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Abstract

In this work, we study the laser propagation in a thermonuclear plasma corresponding to implosion of deuterium-tritium
pellets in inertial confinement fusion, by injecting energy provided by high-power laser devices into a quiescent plasma
and generating solitons. Having in mind that the electric field inside of plasma can be studied by means of a particular
non-linear Schrédinger equation, we solve this equation as an inverse problem, using the Inverse Scattering Transform
method, that is a X 2 eigenvalue problem, known as the AKNS scheme, developed by Ablovitz, Kamp, Newell, and
Shabat. We obtain the pseudopotentiéndr if we suppose that the eigenvalue is invariant in time, and is represen-
tative of a wave eigenvector, obtaining a solution that has a structure of the soliton type. In the process, one change of
variable for space and another for time are applied, and the relation between the pseudopotentials isrgivergby
Discretization of the non-linear Schrédinger equation, solved by inverse scattering transform are given by atddvitz
(1999. These solitons are generated near the critical layer wiigee w,,, Wy being the laser frequency amg the

plasma frequency, exhibit a change in electronic density profile and are caused by the ponderomotive force of laser
radiation. The electronic density is a function of the mean square of the electric field. The dispersion relation is
representative of an inhomogeneous plasma. Finally, the electric field is obtained as a function of space and time,
showing a structure of soliton type.
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In this work, we study the laser propagation in a thermo-wherekE is the electric field that is a function of the posi-
nuclear plasma corresponding to implosion of deuteriumtjon x and timet, « is given by

tritium pellets in the inertial confinement fusioBhen, 1990;

Lindl, 1998). Solitons have been observed in thermonuclear , W

devices and they have been generated by injecting energy of “ T2 K% 2

a high power into a quiescent ICF plasma. The data obtained

by laser fusion exhibits a change in electronic density prowherec is the light velocity in a vacuum anki= ¢ + in,
file caused by the ponderomotive force of laser radiatiorthe wave vector. The square of the wave vedtdris
near a critical layer wherey, = wp, w, being the plasma given by

frequency andy, the laser frequency. The electronic density

is a function of the mean square of the electric field, that is , WS Wi Wi Vei .

given by means of a particular nonlinear Schrédinger equa- 2 w2 \we+ w2 Wl ®)
tion (Motz, 1979; Dodckt al., 1982:

wherev,; is the electron—ion collision frequency. Having in
mind the expressiong2) and (3), the differential equa-

tion (1) is transformed into
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wherea, b, andc are given by

1w
a=a?——— — (5)
4KTn, c2
wZ [ wp
b=—"-| 6
4KTn, (w&)EO ©
W
e=—2§. (7)

2. SOLUTION OF THE NONLINEAR
SCHRODINGER EQUATION FOR LASER
PROPAGATION IN ATHERMONUCLEAR
PLASMA BY MEANS OF THE INVERSE
SCATTERING TRANSFORM METHOD

In the partial differential Eq4) we do the followings changes

of variable:
- (—e>t’ (®
b
1
= (5) ©
E=a, (10
obtaining
G + i0x +iqlgl? +idg =0, (11)
where
d=a/b. (12
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We consider that

r=-q (18
and that
9
q
is < and=0, and(17) can be written as
Paxx + (s + (%) h, = 0, (19

and| q|? can be considered as an eigenfunctiofl®). With
the condition

XIim q=0, (20
Eqg.(19) is transformed into
Poxx T 52‘/’2 =0. (21)

If r = —1, Eq.(17) may be reduced to the Schrédinger
scattering problem

Yoxx+ (s2+ Q) = 0 (22)
ands? is the eigenvalua of the operatot.,
Ly = Ay (23
i = My (24)
L =02%+q, (25)

This particular nonlinear Schrédinger equation can be solved

as an inverse problem, using the inverse scattering trans-
form method, that is a & 2 eigenvalue problem, known as
the AKNS scheme, developed by Ablovitz, Kamp, Newell, whereL is the operator of spectral problem aMlis the

and ShabatAblovitz & Segur, 198}, that is given by

hix = —isgy + A (13
Pax = st + 1, (14
the linear time dependence being
i = A+ B (15)
W = Cifry + D, (16)

whereA, B, C, andD are scalar functions independeni/of
If we substitute(13) in (14), we obtain

r

{yliZXX - ?X ‘/fzx - (17>

. Ix
(qr—lg? —;2>1//2: 0.
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operator related with a time evolution equation. The condi-
tions for compatibility of Eqs.23) and(24) are the following:

Cross differentiation{i, ) = (i )x (26)

d
Isospectrality:a—: =0. (27)

We finally obtain the following system of coupled differen-
tial equations, doin@® = —A:

A,=qge—rB (28)
B, + 2isB = g, — 2aq (29
C,— 2isC =r, + 2Ar. (30


https://doi.org/10.1017/S0263034602201238

Application of solitons to the study of laser propagation

We suppose that

3
A= ags! (32
i=0
3
B= b (32
i=0
3
C=>csl. (33
i=0
Finally we obtain
1
A=azsd+ as?+ > (azqr + a;)s
1 . as
+ Eazqr—lz(qrx—qerao, (34

and other similar equations f&andC, obtaining the evo-
lution equation forg

i 1 )
%= ag(Oyx — 69ray) + > a,(Oyx — 20°r) — a1 Ok — 2800,

(35

and another similar evolution equation for
We obtain the pseudopotentigandr if we suppose that

155
We obtain forg(x) andK;(x, y) the expressions

c|?

