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ABSTRACT
The research focuses on the design space optimisation of National Advisory Committee
for Aeronautics (NACA) submerged inlets through the formulation of a hybrid data fusion
methodology. Submerged inlets have drawn considerable attention owing to their potential
for good on-design performance, for example during cruise flight conditions. However, com-
plexities due to the geometrical topology and interactions among various design variables
remain a challenge. This research enhances the current design knowledge of submerged inlets
through the utilisation of data mining and Computational Fluid Dynamics (CFD) methodolo-
gies, focusing on design space optimisation. A two-pronged approach is employed where the
first step encompasses a low-fidelity model through data mining and surrogate modelling
to predict and optimise the design parameters, while the second step uses the Design of
Experiments (DOE) approach based on the CFD results for the candidate design geometry
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to construct a surrogate model with high fidelity for design refinement. The feasibility of
the proposed methodology is demonstrated for the optimisation of the total pressure recov-
ery of a NACA submerged inlet for the subsonic flight regime. The proposed methodology
is found to provide good agreement between the surrogate and CFD-based model and reduce
the optimisation processing time by half in comparison with conventional (global-based) CFD
optimisation approaches.

Keywords: Data fusion; Surrogate modelling; MDO; NACA submerged inlet design; CFD

NOMENCLATURE

Abbreviations
MDO multidisciplinary design optimization

CFD computational fluid dynamics

1.0 INTRODUCTION
The geometrical shape and location on the fuselage of aircraft air intakes play a pivotal role in
defining the engine performance, which in turn is governed by the conversion of the chemical
energy of fuel into mechanical energy in terms of forward thrust and work done in compres-
sion of air. An optimal inlet design ensures sufficient thrust by providing the requisite airflow
pressure to the compressor. As a consequence, several researchers(1–3) have explored differ-
ent inlet designs and identified the critical parameters to improve the airflow pressure and
the overall aerodynamic features of the aircraft. Amongst these designs, the submerged inlet
(also called the flush inlet) has attracted significant interest from researchers due to its unique
architecture(4–9), especially for aircraft operating in the subsonic flow regime. Submerged
inlets were first introduced in the early 1940s. Since then, they have commonly been used as
auxiliary air sources for aircraft, and sometimes as the primary source of air induction for
unmanned aerial vehicles. The submerged inlet is flush to the contour of the aircraft fuselage
and is approached by way of a long, gently sloping ramp, normally divergent in shape. The
operating principle of a submerged inlet is based on the formation of two counter-rotating
vortices that transfer a considerable proportion of the air past the ends of the entry and out
into the external stream. Submerged inlets offer the advantages of low drag, low Radar Cross-
Section (RCS) and very low protuberance drag. These types of inlet are effective at subsonic
speeds. Particular features of submerged inlets, such as the requirement for a bleed system and
their low maintenance complexity and high reliability, have made them promising to improve
overall aircraft performance. Furthermore, low fuel use and enhanced range–payload ability
and survivability have also been observed as by-products of this peculiar design.

Despite all these advantages, various design challenges have inhibited the full exploita-
tion of submerged inlet technology. The complex flow field generated by their peculiar
geometrical features includes mixing of inviscid and viscous flows amid boundary layer
development. The vortices generated by the submerged inlet ramp represent another chal-
lenge that requires computationally expensive research based on the full potential of existing
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CFD methodologies and modern tools for their correct investigation and prediction. Several
researchers have applied CFD simulations to optimise the design of such inlets(10,11). Alhough
CFD simulations have produced encouraging results, their computational time remains a
challenge for such research. Some empirical methods are available in literature, enabling
analysis with the fidelity required to simulate anticipated the performance of submerged
engine inlets. It has been found that the off-design flight conditions dictate the performance of
submerged inlets. For instance, a 20% reduction of the total pressure recovery in comparison
with a cruise-optimised design is noted when operated off-design at low speed(12). However,
most such inlets do not have wide scope for use in different flight regimes but rather address
a particular operating environment. Moreover, extensive empirical/analytical models for
inlet design are scarce. There is therefore a strong need for careful consideration of inlet
performance across the entire flight regime. However, optimisation techniques for the design
of flush inlets require intricate and extensive computations.

