Shoenfield’s

Thickness Lemma (see Soare (1987, Theorem VIII.2.3)). Our strategies construct the

product of finite modifications of given Π0
1 classes, as the Thickness Lemma constructs

the sum of finite modifications of given c.e. sets. By a few modifications of our previous

construction, we obtain the non-suprema result for Medvedev degrees of Π0
1 classes.

Theorem 24 (the last half of Theorem 4). The Medvedev lattice PM of the Π0
1 classes has

no nontrivial computable suprema.

Proof (sketch). Assume that a computable collection {Qi}i∈ω of Π0
1 classes is given. Fix

a Medvedev upper bound Q of {Qi}i∈ω , i.e. Qi �M Q for any i ∈ ω. We will construct a

Π0
1 class P such that Qi �M P for each i ∈ ω, but Q ��M P .

Requirements. We need to construct a Π0
1 class P such that, for each index e, the following

conditions are met:

Ge : (∃Γe) Γe(P ) ⊆ Qe;

Me : Φe(P ) ⊆ Q → (∃Θe) Θe(
⊗
i<e

Qi) ⊆ Q.

Strategy (C). The Me-strategy α is quite similar to the Ne-strategy. The strategy α acts as

follows at stage s.

C0. For the first step, put lα = 0.

C1. Wait for the least s such that |Φe(τ)| � lα + 1 and Φe(τ) ∈ TQ hold, for any τ ∈ TP

of length s. Such s will be called the use of the computation Φe(P ) � lα + 1, and

denoted by ϕ(lα). Go to state (C2) when this happens.
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C2. Choose the maximal k such that cβ(k) � ϕ(lα) for some β ⊆ α. For any choice

σi ∈ TQi
with |σi| = k, set Θα

e(
⊕

i�e σi) = Φe(τ) ∈ TQ, where τ ∈ TP satisfies the

condition that τ[a�i,n]|↑
cα�i(0)

extends σi for each i � e.

C3. If we see that Φe(τ) is removed from TQ for some τ ∈ TP of length ϕ(lα), then go

to state (C4).

C4. Stop all actions for l′ > lα, and wait for the condition in (C1) to recover. When it

does, reopen actions for l′ > lα, and go back to state (C3).

Remark 4. Assume that the strategy α is never injured after some stage s, and the strategy

reaches state (C2) at some stage t � s. After some stage, assume that α reaches state (C4)

because of the decrease of TQ, but the condition (C1) recovers because of the decrease of

TP . As discussed in the strategy (B), such recovering only happens due to some strategy

β ⊆ α. Therefore, if τ ∈ TP,t below ϕ(lα) + 1 is removed from TP,u for some stage u � t,

then every corresponding
⊕

i�e σi is also removed from
⊗

i�e TQi,u, since some σi must

be removed from TQi,u. Hence, Θα
e recovers its role as a function from

⊗
Qi to Q below

lα + 1.

As the proof in Theorem 23, it is not hard to verify our construction.

An ideal of the Medvedev lattice PM of the Π0
1 classes is uniformly generated if there is

a computable sequence of Π0
1 classes which generates the ideal. Theorem 24 implies that

every uniformly generated proper ideal of the Medvedev lattice PM of the Π0
1 classes has

a Medvedev incomplete upper bound. Furthermore, it is not hard to show the following

theorem by combining our strategies (A), (B) and (C).

Theorem 25. Assume that {Qi}i∈ω is a computable sequence of Π0
1 classes which satisfies⊗

i<n Qi <M

⊗
i∈ω Qi. Let Q be a Π0

1 class with Qi �M Q for each i ∈ ω, and U be a

c.e. set which is not computable in
⊕

i<n TQi
for any n ∈ ω. Then, there is a nonempty Π0

1

class P ⊆ 2ω such that U ��T TP and Q ��M P �M Qi for each i ∈ ω. �

6. Conclusion

Our results indicate that if a Π0
1-definable mass problem is difficult in the sense of the

Medvedev or Muchnik degree, then its global information content must be complex in the

sense of the Turing degree. For instance, if we know that a Π0
1-definable mass problem is

globally trivial in the sense of Kolmogorov complexity, then the problem must be easier

than a predetermined Π0
1 problem that has less information than the halting problem.
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