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Abstract

In this work, we study the laser propagation in a thermonuclear plasma corresponding to implosion of deuterium-tritium
pellets in inertial confinement fusion, by injecting energy provided by high-power laser devices into a quiescent plasma
and generating solitons. Having in mind that the electric field inside of plasma can be studied by means of a particular
non-linear Schrödinger equation, we solve this equation as an inverse problem, using the Inverse Scattering Transform
method, that is a 23 2 eigenvalue problem, known as the AKNS scheme, developed by Ablovitz, Kamp, Newell, and
Shabat. We obtain the pseudopotentialsq andr if we suppose that the eigenvalue is invariant in time, and is represen-
tative of a wave eigenvector, obtaining a solution that has a structure of the soliton type. In the process, one change of
variable for space and another for time are applied, and the relation between the pseudopotentials is given byr 5 2q*.
Discretization of the non-linear Schrödinger equation, solved by inverse scattering transform are given byAblovitzet al.
~1999!. These solitons are generated near the critical layer wherew0 > wp, w0 being the laser frequency andwp the
plasma frequency, exhibit a change in electronic density profile and are caused by the ponderomotive force of laser
radiation. The electronic density is a function of the mean square of the electric field. The dispersion relation is
representative of an inhomogeneous plasma. Finally, the electric field is obtained as a function of space and time,
showing a structure of soliton type.
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1. INTRODUCTION: THE PARTICULAR
NONLINEAR SCHRÖDINGER EQUATION

In this work, we study the laser propagation in a thermo-
nuclear plasma corresponding to implosion of deuterium-
tritium pellets in the inertial confinement fusion~Chen, 1990;
Lindl, 1998!. Solitons have been observed in thermonuclear
devices and they have been generated by injecting energy of
a high power into a quiescent ICF plasma. The data obtained
by laser fusion exhibits a change in electronic density pro-
file caused by the ponderomotive force of laser radiation
near a critical layer wherewp > w0, wp being the plasma
frequency andw0 the laser frequency. The electronic density
is a function of the mean square of the electric field, that is
given by means of a particular nonlinear Schrödinger equa-
tion ~Motz, 1979; Doddet al., 1982!:
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whereE is the electric field that is a function of the posi-
tion x and timet, a is given by
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wherec is the light velocity in a vacuum andk 5 j 1 ih,
the wave vector. The square of the wave vectork2 is
given by
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wherenei is the electron–ion collision frequency. Having in
mind the expressions~2! and ~3!, the differential equa-
tion ~1! is transformed into

Exx 1 aE1 bE6E62 1 ieEt 5 0, ~4!
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wherea, b, andc are given by
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2. SOLUTION OF THE NONLINEAR
SCHRÖDINGER EQUATION FOR LASER
PROPAGATION IN A THERMONUCLEAR
PLASMA BY MEANS OF THE INVERSE
SCATTERING TRANSFORM METHOD

In the partial differential Eq.~4! we do the followings changes
of variable:

t 5 S e

b
D t ' ~8!

x 5 S 1

!b
Dx ' ~9!

E 5 q, ~10!

obtaining

qt ' 1 iqx 'x ' 1 iq6q62 1 idq 5 0, ~11!

where

d 5 a0b. ~12!

This particular nonlinear Schrödinger equation can be solved
as an inverse problem, using the inverse scattering trans-
form method, that is a 23 2 eigenvalue problem, known as
the AKNS scheme, developed by Ablovitz, Kamp, Newell,
and Shabat~Ablovitz & Segur, 1981!, that is given by

c1x 5 2i§c1 1 qc2 ~13!

c2x 5 i§c2 1 rc1, ~14!

the linear time dependence being

c1t 5 Ac1 1 Bc2 ~15!

c2t 5 Cc1 1 Dc2, ~16!

whereA, B, C, andD are scalar functions independent ofci .
If we substitute~13! in ~14!, we obtain
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2 §2Dc2 5 0. ~17!

We consider that

r 5 2q* ~18!

and that

qx
*

q*

is ,, and>0, and~17! can be written as

c2xx 1 ~§2 1 6q62!c2 5 0, ~19!

and6q62 can be considered as an eigenfunction of~19!. With
the condition

lim
xr`

q 5 0, ~20!

Eq. ~19! is transformed into

c2xx 1 §2c2 5 0. ~21!

If r 5 21, Eq. ~17! may be reduced to the Schrödinger
scattering problem

c2xx 1 ~§2 1 q!c2 5 0 ~22!

and§2 is the eigenvaluel of the operatorL,

Lc 5 lc ~23!

ct 5 Mc ~24!

L 5 ]xx
2 1 q, ~25!

whereL is the operator of spectral problem andM is the
operator related with a time evolution equation. The condi-
tions for compatibility of Eqs.~23! and~24! are the following:

Cross differentiation:~cix !t 5 ~cit !x ~26!

Isospectrality:
]§

]t
5 0. ~27!

We finally obtain the following system of coupled differen-
tial equations, doingD 5 2A:

Ax 5 qe2 rB ~28!

Bx 1 2i§B 5 qt 2 2aq ~29!