The recent impact of data-driven models for the optimisation and solution of complex prob-
lems is undeniable. Several researchers have used data-driven models to solve complex fluid
dynamics problems. For instance, Reynolds-averaged Navier–Stokes flow predictions includ-
ing shock waves have been improved by treating the case as an inverse problem and solving
it using machine learning algorithms(13). In other research, the authors modelled functional
forms of turbulent and transitional flows by employing machine learning algorithms on com-
putational and empirical results. The authors found improved functional forms as compared
with traditional CFD analysis(14). The cited studies suggest that data-driven models can be
used effectively in CFD-based applications. However, to the best of the authors’ knowledge,
no existing research is available on design space optimisation of engine inlets. Furthermore,
the concept of data fusion, where both computational and data-driven models are used to opti-
mise the design space, has not been researched before. This paper thus describes an attempt
to develop a novel hybrid two-stage model by utilising data-driven techniques coupled with
CFD analysis. Data mining and surrogate modelling are verified using conventional CFD
analysis. The proposed methodology aims to accelerate the submerged inlet design process.
This paper presents two novel aspects. First, experiment-based data mining and the surrogate
modelling technique are used for low-fidelity prediction of the design parameter interactions
and optimisation. This includes the screening of third-order response surface effects and neu-
ral network-based sensitivity analysis to characterise the design variable sensitivities. Next,
a CFD-based design of experiments is used to sample the design space around the candidate
design geometry, produce a higher-fidelity surrogate model and further refine the submerged
inlet design. The use of automated shape optimisation within the CFD framework further
enhances the capability of the methodology to predict even better designs. The overall process
enables designers to explore the whole design space in a much more efficient and effective
way when compared with the traditional approach adopted for submerged inlets.

2.0 METHODOLOGY REVIEW
A four-stepped methodology, based on previous work by the authors(9), is proposed for the
submerged inlet design, as illustrated by the flowchart shown in Fig. 1. The four key steps
include (a) data mining by filtered DOE, (b) the surrogate model design, (c) optimisation
using a genetic algorithm and (d) CFD simulation for enhanced design refinement. Moreover,
the work is extended by validation of the methodology when implemented for a UAV inlet.
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Figure 1. A flowchart of the proposed methodology.

2.1 DOE for data mining
The methodology initially requires an information base of recently run experiments or simu-
lations to provide test cases. The DOE model and nearest point filtering are applied for this
purpose. DOE is performed in this research to minimise the work required in the experimental
tests and/or to maximise the information content. The DOE is formulated so as to mitigate the
influence of performance metrics and variable interactions on the results. Furthermore, DOE
is applied to minimise the number of test cases required. A new DOE scheme with reduced
orthogonality is obtained by using the nearest point filtering scheme.

In this research, the process of acquiring the nearest point filtered DOE is facilitated by
pre-selection of cases from a database of already executed experiments. Since the filtered
DOE approach offers greater variation compared with the conventional process of formulating
newly assessed cases through a “virgin” DOE, lower-fidelity surrogate models are obtained
from the considered DOE. Such surrogate modelling thus enables the acquisition of a first-
pass, “coarse” global design optimisation.

At this juncture, interaction effects and design variable sensitivities are characterised by
employing third-order polynomial Response Surface Equation (RSE) model effects on the
filtered experimental database in Minitab R©. The results of the substantial variable interactions
are presented as a Pareto plot in Fig. 2, showing the predicted relative impact (%) versus the
pressure recovery variability. It can be inferred from this figure that a strong interaction effect
exists between the inlet width-to-depth ratio and the ramp angle. Furthermore, the possibility
of other, higher-order interactions is indicated by low R2 values.
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Figure 2. An illustration of the variable interaction sensitivities (Pareto plot).