-1
Ki(x,y) = ic*exp[ig*(x+y)]{l— exp[2i(g—;*)]}

(c—c)
(38)
q(x) = —2Ky(x, )
= —2i(c/c*)nexp(—2isx)Sech2(nx — ¢)], (39
where

el _ exp(4¢) (40)

4m?
c = coexpg—2A (s)t]. (41)

In accordance with the inverse scattering transform method,
the evolution equation for Eq11) having in mind Eq(35)
is given by

1
O + = 80w — I9%r + 28,0 =0, (42)

2

wherea; = 0,a, = 2i,a; = 0,a,= —id/2.

Discretizations methods to solve the nonlinear Schrédinger
equation that is given by E@l1) by the inverse scattering
transform method are given by Ablovigt al. (1999.

We consider that the pseudopotentigisndr are related
byr=—q*2, where(*) is the symbol of conjugate complex
and we build the operator that results wher> oo and the
value of|q|? — 0. We obtain

the eigenvalue is invariant in time and is representative of

wave eigenvectdk = ¢ + in and applying the Marchenko’s

equation(Ghost Roy, 1991

Kl(xl y) + F*(X, y)

+ foofw Ki(x,2)F(z+ s)F*(s+y)dsdz= 0.
X X (36)

ForN =1, that is to say one eigenvalue,
F(x) = —ic exp(—isx). (37)

We multiply by exfisy) both sides 0f36) and we operate
with

fm exp(isx) dy.

X
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A({) = lim A(Z) =2i¢? +id (43)
d=C-Di. (44)
The real and imaginary parts &f ({) are given by
ReA () = D + 4én (45)
ImA_({) =i[2({% —n?) +C] (46)

and the solution of partial differential equati¢t®) is given
by

q(x’,t") = 2n-exp—2iéx]-exp2i Im A_(O)t']

X expl—i(¢o + 7/2)] (47)
Sech2nx’ + 2 ReA_({)t' — Xo]. (48)
We do the variable changes
X' =x"Ap (49
t = t"w, (50)
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whereAp is the Debye length and, the plasma frequency | E | *2 x 1.413820 x 10718 (V / m)"2
of the ICF plasma. Doing, = 0 and¢, = 0, we obtain

|g|? = 4n2 SecF[2nx’ + 2 ReA_()t']. (51)

3. RELATION BETWEEN THE ELECTRIC
FIELD SQUARE MODULUS AND THE | E
CHANGE IN THE DENSITY PROFILE
OF ELECTRONS

The high-frequency motion of the electrons is governed by

u e 3KT, dn

o Me MeNg X

(52

Fig. 1. |E|? as a function ok” andt”.

whereu is the electron velocity andlthe electronic density.
If we do not consider the thermal correction and
soliton type. Figure 1 shows in tridimensional space a de-

U = U exp(—iwot), (53 tailed picture of E| 2 as a function ok” andt”. The selected
_ ranges vary in natural units from 0 to 1 fef and from O
we obtain to 1 fort”. These structures have been calculated,at
10°° m~2 corresponding to implosion states.
1L The negative change in electronic density prodite has
|E[2 = —5—|u|2 (54) : .
e been calculated in the E¢67), and we can see that it de-
. ] ] . pends on the square of the modulus of the electric field and
The change in electronic profile can be written as has been observed experimentaliiramar, 1997; Mira-
mar & Alos, 1999.
dNe = NodNe (55 The representation of Rg[x”, t”]]= Re[E] can be writ-
ten as
1
ang = ——|u'|? (56)
4 R E] = 2 cog2éx’ + (2(£2 — n?) — Ot + 7/2]
W= (57) X Sechi2nx’ — (8¢n + 2D)t'], (60)
KT,
me and substituting andn by their numerical values we have
With Egs.(53), (54), and(55) we have Re[E] = 21 c040.056586X" + 7.92493t" + 77/2]
1 e? X SecH—5.59075x” + 0.160439t"]. (62)
_- e —_— 2
e 4 KT,w?m, Bl 8

We can see that R& ] is a function that has a structure of a

modulated soliton type. Figure 2 shows in tridimensional
4. RESULTS AND CONCLUSIONS

In the present work, we consider a high-frequency ICF elec-
tronic plasma and the input data are: electronic demgity 2n e [E]
10°°m~3 laser frequencw, = 1.884 10*°Hz, KT, =10 keV. AN
With this data input, we obtaigi = 6.0173810° andn =
—5.94521.108% The square of the absolute value of the elec-
tric field can be written as a function of variabbes= x'/Ap
andt” = t'wp, Ap being the Debye length of the ICF plasma.
We obtain

|E|? = 1.41382910"8. Seclf[-5.5907%" + 0.160439"]. (59

The electronic density scales asc | E|?, causing the gen-
eration of solitons as a consequence of ponderomotive force.
We can see thdE|? is a function that has a structure of a Fig. 2. Re[E] as a function ok” andt".
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