Cx 2 2i§C 5 rt 1 2Ar. ~30!
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We suppose that
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Finally we obtain
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and other similar equations forB andC, obtaining the evo-
lution equation forq

qt 5
i

4
a3~qxxx2 6qrqx! 1
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a2~qxx 2 2q2r ! 2 ia1qx 2 2a0q,

~35!

and another similar evolution equation forr.
We obtain the pseudopotentialsq andr if we suppose that

the eigenvalue is invariant in time and is representative of
wave eigenvectork5 j 1 ih and applying the Marchenko’s
equation~Ghost Roy, 1991!.
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~36!

For N 5 1, that is to say one eigenvalue,

F~x! 5 2ic exp~2i§x!. ~37!

We multiply by exp~i§y! both sides of~36! and we operate
with

E
x

`

exp~i§x! dy.

We obtain forq~x! andK1~x, y! the expressions

K1~x, y! 5 ic* exp@i§*~x 1 y!#H12
6c62
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q~x! 5 22K1~x, x!

5 22i ~c0c* !h exp~22i§x!Sech@2~hx 2 f!# , ~39!

where

6c62

4h2 5 exp~4f! ~40!

c 5 c0 exp@22A_~§!t # . ~41!

In accordance with the inverse scattering transform method,
the evolution equation for Eq.~11! having in mind Eq.~35!
is given by

qt 1
1

2
a2qx 'x ' 2 iq2r 1 2a0q 5 0, ~42!

wherea3 5 0, a2 5 2i, a1 5 0, a0 5 2id02.
Discretizations methods to solve the nonlinear Schrödinger

equation that is given by Eq.~11! by the inverse scattering
transform method are given by Ablovitzet al. ~1999!.

We consider that the pseudopotentialsq andr are related
by r 52q*02, where~*! is the symbol of conjugate complex
and we build the operator that results whenxr ` and the
value of6q62 r 0. We obtain

A_~z! 5 lim
xr`

A~z! 5 2iz2 1 id ~43!

d 5 C 2 Di. ~44!

The real and imaginary parts ofA_~z! are given by

ReA_~z! 5 D 1 4jh ~45!

Im A_~z! 5 i @2~z2 2 h2! 1 C# ~46!

and the solution of partial differential equation~42! is given
by

q~x ', t ' ! 5 2h{exp@22ijx#{exp@2i Im A_~z!t ' #

3 exp@2i ~f0 1 p02!# ~47!

Sech@2hx ' 1 2 ReA_~z!t ' 2 x0# . ~48!

We do the variable changes

x ' 5 x ''lD ~49!

t ' 5 t ''wp ~50!
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wherelD is the Debye length andwp the plasma frequency
of the ICF plasma. Doingx0 5 0 andf0 5 0, we obtain

6q62 5 4h2 Sech2 @2hx ' 1 2 ReA_~z!t ' # . ~51!

3. RELATION BETWEEN THE ELECTRIC
FIELD SQUARE MODULUS AND THE
CHANGE IN THE DENSITY PROFILE
OF ELECTRONS

The high-frequency motion of the electrons is governed by

]u
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5 2

e
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E 2
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]x
~52!

whereu is the electron velocity andn the electronic density.
If we do not consider the thermal correction and

u 5 u0 exp~2iw0 t !, ~53!

we obtain

6E62 >
w0

2m2

e2 6u62. ~54!

The change in electronic profile can be written as
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With Eqs.~53!, ~54!, and~55! we have
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KTew2me

6E62 ~58!

4. RESULTS AND CONCLUSIONS

In the present work, we consider a high-frequency ICF elec-
tronic plasma and the input data are: electronic densityn05
1030 m23, laser frequencyw051.884{1015 Hz,KTe510 keV.
With this data input, we obtainj 5 6.01738{106 andh 5
25.94521{108. The square of the absolute value of the elec-
tric field can be written as a function of variablesx ''5 x '0lD

andt ''5 t 'wp, lD being the Debye length of the ICF plasma.
We obtain

6E62 5 1.413829{1018{Sech2 @25.59075x '' 1 0.160439t '' # . ~59!

The electronic density scales asn @ 6E62, causing the gen-
eration of solitons as a consequence of ponderomotive force.
We can see that6E6 2 is a function that has a structure of a

soliton type. Figure 1 shows in tridimensional space a de-
tailed picture of6E6 2 as a function ofx '' andt ''. The selected
ranges vary in natural units from 0 to 1 forx '' and from 0
to 1 for t ''. These structures have been calculated atn0 >
1030 m23 corresponding to implosion states.

The negative change in electronic density profiledne has
been calculated in the Eq.~57!, and we can see that it de-
pends on the square of the modulus of the electric field and
has been observed experimentally~Miramar, 1997; Mira-
mar & Alos, 1999!.

The representation of Re@q@x '', t ''##5Re@E# can be writ-
ten as

Re@E# 5 2h cos@2jx ' 1 ~2~j2 2 h2! 2 C!t ' 1 p02#

3 Sech@2hx ' 2 ~8jh 1 2D!t ' # , ~60!

and substitutingj andh by their numerical values we have

Re@E# 5 2h cos@0.056586{x '' 1 7.92493{t '' 1 p02#

3 Sech@25.59075{x '' 1 0.160439{t '' # . ~61!

We can see that Re@E# is a function that has a structure of a
modulated soliton type. Figure 2 shows in tridimensional

Fig. 1. 6E62 as a function ofx '' andt ''.

Fig. 2. Re@E# as a function ofx '' andt ''.
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space a detailed picture of Re@E# as a function ofx '' andt ''.
The selected ranges vary in natural units from 0 to 1 forx ''

and from 0 to 10 fort ''.
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