2.2 Creation and validation of a surrogate model
In the second step, a surrogate model through the nearest points filtered by the design of
experiments is presented. Surrogate models are chosen to obtain an analytical estimate of the
relationship between the input and the yield for a preparation informational index. Surrogate
models help by providing fluid-physic-based investigations, for example, CFD simulations,
to expedite the design procedure. However, it is observed that speeding up the analysis and
configuration measures reduces the applicability and limits the accuracy of the model because
the surrogate model is precise inside the space provided by the data.

Neural Networks (NN), RSE, Radial Basis Functions (RBF) and Gaussian Process (GP)
models are widely accepted types of surrogate model(15,16). The formulation of a surrogate
model involves the following steps:

1. Selection of the type of model
2. Application of the previously acquired DOE
3. Validation of the surrogate model
4. Validation corresponding to the nearest-point-filtered DOE

The modelling process may be implemented iteratively, thereby providing the tuned results
for the type of surrogate model and its boundaries. When the surrogate model provides
adequate results, it may be selected for optimisation purposes. In this research, a surrogate
model sensitivity profiler is employed to characterise the interactions between the design
variables (Fig. 3). This figure also presents two previews of a neural-network-based sensi-
tivity profiler. A non-linear, univariate relationship from the output to an individual input can
be observed for any static preview. Each contour is formulated by the supposition of other
design variables which are fixed to a selected design point that can be adjusted to indicate
changes in all the univariate relations. The intersection point indicated by a dotted crosshair
in each plot represents the chosen design point where the values of the variable are appropri-
ate. Note that further characterisation of the interactions between and sensitivities of design
parameters can be obtained through this dynamic adjustment. Figure 3 presents the effect of
variation of the designed inlet velocity ratio for given ramp angle and Width-to-Depth (W/D)
ratio. Investigation of these interactions enables the identification of improved designs while
considering the correlations among the design variables.
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Figure 3. Dynamic sensitivity profiler with different designed inlet velocity ratios.

2.3 Optimisation
Surrogate-model-driven optimisation is performed in the third step of the proposed method-
ology. This step entails the implementation of a stochastic optimisation heuristic for quick
execution and to avoid becoming trapped at local optima. A candidate globally optimal design
is the outcome of this design phase, while the approximation error can be obtained from the
surrogate modelling process, the error tolerance of the stochastic optimisation protocol and
the non-orthogonal DOE. This chosen design will serve as the starting point for further con-
ventional CFD- and gradient-based optimisation techniques. Negligible processing time is
required to generate this result, as the data are “mined” rather than being “framed.” The com-
putational time required for the CFD-based refinement steps is reduced due to the availability
of this initialisation point.

2.4 Verification and refinement of design point using CFD
The final phase of the proposed methodology entails the verification and refinement of the
candidate design using the state-of-the-art computational technique, CFD.

CFD analysis utilises different equations such as Newton’s second law of motion, the
mass continuity equation and the first law of thermodynamics to describe the flow of a
compressible, nonreacting, viscous fluid. The Navier–Stokes equations are typically used
for this purpose. A modified form of the Navier–Stoke equation, viz. Reynolds-Averaged
Navier–Stokes (RANS), is generally employed for engineering analysis, utilising models such
as Spalart–Allmaras, k − ε and its variants, k − ω and its variants and the Reynolds Stress
Model (RSM). The Spalart–Allmaras model is a comparatively simple, one-equation model
that provides a model transport equation for the kinematic eddy (turbulent) viscosity and is
formulated explicitly for aerospace applications. It has proved to be viable and accurate for
wall-bounded flows and has provided good results recently for boundary layers exposed to
adverse pressure gradients. For these obvious advantages, the Spalart–Allmaras model was
chosen for the current study(17). After selecting the model, the following numerical solution
procedures are applied to discretise and solve the general scalar transport equation until a
final, optimised result is obtained:

1. Domain discretisation
2. Discretisation of one or more governing equations of interest
3. Solution of the resulting discrete algebraic equations

Once the optimised design parameters have been obtained from the conventional CFD sim-
ulations, a novel data-fusion methodology is adopted to verify and refine the design point.
The proposed methodology selects one of three different techniques, viz. the DOE, surrogate
model and optimisation study, based on the “farmed” data obtained from a CFD simulation.
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Table 1
Design objectives for the UAV inlet

Design objective Targeted value/geometry

Mass flow rate 6.5kg/s
Pressure recovery Approx. 90%
Distortion level <5%
Ramp angle 7◦
Ramp plan form Curved divergent
Ramp floor shape Straight type

Figure 4. Dimensions of engine face.

Gradient-based optimisation is then employed in connection with the CFD analysis. Towards
the end, a finite-difference gradient calculation is employed on the candidate design point to
demonstrate its local optimality. These three models (that is, DOE, surrogate and CFD) can
be used to enhance the reliability, accuracy and efficiency of the results.

3.0 DESCRIPTION OF UAV SUBMERGED INLET
DESIGN PARAMETERS

The section describes the implementation of the proposed model on a formulated benchmark
problem. The key components of the problem include the baseline inlet geometry and fixed
engine geometry, a particular flight condition, the performance metrics, the design variable
selection, the CFD model creation and the database selection for the low-fidelity prediction
and nearest points DOE filtering.

3.1 Component geometries, baseline flight condition and design
objectives

The performance of a submerged inlet is strongly related to its geometrical design. From this
perspective, the key design characteristics for this research are taken to be a flat UAV skin
with a submerged inlet, an engine entry face and a duct. Figure 4 illustrates the dimensions of
the UAV engine. The targeted design objectives of the UAV submerged inlet are presented in
Table 1.
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Table 2
Baseline design parameters

Design parameter Selected value

Mass flow rate (MFR) at engine phase 6.5kg/s
Freestream Mach number 0.8
Flight cruise altitude of the UAV 1,000m
Throat aspect ratio 4
Inlet length 112.8cm
Inlet width 45.44cm
Inlet depth 11.36cm

Figure 5. Submerged inlet geometry.

NACA Research Memorandum A7I30(1) dictates the definitions of these inlet characteris-
tics, while the parameter values are also based on references give in the NACA report. The
values for the supplementary baseline design parameters were extracted and are presented in
Table 2. Figure 5 presents the final inlet geometry with all its dimensions (in centimetres).

3.2 Formulation of CFD model
The solid model and grid for the whole geometric model were generated using CATIA R© and
ANSYS Gambit R© CAD software, respectively. The whole design domain was meshed using
an unstructured tetrahedral grid scheme. A half model with a symmetry plane is constructed,
considering zero sideslip and zero angle-of-attack. The throat area, inlet plan form, diffuser
section, an engine with a protruding dome and the side edge of the ramp floor are included by
connecting volumes with shared joining faces. Sizing functions were utilised at the inlet ramp
entrance area, due to the anticipation of a high gradient flow. Rectangular-domain boundary
conditions were applied, with the bottom wall contacted through the inlet cavity. To study
grid independence, a coarse mesh was selected for further analysis. Figure 6 presents the
entire geometry and domain, showing the tetrahedral mesh with the x–z symmetry plane that
is valid for the whole geometry. Symmetrical boundary conditions were defined for the top
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Table 3
Grid independence analysis

Pressure Avg. Mach number
Grid No. of elements Mass flow rate recovery at engine face

Coarse 337,007 7.46 91.89 0.58
Medium 536,978 7.42 91.80 0.58
Fine 677,243 7.41 91.79 0.58

Figure 6. Baseline CFD mesh.

plane of the flow field domain, the longitudinal plane far from the plane of symmetry and the
upper plane. Pressure inlet and pressure outlet boundary conditions were imposed at the inlet
and exit planes. No-slip boundary conditions along with the adiabatic wall condition (no heat
transfer across this wall) and zero normal pressure gradient (∂p/∂y = 0.0) were applied on the
duct and engine dome. The remaining solid walls of the geometry were specified as having
zero shear to reduce the effort required for the boundary-layer solution saved. The boundary
conditions are illustrated in Fig. 6.

Three meshes were generated using Gambit R© software for the grid independence study, and
three performance parameters were observed: the mass flow rate, the pressure recovery and
the average Mach number at the engine face. Since there was only a 1% difference between
the values, the medium-sized mesh including 536,978 tetrahedral elements was selected for
further computational study and analysis purposes. The results of the analysis are presented
in Table 3. Mesh deformation was performed using Sculptor by Optimal Solutions R© to save
computational time without compromising the solution. The numerical simulations were
carried out at Ma = 0.8.

3.3 Simulation approach adopted for CFD design
ANSYSFluent R© and Sculptor R© were used for the optimal solutions to enable high-fidelity
simulations for the new designs and convergence of aerodynamic parameters such as the pres-
sure recovery of the inlet. The solution for the baseline geometry was used to initiate the other
transient simulations. Approximately 2,000 iterations were required to achieve convergence.
The application of Sculptor R© significantly reduced the run time of the CFD simulations by
enabling automated mesh deformation. Grouping of control points placed manually in the
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Figure 7. Mesh deformation using Sculptor�.

mesh was used to achieve its deformation. The effect of linear scaling was applied by group-
ing the control points for the mesh of the inlet ramp, the inlet ramp width length and the inlet
ramp depth. These three scales were then changed to vary the throat ramp angle and W/D
ratio while preserving the baseline inlet throat area. Figure 7 shows the basic concept of the
control point grouping.

3.4 Experimental database for low-fidelity approximation
DOE sampling was applied based on the data from a previously published article(1). The
scatterplot matrix shown in Fig. 8 illustrates the combinations of sampled design variables.
The database corresponded to almost a full-factorial examination of the five design parameters
with a bias ramp shape and a ramp angle of 7◦. Scenarios with a ramp angle of 5◦ or 15◦ were
sampled in detail in areas of low and high W/D, respectively. It was expected that the predicted
results would exhibit bias due to the discrepancy in flow conditions between the experimental
results published by NACA and the benchmark problems. this difference is largely governed
by the difference in Reynolds number between the flows and the relative thickness of the
inlet boundary layer. However, the response of the performance to the slope of the inlet is
sufficiently comparable to permit reasonable estimates. The aim of using the experimental
database is to obtain a reasonable initial guess for the optimised values of this model in terms
of the optimal inlet geometry for use in a design that will lie close to the basin of the global
optimum.

3.5 Optimisation of parameters
The aim of the considered problem is to maximise the inlet pressure recovery for a given
throat area of the inlet. The W/D ratio of the inlet throat and the ramp angle were regarded
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Figure 8. Database input space coverage(9).

as the Degrees of Freedom (DOF). The ratio of the inlet to duct exhaust velocity was consis-
tent (∼0.6) for each simulation. A straight ramp shape and curved divergent wall type were
preserved(1). The W/D ratio ranged between 1 and 6, while the ramp angle was varied from
5◦ to 15◦(9).

4.0 RESULTS
This section presents each step required for the application of the proposed methodology to
the defined baseline design problem, i.e., a UAV submerged inlet.

4.1 Step I: use of DOE for data mining
Observation of Fig. 8 (the database used for sampling) reveals that a condensed set of training
cases can be obtained without applying nearest points filtering. This is primarily because of
the limited possibilities of the presented data and the insignificant bias observed in the dataset.
Hence, the surrogate model training (step 2) utilises the complete database. No population was
thus retained to evaluate the errors in the model due to this lack of data filtering. The model fit
error and cross-validation error will thus define the decisive criteria to confirm the legitimacy
of the surrogate model in this problem.

4.2 Step II: creation and validation of surrogate model
A surrogate model was formulated to illustrate the pressure recovery as a function of the ramp
angle, wall type, W/D ratio, inlet velocity ratio and ramp plan form. A multilayer perceptron
(MLP) neural network was selected for the surrogate model due to its enhanced ability to
capture the non-linear response behaviour that is expected in the considered design problem.
The training dataset is acquired from a 1948 NACA wind-tunnel study of subsonic submerged
inlets, described in NACA Research Memorandum A7I30(1). A 15-node neural network was
trained using the preliminary information based on eightfold Gauss–Newton least-squares
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Figure 9. (a) Predicted versus actual results, and (b) predicted versus residuals.

fitting and tenfold cross-approval in JMP R© software by SAS R©. The model was then confirmed
by plotting and analysing the R2 values, the actual versus predicted results and the residual
errors versus the predicted model fit. A low possibility of overfitting was confirmed by the
typical R2 value of 0.99, with a mean of 0.02% and 1.3% standard deviation for the model fit
error. Figure 9 shows the actual vs. predicted and residual vs. predicted plots for the training
data, where a high fit quality was attained consistently across the design space, with random
and manageable approximation error with reference to the experimental data.

4.3 Step III: genetic algorithm
The next step involves design optimisation by employing the surrogate model as an inlet
performance predictor. The MATLAB GA Toolbox was applied for the current analysis. To
maximise the pressure recovery, the optimiser was defined with a curve divergent wall type,
a fixed inlet velocity ratio of 0.6 and a straight ramp shape. The objective functions for this
study are chosen as the ramp angle and the W/D ratio, which should be maximised. Similar
to Ref. 9, the population size was defined as 20, rank scales were employed to categorise
individuals’ scores and the selection was made using the uniform stochastic method. An elite
count of 2 was applied. The adaptive feasible and scattered methods were used for mutation
and crossover, respectively. The optimisation yielded a ramp angle of 5◦ and a W/D ratio of
2.66. This candidate optimum design is denoted as candidate optimum #I and will be utilised
as the preliminary condition for the next step in the inlet design.

4.4 Step IV: CFD for design verification and improvement
The candidate optimum design obtained in the previous stage was further validated and
refined in this stage by developing a higher-fidelity CFD-based method. For this purpose, the
candidate optimum geometry was initially run using the ANSYS Fluent R© solver on a mesh
deformed by Sculptor R©. The operating principle of the submerged inlet can be seen clearly
through the path lines shown in Fig. 10. The straight path lines show how the incoming air
forms vortices as it reaches the ramp planform of the submerged inlet, pulling the airflow
inside the ramp of the inlet.

Figure 11(a, b) depicts the static pressure and velocity distribution on the symmetry planes
for the k − ε model, confirming that the flow characteristics are not affected.

The distribution of the static pressure and the corresponding Mach number on the midplane
of the submerged inlet confirm the smooth transition of the pressure and Mach number, with
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Figure 10. Flow traces showing the formation of vortices over inlet sidewalls.

Figure 11. (a) Static pressure distribution of the optimised NACA flush inlet. (b) Mach number distribution
on the midplane of the optimised NACA flush inlet at Mach 0.8.

no sudden changes. These results are obtained for a Mach number of 0.8 and a backpressure of
109,984Pa, giving a mass flow rate of 6.5kg/s. These results indicate that a shockwave is not
present in the duct. The flow in the inlet duct exhibits higher pressures and lower velocities as
compared with the freestream. This is due to the deceleration of the flow caused by the change
in area in the duct and the backpressure present at the duct exit. The flow adjacent to the walls
of the submerged inlet indicates no flow separation regions as there is no abrupt change in
the direction of the velocity vectors (Fig. 12). However, the effect of vortex generation at the
sidewalls can be seen in the behaviour of the velocity vectors along the wall.

Total pressure distortion calculations were carried out at the engine face. Figure 13a shows
the total pressure distribution on the engine face when the submerged inlet is operating at
a Mach number of 0.8 with a mass flow rate of 6.5kg/s. The distortion coefficient is 0.06
for this pressure distribution. The Mach number at the engine face is also of interest during
the present study, showing an acceptable average value of 0.47. The distribution of the Mach
number over the engine face shows even lower values (∼0.4) in the area of the root of the
compressor blades (Fig. 13b). This helps keep the tip speed of the compressor blades below
the speed of sound relative to the incoming air.
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Figure 12. Velocity vectors adjacent to the submerged inlet at Mach 0.8.

Figure 13. (a) Total pressure distribution on engine face at Mach 0.8, and (b) Mach number distribution on
engine face at Mach 0.8.

5.0 DISCUSSION
A candidate optimum design that is predicted to offer improved performance was obtained
through the CFD analysis considered herein. A substantial difference in the CFD pres-
sure recovery and neural network predictions is observed because the low-fidelity analysis
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Table 4
Comparison of inlet design parameters

Inlet geometry Predicted pressure recovery
Ramp Ramp Ramp Low-fidelity CFD

W/D angle shape planform surrogate model solution

Baseline 4 7◦ Straight Curved 86.2% 91.8%
Candidate optimum #1 2.66 5◦ Straight Curved 90.1% 95.5%

Figure 14. Local DOE results based on CFD.

utilises experimental results corresponding to a different initial boundary-layer thickness
and Reynolds number compared with the UAV benchmark inlet. Table 4 presents a com-
parison between the candidate optimal design acquired from the Genetic Algorithm (GA)
optimisation versus the baseline design.

Inspection of the results presented in Table 4 reveals an enhancement over the baseline
design. The predictions obtained using the neural network model are sufficiently accurate to
define an enhanced inlet design. A higher-fidelity surrogate model is then created by conduct-
ing CFD-based DOE sampling. For this study, the optimisation of only two design variables
is considered. A nine-case, full-factorial, three-level DOE is thus regarded to be a rational
choice. This scheme enables an orthogonal DOE and permits the creation of a second-order
local RSE. The parameters are adjusted within ranges designed to include a small region
around the candidate optimum design while encompassing the improved design. The W/D
design variable is chosen to take values of 2.3, 2.6 and 3.0, while the ramp angle is adjusted to
4.75◦, 5.00◦ and 5.25◦, leaving the wall type and ramp shape constant throughout the analysis.
Figure 14 presents the DOE results obtained using Sculptor R© and Fluent R©. A second-order
RSE surrogate model is constructed using these DOE results, achieving an R2 value of 0.995.
The mean and standard deviation for the model fit of the error distribution of the regression
are calculated to be 9.44 × 10–7 and 0.0103, respectively.
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Figure 15. Second-order RSE sensitivity profiler.

Figure 16. Confidence intervals.

Figure 15 presents sensitivity profiler plots of the pressure recovery versus the ramp angle
and W/D ratio using the newly formulated surrogate model. The solid lines in the sensitivity
profile illustrate the univariate variation of the output statistic due to deviations in the input
value when the other inputs are kept constant at the designated design points (the candidate
optimum #I in this case). The dashed lines above and below the solid curves indicate the 95%
confidence interval corresponding to the fitting error.

It can be deduced from Fig. 15 that there is significant uncertainty in the pressure recovery
owing to the model fitting error related to the ranges of the input variables and sensitivities to
these variables. Based on the results, a 95% confidence interval region is estimated and shown
in Fig. 16. Here, the true CFD optimum denotes the optimum that would be observed if the
truncation error, discretisation error and numerical noise could be eradicated from the results.
The 95% confidence interval is defined as the region where the input–output space includes
the true CFD optimum with 95% confidence. The best design is seen to lie in the vicinity
of the bottom of the 95% confidence interval curve, considering that the optimum design
achieves equivalent or superior performance if the 95% confidence interval curves contain the
true CFD-predicted optimum design. The lower horizontal boundary of the region including
(with 95% confidence) the true CFD-predicted optimum is represented by the maximum point
of the curve. The upper 95% confidence curve approximately indicates the boundary of the
region that encompasses the true CFD-based optimum. Hence, the shaded region in Fig. 16
can be regarded as the 95% confidence interval. The size of the shaded area indicates the
optimal input value combinations, independent of model uncertainty.
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Applying this concept to the proposed CFD-based surrogate model, the optimum W/D
ratio ranges between 2.47 and 2.83 and a ramp angle below 5◦ is obtained with 95%
confidence.

6.0 CONCLUSIONS
The development of a novel data-fusion hybrid model (a data-driven method coupled with
CFD simulations) is presented to optimise the design of an inlet duct for a UAV. Applying
the proposed methodology to the UAV design problem, it is shown that the proposed method-
ology provides improved results in terms of reduced computational time compared with the
conventional CFD technique and yielded a high-fidelity model in comparison with standalone
data-driven conventional models. Some of the key conclusions that can be drawn from this
research are as follows:

1. Strong interactions between variables are observed based on the adjustment of the sen-
sitivity profiles in the design space. The interactions cannot be quantified by merely
investigating the surrogate model due to the interactions inside the network structure of
the neural network. Similarly, a CFD-based surrogate model including a notable second-
order interaction term between the ramp angle and W/D ratio is applied in the validation
and refinement steps. This model considers a limited regime and provides understand-
ing inside its domain of applicability. The evaluation of third-order RSE effects provides
further insgiht into the interactions between the input variables. The sensitivity analysis
permits the measurement of critical variable interactions. Pareto plots, sensitivity profil-
ing and polynomial effect screening can provide important complementary views on the
interactions between the input variables.

2. The proposed methodology provides an optimum design for the submerged inlet of a
UAV based on the pressure recovery, with 95% confidence. However, the intrinsic unpre-
dictability of the CFD-based prediction prevents further refinement. Nevertheless, the CFD
evaluation improved the design by accounting for the bias resulting from the low-fidelity
neural network prediction.
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11. PANIDIS, T., STALEWSKI, W. and ŻÓŁTAK, J. The preliminary design of the air-intake system and the
nacelle in the small aircraft-engine integration process. Aircr. Eng. Aerosp. Technol., 2014, 86,
(3), pp 250–258.

12. SIMPSON, T.W., LIN, D.K.J. and CHEN, W. Sampling strategies for computer experiments: Design
and analysis. Intl. J. Reliab. Appl., 2001, 2, (3), pp 209–240.

13. SINGH, A.P., DURAISAMY, K. and PAN, S. Characterizing and improving predictive accuracy
in shock-turbulent boundary layer interactions using data-driven models. In the 55th AIAA
Aerospace Sciences Meeting, pp. 0314, 2017.

14. DURAISAMY, K., ZHANG, Z.J. and SINGH, A.P. New approaches in turbulence and transition modeling
using data-driven techniques. In the 53rd AIAA Aerospace Sciences Meeting, pp. 1284, 2015.

15. XIAO, N.C., ZUO, M.J. and ZHOU, C. A new adaptive sequential sampling method to construct
surrogate models for efficient reliability analysis. Reliab. Eng. Syst. Saf., 2018, 169, pp 330–338.

16. COZAD, A., SAHINIDIS, N.V. and MILLER, D.C. Learning surrogate models for simulation-based
optimization. AIChE J., 2014, 60, (6), pp 2211–2227.

17. SPALART, P.R. and ALLMARAS, S.R. A one-equation turbulence model for aerodynamic flows.
Recherche Aerospatiale, 1994, 1, pp 5–21.

https://doi.org/10.1017/aer.2021.37 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.37

	NOMENCLATURE
	INTRODUCTION
	METHODOLOGY REVIEW
	DOE for data mining
	Creation and validation of a surrogate model
	Optimisation
	Verification and refinement of design point using CFD

	DESCRIPTION OF UAV SUBMERGED INLET DESIGN PARAMETERS
	Component geometries, baseline flight condition and design objectives
	Formulation of CFD model
	Simulation approach adopted for CFD design
	Experimental database for low-fidelity approximation
	Optimisation of parameters

	RESULTS
	Step I: use of DOE for data mining
	Step II: creation and validation of surrogate model
	Step III: genetic algorithm
	Step IV: CFD for design verification and improvement

	DISCUSSION
	CONCLUSIONS
	References
	References

